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Introduction

One of the main problems faced in the mathematical modeling of the coronavirus epi-
demic has been the lack of quality data. In particular, it is estimated that a large number
of cases have been unreported, especially those of asymptomatic patients. This is mostly
due to the strong demand of tests required by a relatively complete report of the infected
cases. Although the countries/regions that have managed to control the epidemic have been
precisely those that have been able to develop a great capacity of testing, this has not been
achieved in most of the situations.

In general, the number of unreported patients has been estimated by extrapolating data
from the reported cases assuming that both numbers vary proportionally. However, this
view can be criticized (al least) in two directions:

– It does not consider the dynamical role of the unreported cases in the evolution of the
epidemic and, by extension, in the number of reported cases;

– it does not allow a possible variation of the proportion between the numbers of reported
and unreported cases when the conditions of social distancing remain unchanged.

In this work, we address these points incorporating the unreported cases into the mod-
eling. In a first introductory section, we discuss from a mathematical perspective what
happens when the testing capacity is very low. Using a very simple argument we show that,
in this context, the dynamics of the disease is actually governed by the growth of the number
of unreported cases, and that of the reported patients becomes much smaller (in a progres-
sive way) than that of the total cases. Although the discussion is presented in a context of
extreme (hence “ideal”) conditions, it certainly illustrates how essential is to consider the
role of the unreported cases to analyze the global evolution of the epidemic.

Several mathematical models have been proposed to deal with the unreported cases and
their role in the progression of the epidemic. In the second section of this work we address one
of them, with the acronym SIRU, recently proposed by Zhihua Liu, Pierre Magal, Ousmane
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Seydi and Glen Webb [10, 11, 12]. After a brief presentation of the model and an explanation
of why it is more adjusted to the current epidemic, we proceed to establish a series of
structural results. Although this does not completely close the study of the qualitative
properties of the underlying differential equations, we can already glimpse an analogy with
those of the classical SIR model. However, we stress an important difference: in the SIRU
model, the curves that appear do not necessarily have a single peak. Specifically, we exhibit
a simple method to detect parameters that give rise to curves with at least two peaks.

The model of Liu, Magal, Seydi and Webb has already been used to describe the evolution
of the epidemic in various countries (China, South Korea, the United Kingdom, Italy, France
and Spain). In the last section of this work, we implement this modeling to the global Chilean
scenario using the official COVID-19 data provided by the Chilean government [13]. However,
unlike [10, 11, 12], our implementation is novel in that it uses a variable transmission rate
for the disease, which is more pertinent according to the local epidemiological evolution.

This work concludes with a section of general conclusions in which some future lines of
research are also described.

1 On the dynamics with low testing capacity

1.1 The context

We denote by U the number of positive cases that one would expect to detect within a
certain unit of time in some region using the maximal capacity of testing that is available.3

Suppose that the epidemic has evolved to a point where the number of detected cases in this
unit time is systematically very close to this threshold U . The reported contagion curve is
then taking a plateau shape, but a question immediately arises: has the contagion process
entered into an stationary phase -with a reproduction rate R equal to 1 or slightly higher-,
or is a significant number of positive cases being indetected?

It is impossible to answer a priori to this question. However, it is very unlikely that
the process enters a stationary regime exactly when the threshold is reached. We argue
below that, if the entry into an stationary regime has not occurred, then not only a fixed
“proportion” of the number of cases is being undetected, but this is the case of a much larger
amount; more precisely, the latter follows an exponential rate growth.

3We note that this quantity shouldn’t be equal to the total number of tests, but to a fraction of this.
Indeed, it is expected (and international statistics confirm this) that, for each positive test, a certain fixed
amount of tests will have negative outputs. This percentage depends on numerous factors, in particular, on
the bias to preferably test symptomatic patients.
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1.2 A mathematical argument

To simplify the discussion, our unit time will be equal to the total period of the disease. For
an instant i, we denote by ci the number of reported positive cases, and by Ci that of total
cases. We assume that, while ci remains below the threshold, it assumes values very close
to it in the future evolution. We write this as follows:

U − v ≤ ci ≤ U,

where v is relatively small compared to U .

We will also assume that we are not in a stationary regime (that is, the apparent sta-
tionarity is actually a consequence of a default of testing). Therefore, the value of Ci is
substantially greater than the threshold and, consequently, than ci. At the instant i, the
number of cases that are not being detected is Ci − ci. These individuals will have a higher
social activity than those detected as infected (since the latter will be quarantined). There-
fore, the average number of new infected individuals by these undetected agents will be a
value R̂ strictly larger than R.

