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In this paper, we explore the interplay of virus contact rate, virus production
rates, and initial viral load during early HIV infection. First, we consider an early
HIV infection model formulated as a bivariate branching process and provide
conditions for its criticality R0 > 1. Using dimensionless rates, we show that
the criticality condition R0 > 1 defines a threshold on the target cell infection
rate in terms of the infected cell removal rate and virus production rate. This
result has motivated us to introduce two additional models of early HIV infection
under the assumption that the virus contact rate is proportional to the target cell
infection probability (denoted by V

V+𝜃
). Using the second model, we show that

the length of the eclipse phase of a newly infected host depends on the target
cell infection probability, and the corresponding deterministic equations exhibit
bistability. Indeed, occurrence of viral invasion in the deterministic dynamics
depends on R0 and the initial viral load V0. If the viral load is small enough, eg,
V0 ≪ 𝜃, then there will be extinction regardless of the value of R0. On the other
hand, if the viral load is large enough, eg, V0 ≫ 𝜃 and R0 > 1, then there will
be infection. Of note, V0 ≈ 𝜃 corresponds to a threshold regime above which
virus can invade. Finally, we briefly discuss between-cell competition of viral
strains using a third model. Our findings may help explain the HIV population
bottlenecks during within-host progression and host-to-host transmission.
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1 INTRODUCTION

It is generally acknowledged that the fate of HIV infection is largely determined at its early or acute stage. In the absence
of treatment, the outcome of the first stage of infection determines the time scale of the second one, ie, the higher/lower
the target cell count at the end of the first stage, the larger/shorter the time span of the latter stage.1 Therefore, the analysis
of early HIV infection dynamics is an important problem and remains an active research area across disciplines.2,3 It has
long been argued that a large fraction (in fact, majority) of sexual contacts between infected and susceptible individuals
do not result in HIV infections.2 Broadly speaking, the virus growth process has several bottlenecks, both within hosts
and when transmitted from host to host.4 Pearson et al3 offer a theory of stochastic viral extinction, where the virus-free
state is an absorbing state. Ryser et al5 used branching process models to argue about the key role of stochasticity in
papillomavirus clearance. Joseph and Swamstrom6 described how HIV must navigate through a low fitness landspace
to initiate infection upon entering a new host. Many authors have concentrated in their analysis on intracellular virus
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competition using models taking into account multiple cell infection by virus (see for example the work of Ciupe7 and
Phan and Wodarz8). In contrast, it seems that extracellular competition models have received relatively little attention.

In this paper, we consider three extracellular models of invasion and early infection dynamics to study the role of virus
contact rate and initial viral load in determining the persistence of the infection. In particular, we model explicitly the
probability that a virus infects a cell upon contact, which leads to a model whose deterministic approximation equations
exhibit bistability. We also show that, in this model, the virus-free equilibrium is locally unconditionally stable. Of note, we
rely on the definition of virus dispersion to develop our models. According to Encyclopaedia Britannica,9 “…Dispersion
in biology is the dissemination, or scattering, of organisms over periods within a given area or over the earth… .”
Furthermore, “...there are three possible patterns of dispersion: random, aggregated or uniform… .” In the Appendix, we
compute the probability that a target cell is infected as a function of the random dispersion realized by a virus. Then, we
compute the probability of successful infection of a target cell integrating over all possible values of the dispersion with
respect to a suitable probability density function.

This result allows one to offer a dynamical argument for the virus extinction, namely, that the between-host HIV persis-
tence is determined by several interacting factors, like the target cell infection probability, the initial viral load, the virus
contact rate, and the replication dynamics.

