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Most of the recent epidemic outbreaks in the world have a strong immigration component as a
trigger rather than the dynamics implied by the basic reproduction number. In this work we present
and discuss an approach to the problem of pathogen reinfections in a given area that associates people
mobility and transmission of dengue, using a Markov-chain Susceptible-Infected-Susceptible (SIS)
metapopulation model over a network. Our model postulates a parameter that we have named the
effective inoculum size which represents a local measure of the population size of infected hosts that
arrive at a given location as a function of population size, current incidence at neighboring locations
and the connectivity of the patches. This parameter can be interpreted as an indicator of outbreak
risk of any location. Our model also incorporates climate variability represented by an index based
upon precipitation data. We replicate observed patterns of incidence at a regional scale using data
from epidemics in Mexico.
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I. INTRODUCTION

It is well known that the global spread of a disease
strongly depends on the number of secondary cases gen-
erated by a primary case in susceptible populations and
also on the time it takes to infect those secondary cases
(see, for example, [36]). Transportation and movement of
human populations and of vectors of disease contributes
to the spread by allowing contact between new suscep-
tible populations both in vectors and human hosts that
may be regionally or geographically separated from the
focal point of the first outbreak. This interplay has been
addressed from a variety of perspectives in the literature
but we are particularly concerned in this work with the
spread of vector-transmitted diseases (see [10] and ref-
erences there in). It is well known that connectivity be-
tween population centers and travel are closely related to
the import/export of infectious diseases both in directly-
as well as in vector-transmitted diseases and that pat-
terns of human mobility are seasonal [40]. Climatic con-
ditions affect transmission since pathogens life cycles and
habitat suitability for vectors, hosts or pathogens can be
significatively modified by it. Human mobility has also a
seasonal component [40]. Dengue fever is a re-emerging
mosquito-borne infectious disease that is of increasing
concern as human travel, migratory patterns and expand-
ing mosquito ranges increase the risk of spread [18], [30],
[27], [39], [40]. Dengue has caused illness in millions of
people over the last several years [41] and concerns have
been expressed about the increased risk it posses on the
general population due to the impact of climate change
[33]. Dengue is only one of the vector-born disease that

has had major outbreaks in several countries around the
globe. Recently, Chikungunya virus caused outbreaks in
many Caribbean [21] and several Indian Ocean islands
[2] and Latinamerica including Mexico [3]. Zika, another
vector-borne disease transmitted by the same mosquito
species (Aedes aegypti), had a major epidemic in the
American continent in the year 2016 and its introduc-
tion into anon-endemic zone (Florida) has been addressed
form the modeling point of view in [8].

Modeling and analysis of the spread of infectious dis-
eases has become a relevant problem of interdisciplinary
nature. Many countries have established public health
surveillance systems geared to the prevention and rapid
response in case of an epidemic outbreak and mathemat-
ical and statistical models are being amply used as tools
in public health [17], [18].

Dengue modelling and control efforts are extensive
[17], [26], [34], [37], although there is much still to do.
The primary vector for dengue is Aedes aegypti and this
virus generates acute immunizing infections in humans.
Dengue is primarily transmitted by A. aegypti, but Ae.
albopictus can be an important secondary vector. Both
mosquito species are diurnal, biting mostly in the morn-
ing and evening rather than at night [28]. Dengue is in it-
self a complex disease with multiplicity of lineages [4] that
causes a spectrum of illnesses in humans ranging from
clinically inapparent to severe and fatal hemorrhagic dis-
ease. Classical dengue fever is generally observed in older
children and adults and is characterized by sudden onset
of fever, frontal headache, nausea, vomiting and other
symptoms [35].

Mitigation strategies for dengue include reduction of
the mosquito population via indoors praying (adulti-
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cides) larvicides, lethal ovitraps, removing man-made
oviposition sites and reduction of human exposure to
mosquito bites via the use of screens, mosquito repel-
lent, etc., but these are not always effective, as a conse-
quence, the absolute numbers of Dengue infection have
increased during the last 40 years [12]. Unfortunately,
countries where positive results exist for the vector erad-
ication have been suffering from epidemics outbreaks: the
disease is coming back. Vaccines are also in development
and currently in clinical trials [14], [17].

