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Abstract Control of sexually transmitted infections (STIs) poses important chal-7

lenges to public health authorities. Obstacles for STIs control include low priority8

in public health programs and disease transmission mechanisms. This work uses a9

compartmental pair model to explore different public health strategies on the evolu-10

tion of STIs. Optimal and feedback control are used to model realistic strategies for11

reducing the prevalence of these infections. Feedback control is proposed to model12

the reaction of public health authorities relative to an alert level. Optimal control is13

used to model optimization of available resources for implementing strategies. Nu-14

merical simulations are performed using trichomoniasis, gonorrhea, chlamydia and15

human papillomavirus (HPV) as study cases. HPV is non-curable and it is analyzed16

only under transmission control such as condom promotion campaigns. Trichomo-17

niasis, gonorrhea, and chlamydia are curable STIs that are modeled here addition-18

ally under treatment control. Increased cost-effectiveness ratio (ICER) is employed19

as a criterion to measure control strategies performance. The features and draw-20

backs of control strategies under the pair formation process are discussed.21

Keywords Pair model · Optimal control · Feedback control · Sexually transmitted22

infections.23

1 Introduction24

Sexually transmitted infections (STIs) constitute a serious public health issue. It has25

been estimated that the annual direct cost in the US for treating these infections is26

approximately $ 16 billion (Owusu-Edusei et al., 2013). Implementation of disease27

control public health strategies is a complex process. Multiple factors are involved,28

such as available resources as well as geographical and political considerations that29

change over time. Thus, designing control strategies and determining optimal re-30

source allocation are not straightforward tasks.31
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Although there are over 30 important bacterial, viral and parasitic diseases1

that can be transmitted by sexual contact (Gerbase et al., 1998), we focus on four2

of the most common and problematic STIs: trichomoniasis, gonorrhea, chlamy-3

dia, and human papillomavirus (HPV) infection. The first three of these infec-4

tions are curable. In many cases, these infections may go undetected because of-5

ten they are asymptomatic. Thus, they can lead to severe complications such as6

pelvic inflammatory disease, ectopic pregnancy, infertility, chronic pelvic pain,7

neonatal death, and severe disability in infants, among others (Newman et al.,8

2015). Since 1995, the World Health Organization (WHO) has generated global9

estimates for the prevalence of trichomoniasis, gonorrhea, and chlamydia every10

five years (Newman et al., 2015). Hence, the majority of curable STIs’ control poli-11

cies focus on these three infections. Furthermore, according to the Centers for12

Disease Control and Prevention, HPV is the most common sexually transmitted13

infection in the United States (CDC, 2013). In addition to its high prevalence,14

HPV infection is the main etiological factor for the development of cervical can-15

cer and therefore constitutes a serious public health issue. Currently, there is no16

treatment for the virus itself, but there are vaccines to prevent infection by some17

of the most common HPV types and treatment for HPV-associated diseases, in-18

cluding genital warts and cervical cancer.19

Despite advances in STI control, the development of effective measures contin-20

ues to challenge public health authorities (Unemo et al., 2017). Moreover, continu-21

ous budget cuts to STI programs pose additional constraints for implementing ef-22

fective control strategies optimally. Therefore, studies addressing infectious disease23

control to identify optimal strategies for specific health care goals are of growing24

importance.25

Mathematical modeling offers a theoretical framework to test hypotheses and26

predict outcomes related to infectious diseases. Spread predominantly by sexual27

contacts, STIs usually occur among sexual partners. Several mathematical mod-28

els that study STI dynamics assume that the population is mixed homogeneously,29

and therefore each sexual contact occurs randomly among individuals (Brauer and30

Castillo, 2012). For instance, a mathematical model was recently explored to deter-31

mine optimal strategies to control HPV transmission in Malik et al. (2016), screening32

and vaccination strategies for HPV in an unscreened population are studied in Mil-33

wid et al. (2018), and a syphilis mathematical model is proposed in Gumel et al.34

(2018).35

The previously mentioned works, however, do not consider the pair formation36

process. Mathematical pair models include the number of sexual partnerships as37

an explicit variable (Kretzschmar and Dietz, 1998; Heijne et al., 2011; Muller and38

Bauch, 2010). These models confirmed that partnership duration is an important39

element in STI epidemiology. In fact, excluding partnerships may potentially bias40

the model outcome. For a complete review of pair models, see Kretzshmar and41

Heijne (2017) and the references therein.42

Bearing this in mind, in many biological systems questions arise regarding how43

external forces modify their dynamics. In epidemiological models, input functions44

are introduced to describe how human efforts (e.g. vaccination) modify the evolu-45

tion and spread of population diseases. Examples of this approach are Wang (2006)46

where constant and linear treatment functions are introduced, Zhang and Liu (2008)47

where a saturated treatment function is considered, and Villaviencio Pulido et al.48

(2017) where an exponential decay treatment function is studied.49
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As a first attempt to control an STI, the most simple strategy is to apply con-1

stant control efforts (constant control). Constant controls reflect permanent health2

programs. However, this is not a practical strategy since it does not take into con-3

sideration the evolution of the disease. One improvement is to place control efforts4

according to the prevalence levels. If levels are low, efforts would be decreased in5

order to minimize the use of resources. In this case, the input function will depend6

on the infected population variable (feedback control). An example of this approach7

may be found in a previous work (Saldaña and Barradas, 2019). Nevertheless, feed-8

back functions do not consider the number of resources required to implement the9

corresponding strategies. As a final improvement, we ask that control efforts op-10

timize a predefined objective function (optimal control). This can be posed as an11

optimal control problem, a modeling framework that has already been used in bi-12

ological models (Lenhart and Workman, 2007; Sharomi and Malik, 2017; Camacho13

and Jerez, 2019). It is important to stress that in this work ”resources” and ”costs”14

refer to amounts of economic, human and material resources.15

The aim of this work is to discern efficient strategies to control STIs. Here we de-16

scribe trichomoniasis, gonorrhea, chlamydia and HPV infection dynamics as case17

studies by incorporating parameters from the literature. To this end, we use pair18

models to consider pair formation processes (Kretzschmar and Dietz, 1998). We19

also perform a cost-effectiveness analysis using the increased cost-effectivity ratio20