The paper is organized as follows. Section 2 introduces first a model of the HIV invasion defined through a bivariate
branching process and we calculate the probability of extinction in terms of the kinetic constants under the condition
R0 > 1. Later, we introduce models of acute HIV infection with one and two viral strains under the hypothesis that the
virus contact rate is proportional to the target cell infection probability. Section 3 shows through numerical simulations
the dynamics of the infection as a function of the initial viral load and target cell infection probability. Our main findings
in this paper are two. First, the random dispersion made by each virus to infect a target cell renders the virus-free state
locally unconditionally stable. Second, the length of the eclipse phase, ie, the early phase after exposure and transmission
such that virus cannot be yet detected in plasma, depends on the target cell infection probability.

2 MATERIALS AND METHODS

2.1 A model of HIV invasion
It has long been kown that earliest events in HIV infection are stochastic.3,10,11 Contact between target cells and virus leads
to either systemic infection or to complete extinction, the latter case being related to the low counts of free virions. In this
sense, we are interested in extinction conditions in a model of HIV invasion. We propose an invasion model in terms of a
bivariate branching process of virus V and infected cells I. The rationale here is that, during the early stages of invasion,
the variability in the number of target cells is negligible and hence the early invasion dynamics is solely determined by
the ability of both virus and infected cells to produce progenies. The model is expected to hold only for the earliest stages
of infection before target cells are depleted to any noticeable extent and before immune responses are stimulated. Of
note, the model introduced in this section is similar to the model of Noecker et al12 in the sense that viral production
occurs simultaneously by budding and lysis, ie, continuously or by bursting. This is reflective of different types of virus
production in different target cell types.13 The model is described by the following set of interations:

where ∅ indicates that infected cells or virus are being removed by death or innate immune response. For simplicity and
analytical tractability, we assume the constant propensity of each event 𝛼i i = 1, … , 5 and the virus burst size of two
(the effect of different burst size is similar to increasing the production rate 𝛼3). The next generation matrix M for (1) is

I V

I
V

⎛⎜⎜⎝
1 − N𝛿 − 𝛿 2N𝛿 + p

𝛽T0 0
⎞⎟⎟⎠ = M,
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where the bar represents the scaled contact rates, namely,
(
𝛽T0, c

)
= (𝛽T0, c) ∕ (𝛽T0 + c) and

(
N𝛿, 𝛿, p

)
= (N𝛿, 𝛿, p)∕

((N + 1)𝛿 + p). It is customary to define the basic reproductive number R0, as the expected number of descendents of
a virus introduced in a healthy host. Consequently, R0 is the spectral radius of M. A necessary condition for invasion is
supercriticality, ie, that the spectral radius of the next generation matrix is larger than one, or R0 > 1. In the present
setting, the largest eigenvalue of M is

R0 = 1
2

(√(
1 − N𝛿 − 𝛿

)2
+ 4

(
2N𝛿 + p

)
𝛽T0 + 1 − N𝛿 − 𝛿

)
, (2)

which may be compared with the similar formulae under lysis-only and budding-only models provided in the work of
Pearson et al.3 The condition R0 > 1 is then equivalent to

𝛽T0 >
N𝛿 + 𝛿

2N𝛿 + p
=

1 − p

N𝛿 + 1 − 𝛿
. (3)

Inequality (3) means that viral invasion requires the target cell infection rate 𝛽T0 to be larger than the infected cell removal
rate 1 − p divided by virus production rate N𝛿 + 1 − 𝛿. Of note, all else unchanged, a larger budding rate p makes the
right-hand side smaller, thus allowing infection to occur under smaller cell infection rate 𝛽T0, whereas a larger lysis rate
N𝛿 does not make the right-hand side smaller.

Let

Ψ = (ΨI ,ΨV ) =

( ∞∑
i=0

∞∑
𝑗=0

PI(i, 𝑗)x i𝑦𝑗,

∞∑
i=0

∞∑
𝑗=0

PV (i, 𝑗)x i𝑦𝑗

)
denote the generating function associated to process (1). Let PI, PV denote the probabilities of extinction of I, V,
respectively. To determine PI, PV, we look for the smallest (in terms of its Euclidian norm) solution of equations

x = ΨI(x, 𝑦) 𝑦 = ΨV (x, 𝑦), (4)

such that (x, y) ∈ (0, 1) × (0, 1). If we write down Equation (4) in terms of the contact rates, we obtain

x = 𝛿 + N𝛿𝑦2 + px𝑦

𝑦 = c + 𝛽T0x.