Human movements result in global spread of infec-
tious diseases [31], [39], including vector-borne diseases
[19]. Regarding to the role of mobility in the dengue
dispersion, Mart́ınez-Vega et.al. [30], have demonstrated
that the spread of infection within a locality mainly de-
pends on human mobility. For example, subjects be-
tween 30 and 64 years old, despite they probably have
lower force of infection, being asymptomatic and eco-
nomically active, move to daily destinations where they
remain long enough to be bitten by nearby vectors, trans-
mitting dengue to other close subjects which go to their
homes and start a new peridomestic transmission cluster.
Young and elderly subjects would have a lower participa-
tion in the local dengue dissemination because they have
limited mobility, since younger individuals are typically
symptomatic while older ones have lower mobility. In
[25], the risk of infection importation and exportation by
travellers is estimated, taking into account the force of
infection of the disease in the endemic country to disease-
free countries. A similar situaton has been addressed in
[8] where the importation of cases is explicitly modeled.

In recent years, spreading processes, i.e. computer
viruses in networks, epidemics in human populations,
rumors or information in social networks, are modeled
and described by complex networks. Each node of the
network represents an element of the system and the
links represent the interaction among nodes. Recently,
Markov-chain based models for a Susceptible-Infected-
Susceptible (SIS) dynamics over complex networks have
been used to describe the dynamics of individual nodes
and to determine macroscopic properties of the system
[6], [7], [15], [16],[31], [38]. An important result from
Markov-chain based models, is the presence of an infec-
tion threshold that depends on the value of the spectral
radius of the adjacency matrix.

In this work, inspired by ideas of [6], [7], [38], we
propose and discuss a model that associates people mo-
bility and the transmission of dengue using a Markov-
chain based model for a Susceptible-Infected-Susceptible
(SIS) dynamics over complex networks. It is known [8]
that immigration processes in deterministic models ren-
der R0, the basic reproductive number, ineffective as a
threshold and invasion parameter and the model anal-
ysis becomes substantially more difficult compared to
the no-immigration (standard) case. We attempt in this
work to overcome this problem and address specifically
the reinfection process of whole geographical regions and
only indirectly we follow particular infections of individ-

uals. We have chosen a patch-dynamics approach to the
Dengue colonization-extinction processes of sites. In a
network of sites, each site can be reinfected (recolonized)
by the movement of infectious individuals from neigh-
boring patches and the disease in any given patch may
decline due to the natural disease life cycle or because of
emigration of sick individuals. Each node in the network
that we define in this work corresponds to populations
in four different states of Mexico: Veracruz, Guerrero,
Oaxaca and Chiapas. The links in the network and the
interaction among the nodes, are modeled according to
their shared borders as will be described in the following
section. Additionally, the model incorporates external
forcing as a way to explore the effects of climate vari-
ability on the spread of dengue, particularly rain. Our
model attempts to predict the probability of occurrence
of an outbreak (colonization-invasion) in any node in the
network. The parameters of the model are fitted to real
data and simulations are performed to show and com-
pare the model behavior with the observed patterns of
incidence. The paper is organized as follows. In Sec-
tion 2 we present the parameter estimation and discrete
mathematical model for dengue spread in a large geo-
graphical region. In Section 3 we present and discuss the
numerical results of the outbreaks. Finally, in Section 4
we draw some conclusions about this work.

II. THE MODEL

The classical Levins metapopulation model [22] has
been generalized to many contexts, in particular to spa-
tially explicit settings where it has shown that landscape
structure and patch dynamics can alter the dynamics
and persistence of metapopulations (for example [20]).
Landscape structure, characterized by spatial and tem-
poral heterogeneities determines the nature and impact
of all of these effects [20]. Here, we formulate a mathe-
matical model following the classic work of Levins [22],
[23] in an spatially-explicit version. It is a patch dynam-
ics model with time-dependent contact (infection) rates
associated to climatic variability, particularly rain. We
are interested in describing the population dynamics of
the dengue infection reported for the years 2004 to 2009
in Mexico as the infection moves through four patches
where migration rates depend on the existence of a com-
mon border between neighboring states. It is well know
that for Dengue, population mobility is a very important
factor for transmission. In Mexico population mobility is
essentially carried out on buses through the road network
of the country. We concentrate in a relatively simple sys-
tem constituted by large regions, in this case political
subdivisions known as states. Our data base comprises
weekly incidence data reported to regional health centers
in each of four states whose names are Oaxaca, Guerrero,
Veracruz and Chiapas (see map Fig 1).

