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a  b  s  t  r  a  c  t

In this paper we discuss the SIMID tool for simulation of the spread of infectious disease,
enabling spatio-temporal visualization of the dynamics of influenza outbreaks. SIMID is
based  on modern random network methodology and implemented within the R and GIS
frameworks. The key advantage of SIMID is that it allows not only for the construction of
a  possible scenario for the spread of an infectious disease but also for the assessment of
mitigation strategies, variation and uncertainty in disease parameters and randomness in
the  progression of an outbreak. We  illustrate SIMID by application to an influenza epidemic
simulation in a population constructed to resemble the Region of Peel, Ontario, Canada.

©  2013 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

The prompt detection of respiratory and gastrointestinal
infectious diseases is of critical interest in public health
practice due to the rapid transmission of such illnesses and
their potential burden on the community. There is growing evi-
dence that dynamic space–time data constitute a key element
in monitoring and forecasting the spread of certain infec-
tious diseases (see, for example, reviews by [25,38,6,42,19]). In
particular, the threat of a severe influenza pandemic raises
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significant concern which necessitates the early spatial detec-
tion of an outbreak for appropriate public health action
[30,9,20,27,44]. However, traditionally most public health
departments do not incorporate space–time dynamic infor-
mation into disease surveillance, reducing the efficiency and
speed with which outbreaks can be detected and interven-
tions started. Hence, there exists a substantial demand for
easy-to-use, map-based software and decision-making sup-
port services that could assist healthcare professionals in
assessing and integrating actionable space–time information
on infectious diseases.
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The classical tool for visualizing spatial information on
disease spread is a geographic information system (GIS).
However, tracking the dynamics of infectious diseases and
detecting changes in disease processes are impossible without
the development and implementation of statistical method-
ology for spatio-temporal disease surveillance, which is not
routinely included in GIS and most statistical software pack-
ages. There exists a vast literature on statistical approaches for
space–time epidemiology [45,25,48,7,43], which can be gener-
ally classified into the three main groups, namely, statistical
tests, model-based methods and hybrid routines. The first
group, which includes, for example, such methods as scan
statistics and cumulative sums, is dominantly employed for
detecting outbreaks by comparing a spatio-temporal subset
of data vs. the expected rate of disease incidence [13,23,24].
The second group focuses on assessing the relative risk of
disease occurrence within a domain of interest, with respect
to various spatio-temporal environmental and demographic
covariates. Some of the most widely used approaches in this
group are spatio-temporal Bayesian methods [47,26] and refer-
ences therein and generalized linear models [22]. The hybrid
group of surveillance methods includes modern simulation-
based routines that aim simultaneously to model and to
detect the dynamics of infectious diseases, and includes such
approaches as hidden Markov models [49], Bayesian nets [18],
agent-based models [11,10] and references therein and net-
work methodology [35,36,4,2,21,17], and references therein. As
mentioned by [42], while many  of these new hybrid methods
appear to be promising, they are not yet broadly implemented
in software and, hence, are not widely available for operational
disease monitoring.

In this paper we  describe a new simulation-based visu-
alization program SIMID for infectious disease surveillance,
based on modern network methodology1 and implemented
within the R and GIS frameworks [8]. Our new network epi-
demic model adapts and extends the models for networks
of social contacts proposed by [35,4], by allowing us to con-
sider not only a single random network that is described
by a specific degree distribution, but also a population net-
work of contacts made up of subnetworks. Moreover, each
such subnetwork can follow a different degree distribution.
The network describes the contacts that can result in dis-
ease transmission, and is defined in terms of a probability
distribution for the number of contacts that each susceptible
individual has with other individuals in the community. More-
over, the network methodology we use for disease dynamics
generalizes some important epidemic models, relaxing the
hypotheses that the population is homogeneously mixed,
that the infection rate is constant between any two individ-
uals, and that the latent and infectious period have lengths

1 Throughout the text, “network model” refers to a specific pop-
ulation’s network of contacts, while “network algorithm” refers
to  selection of subpopulations (using available information, e.g.
census data) and the computational algorithm that is used for gen-
eration of subnetworks. In turn, “network epidemic model” refers
both to the network model and the epidemic model spreading
along this network.

that are exponentially distributed [39–41]. Hence, the network
algorithm incorporates not only the use of compartments
as in [32,31,12] but also some of the most important every-
day contacts that can be modeled through random networks,
such as contacts within families, educational facilities, health
care institutions and transportation hubs. In addition, our
new surveillance simulation-based tool allows calculation of
probability distributions for the total number of infected indi-
viduals and the replacement number2 under four different
control measures: mass vaccination and acquaintance vacci-
nation that are implemented prior to the outbreak, and ring
vaccination and isolation that are applied during the outbreak
evolution. Thus, the SIMID tool enables not only the modelling
of a single potential scenario of an epidemic outbreak but
rather the generation of an ensemble of potential scenarios
for infectious outbreaks and, hence, the assessment of var-
ious associated uncertainties and mitigation strategies. The
developed methodology and software tool are applicable to
any population with a possibly heterogeneous contact struc-
ture described as a random graph. The spatial view of social
interactions that represent channels of diseases transmission
and that are modeled with the random network methodol-
ogy is placed within the GIS framework. This, along with the
uncertainty quantification techniques, enables surveillance
teams and other health care professionals to identify disease
outbreaks in a prompt time frame (if the SIMID tool is initial-
ized with currently observed data on influenza-like illness (ILI)
occurrences or confirmed influenza infected individuals), and
allows public health personnel to use the program for plan-
ning preventive interventions and training (if the SIMID tool is
run based on simulated data). Although our current case study
relates to visualization over time and space of the dynamics of
influenza, including pH1N1 and seasonal influenza, the simu-
lation tool is also applicable to a wide range of other infectious
diseases, such as measles, meningococcal meningitis, enteric
illnesses and sexually transmitted diseases, to name only a
few.

