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ABSTRACT 1

COVID-19 pandemic has underlined the impact of emergent pathogens as a major threat for human 2

health. The development of quantitative approaches to advance comprehension of the current outbreak 3

is urgently needed to tackle this severe disease. In this work, several mathematical models are proposed 4

to represent COVID-19 dynamics in infected patients. Considering different starting times of infection, 5

parameters sets that represent infectivity of COVID-19 are computed and compared with other viral 6

infections that can also cause pandemics. 7

Based on the target cell model, COVID-19 infecting time between susceptible cells (mean of 30 days 8

approximately) is much slower than those reported for Ebola (about 3 times slower) and influenza (60 9

times slower). The within-host reproductive number for COVID-19 is consistent to the values of 10

influenza infection (1.7-5.35). The best model to fit the data was including immune responses, which 11

suggest a slow cell response peaking between 5 to 10 days post onset of symptoms. The model with 12

eclipse phase, time in a latent phase before becoming productively infected cells, was not supported. 13

Interestingly, both, the target cell model and the model with immune responses, predict that virus may 14

replicate very slowly in the first days after infection, and it could be below detection levels during the 15

first 4 days post infection. 16

A quantitative comprehension of COVID-19 dynamics and the estimation of standard parameters of 17

viral infections is the key contribution of this pioneering work. 18

Keywords: COVID-19, Mathematical Modelling, Viral Kinetics, Within-Host, Immune responses 19

1/19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is the(which was not peer-reviewed) The copyright holder for this preprint .https://doi.org/10.1101/2020.03.26.20044487doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044487
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 20

Epidemics by infectious pathogens are a major threat to humankind. The year 2020 has uncovered one 21

of the biggest pandemics in history, the novel coronavirus (COVID-19) that was first reported in 22

Wuhan, Hubei Province, China in December 2019. Thus far, about 267013 confirmed cases and about 23

11201 deaths were reported worldwide [1]. While China has made a large effort to shrink the outbreak, 24

COVID-19 has developed into a pandemic in 185 countries. Case numbers are alarming as the virus 25

spreads in Europe, Iran, South Korea, and Japan. In fact, the pandemic epicentre changed to Europe 26

on 13 of March 2020. 27

Coronaviruses can be found in different species of animals (e.g. bats and camels) and can evolve and 28

infect humans by droplets from coughing or sneezing. Previous outbreaks to COVID-2019 were the 29

Severe Acute Respiratory Syndrome (SARS-CoV), reported in Asia in February 2003 resulting in 8422 30

cases with a case-fatality rate of 11% [1]. Later, in 2012, the Middle East respiratory syndrome 31

(MERS-CoV) was identified in Saudi Arabia and infected 2506 people, killing 862 between 2012 and 32

2020 [1]. Metagenomics studies previous to the COVID-19 outbreak envisaged the possibility of future 33

threats due to the identification of several sequences closely related SARS-like viruses circulating in the 34

Chinese bat populations [2, 3]. 35

Unfortunately, no vaccine or antiviral drug is likely to be available soon. In fact, either monoclonal 36

antibody or vaccine approaches have failed to neutralize and protect from coronavirus infections [3]. 37

Therefore, individual behaviour (e.g early self-isolation and social distancing) as well as preventive 38

measures such as hand washing, covering when coughing are critical to control the spread of 39

COVID-19 [4]. Additionally to these measures, several travel restrictions and quarantines have taken 40

place in many countries around the globe. 41

Epidemiological mathematical models have been developed to help policy makers to take the right 42

decisions [4]. These have highlighted that social distancing interventions to mitigate the epidemic is a 43

key aspect. There are many epidemiological unknowns with 2019-nCoV [4]. The case fatality rate for 44

COVID-19 is about 0·3–1% [1]. However, adjusted estimation by [5] indicates that COVID-19 mortality 45

rate could be as high as 20% in Wuhan. In its early stages, the epidemic have doubled in size every 7.4 46

days [6]. Moreover, the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9) [6]. 47

