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Abstract
The objective of this paper is to explain through the ecological hypothesis superinfection

and competitive interaction between two viral populations and niche (host) availability, the

alternating patterns of Respiratory Syncytial Virus (RSV) and influenza observed in a re-

gional hospital in San Luis Potosí State, México using a mathematical model as a methodo-

logical tool. The data analyzed consists of community-based and hospital-based Acute

Respiratory Infections (ARI) consultations provided by health-care institutions reported to

the State Health Service Epidemiology Department from 2003 through 2009.

Introduction
Influenza and respiratory syncytial virus (RSV) are leading etiologic agents of acute respiratory
infections (ARI). These viruses are associated to significant morbidity, mortality and school/
work absenteeism during winter season [1–3]. Every year, influenza infects approximately 20%
of children and 5% of adults [4], while RSV infects almost all the children during the first three
years of life; re-infections by these viruses are very common during early childhood [5]. In ad-
dition, RSV is currently recognized as an important pathogen for all age groups, including the
elderly [6–8]. In temperate climates influenza and RSV occur as annual epidemics during the
winter season. Each year the magnitude and timing of ARI epidemics varies. In several regions
of the world a biennial RSV circulation pattern has been reported, with alternating short and
long inter-epidemic periods [9–11]. We have previously reported that RSV and influenza ex-
hibit an alternating pattern in San Luis Potosí (SLP) [12]. Variations in these epidemiological
patterns could be the result of the presence of more than one circulating respiratory virus or
more than one circulating influenza strain at the same time [3]; in addition, climatic variability
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is a driving force and host availability is a limiting resource, whose role must be explored as
they affect the observed epidemic patterns for both influenza and RSV. Previous work has
shown that viral interference may affect the spread of influenza. In Sweden, a rhinovirus epi-
demic that occurred after the end of the summer holidays may have interfered with the spread
of pandemic influenza [13]. Also, epidemiological studies have suggested that interference be-
tween RSV and influenza may occur; several reports have described the interruption of RSV
circulation by influenza epidemics [14, 15]. Nishimura et al. found that interference between
RSV and influenza did not affect the clinical severity of the RSV epidemic [15]. In vitro studies
have shown that previous influenza infection results in a reduction in RSV replication [16]. In
a mouse model, influenza infection prior to RSV infection resulted in a reduction in recruit-
ment of inflammatory cells and cytokine secretion, as well as protection against clinical symp-
toms associated to the infection [17]. The objective of this paper is to explain through an
ecological hypothesis of competitive interaction between both viral populations and niche
(host) availability, the alternating patterns of RSV and influenza observed in the data using a
mathematical model as a methodological tool.

Materials and Methods

Data
The data analyzed in this work consists of community-based and hospital-based ARI consulta-
tions provided by health-care institutions in the State of San Luis Potosí and reported to the
State Health Service Epidemiology Department from 2003 through 2009. The weekly number
of consultations provided by all institutions was registered according to the International Clas-
sification of Disease, 10th review. For this study we included respiratory infections classified
with ICD-10 codes: J00-J06, J20, J21, except J02.0 and J03.0 [12]. The time series for ARI cases
is presented in Fig. 1. The State of San Luis Potosí is located in Central Mexico and, according
to the 2010 census, has a population of 2,585,518. San Luis Potosí City is the largest city and
capital of the state, with a population in its metropolitan area of 1,040,443 [18].

RSV and influenza data was obtained from the records maintained by the Virology Labora-
tory (Facultad de Medicina, UASLP, San Luis Potosí, Mexico) [12, 19–20]. The time series for
influenza and RSV infections are shown in Fig. 2. Most of the samples submitted to our labora-
tory during the study period were obtained from children under 5 years of age evaluated at the
Emergency Department or admitted to Hospital Central “Dr. Ignacio Morones Prieto”.