The information has been aggregated by state. There
are certainly alternatives to the choice of spatial aggre-
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FIG. 1: Data shows weekly incidence data from the National
System of Epidemiological Surveillance, of four states indi-
cated by the darker color in the map: Oaxaca, Guerrero, Ve-
racruz and Chiapas.

gation done here. For example, we could have chosen to
identify regions by hydrological basins since this subdivi-
sion could be associated to mosquito data in a more nat-
ural way. However, lacking information on vector abun-
dance and distribution our choice was to look at aggre-
gated data following state boundaries. However, we are
currently preparing a forthcoming work where some of
us we look at hydrological basins and roads associated to
epidemic outbreaks.

A. Model parametrization

Our information from the National System of Epidemi-
ological Surveillance covers the history of epidemic events
for several years in different municipalities of South East-
ern Mexico. The recorded cases are provided by Regional
Hospitals that are in charge of reporting infectious dis-
eases to the health authorities in the country. Dengue
is a mandatory notifiable disease in Mexico but only di-
agnosed cases are reported so we can expect our data
to be biased by un-notified asymptomatic cases, under-
reporting and misreported (a certain amount of cases
that are not related to Dengue but to some other dis-
eases with similar symptoms). There is evidence in the
Dengue literature [13], [42], that movement is a key fac-
tor for understanding epidemic episodes and large out-
breaks that occur along the years. Here we analyze data
corresponding to towns located in four states in the Fed-
eral Republic of Mexico: Veracruz, Guerrero, Oaxaca and
Chiapas. The source of information that we have are the
time series of cases from the years 2004 to 2009. The
time series for Dengue cases is presented in Fig. 2.

To be able to parametrize our model we need an es-
timation of the force of infection or of the infection rate
for each outbreak which we obtain through the estima-
tion of the basic reproduction number. Once the estimate
of each reproduction number is obtained, we deduce the
infection rate for each State used to generate our simu-

FIG. 2: Weekly number of dengue cases aggregated by state
reported in South Eastern Mexico: Oaxaca, Guerrero, Chia-
pas and Veracruz (2004-2009).

lations.
As it is well known, the reproduction number, R0, is

the expected number of secondary cases produced in a
susceptible population by a typical infective individual
during the time in which s/he is infectious. If R0 < 1,
then on average an infected individual produces less than
one new infected individual over the course of its infec-
tious period and the infection cannot grow. Conversely
if R0 > 1 then each infected individual produces, on av-
erage more than one new infection and the disease can
invade the population. From its definition R0 is deter-
mined from early stages of the epidemic and its magni-
tude is a useful indicator of both the risk of an epidemic
and the effort required to control an infection. We could
have used a better estimate, for example the effective re-
production number developed in our group [1], but the
data base has many weeks in which the number of cases
is zero. This fact introduced technical difficulties and in-
accuracies in the estimation by that method and after
consideration, we decided to discard since the methodol-
ogy described in the following paragraph rendered better
and more robust results.

1. Exponential growth rate method (EG)

The rate of exponential growth r is defined as the
per capita change in number of new cases per unit of
time (epidemic growth rate). One of the ways of infer-
ring R0 from r is through a moment generating function
expression for the reproductive number. According to
[43], the reproductive number defined as expected sec-
ondary infections is given by R0 =

∫∞
a=0

n(a)da, where a
is the time since infection, n(a) expected rate of gener-
ation of secondary cases at time a since infection. The
rate n(a) can be normalized to a distribution g(a), i.e.
g(a) = n(a)/R0. The Lotka-Euler equation is given by

1 =

∫ ∞
a=0

e−ran(a)da
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and substituting g(a) (generation interval distribution)
into it we obtain

1

R0
=

∫ ∞
a=0

e−rag(a)da.

The term in the right-hand side, is the moment generat-
ing function M(z) of the distribution g(a), i.e. M(z) =∫∞
a=0

ezag(a)da [44]. Evaluating at z = −r we obtain the

reproductive number as R0 = 1
M(−r) .

