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Disclaimer

This is a technical report elaborated on behalf of the Nodo Multidisciplinario
de Matemáticas Aplicadas del Instituto de Matemáticas UNAM-Juriquilla. The
analysis it contains is based on the publicly available information as released by
the Secretaŕıa de Salud. Its aim is to contribute to the knowledge necessary to
fight the sars-cov-2 epidemic. Any questions or comments, please contact Dr.
Jorge X. Velasco Hernández, jx.velasco@im.unam.mx

1 Background

The National trajectory of cumulative COVID-19 cases in Mexico was reana-
lyzed in order to create short-term real-time forecasts of the outbreak. The data
consists of daily cumulative cases from February 28, 2020 to April 5, 2020. The
data was obtained daily at 19:00 p.m. (GMT-6) from the Secretariat of Health
press conferences.

To create the forecasts, we use Richards model where cumulative cases C(t)
are given by

C ′(t) = rC(t)

[
1−

(
C(t)

K

)a]
, (1)

where r represents the growth rate of infection, K is the carrying capacity (or
final epidemic size) and a is a scaling parameter. This model is an extension of
the simple logistic growth model that has been recently used to predict cumu-
lative COVID19 cases in China [5].

Parameters a, r and K must be estimated in order to properly describe the
observed data and to provide accurate forecasts. We use an statistical approach
through Bayesian inference.
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2 Previous Estimates: March 24th

In our previous report [1]:

• The growth rate of confirmed cases r was close to 0.2 (95% credible interval
1.9 to 2.1).

• With data up to March 24th we estimated the basic reproduction num-
ber for the whole country R0= 2.7 (2.5, 3.2) using the exponential growth
method, andR0 = 2.3 (2.0, 2.6) with the maximum likelihood (//CRAN.R-
project.org/package=R0) [1]. Given that, for the Richards curve, the
growth rate for Mexico was r = 0.2 we determined that the more likely
estimate for R0 came from the maximum likelihood method. Fit was per-
formed for data up to March 24 and used the next available days to test
the performance of the algorithm.

• The total size of the outbreak K is difficult to estimate since Mexico is at
a relative early stage of the outbreak. We estimate that the final size of
the outbreak will be around 710 392 (95% credible interval 65 163 -1 258
296). At this stage of the outbreak the long-term predictions have large
uncertainity. We performed a 14 days prediction from March 25, 2020
to April 7, 2020 shown in Figure 1. We see that on March 31, 2020, the
Richards curve predicts 1,103 cases (95% credible 401-2 353); the reported
confirmed cases on that day was 1 215, which is within the range.

3 Key Findings: April 5th

• For April 7, 2020, the model predicts a median number of 4 202 cases
( 95% credible interval 1 440- 11 012). On April 5, 2020 the number of
confirmed cases reported by Secretaria de Salud were 2 143, that indicates,
in our view, that by April 7th the observed number of cases will be below
the median number of cases predicted by the model. From the beginning
of April there seems to be a reduction in the incidence compared to what
was expected using the cases up to March 24. This could be caused for
several reasons. Among the most importanta are a) the effect of the social
distancing measures implemented by the government 15 days ago, b) a
significative number of cases are under-reported.

• On, April 5th, we use the most recent data available to estimate the
parameters of the Richards model. This time we start the analysis at
March 10 since from this day the number of cumulative cases begins a
sustained growth trend. The updated growth rate has a median value of
0.16 (95% 0.15-0.17), which is lower than the March 24th estimation. The
final size of the epidemic is now estimated as 718 394 cases (95% 89 757-1
264 073). The prediction for the next 15 days can be seen in Figure 2. On
April 12 we expect 1 842 to 14 143 cases with a median of 6 287. By April
19, from 5 076 to 41 173 cases are expected with a median of 17 477.
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Figure 1: Logarithm of the cumulative COVID19 cases in Mexico from February
28, 2020 to April 5, 2020. Only data up to March 24 was used to fit the
model. Black dots show the observed cases. Pink diamonds are the most recent
observations that were not used to fit the model in order to test its short term
accuracy. The red solid line shows the mean trajectory of the outbreak estimated
from the data, red dashed lines are 95% probability intervals. The blue solid
lines represent the mean posterior predictive trajectory of the epidemic and the
blue dashed lines are 95% predictive probability intervals.

• The new estimation for R0 is 1.91 (1.84, 1.98) with the exponential growth
method and 1.76 (1.65, 1.86) with the maximum likelihood method. This
is consistent with the reduction observed in the growth rate r for the
Richards model.