The Hospital Central “Dr. Ignacio Morones Prieto” operates as a pediatric sentinel detection
center of influenza and RSV. Due to the patients age there might be a potential sampling bias
(RSV detection will be higher than influenza detections), but despite that, detection records are
very useful to determine the period of circulation of both viruses and can be extrapolated to all
the population. First, since the Hospital Central “Dr. Ignacio Morones Prieto” is the most im-
portant hospital integrating reports in the State of San Luis Potosí, the respiratory viruses de-
tected due to the pediatric surveillance viral respiratory program are representative of what
happens (in terms of viral circulation) throughout the all state. Second, although the majority
of the viruses are detected in children under the age of 5 (that includes hospitalized and ambu-
latory patients), the circulation patterns of the viruses correlates in time with the seasonal pat-
tern of acute respiratory infections outbreaks that occurs throughout the state and for all
groups of age (is noteworthy that the majority of the ARI registers happen in ambulatory pa-
tients). Previously we have observed that when RSV predominates the number influenza detec-
tions is low and vice versa; despite our sampling bias, when influenza circulates in the
population it is detected among all age groups [21]. Moreover, Munywoki and Nokes [22] re-
ported that the beginning of an RSV outbreak (that affect other group ages) start in children
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under 5 years of age. Those results are indicative that the presence of RSV in infants could be
and is in fact an indicator of RSV circulation in other age groups. Regarding the alternating in-
fluenza/RSV outbreaks patterns in older populations, there is a notable lack of information in
the literature. A few studies from Douglas M. Fleming in UK have shown the same alternating
pattern of influenza/RSV or pneumonia/bronchitis (the first infection was attributable to Influ-
enza and the second to RSV) in elderly population [7, 23–25].

This study included retrospective analyses of information available from databases(weekly
number of consultations associated to respiratory infections and weekly number of viral

Fig 1. Weekly number of acute respiratory infections reported to the State Health Services
Epidemiology Department, San Luis Potosí, México (2003–2009).

doi:10.1371/journal.pone.0115674.g001

Fig 2. Data 2003–2009 from the recordsmaintained by the Virology Laboratory of the Facultad de Medicina, UASLP, San Luis Potosí, Mexico.
(A) Weekly influenza. (B) Weekly RSV. Each individual year is plotted in a separate graph.

doi:10.1371/journal.pone.0115674.g002
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detections). All information used in this analysis was anonymized. Data used for this analysis
included only weekly number of cases and, therefore, review by an ethics committee was not re-
quested. Weekly data for acute respiratory infection- associated consultations is recorded as
part of routine surveillance activities carried out by the State Public Health Department. Viro-
logical information was derived from different projects carried out to analyze the epidemiology
of viral respiratory infections and as part of the hospital’s infection control program; the re-
search projects were approved by the Research and Ethics Committee at Hospital Central “Dr.
Ignacio Morones Prieto” and informed consent was obtained from children’s parents.

Scalograms for total ARI, influenza and RSV
There are several factors that influence the ARI dynamics like environmental and climate fac-
tors, host-pathogen interactions and immunological factors. Influenza and RSV data show
nonstationarity, oscillations and seasonality, features that imply that wavelet analysis may be
efficient to identify patterns driven by the annual weather cycle. Unlike Fourier analysis wavelet
analysis is able to analyse signals with changing spectra allowing the estimation of the spectral
characteristics as a function of time [26].

Wavelets constitute a family of functions that depends on two parameters, one for time po-
sition and the other for the scale and related to the frequency. In the literature there are many
studies of “natural signals” where the so-called Morlet wavelet has found wide application in
diverse fields of sciences among them epidemiological time series [26–28].

The continuous wavelet transform (CWT) is shown in scalograms where the absolute value
of the wavelet transform is plotted so scalograms reflect only the “power” of the signal and not
the phase characteristics of the oscillatory behavior. Wavelets constitute a family of functions
derived from a single functionCa, τ(t), that can be expressed as the function of two parameters,
one for the time position τ, and the other for the scale of the wavelets a, related to the frequen-
cy. More explicitly, wavelets are defined as

Ca;tðtÞ ¼
1ffiffiffi
a

p C
t � t
a

� �
:

We applied wavelet spectral techniques, whose graphical representations is shown here
through scalograms. For wavelet analysis we use the Morlet wavelet with α = 5% significance
level (95% confidence level).

In Figs. 3 to 5 the scalograms for the years 2003 to December 2009 are shown for ARIs, in-
fluenza and RSV respectively, in two different scale ranges. One range corresponds to lengths
up to 32 weeks; the second range corresponds to lengths up to 64 weeks.