The paper is organized as follows. In Section 2, we  describe
the process of generating the network of contacts, in its appli-
cation to an influenza epidemic simulation in the Region
of Peel, Ontario, Canada, taking into account demographic
information from the 2006 census. In Section 3, we  discuss
the SIMID tool along with its most important methodologi-
cal characteristics. Section 4 is devoted to technical software
specifications and architecture for SIMID. Section 5 provides
information on the workflow for building possible scenarios
for infectious outbreaks and presents a sample run of the
SIMID tool. The paper is concluded by discussion and future
work.

2 Here by replacement number we mean the expected number of
new cases generated by one single infected secondary case [5,35].
Note that the basic reproduction number and the replacement
number are generally not the same since the basic reproduction
number describes the expected number of new cases generated
by  patient zero, i.e. the first infected individual. It can easily be
shown that when the network of contacts is modeled as a random
network with Poisson degree distribution, then the reproductive
and replacement number coincide.
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2.  Methods:  network  of  contacts

The key idea of our simulation tool is to describe a population
by a network whose vertices are individuals or groups of indi-
viduals and whose edges represent the kind of contacts that
an infectious agent can use for transmission from an infective
to a susceptible individual. Hence, as an input, our out-
break simulation program utilizes network population contact
information that is grouped into two categories, namely, the
network’s vertices and the edges connecting them. The two
input files are named respectively indexes.txt and edges.txt,
and in this section we describe the general procedure to gen-
erate both files, using census data and information on the
location of schools and their catchment areas.

For the specific case of the model population resembling
that of the Region of Peel, the vertices in the contact graph
are all individuals who are part of at least one of three kinds
of subnetworks: “households”, “schools” and “general adult”.
The first two classes of subnetworks have as many elements as
there are households and schools in the community, respec-
tively.

The elements in the file indexes.txt are the individuals in
the population. They are characterized with an ID number.
This file also stores individual information such as sex, age
group (or age) and the subnetworks in which they have con-
nections.

In the file edges.txt we indicate the end vertices of each
edge without considering any direction. Then the edge that
connects vertices v1 and v2 is included as v1, v2 if v1 < v2 or as
v2, v1 if v2 < v1. This file also indicates in which subnetwork
each edge occurs. For example, if individuals v1 and v2 are
from different dwellings but they are connected at school j,
then this edge is characterized as a j-school subnetwork edge.

In order to construct the model population’s network of
contacts, we used information from the 2006 Canadian cen-
sus [46] tabulated by Forward Sortation Areas (FSAs) and
municipalities. Based on this information and also on the
school locations and their catchment areas, we constructed
the household, school and adult general connectivity of
the population. Since the level of information that these
sources provide does not describe the population connectiv-
ity completely, we  introduced random elements within the
subnetworks. Thus we  completed the network to the required
level of detail, but incorporating the uncertainty in our knowl-
edge of the population. For example, in order to reflect the
chance nature of social interaction, the contact in the gen-
eral adult subnetwork has edges that are randomly generated
according to the user-selected probability degree distribution.

In the census information we  find the counts of individ-
uals (sex, age), households (size and structure – number of
members and age composition), and dwellings (number of
households). With these data, dwellings in the Region of Peel
were assigned to locations, and households were assigned to
dwellings, and families were allocated (by structure and par-
ents’ status) to households; then individuals were allocated to
families.

Based on the information from schools, the families were
then assigned to school catchment areas, and with this infor-
mation their children were placed into schools.

Table 1 – Number of occupied private dwellings by
municipality (2006 census).

Brampton 125,934
Caledon 18,214
Mississauga 214,894

Total Peel Region 359,042

To describe the interactions of in-school children and
of outside-dwelling adults two classes of subnetworks were
considered. These subnetworks were modeled as random
networks.

In the following subsections we describe with more  detail
the process of constructing the household-school networks
and the in-school and outside-dwelling networks.

2.1.  Households

2.1.1.  Dwellings
Using the variable “total number of occupied private
dwellings” in the 20% sample data from the 2006 Census
(Table 1), we obtained the total number of dwellings within
each dissemination area. (Each of these areas is composed
of one or more  neighboring dissemination blocks, with a
population of 400–700 persons (Statistics Canada).) Since
the information is rounded to 5 units, the total number of
dwellings was normalized to agree with the 2006 census
total number of occupied private dwellings by municipality
(Table 1).

The dwellings within each dissemination area were then
assigned to a longitude–latitude location within the area
delimited by the dissemination area borders, according to
a uniform random distribution within a polygon area. (This
information, together with the school catchment areas pro-
vided to us as polygons, was subsequently used to define
which school each child attends.) In particular, to assign
dwellings we employ the ArcGis extension method XTools that
creates uniform random sampling of points within a polygon
describing the dissemination area. XTools is one of the most
popular independent (from ESRI) scripts and is currently used
by many  governmental institutions including the National
Oceanic and Atmospheric Administration (NOAA).

Based on census information, Statistics Canada also
reports the number of households by familial structure:

1 a one-family household.
2 a multiple-family household.
3 a non-family household.

Since this familial information is provided for each dissemina-
tion area, the dwellings in each area are distributed among the
three classifications of household. Due to the fact that there
is no further information about the spatial distribution of any
of these types of households within dissemination areas, the
already spatially allocated dwellings in each area are randomly
classified by simple random sampling, successively for each
household type.

According to Statistics Canada, a family is defined as con-
sisting of individuals that live in the same dwelling and are:
a couple (married or common law) and the children, if any, of
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either or both spouses; or, a lone parent of any marital sta-
tus with at least one child living in the same dwelling and
that child or those children. A couple may  be of opposite or
the same sex. Children may  be children by birth, marriage or
adoption regardless of their age or marital status as long as
they live in the dwelling and do not have their own spouse
or child living in the dwelling. Grandchildren living with their
grandparent(s) but with no parents present also constitute a
census family.

2.1.2.  Families
Using the information from the variable “Total number of cen-
sus families in private households” by the status of “Married
couple”, “Common law couples”, “Female parent” and “Male
parent” in the 20% sample data from the Canadian census, the
families (by dissemination area) were assigned to one of the
four “couple/parents’ status” categories:

1 Married couple (with or without children).
2 Common law couple (with or without children).
3 Single female parent family.
4 Single male parent family.