• It is important underline that Richards model and R0 estimates are both
based on the number of confirmed cases which can be significantly under-
estimating the true number of COVID-19 cases.
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Figure 2: Logarithm of the cumulative COVID19 cases in Mexico from March
10, 2020 to April 5, 2020. All available data was used to fit the model. Black
dots show the observed cases. The red solid line shows the mean trajectory of
the outbreak estimated from the data, and red dashed lines are 95% probability
intervals. The blue solid lines represent the mean posterior predictive trajec-
tory of the epidemic and the blue dashed lines are 95% predictive probability
intervals.
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Figure 3: Posterior distribution estimates of the parameters involved in Richards
model using data from March 10, 2020 to April 5, 2020.
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Technical Appendix

A Parameter estimation

Let Yj , for j = 1, 2, ...n, be the number of observed cumulative cases at time
tj , with tj given in days. We assume that Yj follows a Negative Binomial
distribution with mean value C(tj |a, r,K) and dispersion parameter α. Here,
C(tj |a, r,K)1 is the solution of Richards model presented in (1). Assuming
that, given the parameters, the observations Y1, Y2, . . . , Yn are conditionally
independent, then

E[Yj |a, r,K, α] = C(tj |a, r,K) (2)

V ar[Yj |a, r,K, α] = C(tj |a, r,K) + αC(tj |a, r,K)2 (3)

The Negative Binomial distribution allows to control the variability of the data
by considering over-dispersion which is common for epidemiological data. If
α = 0, then we return to the Poisson model which is often used in this context.

Let θ = (a, r,K, α) be the vector of parameters to estimate. The inclu-
sion of the parameter α, which is related to the variability of the data, not to
the Richards model, is necessary since in practice this variability is unknown.
Then, the likelihood function, which represent how likely is to observe the data
under the Negative Binomial assumption and Richards model if we knew the
parameters, is given by

π(y1, . . . , yn|θ) =

n∏
j=1

Γ(yj + τ)

Γ(yj)Γ(τ)

(
τ

τ + C(tj |a, r,K)

)τ (
C(tj |a, r,K)

τ + C(tj |a, r,K)

)yj
.

(4)

where τ = 1/α. Consider that parameters a, r, K and α as random variables.
Assuming prior independence, the joint prior distribution for vector θ is

π(θ) = π(a)π(r)π(K)π(α),

where π(a) is the probability density function (pdf) of a Uniform(0,1) distri-
bution, π(r) is the pdf of a Gamma(shape=2, scale=1), π(K) is the pdf of a
Uniform(Kmin, Kmax), and π(α) is the pdf of a Gamma(shape=2, scale=0.1).
To select the prior for parameter r, we consider that previous estimation of r
are close to 0.3 [5], and a Gamma(2,1) represent a weekly informative prior as
it allows for a wide range of values of r. Also, there is no available prior infor-
mation regarding the final size of the outbreak K. This is a critical parameter
in the model and, in order to avoid bias, we assume a uniform prior over Kmin

and Kmax. To set these last to values, we consider that the minimum number
of confirmed cases is the current number of observed cases Y (tn) times ten, i.e.

1We changed the notation with respect to equation 1 to emphasize that the solution of the
ODE depends on the parameters of interest.
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Lower bound Median Upper bound
a 0.39 0.73 0.99
r 0.15 0.16 0.17
K 8.98 x 104 7.18 x 105 1.26 x 106

α 0.10 0.19 0.35

Table 1: Posterior estimates for each parameter and 95% probability intervals.
Data from March 10, 2020 to April 5, 2020 was used to produce these estimates.

Kmin = yn ∗10. The reasoning behind this number is that it has been suggested
that the observed cases are under reported by a factor of 10 as reported by the
Secretaria de Salud. To set the upper bound for K, we consider a fraction of
the total population Kmax = N ∗0.01, where N is the population size of Mexico.
This fraction was determined base on the observations of other countries such as
Italy where the proportion of infected represents one of the worst case scenarios
considering its population size.

Then, the posterior distribution of the parameters of interest is

π(θ|y1, . . . , yn) ∝ π(y1, . . . , yn|θ)π(θ),

and it does not have an analytical form since the likelihood function depends
on the solution of the Richards model, which must be approximated numeri-
cally. We analyze the posterior distribution using an MCMC algorithm that
does not require tuning called t-walk [2]. This algorithm generates samples
from the posterior distribution that can be used to estimate marginal posterior
densities, mean, variance, quantiles, etc. We refer the reader to [4] for more
details on MCMC methods and to [3] for an introduction to Bayesian inference
with differential equations. We run the t-walk for 200,000 iterations, discard the
first 50,000 and use 2,000 samples to generate estimates of the parameters and
short-term predictions for the next 14 days. Table 1 shows the median posterior
estimates for each parameter and 95% probability intervals. Figure 3 shows the
marginal posterior distributions estimates for each parameter.
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