(ICER) (Okosun et al., 2011; Cape et al., 2013). A feature in our work is that we em-21

ploy the ICER as a way to measure different types of control strategies (constant,22

feedback and optimal control).23

The rest of this work is organized as follows. In Section 2 we extend a pair model24

proposed in Kretzschmar and Dietz (1998) by including two control functions. The25

first one represents efforts of moving infected people back into the susceptible com-26

partment (treatment) while the second one represents decrement of transmission27

probability (condom promotion). We find the basic reproduction numberR0 under28

constant control functions. Next, in Section 3 we introduce an objective functional29

that penalizes the presence of infected individuals and the indiscriminate use of30

the two public health strategies. Then, we pose an optimal control problem and31

proceed to characterize the optimal solutions. In Section 4 we present numerical re-32

sults corresponding to the four STIs considered in this work under different control33

strategies. This is accompanied by a brief cost-effectiveness analysis to compare STI34

control strategies. Finally, in Section 5 we discuss the obtained results in this work35

and we mention our conclusions.36

2 Sexually Transmitted Infections Pair Model37

We consider an epidemic model with non-zero partnership length to study the dy-38

namics of a curable STI in a population based on Kretzschmar and Dietz (1998).39

The model is constructed under the Susceptible-Infectious-Susceptible (SIS) frame-40

work. It includes explicitly the number of people in a partnership as a state variable.41

The total number of single individuals at time t is denoted by X(t) while the total42

number of pairs of individuals in the population is P (t). Thus, the total population43

size N(t) at time t is N(t) = X(t) + 2P (t). The basic assumptions that govern the44

model are the following (Saldaña and Barradas, 2019) (see also Figure 1):45
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Fig. 1: Schematic representation of the model (1). Single populations are represented
byX . Pair populations are represented by P . The states considered here are suscep-
tible 0 and infected 1. For example, P01 is the population of pairs with one suscep-
tible and one infected individuals. Arrows denote the flow between compartments.

(i) Susceptible individuals are recruited as singles into the sexually active popula-1

tion at a constant rate ν, and leave the population by dying or ceasing sexual2

activity at a constant rate µ.3

(ii) At a constant rate ρ per unit of time, single individuals form pairs. These are4

dissolved when the relationships end at a rate σ or when one of the individuals5

in the pair dies. Since pairs without sexual contact are irrelevant for the spread6

of the infection, we shall assume that pair formation starts with sexual contact.7

(iii) Transmission can only take place within a pair of a susceptible and an infected8

individual. We consider φ to be the number of sexual acts per unit of time, and9

h ∈ (0, 1) the transmission probability per contact.10

(iv) We extend the model from Kretzschmar and Dietz (1998) by considering the fol-11

lowing. Infected individuals can clear the infection naturally at a rate γ due12

to the immune response. We assume that the recovery rate γ increases by a13

time-dependent function uT (e.g. treatment of infected individuals). Also, we14

assume that a time-dependent function uC decreases the transmission probabil-15

ity h (e.g. condom promotion campaigns). Both functions uT and uC represent16

public health authorities’ efforts to reduce the prevalence of the infection.17

Such assumptions lead to the following pair model:18

X ′0 = ν + (σ + µ)(2P00 + P01)− (µ+ ρ)X0 + (γ + uT )X1,

X ′1 = (σ + µ)(2P11 + P01)− (µ+ ρ)X1 − (γ + uT )X1,

P ′00 =
1

2
ρ
X2

0

X
− (σ + 2µ)P00 + (γ + uT )P01,

P ′01 = ρ (1− h(1− uC))
X0X1

X
− (σ + φh(1− uC) + 2µ)P01

− (γ + uT )P01 + 2(γ + uT )P11,

P ′11 =
1

2
ρ
X2

1

X
+ ρh(1− uC)

X0X1

X
+ φh(1− uC)P01 − (σ + 2µ)P11

− 2(γ + uT )P11,

(1)19
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Variable Description
X0 Single susceptible individuals
X1 Single infected individuals
P00 Pairs with two susceptible individuals
P01 Pairs with a susceptible and an infected individuals
P11 Pairs with two infected individuals
X Total number of singles
P Total number of pairs
uT Public health control: treatment of infected individuals
uC Public health control: condom promotion

Table 1: State variables for model (1).
Parameter Description Units
ν Recruitment rate individuals year−1

µ Rate of leaving the sexually active population year−1

ρ Rate of pair formation year−1

σ Separation rate year−1

φ Contact frequency within partnerships year−1

1/γ Infectious period in the absence of treatment year
h Transmission probability per contact dimensionless

Table 2: Interpretation and units for the parameters of model (1).

where the derivative is considered with respect to time, and uT and uC are time-1

dependent functions. All the parameters are assumed to be non-negative. Tables 12

and 2 summarize the model variables and parameters.3

Before going any further it is important to emphasize the role of the control4

functions u for u ∈ {uT , uC}. In our system u(t) represents the impact on the pop-5

ulation due to the efforts (decisions, plans or actions) undertaken by the health care6

system to control the disease at time t. In other words, the functions uT and uC7

model public health strategies to reduce the prevalence of the STI. In mathematical8

terms, the control functions u are non-negative functions that increase the recovery9

rate of infected individuals or reduce the transmission probability as a consequence10

of the application of public health strategies. As such, any public health care system11

has a maximum resource capacity to carry on control strategies. Thus, we assume12

the following:13

0 ≤ uT (t) ≤MT , 0 ≤ uC(t) ≤MC ≤ 1 (2)14

for all t > 0, where MT is the maximum increase on the recovery rate γ due to15

treatment and MC is the maximum decrease on the transmission probability h due16

to condom promotion and sexual education campaigns.17

2.1 Model Reduction18

By adding the equations from (1), note that the total population sizeN = X0+X1+
2(P00 + P01 + P11) satisfies N ′ = −µN + ν, from which it is easy to see that the set