In Fig. 3C the ARIs annual 52 week period is easily observed which dominates all other fre-
quencies. Looking at lower periods (Fig. 3B), another weaker periodic cycle between 16 and 32
weeks (average of 6 months) can be seen across all weeks. Apart from this two periodic epidem-
ic events (yearly and roughly 6-month cycles), there are activity periods of lengths smaller that
8 weeks occurring not very regularly along the years. There are very noticeable epidemic out-
breaks at the end of 2003, beginning of 2005, beginning of 2007 and a very strong signal in the
first quarter of 2009. One should also notice the high power signal that appears from mid 2007
to mid 2008 in the periods between 16 and 32 weeks.

The data base allows independent analysis of RSV and influenza epidemics. Fig. 4 shows
this comparison for the periods between 4 and 32 weeks. It is evident that influenza epidemic
events are more sparse that RSV epidemics probably due to the lower incidence of influenza in
children. From 2003–2009 only four influenza epidemic events show in the scalogram (end of
2003, end of 2005, end 2007 and most of 2009, see Fig. 4C); however, RSV epidemics events
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occur roughly every 6 months with some years showing two epidemics (2003, 2005, 2007,
2009, see Fig. 4D). Moreover, the influenza epidemic events are relatively sharp and occur
every two years (vertical fingers in Fig. 4C) as compared to the more variable event strength in
RSV epidemics (multiple fuzzy, “broken” fingers in Fig. 4D) that occur every year.

In Fig. 5 scalograms for higher scales are presented (8 to 64 weeks). Here an interesting ob-
servation can be made: RSV signal power occurs between high power peaks in influenza. Both
signals show a strong annual periodic signal across all weeks being stronger for RSV than for
influenza. A lower power cycle in the scale between 16 and 32 weeks also occurs (see the con-
tinuous orange band across all weeks). This implies that the high power signal shown in dark
red in Fig. 3C) is mainly driven by RSV. Thus RSV could be thought of as an endemic, compet-
itively dominant virus in the San Luis population; and influenza a competitively inferior one
that survives at low frequencies with significant epidemic events occurring roughly every
2 years.

Fig 3. Acute respiratory infections. (A) The acute respiratory infections time series (2003–2009) used for the wavelet analysis. (B) Scalogram (absolute
values) for total ARIs for the years 2003–2009 for periods between 4 and 32 weeks. (C) Scalogram (absolute values) for total ARIs for the years 2003–2009
for periods between 8 and 64 weeks. Horizontal axis, weeks numbered consecutively starting 2003; vertical axis, periods in weeks. The colours code for
power values from white for low CTW power to dark red for high CWT power.

doi:10.1371/journal.pone.0115674.g003
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Also note (Fig. 4) that at weeks 150 and 250 there are two influenza epidemic outbreaks and
that between them there is almost no influenza activity; however, RSV activity does occur be-
tween weeks 150 and 250. Thus at periods below 32 weeks, RSV and influenza epidemic
events alternate.

Looking at the total ARIs scalogram one can appreciate that the dynamics described in the
previous paragraph is only weakly identifiable when looking at the scale of a year (Fig. 3C) but
that focusing on smaller periods this interesting replacement/interference dynamics is
neatly observed.

Finally we show a very interesting phenomenon. We performed the scalogram analysis
looking for periodic cycles of longer scales. Fig. 6 shows the results. One can see that influenza
has a cyclic periodic behavior across weeks of about 128 weeks (32 months or roughly
3 years).

Fig 4. RSV and Influenza epidemics. (A) The Influenza time series (2003–2009) used for the wavelet analysis. (B) The RSV time series (2003–2009) used
for the wavelet analysis. (C) Scalogram (absolute values) for total influenza cases for periods between 4 and 32 weeks. (D) Scalogram (absolute values) for
total RSV cases for periods between 4 and 32 weeks. Horizontal axis, weeks numbered consecutively starting 2003; vertical axis, periods in weeks.

doi:10.1371/journal.pone.0115674.g004
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Fig 5. Scalograms (absolute values) for periods between 8 and 64 weeks (2003–2009). (A) Total influenza cases. (B) Total RSV cases. Horizontal axis,
weeks numbered consecutively starting 2003; vertical axis, periods in weeks.