Multiple-family households were considered to have two
families, since in the census data only 5% of dwellings have
three or more  families. In particular, we  allocate families
per dwellings with probabilities that are proportional to their
numbers in the available census data. For instance, in the cur-
rent Peel Region data, the proportion of dwellings with one
family is approximately 89%, proportion of dwellings with two
families is 6% and proportion of dwellings with three or more
families is 5%. Hence, given that dwellings with two families
and dwellings with three or more  families are rare, i.e. only 6%
and 5% of all dwellings respectively, and since we currently
have no more  specific information on proportion of other
multiple-family dwellings, we  combine dwellings with two
and more  families into one category. (Similarly, if, for example,
in some other data set we  observe that 6% of dwellings have
two  or more  families, then we can either assume that all these
6% of dwellings have two families, if no extra information
is available; or if additional information on multiple-family
households is available, we incorporate it proportionally to a
number of dwellings with three, four etc families.)

From the census municipality information on number of
children by parental status, we randomly assigned a number of
children to each family, according to the following procedure
of successive simple random sampling. Suppose that there are
N families and Ni are assumed to have i children, i = 0, 1, 2, . . .,
m, then we  select a simple random sample without replace-
ment of N0 families to have 0 children; then among those that
are left, a simple random sample without replacement of N1

to have 1 child; and so on. Since the information is presented
aggregated as: “without children”,“one child”, “two children”
and “three or more  children”, in this step, numbers of children
were assigned to families assuming that families with “three
or more  children” had exactly three children.

Remark. Given the currently available census data, this
assumption is made for simplicity, but it might be too restric-
tive since large families play a significant role in influenza
epidemics. Hence, there are three options to relax this

assumption. First, a user can employ a different empirical data
source for the family size distribution. (Unfortunately, we cur-
rently have no access to other data sources for Peel Region
beyond the Canadian census data.) Second, the code for con-
structing the overall population network offers an option to
approximate family size distribution with a Poisson distribu-
tion, i.e. using information on proportions of families with 1
and 2 children, we  can infer proportions of families with 3, 4
etc. number of children. Finally, a user is offered an option to
allocate children from families with more  than three children,
following a two-stage allocation algorithm. With this method,
in the first stage we allocate all children who  are to belong to
families with one and two children to families with those com-
positions, and in the second stage we (uniformly randomly)
assign the remaining children (4% in the case of Peel Region)
into families with “at least three children”.

Then, for each family we have the following information:

1 type.das: Type of dwelling (one-family, multiple-family or
non-family).

2 dwell.id: Occupied dwelling identification number.
3 fam.id: Family identification number within the dwelling. It

has the value 1 if the family is in a one-family household
or if it is the first family in a multiple-family household. It
has the value 2 if it is the second family in a multiple-family
household.

4 fam.str: Parents’ status, with value 1, 2, 3 or 4.
5 n.child: The number of children in the family.

2.1.3.  Family  members
Based on the 2006 census tables of “Household Living Arrange-
ments” (HLA), available for the Region of Peel at the website
of Statistics Canada (Household Living Arrangements, Age
Groups and Sex for the Population in Private Households of
Canada, Provinces, Territories, Census Divisions and Census
Subdivisions, 2006 Census – 20% Sample Data), we assigned
each couple or single parent to one age-sex group, according
to the following procedure.

The tables used were specific to municipality and sex, and
they presented the total number of inhabitants by age group
and subtotals according to the following categorizations:

1 Total.
2 Total persons in family households.
3 Spouses, common law partners or lone parents.
4 Sons and/or daughters in families with two parents

present.
5 Sons and/or daughters in families with one parent present.
6 Persons not in families, living with relatives (non-relatives

may  be present).
7 Persons not in families, living with non-relatives only

(these non-relatives must constitute a census family).
8 Total persons in non-family households.
9 Living with relatives (non-relatives may  be present).

10 Living with one or more  non-relatives only.
11 Living alone.

The age group selection for an adult was weighted accord-
ing to the observed age group distribution crossed with the
variable “Spouses, common law partners or lone parents”
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Table 2 – Age groups. Note that age group 14 is a
ten-year rather than a five-year age group.

Group Years

1 0–4
2 5–9
3 10–14
4 15–19
5 20–24
6 25–29
7 30–34
8 35–39
9 40–44
10 45–49
11 50–54
12 55–59
13 60–64
14 65–74
15 75–79
16 80–84
17 85–100

(male and female tables). The procedure was then imple-
mented iteratively considering the remaining population to
allocate, that is, the weight for a group was decreased after
assigning membership in the group.

If the parents’ status was married or common law, then the
male’s age was chosen by weighted random selection from any
available age, and the female parent’s age group was chosen
similarly, but only from those age groups that were between
two groups below and one above the male’s.

The children’s age groups (Table 2) were obtained from the
age distributions for “Sons and/or daughters in families with
two parents present” and “Sons and/or daughters in fami-
lies with one parent present” from the same HLA tables. As
in the parents’ case, the allocation process was iterative and
restricted by the parents’ and already allocated siblings’ age
groups.

The first child’s age was randomly selected from the age
groups at most equal to the age group three groups below the
oldest parent’s age, first according to a uniform distribution
among age groups and then according to a uniform distribu-
tion among ages within the selected age group. If the family
had two children, then the age group for the second child was
drawn from the groups with the same restriction as before but
also from the age groups that are 4 age groups around (above
or below) his/her sibling. Thus, if a family had three children
and the age group of the oldest parent was a, the first child
age group (b1) could be between 1 and a − 3. The second child
could have age group (b2) between max(1, b1 − 4) and min(a − 3,
b1 + 4), and the third child could have age group max(1, min(b1,
b2) − 4) to min(a − 3, max(b1, b2) + 4).

Since the HLA files also provide information on the persons
living in families by age group, municipality and sex, then the
previous procedure can be applied to allocate the children in
family not only by age group, but also by sex.