Thus, on average, the detected infected individuals of time i generate R new infections
at time i + 1, while those undetected at time i (whose number is Ci − ci) each generate R̂
new infections. Therefore, the following inequality holds:

Ci+1 ≥ Rci + R̂ [Ci − ci].
Since R ≥ 1, this implies

Ci+1 ≥ ci + R̂ [Ci − ci],
hence

Ci+1 − ci+1 ≥ ci − ci+1 + R̂ [Ci − ci].
Since ci ≥ U − v and ci+1 ≤ U , the above implies

Ci+1 − ci+1 ≥ R̂ [Ci − ci]− v.
By simple recurrence, for an initial time i0 and all n ≥ 1, this gives

Ci0+n − ci0+n ≥ R̂ [Ci0+n−1 − ci0+n−1]− v
≥ R̂ [R̂ [Ci0+n−2 − ci0+n−2]− v]− v = R̂2 [Ci0+n−2 − ci0+n−2]− v [1 + R̂]
...

≥ R̂n [Ci0 − ci0 ]− v [1 + R̂+ R̂2 + . . .+ R̂n−1] = R̂n [Ci0 − ci0 ]− v

[
R̂n − 1

R̂ − 1

]

≥ R̂n

[
Ci0 − ci0 −

v

R̂ − 1

]
.
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In other words,

Ci0+n ≥ ci0+n + R̂n

[
Ci0 − ci0 −

v

R̂ − 1

]
.

It is natural to expect that the term v/(R̂ − 1) is (very) small with respect to Ci0 − ci0 .
Indeed, on the one hand, R̂ does not approximate indefinitely to 1 (since the undetected
infected individuals do not significantly reduce their social activity); on the other hand, our
analysis deals with times for which Ci is very (although, a priori, not exponentially) greater
than ci. (A more robust argument consists in choosing not only a single initial time i0, but to
implement the previous inequality along a sequence of consecutive times and finally average
along these inequalities.)

Assuming all of the above, the conclusion is clear: the number of infected people Ci0+n is
much higher than the number ci0+n of reported infected individuals. Indeed, the difference
between the two is bounded from below by an exponential of ratio R̂, while that the evolution
of the detected cases is governed by the rate R, which is strictly less than R̂. So, the curve
that we see (that of the values ci+n) is not only very far from the real one (that of Ci+n),
but the difference between them has an exponential growth that we are not perceiving.

1.3 A more theoretical discussion

The “toy argument” above shows something evident: if we are not able to follow the evolution
of an epidemic through appropriate mass testing, then we lose track of the infectious curve.
In more sophisticated terms, what it reveals is that as long we are not aware that the
reproduction rate R is strictly smaller than 1, the dynamical system of the epidemic moves
in a regime of either slight exponential growth or, at least, of instability. In such a regime,
small variations of the initial conditions can lead to exponential explosion. Now, to a large
extent, these initial conditions are provided by official data. However, if these move around
the maximum of what the system can detect, then we can hardly know how accurate they are
and, therefore, whether we really are in a stationary situation or whether we have advanced
to an exponential explosion of cases that we are not perceiving. For this reason, for each
instance in which the number of positive detected cases becomes nearly constant (that is,
when the curve of reported cases begins to acquire a plateau shape), it seems reasonable to
apply a substantive increase in the number of tests (both in quantity and spectrum). If this
leads to a significant increase in the number of positive cases, then most likely this would
mean that, actually, the regime was not stationary, but was simply exceeding a threshold
above which a significant amount of infections cannot be reported. We will return to this
point in the general conclusions of this work.

4



2 About the model of Liu, Magal, Seydi and Webb

2.1 Presentation

The key argument in the preceding section is that unreported patients have a greater dy-
namic role than those that are reported (since the former do not enter into quarantine), and
therefore they contribute more importantly to the epidemic. However, in the traditional
SIR model, both types of patients are part of the same compartment. In [10], Liu, Magal,
Seydi and Webb solve this problem by separating them into two compartments. Denoting
respectively by S, I, R and U the susceptible individuals, infected individuals who do not yet
have symptoms (and are at incubation stage), reported infected individuals, and unreported
(either asymptomatic or low symptomatic) infected individuals, they consider the following
diagram flux:

Figure 1: Diagram flux

The differential equations attached to the diagram above and that govern the dynamics
of the epidemic are the following:

S ′(t) = −τS(t)[I(t) + U(t)]

I ′(t) = τS(t)[I(t) + U(t)]− νI(t)

R′(t) = ν1I(t)− ηR(t)

U ′(t) = ν2I(t)− ηU(t),

(1)
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where t ≥ t0 corresponds to time, with t0 being the starting date for the study (as in [10,
11, 12], in the implementation, we will consider the time t0 corresponding to the beginning
of the epidemic). Although this system of differential equations makes perfect sense when
prescribing any initial condition, in epidemiological modeling one is naturally lead to use
data of the following type:

S(t0) = S0 > 0, I(t0) = I0 > 0, R(t0) ≥ 0 and U(t0) = U0 ≥ 0.