Ω = {(X0, X1, P00, P01, P11) ∈ R5
+ |X0 +X1 + 2(P00 + P01 + P11) ≤ ν/µ}

is a positively invariant set under model (1), see Appendix A.19
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Now, let X = X0 +X1 be the total number of singles and P = P00 + P01 + P11

the total number of pairs. From (1), observe that the dynamics of singles and pairs
are described by the the following system of differential equations:

X ′ = ν + 2(σ + µ)P − (µ+ ρ)X, (3)

P ′ =
1

2
ρX − (σ + 2µ)P. (4)

The partnership dynamics (3)–(4) has a unique equilibrium point (X∗, P ∗):1

X∗ =
ν(σ + 2µ)

µ(σ + 2µ+ ρ)
, P ∗ =

νρ

2µ(σ + 2µ+ ρ)
. (5)2

Let the initial conditions of (3)–(4) be the equilibrium point (X∗, P ∗) (5). In this3

case we say that the pair formation process is at equilibrium. This assumption im-4

plies that X ′ = 0 and P ′ = 0, so the total population size is constant with N = ν/µ.5

Thus, assuming equilibrium of the pair formation process we may reduce model (1)6

to the following three-dimensional system:7

X ′1 = (σ + µ)I − (2µ+ ρ+ σ)X1 − (γ + uT )X1,

P ′01 = ρ (1− h(1− uC))X1

(
1− X1

X∗

)
− (σ + φh(1− uC) + 2µ)P01

+ (γ + uT ) (I −X1 − 2P01),

I ′ = ρh(1− uC)X1

(
1− X1

X∗

)
+ φh(1− uC)P01 − µI − (γ + uT ) I,

(6)8

where I = X1 + P01 + 2P11 is the total prevalence.9

2.2 Basic Reproduction Number10

In this section we analyze the reduced pair model (6) assuming that the control11

functions u ∈ {uT , uC} are constant functions over time. Suppose that the control12

functions are given by uT (t) = u0T and uC(t) = u0C for all time t, where u0T and u0C13

are fixed constants that satisfy condition (2). Then, system (6) turns into:14

X ′1 = (σ + µ)I − (2µ+ ρ+ σ)X1 − (γ + u0T )X1,

P ′01 = ρ(1− h(1− u0C))X1

(
1− X1

X∗

)
− (σ + φh(1− u0C) + 2µ)P01

+ (γ + u0T )(I −X1 − 2P01),

I ′ = ρh(1− u0C)X1

(
1− X1

X∗

)
+ φh(1− u0C)P01 − µI − (γ + u0T )I.

(7)15

The basic reproduction number R0 for pair models is defined as the expected16

number of secondary infections one typical infectious individual will produce dur-17

ing his/her infectious period, starting in a P11 partnership within a completely sus-18

ceptible population (see Heijne et al., 2013). Thus, the basic reproduction number19

associated to model (7) is 1:20

R0 =
h(1− u0C)

[
ρ(σ + µ)(σ + 2(γ + u0T ) + 2µ+ φ) + (γ + u0T )φ(γ + u0T + µ+ ρ)

]
(µ+ γ + u0T )(σ + φh(1− u0C) + 2µ+ 2(γ + u0T ))(2µ+ ρ+ σ + γ + u0T )

. (8)21

1 For details on the computation ofR0 see Saldaña and Barradas (2019).
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A triplet (X∗1 , P
∗
01, I

∗) is called an endemic equilibrium point of model (7) if
I∗ > 0 and if the triplet satisfies the following non-linear system:

X∗1 =
(σ + µ)I∗

2µ+ ρ+ σ + (γ + u0T )
, (9)

P ∗01 =
ρ(1− h(1− u0C))X∗1

σ + φh(1− u0C) + 2µ+ 2(γ + u0T )

(
1− X∗1

X∗

)
+

(γ + u0T )(I
∗ −X∗1 )

σ + φh(1− u0C) + 2µ+ 2(γ + u0T )
, (10)

I∗ =
ρh(1− u0C)X∗1
µ+ (γ + u0T )

(
1− X∗1

X∗

)
+
φh(1− u0C)P ∗01
µ+ (γ + u0T )

. (11)

System (9)–(11) comes from setting the left-hand side of (7) equal to zero. As-
sume that (X∗1 , P ∗01, I∗) is an endemic equilibrium point. From (9) we can see that
I∗ > X∗1 > 0. In addition, given that X∗1 ≤ X∗, from equation (10) we deduce that
I∗ > P ∗01 > 0. In summary, if (X∗1 , P ∗01, I∗) is an endemic equilibrium point then

I∗ > 0, I∗ > X∗1 > 0, I∗ > P ∗01 > 0.

Substituting the values of X∗1 and P ∗01 in equation (11) and solving for I∗, we get:1

I∗ = (R0 − 1)
(µ+ γ + u0T )(σ + φh(1− u0C) + 2µ+ 2(γ + u0T ))(2µ+ ρ+ σ + γ + u0T )

2X∗

ρh(1− u0C)(σ + 2(γ + u0T ) + 2µ+ φ)(σ + µ)2
.