doi:10.1371/journal.pone.0115674.g005

Fig 6. Scalograms (absolute values) for the periods between 8 and 128 weeks (2003–2009). (A) Total influenza cases. (B) Total RSV cases. Horizontal
axis, weeks numbered consecutively starting 2003; vertical axis, periods in weeks.

doi:10.1371/journal.pone.0115674.g006
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Mathematical model
Superinfection is a long standing hypothesis that explains the coexistence of species in a given
common environment [29–30]. In the absence of superinfection, a measure of the competitive
ability of the most virulent strain, competitive exclusion of the weaker strain is the generic out-
come [31]. Levin and Pimentel [32] were the first to show that the inclusion of superinfection
makes coexistence possible. Superinfection establishes a competitive hierarchy driven by the
abilities of each species to use common resources. Moreover, it is known that heterogeneities in
hosts characteristics, in this case driven by climate variability and temporal immunity, are im-
portant factors for the coexistence of species [33]. Below we present a simple model for the in-
teraction of RSV and influenza viruses based upon superinfection as a mechanisms to explain
the patterns described in the previous section.

The model is a SEIRS epidemic model coupled through superinfection. RSV has reported a
slightly higher R0 or reproductive number than influenza (Ri = 1.6 and Rr = 1.7 where i stands
for influenza and r for RSV, [34] but this difference is rather small and the uncertainties in the
estimation of both reproductive numbers may blur the difference. Therefore, we have approxi-
mated the estimates of the reproduction numbers using the data for SLP as described in the fol-
lowing section. The reason for the choice of a SEIRS model is that we are following seasonal
influenza (and RSV) and therefore we need to account for some immunity left by any given ep-
idemic episode in the population.

The model stands as follows. Let the subindex k = 1, 2 represent the two different infections
in a host human population in demographic equilibrium whose size has been rescaled to N = 1.
The larger subindex indicates superior competitive ability. Then we have

d
dt

S ¼ mN � Sðb1I1 þ b2I2Þ=N � mSþ y1R1 þ y2R2

d
dt

E1 ¼ Sb1I1=N � sb2E1I2=N � ðmþ g1ÞE1;

d
dt

I1 ¼ g1E1 � sb2I1I2=N � ðmþ Z1ÞI1;
d
dt

R1 ¼ Z1I1 � sb2R1I2=N � ðmþ y1ÞR1;

d
dt

E2 ¼ Sb2I2=N þ sb2ðE1 þ I1 þ R1ÞI2=N � ðmþ g2ÞE2;

d
dt

I2 ¼ g2E2 � ðmþ Z2ÞI2;
d
dt

R2 ¼ Z2I2 � ðmþ y2ÞR2;

ð1Þ

where bk(t) = f(t)βk is the time-dependent infection rate for each of the infections, respectively,
described in S1 File; f(t) is a function associated to climate variability and βk defined as the
product of the infection probability by the per capita number of contacts per unit time is the
constant contact rate for virus k. Susceptible, exposed, infectious and immune hosts for each of
the infections are represented, respectively, by S, Ek, Ik and Rk with μ the natural mortality rate
of the population. In the equations, σmeasures a reduction in susceptibility after primary infec-
tion since an exposed, infectious or immune individual takes preventive actions against a future
infection. The parameters γk and ηk are, respectively, the incubation and infection recovery
rates for each disease; θk is the waning of immunity rate, RSV immunity takes around 3–5
years to become protective which differs from influenza which is much faster.
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As it can be seen we have established that the secondary infection can take over hosts from
any of the compartments at a rate σβ2; so stages E1, I1 and R1 of the primary infection become
E2 as soon as they are infected. The existence of equilibrium points as a function of the repro-
duction numbers is shown in Figure A in S2 File.