The parameters used in the model are described in the Table below. In particular, note that
ν = ν1 + ν2. In addition, all the parameters that are considered τ, ν, ν1, ν2, η are positive.

Symbol Interpretation

t0 Initial time.

S0 Number of individuals susceptible to the disease at time t0.

I0 Number of infected individuals (in incubation period) without
symptoms at time t0.

R0 Number of reported infected individuals at time t0.

U0 Number of unreported infected individuals at time t0.

τ Transmission rate of the disease.

1/ν Average time during which the infectious asymptomatic individu-
als remain in incubation.

f Fraction of asymptomatic infected individuals that become re-
ported infected.

ν1 = fν Rate at which asymptomatic infected cases become reported.

ν2 = (1−f)ν Rate at which asymptomatic infected become unreported infected
individuals (asymptomatic or mildly symptomatic).

1/η Average time during which an infected individual presents symp-
toms.

Table 1: Parameters and initial conditions of the model.

Note that in the first of the equations of (1), namely

S ′(t) = −τS(t) [I(t) + U(t)],

the role of I and U in the spread of the infection is the same. This is the essential point
of the model: it gives the same dynamic role to those who are infected and do not have
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symptoms as to those who are not reported, because the latter do not go into quarantine
and, in fact, have a similar social activity. Certainly, the model can be refined in many
directions; for example, one could give different though still dynamical roles to I and U
by attaching to them different positive parameters τ1 6= τ2 (this could be justified by that
U includes individuals with low symptomaticity who can practice self-care). However, it is
already worth to visualize some of the main properties of this model and to implement it in
specific situations following this general format.

2.2 Some basic qualitative properties

We next consider the system of equations (1) in more detail. We will assume an epidemic
situation, which is summarized by the condition

τS0 − ν > 0. (2)

We will also consider the initial conditions of Liu, Magal, Seydi and Webb:

S0 > 0, I0 > 0, R0 = 0 and U0 =
ν2 I0
η + χ2

(3)

for a certain χ2 > 0. (The precise value of the parameter χ2 will be given in the next section;
here we just retain the fact that it is positive.) For simplicity, our starting time will be
t0 := 0.

Theorem 2.1. In an epidemic situation (2) and starting with the initial conditions (3), the
following three properties are fulfilled:

(i) For all time t > 0, the values of S(t), U(t), I(t) and R(t) exist, are positive and strictly
smaller than P := S0 + I0 + U0 (the total population);

(ii) S(t) converges to a certain positive limit value S∞ as t → ∞, while I(t), R(t), U(t)
converge to 0;

(iii) R(t)/U(t) converges to ν1/ν2 from below.

Proof. We first note that, due to (2) and (3), we have

S ′(0) = −τS0I0 < 0,

I ′(0) = (τS0 − ν)I0 + τS0U0 > 0,
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R′(0) = ν1I0 > 0,

U ′(0) = ν2I0 − ηU0 = ν2I0

(
1− η

η + χ2

)
> 0.

Therefore, there exists ε > 0 such that S(t), I(t), R(t) and U(t) (are defined in [0, ε) and)
are strictly positive. The arguments that follow are inspired by an observation contained in
the classical book of Vladimir Arnold [1].

(i) Suppose S vanishes, and let T > 0 be the first time this occurs. Let C > 0 be such that
I(t) + U(t) ≤ C for all t ∈ [0, T ]. Then S ′(t) ≥ −τCS(t), and hence, for t ∈ [0, T ), we have

S ′(t)

S(t)
≥ −τC.

Integrating between 0 and s < T , this gives

log(S(s))− log(S0) ≥ −τCs,

and then,
S(s) ≥ S0 e

−τCs.

Letting s go to T , this contradicts the assumption S(T ) = 0.

Suppose now that U vanishes, and let T > 0 be the first time this occurs. If I has
not vanished until this time, then U ′(t) = ν2I(t) − ηU(t) ≥ −ηU(t) for all t ∈ [0, T ]. By
integration, this gives

U(T ) ≥ U0 e
−ηT ,

which contradicts our assumption. Hence, I should have vanished in [0, T ].

The same argument above shows that if R vanishes at a time T > 0, then I must have
vanished at some time in [0, T ].