During the early phase of an outbreak, the exponen-
tial growth rate is defined by the per capita change in
the number of new cases of infected people per unit of
time. To estimate R0 from the real data we choose a
period in the epidemic curve over which the incidence
growth is exponential and then a Poisson regression to
estimate it (rather than linear regression of the logged
incidence [32]). As an example, in Figure 3, an initial
inspection of the incidence data shows that the exponen-
tial growth period occurs during the first 23 weeks for
Oaxaca during the year 2005. Important parameters in
an epidemiological model are the per capita contact rate
between susceptible and infected individuals β and the
infection recovery rate µ. No births or deaths are taken
into account given the time frame of an individual epi-
demic outbreak.

The incidence data is given as number of new cases per
epidemiological week and we use a time dependent max-
imum likelihood method with the distribution of genera-
tion times rescaled to weeks to obtain the values reported
in Table 1. This Table lists the estimated values of R0

for each year for Oaxaca State. Once the estimate of
each reproduction number is obtained, we solve for the
infection rate β [45]. In the Appendix all the R0 tables
for the rest of the States are displayed.

Year R0 95% confidence β

2004 1.7262 [1.52, 2.00] 0.2876
2005 1.2152 [1.20, 1.23] 0.2025
2006 1.1248 [1.12, 1.13] 0.1875
2007 1.1664 1.16, 1.174] 0.1944
2008 1.2974 [1.24, 1.36] 0.2162
2009 1.1427 [1.12, 1.16] 0.1904

TABLE I:R0 for Oaxaca State estimated with the exponential
growth rate method with a mean infection period of 6 days.

B. Mathematical model

Following [38] we take each federal state (Oaxaca, Ve-
racruz, Guerrero, Chiapas) as a node of the network and
define that it can be in either of two (epidemiological)
states in analogy to an SIS epidemic model.

The discrete-time Markov-chain spreading model for
dengue transmission is set up under the following as-
sumptions:
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FIG. 3: Observed incidence and predicted incidence for Oax-
aca State during 2005.

• Each node of the network represents the popula-
tion of each one location (heretofore renamed as
locations or sites) of the Mexican Republic: Chi-
apas, Guerrero, Oaxaca and Veracruz. The con-
nection between locations is defined by adjacency:
having a common border; see Figure 4. Each loca-
tion can be in either of two epidemiological states:
S susceptible (empty of infection) or I (occupied or
infected).

• The probability of finding an infected individual in
location i at time t, is defined as pi(t), with i ∈
E = {Chiapas, Guerrero, Oaxaca and Veracruz}.
Therefore, each location at each time t is with prob-
ability 1−pi(t) in state S (without outbreaks), and
with probability pi(t) in state I (with outbreaks).

• We assume that Dengue infections are climate sen-
sitive, due to the dependence of the mosquito life
cycle on precipitation, humidity, temperature, and
so forth; moreover vectorial capacity is a highly
climate-sensitive parameter [24]. Dengue outbreaks
vary over characteristic periods longer than a year
and the climatic variability drives these cycles.
In this sense, precipitation is chosen as a general
“proxy” of an external factor, that may change the
probability of contagion [5].

We are given a network of N nodes (locations) and
some directed links between them. We assume discrete
time-steps of size ∆t, corresponding to an epidemiologi-
cal week. With all of the above, the transition between
states (S and I) will depend on the probability of in-
fection and the movement of infectious and susceptible
individuals between the locations or nodes of the net-
work. Figure 5 shows the transition between state S and
state I. Note that each node in Figure 4 has associated
the graph presented in Figure 5.
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FIG. 4: Network of locations where outbreaks are propagated.
The infection moves through four patches where migration
rates depend on the existence of a common boundary between
neighboring states.

FIG. 5: Transitions for each node showing the two possible
states for each location, and the transition probabilities be-
tween states S and I.

The aim of this study is to determine ηi(P (t)), which
we call the interaction function, associated with the
Dengue outbreak data shown in Fig. 2. Following [2, 3]
this interaction function represents the probability that
location in the network is infected or colonized by inter-
acting with its neighbors.

Any location in state I recovers and passes to state S
with probability µ (clearance or recovery rate), but it is
reinfected with probability ηi(P (t)), where

P (t) = [pChis(t), pGro(t), pOax(t), pV er(t)]

is a vector with entries pi(t) that represent the probabil-
ity of outbreaks in location i at time t.

The probability function ηi(P (t)) quantifies the prob-
ability that in ith location, the number of outbreaks will
increase due to population displacement from the jth-
location with i 6= j; this probability is affected by clima-
tological factors (precipitation) as will be shown later.