Parameter estimation
The objective of this section is compute two main parameters for our model: a) the reproduc-
tion number and b) the forcing function associated to climate variability. Once the estimate of
each reproduction number is obtained, we get the average value for βk for each virus and this
value is then plugged into the model to generate our simulations. As it is well known, the repro-
duction number, denoted by R0, is the expected number of secondary cases produced in a sus-
ceptible population by a typical infective individual during the time in which s/he is infectious.
If R0< 1, then on average an infected individual produces less than one new infected individual
over the course of its infectious period and the infection cannot grow. Conversely if R0 > 1
then each infected individual produces, on average more than one new infection and the dis-
ease can invade the population. From its definition R0 is determined from early stages of the
epidemic. The information that is most commonly used to estimate R0 are reported cases and
sero-prevalence data i.e. data on hosts who have antibodies against the pathogen. On the other
hand, the replacement number [35] is defined as the expected number of secondary infections
that one infected person would produce through the entire duration of the infectious period
where the population need not be fully susceptible,

ReðtÞ ¼ R0sðtÞ

where s(t) = S(t)/N. When Re < 1 for R0 > 1, either through an increase in the infectious popu-
lation or the recovered population through recovery from infection or vaccination, the disease
can no longer sustain itself and will die out or epidemics will not occur.

In our case we have confirmed cases for both RSV and influenza from a hospital-based con-
sultation. To calculate the basic reproduction number we rearranged the model so that the rele-
vant quantity R0 could be obtained from linear regression.

To estimate the reproduction number by using of the classical Kermack-McKendrik SIR
model we first estimated the “growth rate” by fitting an exponential function to the early as-
cending phase of daily infections where the epidemic curve is based on new cases onset [36],

I � I0e
ððR0�1ÞðZþmÞtÞ

where I0 is the initial number of infectives, 1/η is the infectious period, and 1/μ is the
host lifespan.

Therefore we can estimate R0 from the initial increase of infected cases. The purpose of this
section is to determine the value of R0 for both respiratory diseases: Influenza and RSV. For
this we need the parameters γk and ηk the incubation and infection recovery rates, respectively,
for each disease (see Table 1).

This method for the estimation of R0 has several drawbacks, one of them being that the
number of infected hosts is very low at the beginning of an epidemic. However a way around
this obstacle is to use data from multiple outbreaks, so that we obtain an average basic
reproductive number.

To complement these calculations we use the exponential growth rate method (EG) of the
Package R0 [37], a language R toolbox to estimate reproduction numbers for epidemic out-
breaks. During the early phase of an outbreak the exponential growth rate is defined by the per
capita change in number of new cases per unit of time, as incidence data are integer valued, the
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EG method uses a Poisson regression to estimate this parameter rather than linear regression
of the logged incidence [38].

In what follows we show the R0 value for each of the years for which data is available. For in-
fluenza and RSV we analyze data from 2003 to 2009.

Estimating R0 for influenza and RSV
In Fig. 2 we show the influenza and RSV cases by week from 2003–2009. Note that epidemics
are generally at the end or beginning of a year. For the case of influenza we calculate R0 for the
individual outbreaks occurring in the winter seasons.

In Tables 2–3 we list the estimated values of R0 for each of these outbreaks.

Table 2. First outbreak of influenza. The t-test statistically significant p< 0.05 is marked with **.

Year R0 (SIR) β (SIR) R0 (EG) Confidence interval β

2003 4.24** 1.06 1.11 [0.96, 1.30] 0.28

2004 — — — — —

2005 — — — — —

2006 3.67 0.92 1.09 [0.84, 1.44] 0.27

2007 2.46 0.62 1.05 [0.76, 1.43] 0.26

2008 2.21** 0.55 0.60 [0.23, 1.04] 0.15

2009 7** 1.75 1.58 [1.10, 2.31] 0.40

doi:10.1371/journal.pone.0115674.t002

Table 1. The incubation and infection recovery rates for influenza and RSV [36].

Parameter Value (i = influenza; r = RSV)

γi 0.5d−1

γr 0.2d−1

ηi 0.25d−1

ηr 0.2d−1

μ 0.000039d−1

doi:10.1371/journal.pone.0115674.t001

Table 3. Second outbreak of influenza. The t-test statistically significant p< 0.05 is marked with **.

Year R0 (SIR) β (SIR) R0 (EG) Confidence interval β

2003 2.67** 0.67 1.57 [0.70, 2.65] 0.39

2004 — — — — —

2005 2.97** 0.74 1.75 [1.10, 2.55] 0.44

2006 — — — — —

2007 — — — — —

2008 — — — — —

2009 6.09** 1.52 3.19 [2.45, 4.10] 0.80

doi:10.1371/journal.pone.0115674.t003
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For the outbreaks during 2004, the first outbreak of 2005 and the second outbreak in the pe-
riod 2006–2008 it was not possible calculate the R0 because of the scarcity of data.