Solving for x and y gives the extinction probabilities

PI = x = 𝛿 + N𝛿 c2

𝛽T0

(
1 − 𝛿 − N𝛿 c

)
PV = 𝑦 = 𝛿 + c − 𝛿 c

1 − 𝛿 − N𝛿 c
=

1 − 𝛽T0

(
1 − 𝛿

)
p + N𝛿𝛽T0

.

Note that the condition R0 > 1 given by (3) holds if and only if PI < 1 (and thus also PV < 1). If the system has initial
condition (I,V ) = (0, 1), then the extinction probability is

P (Extinction of V) =
1 − 𝛽T0

(
1 − 𝛿

)
p + N𝛿𝛽T0

=
1 − 𝛽T0

(
1 − 𝛿

)
p +

(
1 − p − 𝛿

)
𝛽T0

.

Figure 1 shows the probability of extinction of V in terms of the rates 𝛿 and 𝛽T0 for a fixed value of p. There is a small
invasion window. The results obtained in this section motivate us to further study the role of the virus ability of infect target
cells on early invasion dynamics. Consequently, in Sections 2.2 and 2.3, we introduce models of early infection dynamics,
where we model explicitly the probability that a cell becomes infected upon contact with a virus, and the number of target
cells depends on time.
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FIGURE 1 Virus extinction probability as a function of the infected cell removal rate 𝛿 and target cell infection rate 𝛽T0, with constant
budding rate p = 0.3 and lysis rate N𝛿 = 0.5. There is only a small region (its boundary marked in black with label 1.00), where invasion
could occur with positive probability [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 A model of acute HIV infection
In this section, we shall focus on early infection with variation in the number of target cells. Thus, we have posed a model
of acute HIV infection under the hypothesis that the virus contact rate is proportional to the probability of target cell
infection upon contact

2.2.1 Model formulation
Let X1 = X1(t), X2 = X2(t), and X3 = X3(t) denote respectively the number of target cells, the number of infected
cells, and the number of virus per milliliter (of blood or lymph) at time t. We shall use lowercase x1, x2, and x3 to denote
realizations of those random variables. Moreover, we denote x = (x1, x2, x3) the state vector. For the sake of clarity, we
shall use T, I, and V respectively to name the expected value of the random variables X1, X2, and X3, and at the same
time, as labels for target cells, infected cells, and virus. The list of events, propensity functions 𝛼i = 𝛼i(x), and change of
state vectors vi, i = 1, … , 7, given by (5) determine both a stochastic model defined as a continuous time Markov jump
process and its deterministic approximation.

The definition and name of the model contact rates are based mostly on previous HIV infection models, eg, the models
of Perelson,14 Pearson et al,3 and Noecker et al.12 Consequently, 𝜆 denotes the target cell production rate. Viral production
occurs either by lysis or budding of the infected cell.3 Furthermore, infected cell lysis produces N virus at rate 𝛿, and p is
the virus production rate due to budding. On the other hand, d, 𝛿, and c are respectively target, infected, and virus removal
rates. We assume the infected cell removal rate by lysis and other mechanisms to be the same for the sake of simplicity.