Finally, suppose that I vanishes, and let T be the first moment this occurs. Then,
U(t) ≥ 0 for all t ∈ [0, T ], and therefore

I ′(t) = τS(t) [I(t) + U(t)]− νI(t) ≥ −νI(t).

However, by integration, this again gives a contradiction, namely I(T ) ≥ I0e
−νT .

We next show that neither I nor U explode (that is, none of them tends to infinity along
an increasing sequence of times tending to a finite time T ). Indeed, if anyone does it in
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time T then, from the above, P ≥ S(t) ≥ 0 on [0, T ), and U, I are positive on this interval.
Therefore, on [0, T ),

(I + U)′ = τP [I + U ]− ν1I − ηU ≤ τP [I + U ],

which implies by integration that (I + U)(t) ≤ (I0 + U0) e
τP t for t ∈ [0, T ). Letting t go to

T , this contradicts the explosion.

To see that R does not explode, we proceed again by contradiction: if this occurs at
time T , then from R = ν1I − ηR ≤ ν1I we deduce R(t) ≤ R0 e

ν1C for all t ∈ [0, T ) and
C := maxt∈[0,T ] I(t).

Finally, S does not explode because it is decreasing and positive.

In conclusion, S, I, R, U are all positive and do not explode. To prove that they are
bounded from above by P , we introduce the equation of the deletted (removed) individuals
from the system:

D′(t) = η [R(t) + U(t)], D(0) = 0.

We have a constant population P = S(t) + I(t) +R(t) + U(t) +D(t), and since D′ > 0, we
have that D(t) > 0 for all t > 0. Now, since S, I, R, U are positive for t > 0, we conclude
that each of them must be strictly smaller than P .

(ii) First we show that S converges towards a positive limit. Let S∞ be the limit of S (which
exists because S is decreasing). Denoting c := min{η, ν}, we have

(I + U)′ = τS [I + U ]− ν1I − ηU ≤ (τS − c) (I + U).

Since S ′ = −τS [I + U ], this implies

(I + U)′ ≤ (τS − c)S ′

−τS
= −S ′ + c

τ

S ′

S
.

Integrating between 0 and t > 0, this gives

(I + U + S)(t)− (I0 + U0 + S0) ≤
c

τ
log

(
S(t)

S0

)
.

Since I0 + U0 + S0 = P , this implies

−P ≤ c

τ
log

(
S(t)

S0

)
.

Thus, for all t > 0, we have S(t) ≥ S0e
− τ
c
P , and therefore, S∞ ≥ S0e

− τ
c
P > 0.
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Next, we simultaneously prove that I and U converge to 0 (the convergence of R to 0
will be then a consequence of the convergence of R/U to ν1/ν2 proved in (iii) below). To do
this, we first note that, since

S ′ = −τS [I + U ],

it follows that there is a sequence of times tn → ∞ such that (I + U)(tn) → 0. Otherwise,
there would exist c > 0 such that (I + U)(t) ≥ c for all t > 0, which implies S ′/S ≤ −τc,
and therefore S(t) ≤ S0e

−cτt. However, for t large enough, this contradicts the inequality
S(t) ≥ S∞ > 0.

Now, since ε > 0, we may fix T such that (I + U)(T ) ≤ ε/2 and S(t) ≤ S∞ + ε/2 for all
t ≥ T . We claim that (I + U)(t) ≤ ε for all t ≥ T . (Since ε > 0 was arbitrarily chosen, this
concludes the proof of the convergence of I + U towards 0.) To prove this, note that, since
(S + I + U)′(t) = −ν1I − ηU < 0, we have (S + I + U)(t) ≤ (S + I + U)(T ) for all t ≥ T ,
hence

(I + U)(t) ≤ (I + U)(T ) + [S(T )− S(t)] ≤ ε

2
+
ε

2
= ε,

as we wanted to show.

(iii) To prove that R/U converges to ν1/ν2, we first remark that(
R

U

)′
=
R′U −RU ′

U2
=

(ν1I − ηR)U −R (ν2I − ηU)

U2
= ν2

I

U

(
ν1
ν2
− R

U

)
. (4)

Therefore,
R

U
>
ν1
ν2

=⇒
(
R

U

)′
(t) < 0,

R

U
<
ν1
ν2

=⇒
(
R

U

)′
(t) > 0.

In other words, if R/U is smaller (resp. greater) than ν1/ν2 at a point t, then it is increasing
(resp. decreasing) around this point.

We first prove that R/U cannot be equal to ν1/ν2 at any point. To do this, we note that
R0/U0 = 0 6= ν1/ν2. We define ϕ := ν1

ν2
− R

U
. Equality (4) then becomes

ϕ′ = −ν2
I

U
ϕ.