The function ηi(P (t)) is constructed as follows: sup-
pose that location i receives, on average from a neighbor-
ing location j, riNj individuals, where Nj represents the
population in location j and ri the fraction of individuals

that moved from j to i in each step of time. In this mi-
grant population, there are on average riNjpj(t) infected
individuals (on average there exist Njpj(t) Dengue cases
in location j) with i, j ∈ E. Therefore, the effective in-
fective inoculum size arriving to location i will be given
as the sum of i) immigrant individuals that enter that
location, plus ii) the cases that already exist at that lo-
cation and iii) minus the infected individuals leaving i
(emmigration), given by expression

Ti(t) =

∑
j∈E riNjpj(t)aij + pi(t)Ni −

∑
j∈E rjNipi(t)aij∑

j∈E riNjaij +Ni −
∑

j∈E rjNiaij
.

(1)
A = (aij) is adjacency matrix of the network (see figure
4) where aij = 1 if i = j or if locations i and j, i 6= j,
are neighbours, otherwise aij = 0 for i, j ∈ E.

Now by definition ηi(P (t)) is a function of three fac-
tors: the first one is the probability βi of an individual in
location i becoming infected which is defined as the prod-
uct of the per-contact probability of infection times the
per capita number of contacts per unit time that we as-
sume constant for each location i; the second factor is the
effective infective inoculum size Ti(t), and the third is the
average monthly (lacking information on weekly precip-
itation, our choice was to consider as an approximation,
the same precipitation for the weeks corresponding to the
same month) precipitation in location i given by fi(t).

Precipitation data was obtained from Sistema Nacional
de Información del Agua (SINA) [9], Mexico, from 2004
to 2009 for each location during the time period corre-
sponding to the epidemic data. We have incorporated
climate variability fi(t) represented by an index based
upon monthly precipitation data, therefore all the weeks
of a month have the same value.

The recovery rate given by µ (recovery rate), can be
obtained from various studies, for example [14, 30]. In
the model this parameter is constant throughout the sim-
ulation.

Our model is a discrete time Markov process dynamical
system [38], described as follows

pi(t+ 1) = (1− µ)pi(t) + ηi(P (t))(1− pi(t)), (2)

where i ∈ E = {Chiapas, Guerrero, Oaxaca, Veracruz}
and 0 ≤ pi(t) ≤ 1. Time is discrete, each time step
corresponding to an epidemiological week.

III. RESULTS

We start first with a simple case for our probability
function η. We incorporate variable contact rate but do
not explicitly include the effective inoculum size T . This
factor will be introduced in the next case. For now let

ηi(P (t)) = fi(t)βi, i ∈ E (3)
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note that fi(t)βi gives the time-dependent infection rate
of location i, so in the discrete mathematical model sim-
ulation the forcing function with periodicity multiplies
the contact rate βi.

Incidence is a term commonly used in describing dis-
ease epidemiology. Incidence is the rate of new cases of
the disease. It is generally reported as the number of new
cases occurring within a period of time; in this work the
incidence is per week.

In Figure 6 we show the aggregated data (incidence)
summing all cases in all locations of the outbreak data for
the years 2004-2009 (the x-axis represents epidemiologi-
cal weeks) compared to simulated data from equation (2)
with ηi(P (t)) given by Eq. (3), with the network average
probability of an outbreak computed as

ρ(t) =
1

4

4∑
i=1

pi(t).

both for real and simulated data. Note that, in general,
we obtain a good fit for the observed data although in
the last two outbreaks their amplitude is overestimated
by our model but nevertheless it accurately reproduces
the timing.

FIG. 6: Model simulations compared with actual data for the
period 2004-2009 without the incorporation of human mobil-
ity.

Now we proceed to include host mobility in order to
obtain a more realistic scenario to compare with our data.
To incorporate the displacement of infectious people into
the probability function, what we have called before the
effective inoculum size, we use the following explicit ex-
pression for (1):

Ti(t) =

∑4
j=1 riNjpj(t)aij + pi(t)Ni −

∑4
j=1 rjNipi(t)aij∑4

j=1 riNjaij +Ni −
∑4

j=1 rjNiaij
(4)

where aij is an element of the adjacency matrix that es-
tablishes the existence of a connection between locations
i and j (defined as above).