Since we  considered that families with at least three chil-
dren had exactly three children, some of the children were
not allocated after this procedure, but the number remaining
amounted to less than 4% of the total number of children living
in the region.

To be able to assign children into schools it was necessary to
divide the age groups into individual ages. That is, we  modeled
the exact age of family members, and we did this by uniformly
randomly choosing an age within the assigned age group.

Thus for each family in the model population we  had the
following information: the dwelling identification number, the
family identification number, the age groups of the mother
and the father (where applicable), and the sex, age group and
age for each of the children, if any.

2.1.4.  Non-family  households
Using the variable “Living alone” in HLA tables (by munici-
palities), we selected dwellings with individuals in non-family
households who either resided alone or did not reside alone
but did not constitute a family. These individuals were also
assigned to a sex and age group.

To assign those individuals to households who  did not
reside alone but did not constitute a family, we  chose two
individuals selected by simple random sampling without
replacement to live in each household classified as non-family
with more  than one individual. Those in the population hav-
ing this status but not allocated after this procedure were then
uniformly randomly assigned to a non-family household with
more  than one member, subject to municipal totals.

As in the case of family members, we modeled the age
of an individual living in a non-family household by ran-
domly selecting an age value within the individual’s age group,
according to a discrete uniform distribution.

2.2.  Schools

Peel Public Health obtained data on school catchment areas
for the elementary and secondary schools in the local public
school board. The GIS databases have the school ID,  name and
its geographical polygon.

Using the information from the the school geographical
polygon, the location of the dwelling, the modeled number
of children living in each dwelling and their ages, the children
were placed into schools.

2.3.  Random  contact  networks

To model the population in the Region of Peel, we  consid-
ered three basic kinds of subnetworks: “dwellings”, “schools”
and “general adult”, and we  defined some general connectiv-
ity structures or patterns within subnetworks using random
networks.

In the specific case of the “dwelling” subnetworks, we
assumed that individuals living in a dwelling have all contact
to each other. Then in the file edges.txt we  included the edge
(v1,v2) if individuals v1 and v2 live in the same dwelling.

To model the interactions of in-school children and
of outside-dwelling adults subnetworks, we  used random
networks. Each of these subnetworks was constructed follow-
ing a drawn set of degrees from a specified degree distribution.
Some of the distributions that have been implemented in the
program are: binomial, Poisson, zero-truncated Poisson, geo-
metric, polylogarithmic.

Since the subnetworks have finite numbers of vertices,
the generated random networks will not follow the specified
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distribution exactly; however, the actual distribution would
converge to the specified theoretical distribution as the num-
ber of vertices increases.

In the case of the networks classified as “schools”, each of
them was constructed with the same degree distribution fam-
ily (such as the Poisson distribution with the mean !). In turn,
the “general adult” network that describes the relationships
between individuals who do not attend school (but interact in
other settings), can be modeled with a highly heterogeneous
network such as the polylogarithmic distribution.

The selection of the degree distributions and related
parameters is not necessarily linked to statistical estima-
tion from data. The degree distributions are chosen to reflect
a social interaction structure within the subgroups (which
will become subnetworks) that have been already constructed
using demographical data. In particular, a user is offered an
option to model the“family” and “school” subnetworks as fully
connected or Poisson degree distributed. For the “adult” sub-
network we find it more  realistic to use a power-law network,
i.e. following a polylogarithmic degree distribution. Indeed,
the “adult” subnetwork actually represents the combination
of multiple subnetworks and, hence, is expected to be very
heterogeneous, as reflected in previous studies on power
law tails in adult subnetworks [28,29,3]. The selection of the
degree distribution parameters is completely arbitrary. How-
ever, if external information is available, we  can estimate the
parameters of some subnetworks and then utilize them for
constructing social interaction within these subpopulations.

For instance, the “general adult” network is selected to be
heterogeneous (polylogarithmic(1,10)) with mean of 4.04 con-
tacts. This is the subnetwork with the highest order and it
takes approximately 7 h to be constructed using a 2.2 GHz
computer with 8 GB in RAM. In contrast, it takes less than
20 seconds to construct each of the “school” networks.

Once all the subnetworks were obtained then the new
edges were added to the file edges.txt, in which we also spec-
ified the subnetwork in which each edge occurs.

The finally obtained files edges.txt and indexes.txt have
sizes of 60 and 20 MB,  respectively and can be used to simulate
multiple outbreaks with different scenarios.

Remark. While the currently utilized network generation
algorithm requires a longer time than some other algorithms,
our primary goal is to construct a random network for the
overall population that could allow for a uniformly random
selection from the networks that meet a pre-specified degree
distribution sequence. Constructing a simple network from a
given degree sequence is a classical problem in graph the-
ory and computer science (see, for example, overviews by
[33,36]). However, generating a network uniformly at ran-
dom from all the possible networks with that specific degree
sequence is an open problem. Some algorithms include a two-
stage procedure of constructing a network and then modifying
it sequentially through a Markov chain simulation process
[1,33,14]. Although the well known Havel–Hakimi algorithm
[16,15] yields an existence-constructive result for networks
with a given degree sequence, the topologies of the obtained
graphs using this algorithm exhibit very dense cores, failing
in creating uniformly random graphs among those which
meet the degree specifications. The algorithm that we  cur-
rently employ for SIMID is the Molloy–Reed method [34]. In

the first step of the network construction, the edge (i ; j) is
selected with probability proportional to the product of the
degrees d(i) and d(j). After an edge is selected, the degree
of the vertices is updated to consider the connections that
each vertex still can use, called the residual degree. In the
subsequent steps, the selection of the edges is performed
with probabilities proportional to the product of the resid-
ual degrees. This network generation algorithm allows for any
pre-specified degree sequence for the network or sequences
drawn from the following probability distributions: Poisson,
zero-truncated Poisson, geometric, zero-truncated geometric,
negative binomial, polylogarithmic and logarithmic. The algo-
rithm also allows the option “full” that constructs a complete
network, i.e. where any two vertices in the network are con-
nected. The simulation program developed is written in the R
language and an earlier version was available as the R package
“InfNet”.