Based on the relative long incubation period for COVID-19, about 5–6 days [1], Anderson et al. [4] 48

suggested that might be considerable pre-symptomatic infectiousness. 49

While there are many mathematical models developed at epidemiological level for COVID-19, there 50
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Fig 1. COVID-19 Replication Cycle. After the binding to receptors of the host cell, the virus
RNA is uncoated in the cytoplasm. Then, transcription/translation processes take place to generate
new viral RNA material and proteins. Virus assembly occurs within vesicles followed by virus release.
Once the virus is released can infect other cells.

is none so far at within-host level to understand COVID-19 replication cycle (Fig.1) and its interactions 51

with the immune system. Among several approaches, the target cell model has served to represent 52

several diseases such as HIV [7–10], Hepatitis virus [11,12], Ebola [13,14], influenza [15–18], among 53

many others. A detailed reference for viral modelling can be found in [19]. Very recent data from 54

infected patients with COVID-19 has enlighten the within-host viral dynamics. Zou et al. [20] presented 55

the viral load in nasal and throat swabs of 17 symptomatic patients. Interestingly, COVID-19 56

replication cycles may last longer than flu, about 10 days or more after the incubation period [4, 20]. 57

Here, we contribute to the mathematical study of COVID-19 dynamics at within-host level based on 58

data presented by Wolfel et al. [21]. 59

RESULTS 60

Using ordinary differential equations (ODEs), different mathematical models are presented to adjust the 61

viral kinetics reported by Woelfel et al. [21] in infected patients with COVID-19. Viral load [21] was 62

sampled from throat swab cultures and measured in Copies/mL, g Swab, at Log10 scale. To dissect the 63

COVID-19 dynamics observed in infected patients, mathematical models are employed as both a 64

quantitative recapitulation of experimental data and as a tool to prioritize mechanisms on the basis of 65

mathematical models and the Corrected Akaike Information Criterion (AICc) for model selection. The 66

cost function (14) is minimized to adjust the model parameters based on the Differential Evolution (DE) 67

algorithm [22]. 68
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Exponential Growth and Logarithmic Decay Model. Based on the experimental data [21], the 69

viral dynamic is divided into two parts, exponential growth (Vg) and decay (Vd) modelled by equations 70

(1) and (2), respectively. 71

dVg
dt

= ρVg, (1)

dVd
dt

= −ηVd. (2)

Viral growth is assumed to start at the onset of symptoms, with initial viral concentration Vg(0). 72

The parameter ρ is the growth rate of the virus. The parameter η quantifies the decay rate of the virus, 73

while Vd(0) the initial value of the virus in decay phase. Note that the growth phase of the virus was 74

measured only in two patients (A, and B) [21]. 75
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Fig 2. Exponential growth and decay model for COVID-19. Continuous line are simulation
based on (1) for viral exponential growth (Vg) or on (2) for viral decay (Vd). blue circles represents the
data from [21]. Viral growth rate (ρ) was only computed for patients A (till day 6) and B (till day 4)
while the rest of patients have missing these measurements. For all patients viral decay rate η in (2) is
computed.

Simulation are shown in Fig.2 and numerical results are presented in Table 1. The mean growth rate 76

(ρ) is estimated as 3.98 (1/day) while the initial condition estimate is approximately 0.31 (Copies/mL). 77

The mean decay rate of the virus (η) is around 0.95 (1/day), with the slowest rate estimate of 0.63 78

(1/day) presented for patients B, E, and F. The fastest decay rate was presented in the patient I with 79

an estimate of 2.51 (1/day). This slow decay rate may explain the long duration of the virus (11-22 80
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days) observed in the patients after the onset of symptoms [21].

Table 1. Estimations for the model (1)-(2) using experimental data from [21]. For the exponential
growth phase there were measurements only for patient A and B, for the rest of patients were more in
the logarithmic decay phase. This is the reason why patient A and B are the only ones that report
estimations of viral growth.