According to Eq. (2), we describe the colonization-
extinction of cases by counting cases moving to location
i, cases that stay in location i and those that recover in
location i:

pi(t+ 1) = (1− µ)pi(t) + fi(t)βiTi(t)(1− pi(t)). (5)

Recall that data on precipitation for each location is
considered. To this effect we use the maximum precipita-
tion of each year to normalize and define a precipitation
index with maximum value of 1 (see Figure 7).

Data on mobility through public transportation in the
roads and highways of Mexico is scarce and very incom-
plete. However, using the information on the total pop-
ulation in each location (federal state) and the economic
strength of each of the Mexican states considered, then
ri, the fraction of individuals that move to location i, can
be roughly approximated. Here we set as a hypothesis
that individuals migrate in higher proportions to Guer-
rero State, followed by this, the state of Veracruz, Chia-
pas and Oaxaca [11] the hierarchy defined from the less
populated, poorer location to the most populated and
better-off location.

0.0
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Chiapas Guerrero Oaxaca Veracruz

FIG. 7: Standardized precipitation data for the period 2004-
2009.

Figure (8) shows a comparison between real and sim-
ulated aggregated outbreaks for the whole network con-
sidering the mobility corrected parameter Ti(t). Observe
that relative to the results shown in Figure (6), the fit
has significantly improved.

Our data and simulations are scaled to proportions so
our fit is qualitative in that sense. However, note that the
phase of the outbreaks is slightly delayed by one or two
weeks but both the amplitude and the interepidemic pe-
riods, which in general are events with very low numbers
in the data, are well approximated.

In Figures (9)-(12) we show the comparison for each
location (federal state) with a qualitatively reasonable
approximation for Oaxaca and Veracruz states. In both
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FIG. 8: Comparison between average observed outbreaks and
numerical simulations for the whole network for the years
2004-2009 incorporating host mobility (cf. Figure (6)).

cases the slight out of phase estimation is evident but
once again both the amplitudes and interepidemic peri-
ods have a good qualitative approximation.

However in Chiapas and Guerrero States, our model
does not perform well. For Guerrero the phase of the
outbreaks misses two outbreaks and the amplitude of
the epidemic curves is overestimated. For Chiapas we
obtain spurious outbreaks. It is important to mention
that Guerrero and Chiapas are states with very many
weeks with no reported cases and that this scarcity of
cases is very likely the cause of the relatively bad fit of
our model.

FIG. 9: Comparison between observed outbreaks and numer-
ical simulations for Oaxaca State during 2004-2009 with host
mobility.

FIG. 10: Comparison between observed outbreaks and nu-
merical simulations for Veracruz State during 2004-2009 with
host mobility.

FIG. 11: Comparison between observed outbreaks and nu-
merical simulations for Guerrero State during 2004-2009 with
host mobility.

IV. DISCUSSION

We have used a very classical SIS metapopulation
model to approximate the processes of reinfection in large
geographical areas that we view as large patches using,
as a first approximation, incidence data available by lo-
cation.

Given the very complex interplay of the different
dengue serotypes and the lack of data pertaining to
their incidence or prevalence, we have aggregated the
incidence data into a process geared toward the under-
standing of the geographical dynamics of Dengue using a
colonization-extinction framework. This framework, al-
beit simple in terms of the actual population dynamics of
Dengue, concentrates on the movement patters underly-
ing the spread of this disease in a large region of Southern
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FIG. 12: Comparison between observed outbreaks and nu-
merical simulations for Chiapas State during 2004-2009 with
host mobility.

and Eastern Mexico.
Our model is stochastic in nature and we have incorpo-

rated into it climate variability represented by an index
based upon monthly precipitation data as an approxima-
tion to more general indexes of climatic variability. A
new parameter is defined as Ti(t) the effective infective
inoculum size which represents a local measure of the
population size of infected hosts that arrive at a given
location as a function of population size, current inci-
dence at neighboring locations and the connectivity of
the patches. This parameter can also be interpreted as
an indicator of outbreak risk of location i. From our re-
sults one can see that the location with the lowest degree
(Chiapas) is the one with the poorest incidence fit. Our
data lacks locations that have common boundary with
the Guerrero location and, therefore, the outbreak risk
index Ti(t) for this location does not integrate all the real
inputs and outputs acting of the site. The other nodes
in the network present a better fit since incidence data
from first neighbors is available.