Of note, the propensity function 𝛼2 = 𝛼2(x) corresponding to target cell infection is of the form

𝛼2(x) = 𝛽
x1x2

3

x3 + 𝜃
= 𝛽

x3

x3 + 𝜃
x1x3, (6)

http://wileyonlinelibrary.com
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TABLE 1 Early HIV model parameters values are taken from Ho et al,16 Perelson,17 and Noecker et al,12

except for 𝜃

Parameter Value Dimension Definition

𝜆 10 cells
ml*day

Target production rate

𝛽 0.02 1
virion*day

Virus contact rate

p 0.583 1
day

Budding viral production rate

d 0.01 1
day

Target cell removal rate

𝛿 0.583 1
day

Infected cell removal rate

c 13.0 1
day

Virion removal rate

N 10 − Number of virus produced due to lysis of one infected cell
𝜃

[
10.0−4, 10.00] virions Viral concentration at which half of the contacts of virus

and target cells give rise to an infected cell

where 𝛽 denotes the number of contacts per virion per day with target cells; and

p(x3, 𝜃) =
x3

x3 + 𝜃
(7)

is the probability of a target cell being infected upon contact with a virus. To model the contact process of a virus and a
target cell giving rise to an infected cell, we have used a reasoning analogous to that of Dennis15 to model the Allee effect
through nonhomogenous Poisson process. Equation (7) arises from modeling the random dispersion realized by a virus as
a pure birth process and computing the probability of a successful cell infection. Details of our derivation of Equation (7)
based on population dynamics models of mating, as described in the work of Dennis,15 are provided in Appendix . Of
note, 𝜃−1 may be interpreted as the expected value of the probability density function, describing the magnitude of the
random dispersion realized by a single virus. We have assumed that there is no cooperation or competition in virus-to-cell
binding. Model parameters and their values are summarized in Table 1.

Of note, the model defined by (5) is a closed system, thus the virus-free state is an absorbing state, ie, the stochastic viral
extinction is possible. In Section 3, we shall explore numerically the virus extinction and the length of the infected host
eclipse phase in terms of the parameter 𝜃. On the other hand, to analyze the macroscopic dynamics of the model defined
in (5), we consider the deterministic approximation, corresponding to the limit when there are no fluctuations, given by
the following equations:

Ṫ = 𝜆 − 𝛽
TV 2

V + 𝜃
− dT

İ = k TV 2

V + 𝜃
− 2𝛿I

V̇ = −k TV 2

V + 𝜃
+ (N𝛿 + p)I − cV .

(8)

Of note, Equations (8) reduce to the standard HIV model when 𝜃 = 0. However, in the remainder of the paper, we
shall show that Equations (8) couple within cell and between cell dynamics, thus allowing to study the interplay of cell
infection and virus replication.

2.2.2 Basic reproduction number and qualitative analysis
Using again the next generation matrix technique introduced by van den Driessche and Watmough,18 we obtain the basic
reproductive number

R0 = 𝜌
(

FW−1) = √
(p + N𝛿)𝛽𝜆
2𝛿(𝛽𝜆 + dc)

, (9)

where

F =

(
0 𝛽

𝜆

d
p + N𝛿 0

)
, W =

(
2𝛿 0
0 𝛽𝜆

d
+ c

)
. (10)
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Proposition 1. (Virus free equilibrium)
The deterministic Equations (8) have a virus free equilibrium, given by (T, I,V) = (𝜆∕d, 0, 0), which is locally
unconditionally stable if 𝜃 > 0, ie, if the target cell infection probability is less than 1.

Indeed, the Jacobian of the right-hand side of Equation (8) is

J(T, I,V) =

⎛⎜⎜⎜⎜⎝
−𝛽 V 2

V+𝜃
− d 0 𝛽T V 2+2V𝜃

(V+𝜃)2

𝛽
V 2

V+𝜃
−2𝛿 −𝛽T V 2+2V𝜃

(V+𝜃)2

−𝛽 V 2

V+𝜃
N𝛿 + p 𝛽T V 2+2V𝜃

(V+𝜃)2
− c,

⎞⎟⎟⎟⎟⎠
, (11)

which evaluated at the virus free point leads to

J(𝜆∕d, 0, 0) =

(−d 0 0
0 −2𝛿 0
0 N𝛿 + p −c

)
. (12)

It follows that the disease free equilibrium is locally unconditionally stable because the Jacobian eigenvalues are in the
diagonal of J(𝜆∕d, 0, 0). Of note, if 𝜃 = 0, Equations (8) reduces to the standard case where the virus free equilibrium is
locally asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proposition 2. (Viral set point)
If 𝜃 > 0 and R0 > 1, then the deterministic Equations (8) have one stable equilibrium where neither the number of virus
or infected cells is zero. In the rest of this paper, we call such state the viral set point.