Growth Decay
ρ Vg(0) η Vd(0)

Patient (1/day) (Copies/mL) (1/day) (Copies/mL)
A 3.16 5.01 1.58 8.20
B 5.01 0.02 0.63 7.20
C 0.39 5.7
D 1.26 6.9
E 0.63 7
F 0.631 7.1
G 0.79 7.9
H 1.58 5.9
I 2.51 4.7

Mean 3.98 0.31 0.95 6.64
[Min-Max] [3.16-5.01] [0.02-5.01] [0.39-2.51] [4.7-8.21]

81

Target Cell Model. The mathematical model used here to represent coronavirus dynamics is based 82

on the target cell-limited model [19,23,24]. Coronavirus can replicate in a variety of cell types, 83

including epithelial cells. The coronavirus infection model is as follows: 84

dU

dt
= −βUV, (3)

dI

dt
= βUV − δI, (4)

dV

dt
= pI − cV. (5)

Host cells can be in one of following states: susceptible (U) and infected (I). Viral particles (V ) infect 85

susceptible cells with a rate β ((Copies/mL)−1 day−1). Once cells are productively infected, they release 86

virus at a rate p (Copies/mL day−1 cell−1) and virus particles are cleared with rate c (day−1). Infected 87

cells are cleared at rate δ (day−1) as consequence of cytopathic viral effects and immune responses. 88

Coronaviruses infect mainly in differentiated respiratory epithelial cells [25]. Previous mathematical 89

model for influenza [17] have considered about 107 initial target cells (U(0)). Initial values for infected 90

cells (I(0)) are taken as zero. V (0) is determined from estimations in Table 1. Note that V (0) cannot 91

be measured as it is below detectable levels (about 100 Copies/m) [21]. 92

Viral kinetics are measured after the on-set of symptoms [21], however, it is unknown when the 93

initial infection took place. Patients infected with MERS-CoV in [26] showed that the virus peaked 94

during the second week of illness, which indicated that the median incubation period was 7 days (range, 95

2 to 14) [26]. For parameter fitting purposes, we explore three different scenarios of initial infection day 96

(ti), that is, -14, -7, -3 days before the onset of symptoms for patients A and B, see Fig. 3. 97
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Fig 3. Target cell model for COVID-19. Continuous line are simulation based on the taget cell
model (3)-(5). Blue circles represents the data from [21]. Due to the most complete data sets in [21]
were from patient A and B, then these are the only presented in panel (a) and (b), respectively.
Infection time was assumed at -14, -7 and 0 days post symptom onset.

Infectivity can be defined as the ability of a pathogen to establish an infection [27]. To quantify 98

infectivity, the within-host reproductive number (R0) was computed. R0 is defined as the expected 99

number of secondary infections produced by an infected cell [28]. When R0 < 1, one infected individual 100

can infect less than one individual. Thus, the infection would be cleared from the population. 101

Otherwise, if R0 > 1, the pathogen is able to invade the target cell population. This epidemiological 102

concept has been applied to the target cell model (3)-(5), with 103

R0 =
U(0)pβ

cδ
. (6)

Previous studies [13,29,30] provided estimates of the infecting time (tinf), that represents the time 104

required for a single infectious cell to infect one more cell. Viruses with a shorter infecting time have a 105

higher infectivity [29,30]. From equations (3)-(5), tinf can be explicitly computed as: 106

tinf =

√
2

pβU0
. (7)

Assuming day of infection at day 0 post symptom onset (pso) would result in very high reproductive 107

numbers (R0) and a high infection rate (β) for patients A and B as presented in Table 2. Alternatively, 108

assuming the initial day of infection is either day -14 or -7 pso, then the rate of infection of susceptible 109

cells (β) would be slow but associated with a high replication rate (p). 110

Strikingly, Fig. 3(b) reveals a long period (about 4 days post infection) of viral replication below 111

detectable levels. Independently of the starting infection time (ti), numerical results at the Table 2 112

reveal very consistent reproductive numbers for patients A and B (approximately 11),implying that 113

COVID-19 would invade most of the susceptible target cells. Remarkably, the infecting time tinf is slow, 114
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about 30 hours. This may explain why COVID-19 can last several days (12-22 days pso) in infected 115

patients [21]. 116

Table 2. Estimations for the target cell model (3)-(5) using experimental data from [21] for patients A
and B.