With this very simple framework we are able to very
closely reproduce the incidence dynamics in all four loca-
tions considered except for a number of outbreaks where
incidence data is particularly scarce. We interpret this
result simply as a verification that, regardless of the com-
plexity of the population dynamics of Dengue, movement
at a geographical scale is a relatively simple colonization
extinction process taking place in a network (an spatially

extended system) whose dynamics is dependent on its
topological arrangement, and neighborhood interactions
[22], [29]. Our model considers, as in [40], a connectivity
matrix in which population flow changes as a function of
climatic variability (precipitation), total population size
of connected sites and weekly incidence. Our results indi-
cate that the directional mobility of human populations
in the four sites considered here, changes seasonally in a
given year.

During the years covered by our data, the Dengue
strains that have circulated have been mainly Dengue
II and I with lower prevalence of Dengue III and IV.
Immunity, therefore, must play a role in the observed re-
infection dynamics. However, since we are aggregating
all data at the level of the location, i.e., we are adding all
cases in all the regional hospitals that report them each
week, we miss, at this very large spatial scale, the im-
pact of immunity. In our data, Dengue outbreaks at the
town or municipality level are notoriously asynchronous
and there are large gaps with no cases in the weekly
records. We argue that this is the reason why immu-
nity apparently imposes no important bias on the fitting
of incidence that we get. To improve our colonization-
extinction model, an ongoing effort is been made to gen-
eralize and adapt our results is the SIS model to the ideas
of [20] where patch unsuitability is introduced into the
patch classes of Levins’ model. In our case unsuitable
patches for colonization would be locations with a large
population of immune hosts. This approach should im-
prove our estimates and shed light into the dynamics of
movement in Dengue. The main focus of this paper has
been the examination of the role of the inoculum size
and precipitation effects. For future work the different
patterns both geographical and temporal of precipitation
and temperature that affect mosquito population size will
be explored for their impact in the detail dynamics of the
outbreaks.
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[31] Meloni S, Arenas A, Gómez S, Borge-Holthoefer, J,
Moreno Y (2012) Modeling Epidemic Spreading in Com-

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/475137doi: bioRxiv preprint 

https://doi.org/10.1101/475137
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

plex Networks: Concurrency and Traffic. In Hand-
book of Optimization in Complex Networks, Springer-
Verlag:New York, USA, ISBN 978-1-4614-0753-9.

[32] Obadia T, Haneef R, Pierre-Yves BoÃlle (2012) The R0
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Appendix

The basic reproduction number R0 is defined as the
number of secondary infections that a single infectious
individual produces in a population where all hosts are
susceptible.

During the early phase of an outbreak, the exponential
growth rate is defined by the per capita change in number
of new cases of infected people per unit of time. For
the calculation of R0 from the real data is necessary to
choose a period in the epidemic curve over which growth
is exponential. We implemented the exponential growth
method to estimate this parameter, for the purpose of
calculating the infection rate β according to the infection
period in each location.

Year R0 95% confidence β 95% confidence

2004 2.9424 [2.39, 3.71] 0.4904 [0.40, 0.62]
2005 4.0434 [3.82, 4.28] 0.6739 [0.64, 0.71]
2006 5.4739 [5.19, 5.76] 0.9123 [0.87, 0.96]
2007 7.4272 [7.20, 7.66] 1.2378 [1.20, 1.27]
2008 3.0005 [2.69, 3.34] 0.5000 [0.49, 0.56]
2009 2.4799 [2.27, 2.70] 0.4233 [0.39, 0.47]

TABLE II: R0 and infection rate β of Oaxaca State with an
infection period of 6 days.

Year R0 95% confidence β 95% confidence

2004 2.9424 [2.39, 3.71] 0.2102 [0.17, 0.26]
2005 4.0434 [3.82, 4.28] 0.2888 [0.27, 0.31]
2006 5.4739 [5.19, 5.76] 0.3910 [0.37, 0.41]
2007 7.4272 [7.20, 7.66] 0.5305 [0.51, 0.55]
2008 3.0005 [2.69, 3.34] 0.2142 [0.19, 0.24]
2009 2.4799 [2.27, 2.70] 0.1771 [0.16, 0.19]

TABLE III: R0 and infection rate β of Oaxaca State with an
infection period of 14 days.

