Sumas exponenciales racionales con coeficientes de formas modulares

Autor: Victor Cuauhtemoc Garcia Hernandez
Coautor(es): Jitendra Bajpai: Mathematisches Institut, Georg-August-Universit\"at G\"ottingen, Germany. Subham Bhakta: Mathematisches Institut, Georg-August-Universit\"at G\"ottingen, Germany,
\noindent Sea $f$ una forma modular de peso $k \in 2\mathbb{Z}$ y nivel $N$ tal que admite una expansi\'on de Fourier \begin{equation*}\label{eq:mf} f(z)=\sum_{n=1}^{\infty}a(n) e^{2\pi i n z}, \quad \Im (z) \ge 0. \end{equation*} En el trabajo conjunto con J.~Bajpai y S.~Bhakta nos reestringimos al caso cuando los coefientes $a(n)$ son racionales. \medskip \noindent Estudiaremos el problema de obtener estimaciones no triviales en campos primos para sumas exponenciales con sucesiones de la forma $\{a(p^n)\}_{n \ge 0},$ donde $p$ es un primo fijo. M\'as a\'un, presentamos una caracterizaci\'on para aquellos primos $p$ donde se tiene una estimaci\'on no trivial y aquellos que no la admiten. Nuestro enfoque se basa en nuevas estimaciones de sumas exponenciales para sucesiones recurrentes en campos finitos.