Patient ti β δ p c R0 tinf AIC
(days) (hours)

0 3.97×10−7 4.71 8.2 0.6 11.5 32.6 12.00

A -7 9.98×10−8 0.61 9.3 2.3 6.6 61.2 12.90

-14 5.00×10−9 11.01 525 0.7 3.4 36.4 12.99

0 5.61×10−7 11.1 13.4 0.6 11.3 21.5 5.99

B -7 1.77×10−7 14.11 20.2 0.8 3.17 31.12 10.78

-14 7.06×10−8 58.31 195.8 1.4 1.7 15.85 12.15

Target Cell Model with Eclipse Phase. To represent the time frame of the infection more

adequately, an additional state is added where newly infected cells spend time in a latent phase (E)

before becoming productively infected cells (I) [29,31]. This can be written as follows:

U̇ = −βUV, (8)

Ė = βUV − kE, (9)

İ = kE − δI, (10)

V̇ = pI − cV. (11)

Cells in the eclipse phase (E) can become productively infected at rate k. Holder et al. [29] 117

considered different time distributions for the eclipse phase and viral release by infected cells for 118

influenza. Their results showed that the time distribution of the eclipse phase and viral release directly 119

affect the parameter estimation. For COVID-19, Fig.4 the eclipse phase model (AIC≈34) does not 120

improve the fitting respect to the target cell model (Table 2) even when very long eclipse phase periods 121

are assumed (e.g 100 days), implying that this mechanism could be negligible on COVID-19 infection. 122

Mathematical Model with Immune Response. Previous studies have acknowledged the relevance

of the immune T-cell response to clear influenza [17,32–36]. Due to identifiability limitations for the

estimation of the parameters of the target cell model using viral load data, a minimalistic model was

derived in [37,38] to represent the interaction between the viral and immune response dynamics. The

model assumes that the virus (V ) level induces the proliferation of T cells (T ) as follows:

V̇ = pV

(
1 − V

K

)
− cTV T − cV (12)

Ṫ = sT + rT

(
V m

V m + kmT

)
− δTT (13)
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Fig 4. Target cell model with eclipse Phase for COVID-19. Continuous line are simulation
based on the target cell model (8)-(11). The parameter k was fix to 0.01 day−1. Blue circles represents
the data from [21]. The hypothesis of eclipse phase during COVID-19 is not supported as it has a
higher AIC value (approximately 34) than the target cell model. Infection time was assumed at -14 days
post symptom onset.

Viral replication is modelled with a logistic function with maximum carrying capacity K and 123

replication rate p. The virus is cleared at a rate c. The term cTV T represents the rate of killing of 124

infected cells by the immune response. T cell homoeostasis is represented by sT = δTT (0), where T (0) 125

is the initial number of T cells and δT is the half life of T cells. The steady state condition must be 126

satisfied to guarantee the T cell homeostatic value T (0) = sT /δT in the absence of viral infection. 127

K is the maximum viral load for each of the patients in [21]. The half life of T cells is approximately 128

4-34 days [39], therefore we take δT = 2.9 × 10−2. T cells can proliferate at a rate r, and we assumed 129

that the activation of T cell proliferation by V follows a log-sigmoidal form with half saturation 130

constant kT . The coefficient m relates to the width of the sigmoidal function. While different values of 131

m were tested, m = 2 rendered a better fit. 132

Fig.5 show results of parameter fitting for three different scenarios assuming the initiation of the 133

infection (ti) was at -14, -7, and 0 dpso. Panels (a) and (c) of Fig.5 shows that the model (12)-(13) 134

gives a better fitting than previous models (Fig.2-4). Furthermore, AICs values for patient A and B 135

highlight that ti = −15 dpso give the best fitting. For presentation purposes, numerical results for 136

patient A and B are the only portrayed in Fig.4. The summary of fitting procedures at ti = −15 dpso is 137

presented in Table 3. Independently of the starting infection day, the immune response by T cells peaks 138

between 5 to 10 dpso. Interestingly, the longer the period between infection time to the onset of 139

symptoms, the higher the immune response. 140
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Fig 5. Model with Immune Responses for COVID-19. Continuous line are simulation based on
the target cell model (12)-(13). Blue circles represents the data from [21]. Due to the most complete
data sets in [21] were from patient A and B, then these are the only presented in panel (a) and (b),
respectively. Infection time was assumed at -14, -7 and 0 days post symptom onset.