(12)2

This, in turn, can be used to explicitly determine the values of X1 and P01 at the3

endemic equilibrium. Moreover, when R0 > 1 all the factors on the right-hand4

side of expression (12) are positive. Therefore, I∗ > 0 exists if and only if R0 > 1.5

The following result summarizes the role of the basic reproduction number in the6

dynamics of the disease.7

Theorem 1 For the constant controls model (7), the disease-free equilibriumE0 = (0, 0, 0)8

always exists and it is locally asymptotically stable if and only if R0 < 1. For R0 > 1,9

the vector E1 = (X∗1 , P
∗
01, I

∗), where X∗1 , P ∗01 and I∗ are given by the solution of system10

(9)–(11), is the only endemic equilibrium point of model (7) and it is locally asymptotically11

stable.12

Proof It is straightforward to see that E0 = (0, 0, 0) is the disease-free equilibrium
for model (7). To investigate the local stability of the equilibrium points, we com-
pute the Jacobian matrix of the model (7):

J(X1, P01, I) =

(
J11 0 σ + µ
J21 J22 γ + u0T
J31 φh(1− u0C) −(µ+ γ + u0T )

)
,

where:

J11 = 2µ+ ρ+ σ − (γ + u0T ), J21 = ρ(1− h(1− u0C))
(
1− 2X1

X∗

)
− (γ + u0T ),

J22 = −(σ + φh(1− u0C) + 2µ+ 2(γ + u0T )), J31 = ρh(1− u0C)
(
1− 2X1

X∗

)
.
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Chlamydia Gonorrhea

Fig. 2: Contour plots for R0 with respect to constant controls u0T and u0C . Model
parameter values are found in Table 4.

The characteristic polynomial for the Jacobian matrix evaluated at the disease-free
equilibrium J(E0) is P1(λ) = λ3 + a2λ

2 + a1λ+ a0(1−R0) where:

a2 = 2σ + 4(γ + u0T ) + 5µ+ ρ+ h(1− u0C)φ,

a1 = (σ + 2(γ + u0T ) + 2µ+ h(1− u0C)φ)(σ + (γ + u0T ) + 2µ+ ρ)

+ ((γ + u0T ) + µ)(2σ + 3(γ + u0T ) + 4µ+ ρ+ h(1− u0C)φ),

− h(1− u0C)(ρ(σ + µ) + (γ + u0T )φ),

a0 = (σ + 2(γ + u0T ) + 2µ+ h(1− u0C)φ)((γ + u0T ) + µ)(σ + (γ + u0T ) + 2µ+ ρ).

Note that coefficients ai are positive for i = 0, 1, 2. Thus, P1(λ) is an strictly in-1

creasing function for λ ∈ R+. Furthermore, P1(0) > 0 if and only if R0 < 1.2

In consequence, if R0 < 1, then the roots of the polynomial P1(λ) have negative3

real part. However, P1(λ) has a unique positive real root if R0 > 1. Therefore, the4

disease-free equilibrium is locally asymptotically stable ifR0 < 1, and it is unstable5

ifR0 > 1.6

We have already established that for R0 > 1 the point E1 = (X∗1 , P
∗
01, I

∗) is
the only endemic equilibrium for model (7). The characteristic polynomial for the
Jacobian matrix evaluated at the endemic equilibrium J(E1) is P2(λ) = λ3+b2λ

2+
b1λ+ b0(R0 − 1) where

b2 = a2 > 0, b1 = a1 + h(1− u0C)ρ(σ + µ)

(
2X∗1
X∗

)
> 0, b0 = a0 > 0.

Seeing that P2(0) > 0 ifR0 > 1, and that P2(λ) is an increasing function of λ when
λ > 0, we obtain the local asymptotic stability of E1. ut

To illustrate the behavior of the basic reproduction number (8) with respect7

to parameter perturbations, we show a contour plot for R0 in which we vary the8

values of u0T and u0C (Figure 2). The numerical values of the model parameters9

come from two case studies –chlamydia and gonorrhea– that are introduced later10

in Section 4. We observe in Figure 2 that increasing u0C have stronger effects than11

increasing u0T towards reducing R0. See Supplementary Material, S1 where bi-12

furcation diagrams with respect to u0T and u0C are shown.13
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3 Optimal Control Problem1

The theoretical results from the previous section allow us to predict qualitative be-2

havior of non-constant control strategies. In this section our objective is to model3

optimization of resources used by the control strategies. In order to do that, we4

propose the following objective functional5

J(uT , uC) =

∫ tf

0

I(t) +BTuT (t)
2 +BCuC(t)

2dt (13)6

for a fixed final time tf . This objective functional has the aim of penalizing the7

presence of infected individuals, as well as the use of the control functions uT8

and uC . The quadratic terms penalize high control levels in comparison with low9

values of the control functions (Gaff and Schaefer, 2009). The weight parameters10

BT and BC in (13) balance the impact of the presence of infected people and the11

use of control. The value of J depends exclusively on I , if B = 0; whereas, for large12

values of B, J is heavily affected by the use of the control, for B ∈ {BT , BC}.13

We define the set of admissible controls, D(tf ), as the set of Lebesgue measur-
able functions uT , uC that satisfy conditions (2) for all time t ∈ [0, tf ]. Thus, the
general optimal control problem is:

min
uT ,uC∈D(tf )

J(uT , uC) subject to system (6). (14)

The existence of solutions to the optimal control problem may be proved through14

standard analytical results. In Appendix B, details are provided for solution exis-15

tence to the simplified only-treatment model (uC ≡ 0) but similar arguments are16

valid to the general optimal control problem (14).17

Next, we obtain the so-called optimality system in order to find a numerical ap-18

proximation of optimal control employing the Forward-Backward Sweep Method19

(see Lenhart and Workman, 2007, Chapter 4). This system corresponds to comple-20

menting the reduced model (6) with an adjoint dual system. The optimality system21

is completed by a characterization of the optimal control solutions in terms of the22

state and the adjoint variables.23

3.1 Optimality System24

Theorem 2 Consider the optimal control problem (14). Given an optimal control vector
(u†T , u

†
C) and its corresponding state variables X†1 , P †01 and I†, there exist three adjoint

variables λ1(t), λ2(t) and λ3(t) that satisfy the system:

u†T = min

{
MT ,max

{
0,
X†1λ1 + λ2(2P

†
01 − I† +X†1) + λ3I†

2BT

}}
,

u†C = min

MC ,max

0,

λ2

(
X†1hρ

(
X
†
1

X∗ − 1

)
− P †01hφ

)
+ λ3

(
X†1hρ

(
X
†
1

X∗ − 1

)
− P †01hφ

)
2BC


 ,

X†
′

1 = (σ + µ)I† − (2µ+ ρ+ σ)X†1 − (γ + u†T )X
†
1 ,

P †
′

01 = ρ
(
1− h(1− u†C)