To establish the stability of the viral set point, we let Ṫ = İ = V̇ = 0 in Equation (8) and solve

𝜆 − 𝛽
V 2

V + 𝜃
T − dT = 0

𝛽
V 2

V + 𝜃
T − 2𝛿I = 0

−𝛽 V 2

V + 𝜃
T + (N𝛿 + p)I − cV = 0,

(13)

which leads to
𝛽c

𝜆𝛽 + dc
V 2 +

[
1 − R2

0
]

V + dc𝜃
𝜆𝛽 + dc

= 0. (14)

Note that (14) implies that, if 𝜃 > 0, then there are two viral set points, provided R0 > 1 and 𝜃 > 0. In this case, we may
conclude by Hurwitz theorem19 that one of them is stable and the other one unstable.

Proposition 3. (Allee effect)
In the deterministic Equations (8), the term 𝛽

V
V+𝜃

TV = 𝛽
V 2T
V+𝜃

generalizes the law of mass action because V ≪ 𝜃 implies
𝛽

V 2T
V+𝜃

≈ 𝛽V 2T
𝜃

, rendering the virus free state locally unconditionally stable, as shown earlier, whereas V ≫ 𝜃 implies

𝛽
V 2T
V+𝜃

≈ 𝛽VT, approximating the law of mass action.

1. If 0 < V ≪ 𝜃, or 0 <
V
𝜃
≪ 1, then

1
V + 𝜃

= 1
𝜃

(
1 − V

𝜃
+
(V
𝜃

)2
− · · ·

)
. (15)

Consequently,

𝛽
V 2T

V + 𝜃
= 𝛽V 2T

𝜃

(
1 − V

𝜃
+
(V
𝜃

)2
− · · ·

)
≈ 𝛽V 2T

𝜃
.

(16)

In particular, if the initial viral load V(0) = V0 is very small compared to 𝜃, then system (8) is in the basin of attraction
of the inconditionally stable virus free state.
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2. On the other hand, if 0 < 𝜃 ≪ V, or 0 <
𝜃

V
≪ 1, then

1
V + 𝜃

= 1
V

(
1 − 𝜃

V
+
(
𝜃

V

)2
− · · ·

)
. (17)

Consequently,

𝛽
V 2T

V + 𝜃
= 𝛽V 2T

V

(
1 − 𝜃

V
+
(
𝜃

V

)2
− · · ·

)
≈ 𝛽VT.

(18)

In other words, If V is much larger compared to 𝜃, then system (8) behaves like the standard HIV model.
3. Finally, V ≈ 𝜃 is a threshold regime characteristic of the Allee effect. Of note, invasion depends on both R0 and the

initial viral load V(0) = V0. Indeed, if the initial viral load is small, eg, V(0) = V0 ≪ 𝜃, then there will be extinction
reagardless of the value of R0. On the other hand, if V(0) = V0 ≫ 𝜃 and R0 > 1, there will be infection.

Model (5) is in agreement with the following argument. Individuals exposed to a larger viral load, eg, blood transfusion,
arguably have a higher probability of being infected. On the other hand, individuals challenged with smaller viral loads,
eg, sexual contact, have a smaller probability of being infected.

2.3 A model of acute invasion with two HIV strains
Under the same hypotheses as in Section 2.2, a two strain model is defined by the following list of events:

where 𝛽1 and 𝛽2 are the contact rates of virions of strains 1 and 2, respectively. In Section 3, we shall explore numerically
between-cell virus competition using model (19).