If T were the first instant at which R/U = ν1/ν2, then T would be the first zero of ϕ. By
(i), there exists C > 0 such that ν2I/U ≤ C on [0, T ]. Since R0 = 0, one has ϕ(t) > 0 for all
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positive but small-enough t. Choosing such a t smaller than T we obtain, on [t, T ),

ϕ′

ϕ
≥ −C.

By integration, this gives ϕ(T ) ≥ ϕ(t) et−T , which contradicts the fact that ϕ(T ) = 0.

To prove the convergence of R/U towards ν1/ν2, which is equivalent to that of ϕ towards
0, we will use the fact (proven below) that I/U is bounded from below by a positive constant
c. Assuming this, we have

ϕ′

ϕ
≤ −ν2 c,

and hence,
ϕ(T ) ≤ ϕ(t) e(t−T )ν2c,

which converges to 0 as T →∞.

To conclude, we must show that I/U does not approach zero. For this, we begin by
noting that(
I

U

)′
=
I ′U − IU ′

U2
=

(τS [I + U ]− νI)U − I (ν2I − ηU)

U2
= τS−ν2

(
I

U

)2

+
I

U
(τS+η−ν).

Since S ≥ S∞, if I/U is very small, then the derivative (I/U)′ becomes positive, and therefore
I/U grows. As a consequence, I/U cannot arbitrarily approximate 0.

There are several remarks to the proof above.

Remark 2.2. The proof above applies to more general initial conditions than (3): it only
requires that the values S0 > 0, I0 > 0, R0 ≥ 0 and U0 ≥ 0 are such that I ′(t0), R

′(t0) and
U ′(t0) are all positive. However, note that, at this level of generality, in statement (iii) above
the convergence of R/U towards ν1/ν2 can occur from above, and even the quotient R/U
can remain constant and equal to ν1/ν2 throughout the whole evolution.

Remark 2.3. In the classical SIR model, the fact that the population of susceptibles con-
verges towards a positive limit is often presented as a consequence of the so-called final size
relation [5]. In our context, S ′ not only depends on I, but also on U . For this reason, it is
hard to expect such a simple relation, and this partly justifies the use of robust estimates in
the preceding proof.
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Remark 2.4. The convergence of R and U towards 0 must hold at a speed lower than e−ηt.
Indeed, from the last two equations of the system one obtains

R′ + ηR

ν1
= I =

U ′ + ηU

ν2
,

which can be rewritten in the form ν2(Re
ηt)′ = ν1(Ue

ηt)′. By integration, this gives

ν2Re
ηt = ν1Ue

ηt + C, where C := −ν1U0.

Therefore,
R

U
=
ν1
ν2

+
C

ν2 Ueηt
.

Since R/U converges to ν1/ν2, the product Ueηt must tend to infinity, thus showing our
claim for U . The claim for R immediately follows from this.

Remark 2.5. Another observation is related to the proportion R/U . Since this number
grows throughout the epidemic, the dynamic variability that we mentioned at the beginning
of this work holds. Moreover, the convergence of R/U towards ν1/ν2 tells us what should
be the values of the parameters in the implementation. We will return to this point for a
specific case in the next section.

Remark 2.6. Finally, we must mention that one of the basic results on the SIR model has
not been incorporated into the theorem above, namely, that of the uniqueness of the peak
of the curve of infected cases. In fact, this uniqueness is no longer valid for the SIRU model.
Below we draw an example of a double peak for the reported and unreported cases curves.
Note that though this occurs under initial conditions different from (3), it holds in a context
in which the theorem is still valid, according to Remark 2.2.

Figure 2: A double peak for the curves.
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Examples of this type can be easily obtained. For the curve R, one starts by imposing
the conditions R′(tp) = 0 and R′′(tp) > 0 for a time tp > 0 different from the starting time.
These conditions can be translated into conditions only on the values of S, I, R and U at
that time. Then the SIRU equations are implemented in both directions of time around tp.
This moment will hence correspond to a local minimum of the curve, necessarily located
between two peaks.

The same argument allows to build examples in which the curve of infected cases has
two peaks. Naturally, this is due to the presence of U in the derivative of I, which is an
absent element of the SIR model. In fact, in this one, the condition I ′ = 0 necessarily implies
I ′′ < 0, as a straightforward computation shows. This occurs only at the peak of the curve,
which corresponds to the time when herd immunity is achieved.