While at the stage of developing the SIMID tool, the authors
were unaware of the EpiFire software [17] and its capabilities
to save and export the network to be used by other programs,
we plan to incorporate EpiFire into the next version of SIMID.

3.  Methods:  simulation  of  spread  of
infection

In this section we  describe the algorithm for statistical sce-
nario generation and its key options and characteristics.
In particular, note that the simulation algorithms for the
infection process account for different contact structures
among individuals in a population, while the infection pro-
cess evolves as a stochastic process based on the transmission
rates (or probabilities) between infective and susceptible indi-
viduals.

In the Appendix we list the parameters that can be used
in the simulation of the infectious process, given a popula-
tion and its specified network of contacts (indexes.txt and
edges.txt). In this section we describe SIMID’s general char-
acteristics and the scenarios it includes.

In our SIMID tool, we implement two compartmental mod-
els: SIR and SEIR. These two models differ according to the
status of an individual when he is infected during the out-
break. In the case of SIR, the individual is susceptible to the
infectious agent, then is infected and able to transmit the dis-
ease (infective), and then recovers (or is removed). This last stage
assumes that after infection, the person cannot be re-infected
during the outbreak, due to either gaining immunity or death.

In the case of the SEIR model, the susceptible individual
after infection acquires the status of exposed, which indicates
that he has been infected but he is not yet infectious. Then
after a period of time he becomes infectious, and after a fur-
ther time he is removed.

The period of time that an individual can stay in the “E” and
“I” stages can be fixed or modeled as random variables. In the
simulation program we can incorporate various probability
distributions for the lengths of the E and I stages.

In the current version of the program we model the removal
of individuals not only due to the termination of the infectious
period, but also by some control measures such as vaccination
and isolation.
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3.1.  Infection  process

In order to decrease the running time of the simulation pro-
gram, we  consider an algorithm that describes the infectious
process by days without imposing a restriction that distribu-
tions for the exposed and infectious periods are discrete. The
individual infection process can be described as follows:

• S stage.  If on day i vertex v is infected, the infectious hour is
recorded as 24i  − 12. The initial cases or “patient zeros” are
the only ones that are considered to be infected at hour 0.

• E stage.  If the epidemic model is SEIR, after being infected
the individual remains infected (and not infectious) for a
period of time (he). The length of this stage is defined by the
exposed (latent) distribution and its parameters.

• I stage.  Once the exposed period is completed (at time
24i − 12 + he), the individual can start passing the infection
to those individuals with whom he is connected.
The infection transmissibility is driven by three parameters,
namely, BETA1, BETA2 and t.rates. The value of BETA1 is only
considered as a rate when t.rates = TRUE. In this case the
transmission to a connected susceptible individual (during
the infectious period) follows a Poisson process with rate
BETA1. If t.rates = FALSE, then BETA1 represents the proba-
bility that infectious individual v passes the infection to a
connected susceptible individual during a pre-specified unit
of time (e.g. hour). In turn, BETA2 is the parameter for the
level of susceptibility, relative to a “normal” level. For exam-
ple, if an infectious individual transmits the agent with a
parameter BETA1 and is connected to a susceptible indi-
vidual whose susceptibility is only half the susceptibility of
“normal” susceptible, then BETA2 = 1/2 for that individual.
Hence, BETA2 is viewed as an individual characteristic of
susceptibility.
BETA1 and BETA2 can be different for the age groups delin-
eated by the variables breaks1 and breaks2. More  details
of their default values and how to specify them are in the
Appendix.

• R stage.  The duration of the infectious period (hi) is defined
by the infectious distribution and its parameters. After this
time, the individual is considered as removed from the
infectious system (at time 24i  − 12 + he + hi).

The units for the lengths of exposed and infectious period
are in hours, and these lengths can be discrete or continu-
ous random variables, such as constant, normal, lognormal,
exponential, Poisson (see the Appendix). However, due to the
fact that the simulation algorithms evolve by days, identify-
ing each time individuals that are infectious or are to become
infectious during the next day, the latent period must be longer
than 12 h. This assumption is made in order to avoid having
the infectious period start the same day as the infection of the
newly infected person.

The transmissions between edges are considered to be
independent and are obtained for each day i and for each con-
nection between a susceptible individual v and an infectious
(or infected and about-to-become infectious) individual w.

If BETA1 is a rate this probability is equal to

P(w infects v during day i) = 1 − exp− BETA1w× BETA2v×Tvw×Iwi
/24

and if BETA1 is a probability, then the probability of transmis-
sion is

P(w infects v during day i)=1−(1−BETA1w × BETA2v)Tvw×Iwi
/24;

where BETA1w and BETA2v are the transmission and suscep-
tibility parameters of individuals w and v, respectively; Tvw

is the number of hours the edge between v and w is active
each day (for details see the variable time.subnetwork in the
Appendix), and Iwi

is the number of hours the infectious indi-
vidual is able to transmit the infectious agent during day i.

Remark. Note that both the “percolation model” and the
“chain binomial model” considered in the EpiFire package (see
[17]) can be viewed as subcases of the SIMID model. In particu-
lar, the EpiFire “percolation model” represents the Reed-Frost
model evolving in the network of contacts, where the latent
period equals to 1, the infectious period is a fixed ", " ≪ 1,
and the fixed probability of transmission (to the connected
susceptible individuals) is T. In turn, the EpiFire “chain bino-
mial model” represents a discrete-time epidemic model that
incorporates in infectios period (variable called gamma). Then,
the resulting epidemic model is the same as the “percolation
model”, with the exception that the infected individual (ver-
tex) is not removed immediately after it is able to transmit the
infectious agent to its neighbors, but instead remains infective
for a fixed period gamma.  Note that the model in the SIMID
approach is more  general than the “percolation model” and
the “chain binomial model”. While the SIMID network model
also evolves in discrete time (days), it allows both the latent
and infectious periods to be random variables, rather than
only pre-defined constants, and these random variables for
latent and infectious periods can follow different probability
distributions for various individual (vertex) age-groups. The
only restriction on the probability distribution in the SIMID
network model is that the latent period has to be larger than
12 h, so that a recently infected individual does not become
infective during the same day. This restriction is imposed in
order to keep the computer algorithm simple. From a practi-
cal perspective of modeling spread of infectious diseases, this
restriction is relatively minor, since most infections with an
identified latent period typically exhibit latent periods longer
than 1 day.