3 RESULTS

First, in order to study the role of target cell infection probability on determining the length of the infected host eclipse
phase, we construct of a probability density of the time it takes for the realizations of the stochastic process defined by (5)
to reach 100 virions per milliliter (of blood or lymph), similar to the work of Noecker et al.12 All probability densities were
computed with 20 000 realizations of the Gillespie algorithm with initial conditions (T, I,V ) = (𝜆∕d, 0, 1), ie, one virus per
milliliter (of blood or lymph). Taking 𝜃 = 0, 𝜃 = 1, and 𝜃 = 10, we have found that the mean time to reach 100 virions
per milliliter was t = 4.39, 4.66 and 6.60 days respectively, See Figure 2. On the other hand, the number of succesful
infections was 47.5%, 40%, and 14.48%, respectively. Of note, the length of the eclipse phase depends on the target cell
infection probability, ie, larger values of 𝜃 correspond to smaller target cell infection probability and larger eclipse phases.
The rates of virus removal c = 5, number of virus produced during lysis N = 5, and budding rate p = 0.4 were reduced
to make more obvious the variability of the eclipse phase in Figure 2.
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FIGURE 2 The length of the eclipse phase depends on the target cell infection probability. Top histogram corresponds to the standard
model, 47.5% of simulations gives rise to an infection. Middle histogram corresponds to 𝜃 = 1, 40% of simulations gives rise to an infection.
Bottom histogram corresponds to 𝜃 = 10, 14.48% of simulations gives rise to an infection. Larger values of 𝜃 correspond to smaller target cell
infection probability and larger eclipse phases. The rates of virus removal c = 5, lysis production N = 5, and budding M = 0.4 were reduced
to make more apparent the variability of the eclipse phase. All histograms correspond to 20 000 simulations [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 3 Deterministic bistability. Depending on the initial target cell infection probability, eg, the relative value of V(0) and 𝜃 = 10−3,
the system may reach the viral set point or virus extinction. In the left column, R0(N ) varies as a function of the number of virus preduced
during infected cell lysis. In the central column, R0(M ) varies as a function of the budding rate. In the right column, R0(𝛽) varies as a function
of the contact rate 𝛽 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 4 Between cell competition of two HIV strains. Invasion diagram of two competing strains V1 and V2 of HIV virus. We have
simulated extracellular strain competition taking N1 = 10 and N2 = 12, whereas 𝜃1 = 10−3 and 𝜃2 = 1.3 × 10−3. Consequently, strain V1

has smaller R0 but higher target cell infection probability than V2. Of note, there is a region where both strains disappear due to the presence
of the other one [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Between cell competition of two HIV strains. The basic reproduction number of strain V2 is larger, however there is a region
where strain V1 invades and V2 disapears provided the target cell infection probability of strain V1 is larger [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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Next, we explore whether the deterministic Equation (8) reaches extinction or the viral set point as we vary both, ie,
the initial viral infection probability V0

V0+𝜃
and the basic reproduction number R0. Figure 3 represents a virus invasion

diagram as follows, in the left column, R0(N) varies as a function of the number of virus N produced during lysis of an
infected cell. In the central column, R0(p) varies as a function of the budding rate p. In the right column, R0(𝛽) varies as
a function of the contact rate 𝛽. Parameter values correspond to Table 1. In each case, varying parameters were changed
by ±25%. On the other hand, 𝜃 = 10−3 was kept fixed, whereas the initial viral load was varied in V0 ∈

[
10−4, 10−1]. On

the other hand, the first row shows the number of target cells T, whereas the second row shows the number of infected
cells I and the third row shows the number of virions V in the system final state. It is apparent that there is a deterministic
threshold for the virus reaching either extinction or the viral set point. Of note, there is a trade-off between R0 and the
initial target infection probability V0

V0+𝜃
, which however is not symmetric with respect to lysis, budding, and viral contact

rate. In particular, with the current parameter setting, a large enough lysis production is necessary to avoid within host
virus extinction. It is apparent that there is a regime where extinction is possible although R0 > 1.