Table 3. Estimations for model with immune system (12)-(13) using experimental data from [21]
assuming m = 2 and infection time -14 dpso.

Patient r cT p kT AIC

A 5.89 5.01×10−8 1.58 7.94×107 -1.44

B 0.76 1.26×10−7 1.60 1.00×106 12.26
C 0.18 5.01×10−7 1.99 1.00×103 7.66

D 0.52 3.98×10−8 1.58 7.94×103 5.65
E 0.37 1.26×10−7 1.58 3.16×104 17.60

F 25.7 3.98×10−8 1.58 1.99×108 8.68
G 0.43 7.94×10−8 1.58 6.31×104 23.20

H 0.39 1.58×10−7 1.99 1.00×103 8.73
I 1.02 1.99×10−10 1.26 1.00 ×103 -42.85

Mean 0.96 4.88×10−8 1.62 8.58×104

[Min-Max] [0.82-25.7] [2-501] ×10−10 [1.26-2] [0.001-100]×106

DISCUSSION 141

The novel coronavirus (COVID-19) first reported in Wuhan in December 2019 has paralysed our 142

societies, leading to self isolation and quarantine for several days. Indeed, COVID-19 is a major threat 143

to humans, with alarming levels of spread and death tolls, in particular on the eldery. The WHO 144

situation report published on 21 March 2020 reported 267013 confirmed cases and 11201 deaths [1]. 145

COVID-19 is the first pandemic after the H1N1 ”swine flu” in 2009 [1]. While many mathematical 146

models have concentrated on the epidemiological level predicting how COVID-19 would spread, this 147

paper aims to model COVID-19 dynamics at the within-host level to quantitative COVID-19 infection 148

9/19

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

 is the(which was not peer-reviewed) The copyright holder for this preprint .https://doi.org/10.1101/2020.03.26.20044487doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.26.20044487
http://creativecommons.org/licenses/by-nc-nd/4.0/


kinetics in humans. 149

Data from [26] showed that MERS-CoV levels peak during the second week with a median value of 150

7.21 (log10 copies/mL)in the severe patient group, and about 5.54 (log10 copies/mL) in the mild group. 151

For SARS, the virus peaked at 5.7 (log10 copies/mL) between 7 to 10 days after onset [40]. For 152

COVID-19, the viral peak was approximately 8.85 (log10 copies/mL) before 5 dpso [21]. Liu et al. [41] 153

found that patients with severe disease reported a mean viral load on admission 60 times higher than 154

that of the mean of mild disease cases, implying that higher viral loads relate clinical outcomes. 155

Additionally, higher viral load persisted for 12 days after onset [41]. 156

Using the target cell model, Nguyen et al. [13] computed for Ebola infection an average infecting 157

time of 9.49 hours, while Holder et al. [29] reported that infecting time for the wild-type (WT) 158

pandemic H1N1 influenza virus was approximately 0.5 hours [29]. Here, based on the results of the 159

target cell model in Table 2, we found that COVID-19 infecting time between cells (mean of 30 days 160

approximately) would be slower than those reported for Ebola (about 3 times slower) and influenza (60 161

times slower). The reproductive number for influenza in mice ranges from 1.7 to 5.35 [42], which is 162

consistent with the values reported for COVID-19. 163

Interestingly, both of our models (the target cell model (3)-(5) and the model with immune response 164

(12)-(13)) when fitted to the patient A data, predict that the virus can replicate below detection levels 165

for the first 4 dpi. This could be an explanation of why infected patients with COVID-19 would take 166

from 2-14 dpi to exhibit symptoms. 167

The model with immune system (Fig.4(b and d)) highlights that the T cell response is slowly 168

mounted against COVID-19 [4]. Thus, the slow T cell response may promote a limit inflammation 169

levels [42], which might be a reason to the observations during COVID-19 pandemic of the detrimental 170

outcome on French patients that used non-steroidal anti-inflammatory drugs (NADs) such as ibuprofen. 171

However, so far, there is not any conclusive clinical evidence on the adverse effects by NADs on 172