Year R0 95% confidence β 95% confidence

2004 6.7127 [6.26, 7.21] 1.1187 [ 1.04, 1.20]
2005 7.7616 [7.41, 8.10] 1.2936 [1.24, 1.35]
2006 7.4078 [7.24, 7.58] 1.2346 [1.21, 1.26]
2007 — — — —
2008 2.2133 [2.02, 2.42] 0.3688 [0.34, 0.40]
2009 4.64 [4.37, 4.92] 0.7740 [0.73, 0.82]

TABLE IV: R0 values of Veracruz State with an infection
period of 6 days.

.CC-BY-NC-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/475137doi: bioRxiv preprint 

https://doi.org/10.1101/475137
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

Year R0 95% confidence β 95% confidence

2004 6.7127 [6.26, 7.21] 0.4795 [0.43, 0.52]
2005 7.7616 [7.41, 8.10] 0.5544 [0.53, 0.58]
2006 7.4078 [7.24, 7.58] 0.5291 [0.51, 0.54]
2007 — — — —
2008 2.2133 [2.02, 2.42] 0.1581 [0.14, 0.17]
2009 4.64 [4.37, 4.92] 0.3317 [0.31, 0.35]

TABLE V: R0 values of Veracruz State with an infection pe-
riod of 14 days.

Year R0 95% confidence β 95% confidence

2004 1.9000 [1.77, 2.03] 0.3166 [0.30, 0.34]
2005 5.1573 [4.93, 5.39] 0.8596 [0.82, 0.91]
2006 — — — —
2007 5.1745 [4.95, 5.40] 0.8624 [0.82, 0.90]
2008 — — — —
2009 4.3526 [3.80, 4.95] 0.7254 [0.63, 0.82]

TABLE VI: R0 values of Guerrero State with an infection
period of 6 days.

Year R0 95% confidence β 95% confidence

2004 1.9000 [1.77, 2.03] 0.1357 [ 0.12, 0.15]
2005 5.1573 [4.93, 5.39] 0.3684 [ 0.35, 0.39]
2006 — — — —
2007 5.1745 [4.95, 5.40] 0.3696 [0.35, 0.38]
2008 — — — —
2009 4.3526 [3.80, 4.95] 0.3109 [0.27, 0.35]

TABLE VII: R0 values of Guerrero State with an infection
period of 14 days.

Year R0(EG) 95% confidence β 95% confidence

2004 3.0189 [2.85, 3.19] 0.5031 [0.48, 0.53]
2005 5.3450 [4.90, 5.79] 0.8908 [0.82, 0.97]
2006 — — — —
2007 7.2697 [6.62, 7.96] 1.2116 [1.10, 1.34]
2008 2.8776 [2.63, 3.14] 0.4796 [0.44, 0.52]
2009 3.8303 [3.63, 4.03] 0.6384 [0.61, 0.67]

TABLE VIII: R0 values of Chiapas State with an infection
period of 6 days.

Year R0(EG) 95% confidence β 95% confidence

2004 3.0189 [2.85, 3.19] 0.2156 [0.20, 0.23]
2005 5.3450 [4.90, 5.79] 0.3817 [0.35, 0.41]
2006 — — — —
2007 7.2697 [6.62, 7.96] 0.5192 [0.47, 0.57]
2008 2.8776 [2.63, 3.14] 0.2055 [0.18, 0.22]
2009 3.8303 [3.63, 4.03] 0.2739 [0.25, 0.29]

TABLE IX: R0 values of Chiapas State with an infection pe-
riod of 14 days.

Finally Table X shows βi used in the simulations. The
starred values are within the confidence interval for βi
(p-value ≤ 0.05). On the other hand, those outside of
the confidence interval were calculated as “beta optimal
values” to approximate the data. Note that, although
outside of the confidence interval some of them are rela-
tively close to it.

State 2004 2005 2006 2007 2008 2009
Chiapas 0.54* 0.46 0.20** 0.65 0.39 0.52
Guerrero 0.65 0.73 0.30** 0.91* 0.40** 0.71*
Oaxaca 0.55* 0.48 0.60 0.52* 0.38 0.47*
Veracruz 0.62 0.32 0.43 0.32** 0.49 0.69

TABLE X: Infection rates βi for the model simulations.
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