Each outbreak simulation that employs previously
obtained indexes.txt and edges.txt files, takes between
15 and 120 minutes to be completed, using a 2.2 GHz com-
puter with 8 GB in RAM. The difference in time between
simulations is directly linked to an outbreak size. When
the parameters are defined under an outbreak threshold,
all outbreak sizes remain small and the simulation time is
approximately 15–30 minutes.

3.2.  Interventions

Three basic intervention processes are incorporated into the
program. The first is vaccination, that can also be used to
model the natural immunity of individuals. The other two
interventions are the isolation of individuals within specified
subnetworks and the elimination of subnetworks during the
outbreaks.
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The function vaccine is used to implement the vaccination
as described in the next two sections. This control measure
can be carried out at time 0, or in the same way  as the subnet-
work isolation and elimination, can be implemented during
the outbreak. The parameters of vaccination are the parame-
ters for selection and new transmissibilities.

There are three different criteria indicating when a con-
trol measure has to be implemented. They are selected
through the variables crit and param.crit,  and incorporated
in the function criteria.pause. When the variable crit has the
value 1, the intervention is instantaneously done between day
(param.crit-1) and param.crit.

When crit is equal to 2, the intervention is done as soon
as the total number of infected, including “patient zero(s)”
and starting at time 0, reaches the critical specified value
param.crit.

When crit is 3, the intervention is done as soon as the total
number of new infected reaches the pre-specified critical value
of n.infectious in the last consecutive n.days days.

For example if crit = 1 and param.crit = 3, then the interven-
tion is not yet carried out at the end of day 2 but considered
fully implemented at the first hour of day 3.

If crit = 2, param.crit = 8, we have one patient zero and the
number of new cases for days 1, 2, 3, and 4 are: 2,4,0,2, respec-
tively, then the intervention is implemented at the first hour
of day 5.

If crit = 3, param.crit = 5, n.days = 2, we  have one patient zero
and the number of new cases for days 1, . . .,  6 are: 2,1,0,2,3,1,
then the control measure is executed at the first hour of day 6.

3.3.  Vaccination

3.3.1.  Parameters  for  selection
We  can define two possible scenarios when selecting indi-
viduals to be vaccinated: in the first one we vaccinate both
susceptible and infected individuals, and in the second one,
we vaccinate only susceptible individuals. The first case
applies to infections that cannot be identified until the onset
of symptoms. Even though the latent period does not always
coincide with the asymptomatic period, this case is introduced
as an approximation.

The simulation assumes that the vaccine does not have any
effect on already infected individuals.

The second scenario (when variable s.only = TRUE) is less
realistic since it assumes that we  can differentiate between
susceptible and infected (and asymptomatic) individuals.

The number of selected individuals for vaccinations can
be set as a fraction (number between 0 and 1) of candidates
to vaccinate or a specific number. The targets for selection of
individuals can be set for age groups (described by break.vac)
and if the number is larger than the total number of vaccine-
candidate individuals in an age group, the total of susceptible
and infected (s.only = F) or susceptible (s.only = T) is vacci-
nated.

3.3.2.  Parameters  to  describe  new  transmissibilities
For this version of the program we  consider that the vac-
cine does not modify the latent or the infectious period, but
it modifies the transmission parameters BETA1 and BETA2.
Then the transmission parameters for vaccinated individuals

become equal to those specified by new.Beta1 and new.Beta2.
Like BETA1 and BETA2, new.Beta1 and new.Beta2 can be dif-
ferent for specified age groups, delineated by new.breaks1 and
new.breaks2. These new age groups are not required to have
any particular relationship with their unvaccinated transmis-
sibility counterparts breaks1 and breaks2.

When the vaccine is 100% effective for protecting individ-
uals from infections, we  can set new.Beta2 = 0 and new.breaks2
equal to the vector (0,100), to indicate that new.Beta2 is defined
for individual between 0 and 100 years old.

If the vaccine is not 100% effective but reduces the acqui-
sition to q× 100 % then new.Beta2 = q. In this case, we may  be
interested in defining a new value for new.Beta1 since the vac-
cine may  also reduce the transmissibility of those individuals
that were infected after vaccination.

3.4.  Subnetwork  isolation  and  elimination

The intervention related to the containment of individuals
within specific subnetworks is included in the program with
the function called isolate.subnetwork.  In terms of graphs, this
action is equivalent to identifying all the individuals with con-
tacts within the subnetworks to isolate, and eliminating all the
edges they have with these subnetworks. The main parameter
of this function is a list with the subnetwork ID’s to isolate.

In addition, the elimination of subnetworks can correspond
to actions such as school or workplace closures. This measure
is implemented in the function eliminate.subnetworks and elim-
inates all the edges connecting within specific subnetworks.
Its parameter is a vector with the subnetwork ID’s to eliminate.

The functions isolate.subnetwork and eliminate.subnetworks
are included in the function main.epid.sim but only one control
measure during an outbreak is allowed in the current ver-
sion. Inclusion of several interventions can be easily added
to eliminate.subnetworks.

4.  Technical  specifications  and  architecture

The SIMID tool is developed using the following components,
and made accessible through a web interface. The system
components are broken down into the following, and each is
explained below:

1 Internet Information Services (IIS) and Secure Socket Layer
(SSL)
IIS and SSL are the foundation and entry point into the
disease simulation website. A Windows server furnished
by the Ontario Agency for Health Protection and Promotion
(OAHPP) running IIS 6 provided the building blocks for
all application interfaces. Using the simulation manager,
power users are able to set parameters and run simu-
lations to be consumed by users who have viewing or
read only access to simulations. Other interfaces such as
user security and management, user login and simulation
manager run under the IIS framework. All other non-GIS
interfaces are deployed under this framework. SSL and IIS
are used to deploy testing, staging and production disease
simulation websites. The interface for this server uses
128 bit encryption with a SSL. All internal and external
transmissions are encrypted using this protocol.
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Fig. 1 – The SIMID flow chart.