3 Observations based on official numbers

3.1 General implementation of the SIRU model

Our goal now is to compare the data available on COVID-19 in Chile until May 14 (2020)
[13] with what is predicted by the SIRU model, so that we can estimate the evolution of
the number of unreported cases throughout the period. We point out that a first estimate
of unreported cases in (some regions of) Chile using the data of March 2020 and the SIRU
model was carried out by Mónica Candia and Gastón Vergara-Hermosilla in [6].

To begin with, let us point out that in outbreaks of influenza disease, the parameters
τ, ν, ν1, ν2, η, as well as the initial values S0, I0 and U0, are generally unknown. However,
it is possible to identify them from specific time data of reported symptomatic cases. The
cumulative number of infectious cases reported at a time t, denoted by CR(t), is given by

CR(t) := ν1

∫ t

t0

I(s)ds.

This is data that is openly available. Likewise, the cumulative number of unreported cases
at a time t is

CU(t) := ν2

∫ t

t0

I(s)ds.

We note that, up to constants, these values coincide respectively with

R(t) + η

∫ t

t0

R(s) ds and U(t) + η

∫ t

t0

U(s) ds.
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Following the scheme used by Liu, Magal, Seydi and Webb, we will assume that, at an
early stage of the disease, CR(t) has an (almost) exponential form:

CR(t) = χ1 exp(χ2t)− χ3.

For simplicity, we will assume that χ3 = 1. The values of χ1 and χ2 will then be adjusted to
the accumulated data of cases reported in the early phase of the epidemic4 using a classical
least squares method (after passing to logarithmic coordinates). According to the above
(see [10] for details), for numerical simulations, the initial time for the beginning of the
exponential growth phase is fitted at

t0 := − 1

χ2

· log (χ1) .

Again, for simplicity, we will identify the initial value S0 to that of the total population
of Chile (since there is no prior immunity against the virus). Once the values of ν, η and f
are set, the conditions at the beginning of the disease are naturally fitted as

I0 :=
χ2

f (ν1 + ν2)
=
χ2

ν1
, U0 :=

(
(1− f) (ν1 + ν2)

η + χ2

)
I0 =

ν2 I0
η + χ2

, R0 := 0.

We recall that 1/ν corresponds to the average time during which patients are asymp-
tomatic infectious. As in [10, 11, 12], we will let this parameter be equal to 7 (days), and the
same value will be used for the average time in which patients are reported or unreported
infectious:

τ = η = 1/7.

Note that although the incubation period has been reported as being slightly smaller, the
lag in the delivery of the results of the PCR tests in Chile justifies this choice.

3.2 On the fraction of unreported cases

To implement the SIRU system we still need to establish a good value for the parameter f
(the fraction of symptomatic cases that are reported). Once this is fitted, we will have the
values of

ν1 = fν y ν2 = (1− f)ν,

4Specifically, to adjust χ1, χ2 we consider the next 28 days since the detection of the first case in Chile
(Talca).
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and we will just need to fit the value of τ .

Before continuing, it is worth pointing out that in [10, 11, 12] there is no major discussion
on the criterion used to establish the value of f in the different scenarios. Actually, a value
issued by the medical counterpart is assumed as valid. (For example, f = 0.8 is considered
for China.) In our modeling, we will use the work of Baeza-Yates [4] and that of Castillo and
Pastén [7], who use the case fatality rate of the disease (with the correct correction according
to its duration; see [2, 9]) to give estimates for the right number of infected individuals.5

Since Baeza-Yates’ argument is simpler and is not included in an academic publication, we
borrow it below in a language closer to that of the SIRU model. As we will see, it yields a
method to adjusting the value of f that can be used in almost all contexts.

Since we know that R/U converges towards ν1/ν2, we assume for this calculation that
R/U is simply equal to ν1/ν2. In addition, we will argue in discrete units of time (in days).
Then we have

R(n) = f [R(n) + U(n)]

If d is the average time of illness to death and M(n) the number of deaths in day n, then
the case fatality rate L corresponds to

L =
M(n)

[R(n− d) + U(n− d)]
.

Moreover, the reported case fatality rate is

LR =
M(n)

R(n− d)
=

M(n)

[R(n− d) + U(n− d)]
· [R(n− d) + U(n− d)]

R(n− d)
=
L

f
.

This gives

f =
L

LR
.

In the Chilean context, deaths in the period studied occurred within 9.4 days after the
disease was reported. Adjusting d = 9, the computation of LR is made feasible from the
data available in [13].

Finally, regarding the natural case fatality ratio L of the disease, it is deduced from
international studies that, after adjusting it to the age distribution of the Chilean population,
it should vary between 0.2% and 1%, with a very high tendency to be around 0.6%. In
summary, this gives a parameter f varying between 0.1 and 0.5, with a high tendency to be
close to 1

3.4
∼ 0.3.