)
X†1

(
1−

X†1
X∗

)
−
(
σ + φh(1− u†C) + 2µ

)
P †01
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+ (γ + u†T )(I
† −X†1 − 2P †01),

I†
′
= ρh(1− u†C)X

†
1

(
1−

X†1
X∗

)
+ φh(1− u†C)P

†
01 − µI

† − (γ + u†T )I
†,

λ′1 =
(
2µ+ ρ+ σ + γ + u†T

)
λ1 +

(
γ + u†T − ρ

(
1− h(1− u†C)

)(
1−

2X†1
X∗

))
λ2

− h(1− u†C)ρ
(
1−

2X†1
X∗

)
λ3,

λ′2 =
(
2µ+ σ + 2(γ + u†T ) + h(1− u†C)φ

)
λ2 − h(1− u†C)φλ3,

λ′3 = − (µ+ σ)λ1 − (γ + u†T )λ2 +
(
µ+ γ + u†T

)
λ3 − 1,

X†1(0), P
†
01(0), I

†(0) given, λ1(tf ) = λ2(tf ) = λ(tf ) = 0. (15)

Proof Let H be the Hamiltonian function defined by:

H =λ1 ((σ + µ)I − (2µ+ ρ+ σ)X1 − (γ + uT )X1)

+ λ2

(
ρ(1− h)X1

(
1−

X1

X∗

)
− (σ + φh+ 2µ)P01 + (γ + uT )(I −X1 − 2P01)

)
+ λ3

(
ρhX1

(
1−

X1

X∗

)
+ φhP01 − µI − (γ + uT )I

)
+BTu

2
T + I.

Using the Pontryagin’s Maximum Principle (Pontryagin et al., 1965), we get that
the following system is satisfied at the optimal control vector (u†T , u

†
C):

λ1 = − ∂H

∂X1
, λ2 = − ∂H

∂P01
, λ3 = −∂H

∂I
, λi(tf ) = 0 (i = 1, 2, 3),

∂H

∂uT

∣∣∣∣
uT=u†T

= 0,
∂H

∂uC

∣∣∣∣
uC=u†C

= 0,

from which the system (15) is derived. ut1

Similar results may be obtained for uC ≡ 0 (only-treatment control is employed)2

and for uT ≡ 0 (only-condom promotion control is employed). The corresponding3

optimality systems for these two models can be found in Appendices C and D.4

4 Numerical Results5

In this section we explore model (6) numerically using trichomoniasis, gonorrhea,6

chlamydia and HPV as case studies. We retrieved from the literature numerical7

estimates for some parameters related to the transmission of these four infections.8

Parameter values are shown in Tables 3–4. We aim to model an adverse scenario in9

which a high level of infected population is prevalent. Thus, we consider I(0) =10

7 × 105 where half of this population comes from the total of susceptible-infected11

pairs (P01(0) = 3 × 105). We considered the final time to be tf = 20 years as in12

Malik et al. (2016).13
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We analyze the dynamics model (6) for three different families of control func-1

tions. The first one is a permanent control program (constant control). The second2

one is a control program that increases efforts accordingly to higher infected popu-3

lation levels (feedback control). Finally, the third one is a control strategy that aims4

to minimize the overall cost (optimal control).5

4.1 Case Studies6

Curable STIs: Trichomoniasis, gonorrhea, and chlamydia7

In Figures 3–5 the simulations related to the four STIs considered in this work can8

be found. The left-hand column plots show the corresponding constant, feedback9

and optimal controls for each of these STIs, and the right-hand plots show the re-10

sulting prevalence dynamics. The three curable STIs considered (trichomoniasis,11

gonorrhea, and chlamydia) are studied under the effect of both proposed control12

strategies: the treatment control uT and the condom promotion control uC .13

Non-curable STI: HPV infection14

As mentioned in the introduction, HPV infection remains as a non-curable STI.15

Therefore, we only considered the effect of the condom promotion uC for this dis-16

ease. At the bottom of Figure 4 we show HPV infection control via condom promo-17

tion control.18

4.2 Control Strategies19

Constant20

In practice, a constant control function u(t) = u0 for all time t may not be appro-21

priate. This is because it does not take into account important factors such as the22

evolution of the prevalence level. Nevertheless, it is useful to predict the global23

dynamics of model (1) gaining some insight into how other types of control strate-24

gies may perform. For the numerical simulations, we employed two constant values25

that will correspond to the maximum values attainable by the optimal and feedback26

controls. We considered u0T = MT = 1.0 years −1 corresponding to the treatment27

control, and u0C =MC = 0.75 (dimensionless) for the condom promotion control.28

On the left-hand side of Figures 3 and 4 the control functions for the different29

STIs are shown. In Figures 3 and 4, the constant control strategies allow us to predict30

the best hypothetical scenario where the maximum decrease of the prevalence level31

is attained.32

Feedback33

In a more realistic scenario, public health authorities may take decisions on how34

to control an STI based on the current prevalence at a certain time. In that case, a35

convenient control strategy is one that only depends on the burden of the infected36
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Parameter Value Source
X1(0) 1× 105 Assumed
P01(0) 3× 105 Assumed
I(0) 7× 105 Assumed
N 1× 106 Assumed
ρ 5.0 Heijne et al. (2011)
σ 2.0 Heijne et al. (2011)
µ 0.111 Johnson et al. (2001)
ν 1.111× 105 Nµ = ν
φ 52.0 Johnson et al. (2001)

Table 3: Population and sexual behavior parameter values.