2 ArcGIS Server 9.3 Enterprise Standard Service Pack 1
ArcGIS Server 9.3 Enterprise Standard Service Pack 1
technology supports the GIS tier of the disease simulation
system. A Windows server furnished by the OAHPP running
ArcGIS Server 9.3 provided the building blocks for all GIS
application interfaces. The interface for this server uses 128
bit encryption with a SSL. All internal and external trans-
missions are encrypted using this protocol. Map  services
are configured using this technology and deployed as inter-
faces to be consumed and integrated with the Silverlight
interface of the disease simulation tool. ArcGIS Server
technology also handles the load balancing for simulation
map  request. All GIS based data are stored in a local file.

3 ESRI Toolkit Silverlight 3
All GIS-based web  interfaces are integrated into the IIS
website using ESRI Toolkit Silverlight 3. This interface
provides the tools to view time series GIS data over geo-
graphic areas within the Peel Public Health catchment area
and to comparatively view temporal data throughout the
observation period of a simulation.

4 SQL Server 2005
SQL Server 2005 provides the business data repository for
SIMID. A Windows server furnished by the OAHPP was
allocated for this software. The results of simulation-
based R software data are aggregated and stored in the
SIMID database. All identifiable information stored in the
database is encrypted at the field level. The simulation
manager makes exclusive use of stored procedures, tables
and views to aggregate the simulation data so that it could
be spatially joined with GIS data and viewed on a map.  This
information is cartographically displayed on a map  with
other layers from the ArcGIS Server 9.3 service.

5 R Analysis Software
R software is used as the engine for executing simulations
for random networks within SIMID. A Linux-based server
was allocated to run this software by the OAHPP. R Software
setup and configuration is handled by the University of
Waterloo3 and OAHPP. Data outputs from R are used by

3 The R routine is available upon request from Lilia Leticia
Ramirez Ramirez.

ArcGIS Server and the simulation manager and published
to SQL Server.

5.  SIMID  user  interface

In this Section we discuss the SIMID application from a user’s
point of view and present a sample run.

Fig. 1 represents the recommended flow chart for generat-
ing scenarios for infectious disease outbreaks, using the SIMID
tool whose execution can be summarized by the following
algorithm:

1 ’Scenario Manager’ parameterizes and tests a simulation in
DRAFT.

2 Scenario Manager chooses to RUN a simulation.
3 Job Service tells R software that a simulation is ‘waiting’ and

executes the simulation in R.
4 When a simulation is completed in R, data output is created.
5 Job Service ‘listens’ to SIMID and determines whether the

simulation is completed.
6 Once the simulation is completed, Job Service takes the

completed output generated by R and imports data into
SIMID.

7 Simulation data are used by SIMID to generate map  outputs
and other simulation statistics.

Now we  provide a sample run of the SIMID tool as outlined
below:

• First, the user logs in, which identifies his/her role (’Scenario
Manager’ or ‘Participant’) (see Fig. 2).

• The Home screen (see the left panel of Fig. 3) shows a list
of simulations and their status, while the right panel of
Fig. 3 presents information on ‘running’ simulations that
are being processed by the ‘R’ server.

• As shown by Fig. hyperlinkstatus4, the user can overview
the status of the user’s simulations. Fig. 5 shows the lifecycle
of a simulation, from DRAFT, to RUNNING, to FINALIZED, to
ARCHIVED status.

• High level information about a user’s DRAFT simulations
can be found in Fig. 6.
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Fig. 2 – Step 1.

• Fig. 7 shows how the user can customize various simulation
parameters.

• Finally, spatial outputs for an outbreak scenario and pro-
gression can be presented on a map  of the region along
with the output for other important outbreak characteris-
tics, and a time-slider enables spatiotemporal visualization
of the simulated outbreak (see Fig. 8).

Hence, with the help of the SIMID tool, complex dis-
ease network models developed in the ‘R’ language can
be parameterized, run and visualized by field personnel
who  are designated ‘Scenario Managers’, while Collabo-
rative Modeling Scenario Managers can explore simulations,

change parameters and then share outputs with designated
‘Participants’. Simulations can be developed to support ‘table-
top’ exercises with high-fidelity scenarios, which cultivates
a ‘Learning Organization’, creates intra/inter-organizational
knowledge by testing assumptions and exploring “what if”
scenarios, e.g. contrasting simulated interventions, evaluating
response times, and quantifying costs.

6.  Discussion

The SIMID program, based on modern random network
methodology and integrating complex epidemiological mod-
elling in R with space–time visualization in GIS, provides

Fig. 3 – Step 2.
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Fig. 4 – Step 3.

Fig. 5 – Lifecycle of a simulation.
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Fig. 6 – Information on draft simulations.

health professionals and decision makers with more  effec-
tive visualization and assessment of the dynamics of the
infectious outbreak over time within their own local commu-
nities. Hence, SIMID can be employed for both training and
planning purposes, and in particular, to simulate readiness
and response, evaluate response times, quantify costs, and
ultimately assess the impact of different public health inter-
ventions.

While the current application of SIMID focuses on influenza
outbreaks, including both pH1N1 and seasonal influenza in
the Region of Peel, Ontario, Canada, we can readily extend this

analysis to any region in Canada or other country, using the
relevant demographic or census data on families and infor-
mation on schools.

Moreover, the SIMID tool is simple and flexible in struc-
ture and, conditioned on the data availability, can be further
advanced to include various subnetworks, reflecting contacts
within hospitals, long term care facilities and workplaces as
well as taking into account travel patterns to and from these
places. Also, the system design paradigm and technology
platform are applicable to a wide spectrum of communi-
cable diseases and health-related urgent response events,

Fig. 7 – Customization of model parameters.
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Fig. 8 – Visualization of the outbreak scenarios and spatial progression.
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and are extendible to incorporate the effects of weather-
related, chemical, biological, radiological, nuclear and other
environmental health factors. In turn, the network model
can be further advanced by generalizing transmissibility and
susceptibility random variables with individual probability
distributions such that the individual distribution can be
also governed by environmental heterogeneities. Moreover,
we may  also integrate our random network epidemiological
model with mapping procedures from geostatistics, in order
to advance visualization and space–time downscaling of infec-
tious dynamics.
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Appendix  A.