COVID-19 infected patients. 173

The humoral response against COVID-19 is urgently needed to evaluate the protection to 174

reinfections. A longitudinal study in rhesus monkeys by Bao et al. [43] uncovered that infected monkeys 175

presented viral replication at 7 days post-infection (dpi). Significant increase of specific IgG were 176

detected at 14, 21 or 28 dpi. Infected monkeys were re-challenged after specific antibody tested 177

positively and symptoms vanished. Monkeys with re-exposure presented no recurrence of COVID-19, 178

highlighting that protection can be presented to subsequent exposures. Regarding antiviral drugs, 179

Remdesivir treatment has shown a good prophylactic effect during the first 24 hours post MERS-CoV 180
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infection in a non-human primate model [44]. Furthermore, benefits has been reported for therapeutic 181

treatment if provided during 12 hours MERS-CoV infection [44]. Our study here mainly addressed T cell 182

responses, therefore, future modelling attempts should be directed to establish a more detailed model of 183

antibody production and cross-reaction [45] as well as in silico testing of different antivirals [46]. 184

There are technical limitations in this study that need to be highlighted. The data for COVID-19 185

kinetics in [21] is at the onset of symptoms. This is a key aspect that can render biased parameter 186

estimation as the target cell regularly is assumed to initiate at the day of the infection. In fact, we could 187

miss viral dynamics at the onset of symptoms. For example, from throat samples in Rhesus macaques 188

infected with COVID-19, two peaks were reported on most animals at 1 and 5 dpi [47]. 189

In a more technical aspect using only viral load on the target cell model to estimate parameters may 190

lead to identifiability problems [48–51]. Thus, our parameter values should be taken with caution when 191

parameters quantifications are interpreted to address within-host mechanisms. For the model with 192

immune system, there is not data confrontation with immune response predictions, thus, new 193

measurements on cytokines and T cell responses would uncover new information. 194

The race to develop the first vaccine to tackle COVID-19 has started with the first clinical trial just 195

60 days after the genetic sequence of the virus. Modelling work developed in this paper paves the way 196

for future mathematical models of COVID-19 to reveal prophylactic and therapeutic interventions at 197

multi-scale levels [52–57]. Further insights into immunology and pathogenesis of COVID-19 will help to 198

improve the outcome of this and future pandemics. 199
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MATERIAL AND METHODS 200

Mathematical models 201

Mathematical models based on Ordinary Differential Equations (ODEs) are solved using the MATLAB 202

library ode45, which is considered for solving non-stiff differential equations [58]. 203

Viral Kinetic Data of Patients Infected with COVID-19 204

The clinical data of 9 individuals is from [21]. Due to close contact with index cases and initial 205

diagnostic test before admission, patients were hospitalized in Munich [21]. Viral load kinetics were 206

reported in copies/ml per whole swab for 9 individual cases. All samples were taken about 2 to 4 days 207

post symptoms. Further details can be found in [21]. 208

Parameter Estimation 209

Due to the viral load is measured in Log10 scales, parameter fitting is performed minimizing the root 210

mean square (RMS) difference on Log10 scales between the model predictive output (ȳi), and the 211

experimental measurement (yi): 212

RMS =

√√√√ 1

n

n∑
i=1

(log(yi) − log(ȳi))2 (14)

where n is the number of measurements. The minimization of RMS is performed using the Differential 213

Evolution (DE) algorithm [22]. Note that several optimization solvers were considered, including both 214

deterministic (fmincon Matlab routine) and stochastic (e.g Genetic and Annealing algorithm) methods. 215

Simulation results revealed that the DE global optimization algorithm is robust to initial guesses of 216

parameters than other mentioned methods. 217

Model Selection by AIC. The Akaike information criterion (AIC) is used here to compare the 218

goodness-of-fit for models that evaluate different hypotheses [59]. A lower AIC value means that a given 219

model describes the data better than other models with higher AIC values. Small differences in AIC 220

scores (e.g. <2) are not significant [59]. When a small number of data points, the corrected (AICc) 221

writes as follows: 222

AICc = N log

(
RSS

N

)
+

2MN

N −M − 1
(15)
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where N is the number of data points, M is the number of unknown parameters and RSS is the 223

residual sum of squares obtained from the fitting routine. 224
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