5They estimate this number between 60% and 70% higher than the one reported for the period studied.
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3.3 Variations in the transmission rate

Given the heterogeneity of the safeguard measures taken by the Chilean government, instead
of directly applying the SIRU model, it became more pertinent to us to consider a variable
transmission rate τ (as a function of time). To analyze the variation of the values of τ(t),
we observe how the percentage of the Chilean population subjected to confinement has been
changing, which is illustrated below:

Figure 3: Variation of the percentages of the population in quarantine in Chile corresponding
to the first 49 days from March 13, 2020.

We hence propose a function τ(t) of the form

τ(t) =


τ0 if t ∈ I1 = [N0, N1],
τ1(t) = τ0 exp(−µ1(t−N1)) if t ∈ I2 = (N1, N2],
...

...
τr(t) = τr−1(t) exp(−µr−1(t−Nr−1)) if t ∈ Ir = (Nr−1, Nr],

where the Ii’s correspond to successive time intervals. For the Chilean context, according
to the graph of quarantines illustrated above (Figure 3), the chosen time intervals are those
described in Table 2 below:
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Interval Time frame Ni

I1 from March 3 to 22 March 22

I2 from March 23 to April 1 April 1

I3 from April 2 to 11 April 11

I4 from April 12 to 21 April 21

I5 from April 22 to 31 April 31

I6 from May 1 to 10 May 10

I7 from May 11 to 14 May 14

Table 2: Time intervals used in our numerical simulations.

Following [10, 11, 12], the value of the transmission rate in I1 is fitted to

τ0 :=

(
χ2 + ν

S0

)(
η + χ2

ν2 + η + χ2

)
.

Then, the parameters µi are chosen in such a way that the reported cumulated cases in the
numerical simulation align with the data of the reported cumulative number of infections
at time t according to [13]. This is implemented with various values of f , following the
guidelines of the preceding subsection (specifically, we work with f = 0.2, f = 0.3 and
f = 0.4). A summary is described in the following Table:

Parameter f = 0.2 f = 0.3 f = 0.4

µ1 8.3·10−4 8.3·10−4 8.3·10−4

µ2 2.1·10−6 2.1·10−6 2.1·10−6

µ3 5·10−6 5·10−6 5·10−6

µ4 1.41·10−6 1.41·10−6 1.41·10−6

µ5 5.08·10−5 5.08·10−5 5.08·10−5

µ6 2.96·10−4 2.96·10−4 2.96·10−4

Table 3: Parameters µi corresponding to the different values of f considered in our numerical
simulations.

Using the data of the cumulated reported cases available in [13], we can finally proceed to
the simulations, which are shown below. They illustrate numerical estimates for the curves
of CR(t), CU(t), R(t) and U(t).
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Figure 4: Plots of the numerical approximations of the functions CR(t), CU(t), R(t) and
U(t) obtained from the numerical solutions of the model (1) applied to the Chilean context
based on the data of reported cumulated cases up to 14 May 2020 [13]. The plots (A), (B)
and (C) were obtained by considering f = 0.2, f = 0.3 and f = 0.4 respectively, using the
parameters η = 1/7 and ν = 1/7.

Discussion and future work

The epidemic outbreak of the new human coronavirus COVID-19 was first detected in
Wuhan, China, in late 2019. In Chile, the first case was reported on March 3, 2020, in Talca
(Maule region). Since then, modeling the epidemic in the country has faced the problem of
the low availability of disaggregated data [3].

The first part of this work was inspired by the situation experienced in Chile during
the month of April, when the number of reported cases stabilized around 450 per day. Ac-
cording to most specialists, this was not accurately representing the genuine epidemiological
evolution. Although it is difficult to argue that our reasoning from the first section fully
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applies to this situation (in particular, because the number of daily tests during the period
was variable), the explosive increase of cases that subsequently occurred should call us to
reflection on the point. Nevetheless, it is clear that this increase was also due in part to
the relaxation of the protection measures, which is reflected not only in the absolute (and
exponential) increase in the number of cases, but also in the proportion of positive cases
with respect to tests (the latter despite of the significant increase in the number of tests [8]).