The function for simulation of epidemic dynamic (with at
most one control measure and immunity) is main.epid.sim.  Its
parameters are:

• fIndexes. This is a text variable with the filename of where
the indexes.txt file is stored. It includes its path if necessary.

• fEdges. This is a text variable with the filename of where
the edges.txt file is stored. It includes its path if necessary.

• t.rates. This variable indicates whether the parameter
BETA1 is a rate or a probability of transmission per unit of
time. Its default value is TRUE, indicating BETA1 is a rate.

• id.infected. This variable is a vector with the individual ID’s
that are infected at time 0. Its default value is NULL, to
indicate that no individual is initially infected.

• id.infective. Like id.infected, this is the vector with the indi-
vidual ID’s of those who are infective at time 0. Its default
value is NULL.

• ini.infected. This is a two-column matrix that indicates the
number of initially infected individuals in the specified sub-
network. Its format is: 1-subnetwork ID, 2-number of cases.
The infected individuals are randomly selected within each
subnetwork. Its default value is NULL.

• ini.infective. This is a two-column matrix that indicates the
number of initially infective individuals in each specified
subnetwork. Its default value is NULL.

• BETA1. This is the rate (or probability) of infection per hour.
It is a scalar or a vector if different values of transmissibility
are set according to age groups.

• breaks1. This encodes the age groups used for different val-
ues of BETA1. Then if BETA1 is a scalar (breaks1 is the vector

(0,100) -default value-) and if BETA1 is a vector of length
n then breaks1 must be a vector of length n + 1. The first
value of this vector must be 0 and the last must be 100. For
example: BETA1 = (0.1,0.15,0.20), breaks1 = (0,1,70,100).

• BETA2. This parameter indicates the susceptibility and like
BETA1, it can be a scalar or a vector. Its default value is 1 that
corresponds to the case when all individuals are equally
susceptible to infection.

• breaks2. The age groups for BETA2. Its default value is
(0,100).

• distrib.lat. This is the name of the distribution for the latent
period. Its default value is “norm” (Gaussian distribution),
but it can be set to be “exp” (Exponential), “lnorm” (Lognor-
mal) or “mass” (Point or degenerated distribution).

• LAMBDA. This is the parameter for the latent period. It can
be a scalar for some distribution functions or a vector for
some others. Its default value is NULL. In the same way  as
for BETA1 and BETA2 we  can set different parameter values
by specific age groups.

• breaks.lambda. The age groups for LAMBDA. Its default
value is (0,100).

• distrib.inf. This is the distribution name for the infectious
period.

• GAMMA. This is the parameter for the infectious period and
like LAMBDA can be different according to age group.

• breaks.gamma. The age groups for GAMMA. Its default value
is (0,100).

•  time.subnetwork. Indicates the number of hours edges are
active during the day. Its default value is 24 to indicate that
all connections are active 24 h, but this value can be set dif-
ferently according to the subnetworks the edges belong to.
An edge is classified as belonging to a subnetwork v if both
endpoints are in subnetwork v. This information is in the
file edges.txt. In time.subnetwork different values are set in
a matrix where the first column is the subnetwork ID and
the second one is the time (in hours). Under the scenario
that the infectious period is shorter than 24 h for a par-
ticular individual, the time he/she spends connected and
infectious is proportional to the number of hours he/she is
infectious in that day.

• seir. This is a flag variable and is TRUE for a SEIR model and
FALSE for a SIR model. Its default value is FALSE.

• obs.time. The epidemic simulation period in days. Its
default value is 106.

• crit. This is the criterion as specified in Section 3.2. Its
default value is 0 to indicate that no vaccination interven-
tion is done after day 0.

• param.crit. The parameter of crit.
• vac0. This is a flag variable that and it is set TRUE when vac-

cination prior to outbreaks (or natural immunity) is present.
Its default value is FALSE to indicate that all non infected
(infective) individuals are susceptible.

• frac0. This is the fraction of immune individuals as
described in Section 3.3.1. Its default value is NULL.

• number0. This is the number of immune individuals. Its
default value is NULL.

• break.vac0. The age groups for frac0 or number0.
• vac. This is a flag variable that is set TRUE when vaccina-

tion is implemented during the outbreak. Its default value
is FALSE.
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• s.only. This is a flag variable that indicates if the individuals
to be vaccinated are from the population of susceptible or
infected individuals (FALSE), or just from the population of
susceptible individuals (TRUE -default-).

• frac. Similar to frac0 but related to vaccination. It is the
fraction of vaccinated individuals during the outbreak.

• number. Similar to number0, it is the number of vaccinated
individuals during outbreak.

• break.vac. Similar to break.vac0.
• new.Beta1. It is the rate (or probability) of infection per hour

for those individuals that have been vaccinated but are
infectious either because 1) they were vaccinated when they
were already infected or 2) because the vaccine does not
always prevent from infection. In the current version both
vaccinations (at time 0 and during the outbreak) have simi-
lar effects on the transmissibility. This can be easily changed
in the program main.epid.sim.

•  new.breaks1. The age groups for new.Beta1. Its default value
is (0,100).

•  new.Beta2. Similar to new.Beta1.
• new.breaks2. The age groups for new.Beta2. Its default value

is (0,100).
•  elimSubnet. The flag variable to indicate subnetwork elim-

ination during the outbreak. Its default value is FALSE.
• closeSubnet. This is a flag variable to indicate subnetwork

isolation. Its default value is FALSE.
• subnetworks. The subnetwork’ ID’s to eliminate (elimSub-

net = TRUE) or to isolate (closeSubnet = TRUE). Its default
value is NULL.

• filenameOut. The name of the output file that contains the
description of the epidemic simulation.
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