For RSV Tables 4 and 5 show the estimates of the reproduction number. As influenza case,
there is not enough information for some years.

Tables A-D in S1 File show the estimated values of R0, the estimation error and p-value for
Influenza and RSV using linear regression. Acute respiratory infections are endemic in San
Luis Potosí and thus the reproduction number must be near one (see Table E in S1 File).

To end this section, f(t) is the forcing associated to climate variability and was estimated
from the daily average temperature data for San Luis Potosí for the time period corresponding
to the epidemic data (Fig. 7) resulting in the function

f ðtÞ ¼ 17:33þ 0:480 sin
2p
365

t

� �
� 0:40 sin

2p
365

2t

� �
� 4:03 cos

2p
365

t

� �
� 1:05 cos

2p
365

2t

� �
:

In the mathematical model bk(t) = f(t)βk is the time-dependent infection rate for each of the
infections so that in the model simulation the forcing function with annual periodicity multi-
plies the contact rate βk.

Results
As [29–30] have pointed out, virulence and superinfection play an essential role on the evolu-
tion of pathogens. Host demography has a very significant role on the long-term interaction of
hosts and pathogens and it is a key mechanism in the study of the evolution of virulence. In the

Table 4. First outbreak of RSV. The t-test statistically significant p< 0.05 is marked with **.

Year R0 (SIR) β (SIR) R0 (EG) Range β

2003 — — — — —

2004 2.28** 0.46 1.59 [1.09, 2.14] 0.32

2005 — — — — —

2006 — — — — —

2007 — — — — —

2008 — — — — —

2009 4.75 2.38 1.33 [0.97, 1.85] 0.27

doi:10.1371/journal.pone.0115674.t004

Table 5. Second outbreak of RSV. The t-test statistically significant p< 0.05 is marked with **.

Year R0 (SIR) β (SIR) R0 (EG) Range β

2003 2.26** 0.47 0.56 [0.18, 1.21] 0.11

2004 8.9** 1.78 1.83 [1.44, 2.32] 0.37

2005 4.07** 0.82 2.75 [1.89, 3.93] 0.55

2006 2.45** 0.49 1.97 [1.13, 3.27] 0.39

2007 5.78** 1.16 1.78 [1.44, 2.21] 0.36

2008 6.32** 1.26 1.35 [1.09, 1.65] 0.27

2009 — — — — —

doi:10.1371/journal.pone.0115674.t005
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present situation, climatic variability impacts host availability and demography towards coloni-
zation by either of influenza virus or RSV. Given the size of the reproduction numbers that we
have (that of RSV being larger than that of influenza), a very plausible explanation for the coex-
istence of both viruses in the system of reference is that RSV superinfects influenza allowing it
to survive. The other case, influenza superinfecting RSV would result in the extinction of the
inferior competitor ending up with a system with RSV epidemics only.

To support the model deduction that RSV could be thought of as an endemic, competitively
dominant virus in SLP we can mention the following arguments: 1) for all age groups, mortality
rate associated to RSV in the San Luis Potosí State is usually higher than influenza associated
mortality rate [12], 2) human beings are the only reservoir of RSV implying that it must reside
endemically in some geographical location to migrate to others (a sink-source dynamics as ex-
plained in [33, 39], in the case of the Influenza the diversity of strains generates highly dynamic
transmission patterns where viral gene flow leads to the replacement of endemic viruses
through competition for susceptible hosts [40–41], 3) it has been shown that in Mexico City
and other cities at similar latitudes RSV is endemic, 4) RSV frequently reinfects the same indi-
vidual during either the same or following seasons; humoral immunity against RSV seems to
take about 3–5 years to become protective [12, 42–45].