Disease γ h Source
Trichomoniasis 0.727 0.115 Johnson and Geffen (2016)
Gonorrhea 1.538 0.348 Johnson and Geffen (2016)
Chlamydia 0.855 0.129 Johnson and Geffen (2016)
HPV 0.5 0.073 Juckett and Hartman-Adams (2010)

Table 4: Sexual transmitted infection parameter values.

population. These strategies use fewer control efforts when prevalence achieves ac-1

ceptable levels, whereas it uses maximum efforts when such prevalence is above a2

critical level. We propose the control function3

u(t) = Φ (I(t)) =
M

1 + exp {−k[I(t)− Ialert]}
, (16)4

for t ∈ [0, tf ], where Ialert > 0 represents an alert level at which a maximum con-5

trol reaction speed k is reached, and u ∈ {uT , uC}with respectiveM ∈ {MT ,MC}.6

This is a standard sigmoid function that saturates at M . We incorporated this feed-7

back control u into model (1) following a previous work (Saldaña and Barradas,8

2019). Here we employed the following parameters for the feedback function (16):9

Ialert = 1× 105 that corresponds to 10% of the total population, and k = 1× 10−4.10

Note that although is not always possible to obtain prevalence data, the World11

Health Organization periodically estimates the global and regional prevalence of12

some common sexually transmitted diseases including chlamydia, trichomoniasis13

and gonorrhea (WHO, 2012b; Newman et al., 2015). Therefore, it is realistic to con-14

sider feedback control based on I(t).15

In Figures 3 and 4 the feedback controls are also shown on the left-hand side.16

Note that in all cases the feedback controls begins at its highest possible value M ∈17

{MT ,MC} and then drift to a constant lower value. The lower value is positive18

since the objective of the feedback control is to act if the prevalence is above the19

alert level.20

Optimal21

The optimal control solutions were obtained by solving the optimization problems22

mentioned in Section 3. We obtained solution approximations to the optimality sys-23

tems by using the Forward-Backward Sweep Method (see Lenhart and Workman,24

2007, Chapter 4). For the numerical simulations we used the following weight pa-25

rameters: BT = BC = 5 × 105. These values were chosen as a way to compensate26

for the magnitude of the prevalence level.27
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Trichomoniasis

Gonorrhea

Chlamydia

Fig. 3: Only-treatment control strategy (uC ≡ 0) applied to the three curable STIs.
Three types of control are considered: constant, feedback, and optimal controls. The
final time is tf = 20 years.

In Figures 3– 5 the optimal controls are also present. Note that for the case of the1

only-treatment model (Figure 3) the optimal control solutions behave in a linear-2

like manner from the highest value MT until they reach zero. On the other hand,3

in the only-condom promotion model (Figure 4) the optimal control solutions have4

a defined period of time where they have the highest value MC . Then, there is an5

intermediate period of time where they drop quickly, and finally, there is a period of6

linear-like behavior. In Figure 5 we tested the simultaneous optimal control strate-7

gies and found out that the treatment control has defined convex behavior. In terms8

of prevalence control, the mixed strategies model (Figure 5) have a better perfor-9

mance than the other two models (Figures 3 and 4).10

11
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Trichomoniasis

Gonorrhea

Chlamydia

HPV

Fig. 4: Only-condom promotion control strategy (uT ≡ 0) applied to the four STIs.
Three types of control are considered: constant, feedback, and optimal controls.
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Trichomoniasis

Gonorrhea

Chlamydia

Fig. 5: Treatment and condom promotion optimal control strategies applied simul-
taneously to the three curable STIs.

4.3 Cost-Effectiveness Analysis1

To compare different types of control structures (constant, feedback, and optimal2

controls), we need to define two quantities of interest: the cost of a strategy, and3

the number of averted individuals by a strategy. Here, we use a cost functional4

given by:5

Cost(uT , uC) =

∫ tf

0
BTuT (t)

2 +BCuC(t)
2 +A1I(t)uT (t) +A2φP01(t)uC(t)dt, (17)6

and also an averted functional given by:7

Averted(uT , uC) =

∫ tf

0
I0(t)− I†(t)dt, (18)8

where I0 is the prevalence level under no control, whereas I† is the prevalence9

level under control functions uT and uC .10
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It is noteworthy to mention that many works in the literature refer to ob-1

jective functional for finding optimal control solutions also as a cost functional,2

see for instance Okosun et al. (2011); Rodrigues et al. (2014a); Agusto and ELmo-3

jtaba (2017) and Nandi et al. (2018). There are few works that employ different4

objective and cost functionals; for instance, in Sepulveda and Vasilieva (2016);5

Berhe et al. (2018) and Tilahun et al. (2018), the cost functional is regarded as the6

objective functional without the terms with no control variables, which only con-7

siders inherent control costs. Here, we also make a difference between objective8

functionals for optimal controls and cost functionals for general strategies. In9

an attempt to make a fair comparison between optimal control and non-optimal10

control strategies, we pay attention to the subsequent economic cost that a strat-11

egy generates based on the number of individuals affected; similar approaches12

may be found in Rodrigues et al. (2014b); Otieno et al. (2016) and Momoh and13

Fügenschuh (2018). Therefore, we want to emphasize that the optimal control so-14

lutions that we find satisfy an objective functional (13) that penalizes high levels15

of control, whereas a cost functional (17) is proposed to incorporate economic16

cost of applying the control strategies in their respective population compart-17

ments. Moreover, in the cost functional (17), the terms whose coefficients are A118

and A2 –A1IuT and A2φP01uC– measure the frequency of control application,19

that is, the costs of treating IuT individuals per year and of condom use among20

P01uC susceptible-infected pairs per year, respectively.21

We evaluated the cost-effectiveness of the control strategies for each STI using22

the increased cost-effectivity ratio (ICER) (Okosun et al., 2011; Cape et al., 2013):23

ICER(f) =
Cost(f)

Averted(f)
, ICER(f, g) =

Cost(f)− Cost(g)
Averted(f)−Averted(g)

, (19)24

where f and g are assumed to be strategies conformed by pairs of functions uT and25

uC , while Cost and Averted are the functionals defined by (17) and (18), respec-26

tively. Observe from equation (19) that for individual strategies, it is more desir-27

able to have ICER(f) small: low cost and high averted levels. For two strategies,28

ICER(f, g) compares the cost-effectivity of the second strategy g with respect the29

first strategy f . The standard method to determine the most cost-effective strategy30

is as follows:31

1. The strategies to be compared are sorted from lowest to highest costs.32

2. The ICER for the first strategy, and the ICER between the first and second strate-33

gies are computed using (19).34

3. If the ICER between the two strategies is negative, eliminate the second strategy:35

the second strategy has higher cost and lower averted levels.36

4. Assume that the ICER between the two strategies is positive.37

– If the first strategy has a lower ICER than the ICER between the two strate-38

gies, then eliminate the second strategy: the second strategy has higher a-39

verted levels but it is proportionally lower than the first strategy.40

– Otherwise, eliminate the first strategy: the second strategy has higher averted41

levels proportionally with respect to the first strategy.42

5. Repeat the process until only one strategy remains in the list.43
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Table 5: ICER-based cost-effectiveness determination process for trichomoniasis.
‘OT’: only-treatment, ‘OC’: only-condom promotion, ‘mixed’: mixed strategy op-
timal control.