The first part of the work naturally led us to model the dynamics of the epidemic incor-
porating a compartment for unreported cases so that we could deal with their active role in
the evolution. To do this, we used the SIRU model recently introduced/implemented by Liu,
Magal, Seydi and Webb in [10, 11, 12]. Since the qualitative theory of the underlying dif-
ferential equations has not yet been treated, we developed some essenttial points of it in the
second section, thus rigorously establishing fundamental structure theorems. However, we
pointed out an important difference with the SIR model, namely, the possibility of multiple
peaks for the curves of infected, reported and unreported patients. For the future, it would
be desirable to complete the qualitative description of the solutions of the equations with
respect to the parameters, with an emphasis on the phenomenon of multiplicity of peaks.
For example, until now we do not know whether there can be more than two peaks and/or
whether there is any restriction on the relative position between them. Without any doubt,
this discussion is relevant for the implementation of disease containment policies, since it
is directly related to the recognition of the moment when the curves begin to definitively
descend.

In the last section of the work, we implemented an extension of the model to the case
of Chile. To do this, we considered a variable transmission rate, which is more appropriate
according to the local reality. Our rate is coupled to the official statistics provided by the
government in [13], information that also allowed us to make the parametric afjustement.
The last ingredient to launch the simulations was to fit the value of the fraction f of infected
individuals that were reported during the period of study. For this we used the work of
Baeza-Yates [4] and that of Castillo and Pastén [7]. Naturally, our modeling is consistent
with their estimates. In particular, in Section 2.3 of [7], the authors estimate the number of
real cases for April 28 6 as 43095, which is remarkably close to the number of total cases that
can be inferred from the plot (B) in Figure 4 obtained by considering f = 0.3. We point out
that the prediction of Castillo and Pastén is recovered with complete accuracy through the
method used in this work for the value f = 0.31791. According to our modeling, on April 28,
a percentage of 31.791% of the infections was reported to health agencies, and consequently
68.209% of the infected cases was not reported.

6This corresponds to day 57 from the first case detected in Talca.
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Although the estimates above were obtained a posteriori, their complementarity puts us
in a good position to use them for modeling the future evolution of the epidemic. However,
working in this direction requires great caution. In particular, it would be necessary to
consider a variable parameter f , since both the quantity and the criteria of the tests have
been modified during late May. Despite this, we strongly believe that the basis for pursuing
the implementation of the SIRU model are fullfilled, and it would be very useful to advance
in a more compartmentalized and georeferenced implementation of it.
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Dickenstein, Yamileth Granizo, Rafael Labarca, Mario Ponce and Marius Tucsnak for their
reading, their kind remarks and suggestions of bibliography.

References

[1] Vladimir Arnold. Ordinary Differential Equations. Nauka, Moscow (1971).
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[7] Jorge Castillo Sepúlveda & Héctor Pastén. Información escondida en los
datos inciertos sobre el COVID-19 en Chile. Preprint (April 2020), available at
http://www.mat.uc.cl/∼hector.pasten/preprints/InfoEscondida.pdf

[8] Felipe Elorrieta, Claudio Vargas, Fernando A. Crespo, Valentina
Navarro, Francisco Oviedo y Camila Guerrero. Dudas sobre el incremento de
contagios por coronavirus: ¿hay un rebrote o sólo se debe a que estamos haciendo más
test? CIPER Académico, https://ciperchile.cl/2020/05/06/dudas-sobre-el-incremento-
de-contagios-por-coronavirus-hay-un-rebrote-o-solo-se-debe-a-que-estamos-haciendo-
mas-test/

21



[9] A. C. Ghani, C. A. Donnelly, D. R. Cox, J. T. Griffin, C. Fraser, T. H. Lam,
L. M. Ho, W. S. Chan, R. M. Anderson, A. J. Hedley & G. M. Leung. Methods
for estimating the case fatality ratio for a novel, emerging infectious disease. American
Journal of Epidemiology 162 (5) (2005), 479-486.

[10] Zhihua Liu, Pierre Magal, Ousmane Seydi & Glenn Webb. Understanding unre-
ported cases in the COVID-19 epidemic outbreak in Wuhan, China, and the importance
of major public health interventions. Biology, vol. 9 (3) (2020).

[11] Zhihua Liu, Pierre Magal & Glenn Webb. Predicting the number of reported
and unreported cases for the COVID-19 epidemics in China, South Korea, Italy, France,
Germany and United Kingdom. Preprint (April 2020).

[12] Zhihua Liu, Pierre Magal, Ousmane Seydi & Glenn Webb. A model to predict
COVID-19 epidemics with applications to South Korea, Italy, and Spain, SIAM News
(to appear).

[13] Official data on COVID-19 from the Chilean government (in Spanish).
https://www.gob.cl/coronavirus/cifrasoficiales

Andrés Navas
Dpto. de Matemáticas y Ciencias de la Computación,
Universidad de Santiago de Chile
e-mail: andres.navas@usach.cl

Gastón Vergara-Hermosilla
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