In Fig. 8 we show the biologically feasible case where RSV is competitively superior to influ-
enza (R01 and R02 are the reproduction numbers for influenza and RSV respectively) and in
Fig. 9 the same competitive dominance is illustrated but assuming that secondary infections
occur as if the hosts had never been infected before, that is, σ = 1. The pattern in both figures is
similar but that shown in Fig. 9 is much more regular. A decrease in σ, meaning a decrease in
the contact rate for the secondary infection, provides a more irregular pattern both in the

Fig 7. Average daily temperature data in SLP.Daily record from 2003 to 2009.

doi:10.1371/journal.pone.0115674.g007
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periodicity and the amplitude of the epidemic outbreaks in agreement with the recorded data.
Tables 4 and 5 constitute the main support for RSV being the superior competitor. The magni-
tude of the estimated reproduction numbers have larger variability than those of influenza and
the Tables show some evidence, however, week that years with R0 for RSV high are associated
with R0 for influenza low. However, scarcity of data does not permit a conclusive statement.
We will address this observation elsewhere.

Before closing this section we present a last result that illustrates the qualities of the method-
ology used here to estimate parameters. In Fig. 10 we compare the dynamics of the observed

Fig 8. Simulations for the mathematical model. (A) Total cases (RSV plus influenza). (B) RSV cases are plotted with a continuous line; influenza cases
plotted with a dashed line. Horizontal axis is time in days; vertical axis is proportion of the population. Plot is shown after a transient time of 5000 days where
σ = 0.7, b1 = 0.9162 and b2 = 0.4566 and θ = 0.0001 for R01 = 1.83 and R02 = 2.28.

doi:10.1371/journal.pone.0115674.g008

Fig 9. Simulations for the mathematical model. (A) Total cases (RSV plus influenza). (B) RSV cases are plotted with a continuous line; influenza cases
plotted with a dashed line. Horizontal axis is time in days; vertical axis is proportion of the population. Plot is shown after a transient time of 5000 days where
σ = 1, b1 = 0.9162 and b2 = 0.4566 and θ = 0.0001 for R01 = 1.83 and R02 = 2.28.

doi:10.1371/journal.pone.0115674.g009
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outbreaks and the one coming out from numerical simulations of our model. Since in simula-
tions we follow proportions and start our epidemics at arbitrary initial times and initial popula-
tions, we have shifted and rescaled the output from our model so the comparison has a better
visual set up. We are not attempting to predict epidemic outbreaks but to explain the observed
patterns. Note that not only the frequency of outbreaks is reproduced but also some qualitative
features. For example, influenza epidemics have less amplitude and show interepidemic periods
with zero or very low case numbers whereas RSV epidemics are broader and show and endemic
phase between outbreaks. In S2 File (Figures B and C) we show different simulations for the
cases θ1 6¼ θ2. In general we can observe that making the period of temporal immunity of the
second virus shorter (θ2 larger), drives the model dynamics into a regime not supported by the
data with periods, oscillations and amplitudes uncharacteristic compared to observed patterns.
On the contrary the model predictions are relatively insensitive to changes in the duration of
the immunity for the first virus.

Discussion
Now, to have a qualitative appreciation that the model encloses a plausible ecological explana-
tion for the patterns of interactions observed in Mexico for RSV and influenza, the scalograms
for model simulations are shown in Figs. 11 and 12. In Fig. 11 note that the power of the signal
for influenza epidemics increases every two years whereas the power of RSV epidemics is
weaker but essentially homogeneous each year. For both epidemics there is another cyclic be-
havior (besides the expected yearly one) at about 6 months (light band between 4 and 5 in the
y-axis). Compare the scalogram for the real data presented in Fig. 5.

On the other hand, in Fig. 12 we show the scalogram but comprising a broader range of pe-
riods reaching up to 128 weeks. Note that influenza presents cyclic periodic behavior across all
years between 64 and 128 weeks (on average every two years) whereas the signal for RSV is
much more weaker for that same period. Compare with the scalograms for the real data shown
in Fig. 6. In this case our model is a bit off since it generates periodicity slightly below that
shown in the data (which is above 128 weeks). Nevertheless, one can see that, at least in terms
of spectra, the similarities are remarkable.