Finally, we have considered a model of early HIV infection with two strains given by Equation (19). Parameters corre-
spond to Table 1. However, we have simulated extracellular strain competition taking N1 = 10 and N2 = 12, whereas
𝜃1 = 10−3 and 𝜃2 = 1.3 × 10−3. Consequently, strain V1 has smaller R0 but higher target cell infection probability than
V2. Figures 4 and 5 show the invasion diagram for the competing virus strains. Of note, there is a region where both
strains disappear due to the presence of the other one. Note that the figure is not symmetric. As expected, having a larger
R0 gives a larger competitive advantage to strain 2. However, there is a region where having a larger target cell infection
probability gives strain 1 a larger competitive advantage.

4 CONCLUSIONS

It has long been argued that virus populations undergo bottlenecks as they progress within a host or when they are
transmitted from one host into another. In this paper, we have analyzed models of virus invasion and early infection
dynamics to explore the role of the virus ability to attach itself to a target cell, and its relation with virus replication
dynamics. Using standard modeling techniques, we have offered evidence that invasion depends upon both, the target
cell infection probability and the replication dynamics as measured by R0. All three models introduced here have allowed
us to conclude that the confluence of these factors is required for a successful invasion and that only in the specific regions
of parameter space the viral population will overcome the bottleneck phenomenon. This conclusion from the models
analysis seems to be in good agreement with similar experimental findings, as discussed, eg, in the work of Pearson et al.3
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APPENDIX

FIRST PRINCIPLES MODELING OF TARGET CELL INFECTION PROBABILITY

To model the contact process of a virus and a target cell giving rise to an infected cell, we use a reasoning analogous
to that of Dennis15 to model the Allee effect through stochastic mating encounters. According to Dennis, “… Stochastic
fluctuations in mating encounters should affect reproduction in sparse populations… .” It appears that this is precisely the
case in early HIV infection, when there is a low virus load within a host. To apply Dennis reasoning, we shall assume
that, once a virus is found inside a host, it will be subject to random biological dispersion.9

Denoting the virus realized dispersion by a ≥ 0 (a might, eg, account for the area of spatial domain visited by the virus,
we assume herein that a is continuous and nondecreasing), the successful infection encounter per virus may be modeled
by the binary random variable X(a) that satisfies equation akin to the chemical reaction with a acting as time

X(a) = X(0) + Y (abV(1 − X(a))),

where X(0) = 0 and Y(s) is a standard (unit) Poisson process (see. eg, Gardner20 or Karlin21). The assumptions about
the aforementioned reaction process as a function of nondecreasing a are as follows, see also Ponciano and Capistrán.22

(1) the system is well mixed. (2) In the early stage of HIV infection, we neglect variations in the number of target cells and
assume that only a tiny fraction of target cells need to be infected to ensure the infection; consequently, the probability

https://doi.org/10.1002/mma.5237
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that a virus contacts a target cell is proportional to the abundance of virus, denoted V with the proportionality constant
denoted b > 0. From the equation earlier, it follows in particular that

P(X(a) = 1) = 1 − exp(−abV). (A1)

If we model 𝜆 = ab as a continuos random variableΛwhose probability density function fΛ(𝜆) has support on (0,∞), then

P
(
supa>0 X(a) = 1

)
=

∞

∫
0

(1 − exp(−𝜆V))𝑓Λ(𝜆)d𝜆, (A2)

Note that the density fΛ(𝜆) = 𝜃exp( − 𝜆𝜃) with 0 < 𝜆 < ∞ is monotonically decreasing and has support on the nonneg-
ative real numbers. Based on (A2), the probability that the contact of a virus and a target cell gives rise to an infected cell
can be expressed in closed form

P
(
supa>0 X(a) = 1

)
= V

V + 𝜃
. (A3)
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