Table 6: ICER-based cost-effectiveness analysis. For each STI and for each pair of
parameters (A1, A2) with values (0, 0), (10, 1) and (100, 10), we show the corre-
sponding most cost-effective strategy. ‘OT’: only-treatment, ‘OC’: only-condom
promotion, ‘mixed’: mixed strategy optimal control.
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As an illustrative example, in Table 5, we gathered the results of the ICER-1

based cost-effectiveness analysis for trichomoniasis. The same process was per-2

formed to the other three STIs, and computations may be found in Supplemen-3

tary Material, S2. In Table 6, we show the most cost-effective strategies for each4

STI while varying the weight parameters (A1, A2). We observe in Table 6 that5

the cost-effectiveness varied among the four STIs considered. When the values6

of A1 and A2 were low, optimal controls had the highest cost-effectiveness. For7

the cases of trichomoniasis and chlamydia, only-treatment optimal control and8

mixed strategy optimal control had the highest cost-effectivenesses. For the case9

of gonorrhea, only-condom optimal control and mixed strategy optimal control10

had the highest cost-effectivenesses. On the other hand, when A1 and A2 were11

high, constant controls u0T and u0C showed the highest cost-effectivenesses for tri-12

chomoniasis and HPV infection, while mixed strategy optimal control displayed13

the highest cost-effectivenesses for chlamydia and gonorrhea.14

5 Discussions and Conclusions15

In this work, we proposed an extension of a pair model (Kretzschmar and Dietz,16

1998; Saldaña and Barradas, 2019) to explore STI control under public health strate-17

gies. Three different control structures were studied: constant control, feedback con-18

trol, and optimal control. Constant controls are useful to predict the prevalence evo-19

lution through theoretical results, such as the computation of the basic reproduc-20

tion number R0. Feedback controls reflect public health strategies that depend on21

the prevalence levels. Finally, optimal controls are designed to minimize the preva-22

lence levels and the use of the control strategy through time. Here, we characterized23

optimal solutions using Pontryagin’s Maximum Principle and obtained numerical24

approximations via the Forward-Backward Sweep Method. For the numerical sim-25

ulations, and because of being four of the most common and problematic STIs,26

we used parameters related to trichomoniasis, gonorrhea, chlamydia and HPV in-27

fections. We employed the ICER methodology as a way to contrast the cost-effec-28

tiveness of the different strategies considered in this work. We emphasize that our29

purpose here was to investigate the control of STIs in the form of treatment and30

condom promotion for pair models with monogamous partnerships.31

Cost-effectiveness analysis compares the costs and health outcomes of alter-32

native strategies. The health gains can be measured using some pertinent health33

outcome, such as the total number of infections averted. On the other hand, the34

cost might include direct healthcare costs (e.g. pharmaceutical costs, hospitaliza-35

tion, etc.) and non-healthcare costs (e.g. administrative costs, patient time cost,36

etc.). The measurement and the evaluation of these resources are not straight-37

forward. Therefore, defining mathematical criteria to compare different types of38

control is a challenging task. Here, we proposed the cost functional (17) and, con-39

sidering the lack of additional empirical data, analyzed different scenarios for40

its weight factors. Our results point out that, when only inherent control cost is41

considered, optimal control solutions are the most cost-effective strategies. How-42

ever, when the cost of applying such controls on the population is considered,43

constant controls may arise as the most cost-effective strategies because they de-44

crease considerably the number of infected individuals.45
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As shown in this work, the impact of health public strategies on controlling STI1

prevalence may be predicted, and improved based on different criteria such as the2

practicality of implementation (feedback control) or the minimization of an objec-3

tive functional (optimal control). This work is the first attempt to use optimal con-4

trol to search for the most efficient way to develop public health strategies for STIs5

considering the pair formation process , and also the first one to shown quantita-6

tively the effects of varying cost functional parameters on the cost-effectiveness7

analysis.8

As future work, concurrency (overlapping of partnerships), sexual risk groups,9

or studying the relationship between the infectious disease and the pair formation10

process can be included. HPV infection remains as a non-curable STI, but it could11

be interesting to include vaccination in the pair model. Also, it could be appropriate12

to consider a different way to measure the strategies cost.13
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Appendix A. Positively invariant sets22

Consider the pair model (1):

X′0 = ν + (σ + µ)(2P00 + P01)− (µ+ ρ)X0 + (γ + uT )X1,

X′1 = (σ + µ)(2P11 + P01)− (µ+ ρ)X1 − (γ + uT )X1,

P ′00 =
1

2
ρ
X2

0

X
− (σ + 2µ)P00 + (γ + uT )P01,

P ′01 = ρ (1− h(1− uC))
X0X1

X
− (σ + φh(1− uC) + 2µ)P01

− (γ + uT )P01 + 2(γ + uT )P11,

P ′11 =
1

2
ρ
X2

1

X
+ ρh(1− uC)

X0X1

X
+ φh(1− uC)P01 − (σ + 2µ)P11

− 2(γ + uT )P11.