Influenza comes in waves of discrete events since each new influenza epidemic is produced
by a different viral strain. So there is a process of lineage or variant replacement which is a ge-
netic process. This approach has been successfully investigated in [46]. Our approach looks at

Fig 10. Real data and numerical simulations.RSV is plotted with a continuous line; influenza cases plotted with a dashed line. (A) RSV and influenza
cases from SLP data. (B) RSV and influenza cases frommodel output. Horizontal axis is time in days; vertical axis is proportion of the population. Plot is
shown after a transient time of 5000 days with arbitrary initial condition and parameters σ = 0.7, b1 = 0.9162 and b2 = 0.4566 and θ = 0.0001 for R01 = 1.83
and R02 = 2.28.

doi:10.1371/journal.pone.0115674.g010
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a different angle of the problem. We are interested in the interaction (or interference) between
two types of virus: RSV and the influenza virus. In this case the process by which influenza oc-
curs each year is due to an ecological process where available niches occupied by RSV are taken
over and colonized by the influenza virus.

Our model is able to capture the two main cyclic behaviour observed in data: the annual one
driven by yearly climatic variability which is exploited by RSV (since the power of its signal is
stronger that of influenza) and a second biannual one, exploited by influenza. These two cyclic
behaviours are in the root of the superinfection (ecological) mechanism for coexistence of both
populations. It is important to mention that the data have a substantial bias in patient age that

Fig 11. Scalogram (absolute values) for the model simulations for periods up to 64 weeks. (A) Influenza cases. (B) RSV cases. Horizontal axis, weeks
numbered consecutively; vertical axis, periods in weeks. See text for explanation.

doi:10.1371/journal.pone.0115674.g011

Fig 12. Scalogram (absolute values) for the model simulations for periods up to 128 weeks (32 months). (A) Influenza cases. (B) RSV cases.
Horizontal axis, weeks numbered consecutively; vertical axis, periods in weeks. See text for explanation.

doi:10.1371/journal.pone.0115674.g012
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affects the estimates of reproduction number, that limits the extrapolation to the entire popula-
tion. So a possible explication of the characteristics of scalograms is that the influenza is un-
common in children while RSV infects almost all the children during the first three years of life
and re-infections by these viruses are very common during early childhood.

We must point out that our results presented here are out comes of, first, generating a better
(still improvable) model for climatic variability. We renounced to the usual cosine contact rate
with yearly period and instead took the temperature data and fitted a trigonometric series
which was then incorporated in our model as described in the text above. Secondly, we estimat-
ed the reproductive numbers from the actual data. R0 estimation with such scarce data is a
non-trivial but essentially methodological problem. There are many techniques that can be ap-
plied including likelihood and Bayesian approaches. However the point in all of them including
the one we used here, rely on exploiting the data in such a way that one can get replicates that
can improve our estimates.

Finally our choice for a model was a deterministic SEIRS one. The reason is very simple: we
are dealing with seasonal influenza and RSV and there is certain immunity in a proportion of
the population that reduces the number of susceptibles available for infection.

We must stress that we are not attempting to estimate the next outbreak of RSV or influenza
nor attempting to statistically fit our model to the data. Our aim is strategic: we want a model
that is able to explain the interaction observed between influenza and RSV through the analysis
of broad patterns hidden in the time series. In order to have a better approximation to this pro-
gram we certainly need to incorporate at least the role of asymptomatic infections, the role of
immigration and a better way of introducing climatic variability into the equations.

Supporting Information
S1 File. Table A. Estimated values of R0 for first outbreak of influenza for a SIR model.
Table B. Estimated values of R0 for second outbreak of influenza for a SIR model.
Table C. Estimated values of R0 for first outbreak of RSV.
Table D. Estimated values of R0 for second outbreak of RSV.
Table E. Estimation of R0 for ARIs data from SIR model using influenza parameters.
(PDF)

S2 File. Figure A. Existence of equilibrium points as a function of the reproduction num-
bers. Pj denotes boundary equilibria where only one virus population exists; P12 denotes an in-
terior equilibrium with both viral populations existing. The stability properties of each point
were computed numerically using the values in Table 1 with influenza as virus 1 and RSV as
virus 2.

Figure B. Simulations for R̂ ¼ R1=R2 for total cases (RSV plus influenza) and θ2 fixed. The
red line is when θ1 = θ2, green line stands θ2 > θ1 and blue line θ1 > θ2. For all cases θ2 =
0.0001.

Figure C. Simulations for R̂ ¼ R1=R2 for total cases (RSV plus influenza) and θ1 fixed. The
red line is when θ1 = θ2, green line stands θ2 > θ1 and blue line stands θ1 > θ2. For all cases
θ1 = 0.00005.
(PDF)
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