By adding the equations, note that the total population size N = X0 +X1 + 2(P00 + P01 + P11)23

satisfies N ′ = −µN + ν, and thus24

N(t) ≤ N(0)e−µt +
ν

µ

(
1− e−µt

)
. (20)25

If we consider the set

Ω = {(X0, X1, P00, P01, P11) ∈ R5
+ |X0 +X1 + 2(P00 + P01 + P11) ≤ ν/µ},

then, from (20), we get that if N(0) ∈ Ω then N(t) ∈ Ω for all t > 0. We say that Ω is a positively26

invariant set under (1).27

https://github.com/arielcam27/STIs_pairModel_control
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Appendix B. Existence of solutions to the optimal control problem1

To prove existence of solutions for the only-treatment optimal control problem, we use Theorem2

4.1 and Corollary 4.1 from Fleming and Rishel (1975, Chapter III, Section 4). Such result requires3

the following:4

1. The set of solutions of the system (6) (called admissible pairs) is not empty.5

2. The set of admissible controls, i.e. functions u satisfying the control conditions (2), is closed6

and convex.7

3. The right-hand side of the system (6) is continuous, bounded from above by a sum of the states8

and the control, and it can be written as a linear function of the control.9

4. Finally, the integrand of (13) is convex in the control, and it is bounded below by c1|u|g − c210

with c1 > 0 and g > 1.11

We can see that uT ≡ 0 is an admissible solution, so the set of admissible pairs is not empty.12

Since uT ∈ D(tf ) (see Section 3 to recall the definition of the set D) then the set of admissible13

controls is closed and convex. Note that the supersolutions of (6), which we are going to denote by14

X̂1, P̂01 and Î , satisfy the following ODE system:15

X̂1
′
= (σ + µ)Î,

P̂01
′
= ρX̂1 +MÎ,

Î′ = ρX̂1 + φP̂01,

(21)16

which is a linear system. Thus, the solutions of system (21) are uniformly bounded for any finite17

time interval [0, tf ]. Let us define18

f(X1, P01, I) =


(σ + µ)I − (2µ+ ρ+ σ)X1 − (γ + uT )X1

ρ(1− h)X1

(
1−

X1

X∗

)
− (σ + φh+ 2µ)P01 + (γ + uT )(I −X1 − 2P01)

ρhX1

(
1−

X1

X∗

)
+ φhP01 − µI − (γ + uT )I

 .19

It is straightforward to note that there exists a function g(X1, P01, I) such that20

f(X1, P01, I) = g(X1, P01, I) + uT

 −X1

I −X1 − 2P01

−I

21

and so the right-hand side of (6) can be written as a linear function of uT . Also, we already have
satisfied the continuity of the model. Finally, using the supersolutions system (21) we note that

‖f(X1, P01, I)‖ ≤

∥∥∥∥∥∥
0 0 σ + µ
ρ 0 M
ρ φ P01

X1

P01

I

+ uT

 −X1

I −X1 − 2P01

−I

∥∥∥∥∥∥
≤ C (‖(X1, P01, I)‖+ ‖uT ‖)

where C is a constant that depends on the model parameters. Thus, f is bounded from above by a22

sum of the states and the control. The integrand is h(I, uT ) = I+Bu2T and so h(I, u) = I+Bu2T ≥23

Bu2T , so choosing c2 = 0, c1 = B > 0 and g = 2 we have the following:24

Theorem 3 There exist an optimal control uT and state variables (X1, P01, I) that minimize the objective25

functional (13) and satisfy the system (6). ut26

Appendix C. Optimality system for the only-treatment model27

The corresponding optimality system for the only-treatment control strategy (uC ≡ 0) is given by:28

uT = min

{
MT ,max

{
0,
X1λ1 + λ2(2P01 − I +X1) + λ3I

2BT

}}
,
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X′1 = (σ + µ)I − (2µ+ ρ+ σ)X1 − (γ + uT )X1,

P ′01 = ρ(1− h)X1

(
1−

X1

X∗

)
− (σ + φh+ 2µ)P01 + (γ + uT )(I −X1 − 2P01),

I′ = ρhX1

(
1−

X1

X∗

)
+ φhP01 − µI − (γ + uT )I,

λ′1 = (2µ+ ρ+ σ + γ + uT )λ1 +

(
γ + uT − ρ(1− h)

(
1−

2X1

X∗

))
λ2 − hρ

(
1−

2X1

X∗

)
λ3,

λ′2 = (2µ+ σ + 2(γ + uT ) + hφ)λ2 − hφλ3,
λ′3 = − (µ+ σ)λ1 − (γ + uT )λ2 + (µ+ γ + uT )λ3 − 1,

X1(0), P01(0), I(0) given, λ1(tf ) = λ2(tf ) = λ(tf ) = 0.

1

Appendix D. Optimality system for the only-condom promotion model2

The corresponding optimality system for the only-condom promotion control strategy (uT ≡ 0) is3

given by:4

uC = min

MC ,max

0,
λ2
(
X1hρ

(
X1
X∗ − 1

)
− P01hφ

)
+ λ3

(
X1hρ

(
X1
X∗ − 1

)
− P01hφ

)
2BC


 ,

X′1 = (σ + µ)I − (2µ+ ρ+ σ)X1 − γX1,

P ′01 = ρ (1− h(1− uC))X1

(
1−

X1

X∗

)
− (σ + φh(1− uC) + 2µ)P01 + γ(I −X1 − 2P01),

I′ = ρh(1− uC)X1

(
1−

X1

X∗

)
+ φh(1− uC)P01 − µI − γI,

λ′1 = (2µ+ ρ+ σ + γ)λ1 +

(
γ − ρ (1− h(1− uC))

(
1−

2X1

X∗

))
λ2

− h(1− uC)ρ
(
1−

2X1

X∗

)
λ3,

λ′2 = (2µ+ σ + 2γ + h(1− uC)φ)λ2 − h(1− uC)φλ3,
λ′3 = − (µ+ σ)λ1 − γλ2 + (µ+ γ)λ3 − 1,

X1(0), P01(0), I(0) given, λ1(tf ) = λ2(tf ) = λ(tf ) = 0.
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