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Abstract The assumption that all susceptible individuals are equally likely to acquire
the disease during an outbreak (by direct contact with an infective individual) can
be relaxed by bringing into the disease spread model a contact structure between
individuals in the population. The structure is a random network or random graph
that describes the kind of contacts that can result in transmission. In this paper
we use an approach similar to the approaches of Andersson (Ann Appl Probab
8(4):1331–1349, 1998) and Newman (Phys Rev E 66:16128, 2002) to study not only
the expected values of final sizes of small outbreaks, but also their variability. Using
these first two moments, a probability interval for the outbreak size is suggested
based on Chebyshev’s inequality. We examine its utility in results from simulated
small outbreaks evolving in simulated random networks. We also revisit and modify
two related results from Newman (Phys Rev E 66:16128, 2002) to take into account
the important fact that the infectious period of an infected individual is the same
from the perspective of all the individual’s contacts. The theory developed in this
area can be extended to describe other “infectious” processes such as the spread of
rumors, ideas, information, and habits.
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1 Introduction

Some models that have been proposed to relax the law of mass action for the spread
of disease consider the division of the population into subpopulations by their level
of mixing (interaction) (Brauer and Watmough 2009; Ball and Neal 2002; Ball et al.
1997; Britton et al. 2011) or are based on a population network of contacts.

Some important early treatments of network based epidemic models are
Anderson and May (1991), Molloy and Reed (1995), Andersson (1998) and Newman
et al. (2001). The networks around which the models are constructed are those
in which the vertices represent individuals (or units) and the edges represent the
contacts that can lead to the transmission of the infectious agent.

These network based epidemic models can also relax the assumption that the
infectious period has an exponential distribution (Anderson and May 1991; Newman
et al. 2001), and have provided expressions for the expectation of final outbreak
size for general infectious period distributions. However, knowledge of the first two
moments of outbreak size is a minimum requirement for portraying the range of most
likely scenarios (with the use of probability intervals) for the evolution of outbreaks.
Since social and “real-world” networks are usually very heterogeneous, one focus of
this work is to study the impact of heterogeneity induced by a non-Poisson degree
distribution on the variability around the mean of the final outbreak size.

The paper is organized as follows: Section 2 introduces the basic concepts associ-
ated with random graphs and real-world networks. In Section 3 we present some re-
sults on the mean and variability of final outbreak size, assuming that the contacts are
described by a random network and the rates and infectious periods are independent
random variables. Based on these derived expressions, we study the dependence of
final size variation on network heterogeneity. The results apply also to the mean and
variance of outbreak size of small outbreaks that can occur even when epidemics are
possible. We use the results to compute probability bounds on outbreak sizes under
various scenarios.

The expressions for the mean and variance of outbreak size depend on approxima-
tions to the outbreak process, whereas simulations of the contact networks and the
spread of disease can yield more accurate estimates of the distribution of outbreak
size in principle. At the same time, simulation of the contact network and outbreak
processes is challenging for large populations and general degree distributions. We
find that the results of simulations and our moment calculations agree well in moder-
ate size populations where the approximations are reasonable, and that the moment
calculations can be useful guides when simulations are too resource-consuming or
unstable.

An interesting result of Newman et al. (2001) has to do with the differences in
the means of the degree distributions of infected and uninfected individuals during
outbreaks that evolve into epidemics. We extend this result to the case of regarding
the infectious period as a random variable that it is unique to each infectious
individual, and provide a new proof.

Finally, we generalize previous results to the case where the distributions of
the infectious rates and periods can depend on the individual (through covariates),
independently of the individual’s degree.

The Appendix presents the algorithm to simulate random networks used in
Section 3.
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2 Background

In the disease spread model that we study, we first set up a structure for the contacts
among individuals or other units that can lead to infection. The term “contact” is
defined according to the transmission mode for the specific agent under study, and
the contact is declared an “infective contact” if it results in the transmission of the
infectious agent.

The contact structure is formally described as a random graph (we use the
terms “random graph” and “random network” interchangeably) where the vertices
represent the individuals and the edges those contacts that the infective agent may
use to transmit the infection to other individuals; not all edges between infected and
susceptible vertices will result in transmission.

As in Bailey (1975) we consider that infected individuals make transitions through
different infectious stages or compartments (SIR or SEIR models), and that infec-
tious contact or transmission may occur only between susceptible (S) and infective
(I) individuals that are in contact.

An outbreak occurs when an individual (“patient zero”) becomes infected and
may transmit the disease to others, who in turn may spread the disease. An outbreak
which grows indefinitely or to a very large size is called an “epidemic”.

The next subsection presents some of the most important terminology of random
graphs applied in the context of the spread of disease.

2.1 Networks

2.1.1 Random Graphs

A graph G consists of an ordered pair (V, E) of vertices (points or vertices) V =
{v1, . . . , vn} and edges E (lines or links) that connect pairs of vertices, so that E ⊂ V2.
The number n is called the order of G and the size of G refers to the number q of
edges.

The graph G is undirected if its edges are undirected, and is called simple if no
more than one edge can connect two different vertices and there are no self-loops.

The degree of a vertex is the number of edges of which it is an endpoint. A random
graph is the name given to a graph in which the network vertices are randomly
connected by edges. The degree of a vertex is then a random variable.

In one kind of random graphs proposed by Erdős and Rényi (denoted as Gn,p),
each possible edge between two vertices is present independently with probability
p, and absent with probability 1 − p. In the random graphs Gn,p each vertex has
degree distribution which is binomial with mean (n − 1)p ≈ np. If p is small the
degree distribution can be taken to be Poisson. For large n, in an asymptotic sense,
the majority of vertices have approximately the same degree, close to the average
degree (n − 1)p. More results concerning the properties of random graphs Gn,p can
be found in Ivčhenko (1973) and Bollobás (1985), for example.

Some other authors have studied real-world networks, such as networks of
citations in the academic literature (Lotka 1926; Gilbert 1997), the World Wide
Web (Albert et al. 1999; Faloutsos et al. 1999), and sexual contacts (Liljeros et al.
2001), among others (Watts and Strogatz 1998; Amaral et al. 2000), and showed
that the degree sequences of such networks typically approximate a non-Poisson
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distribution (See Section 2.1.2). Motivated by the non-Poisson degree distribution
graphs present in some real-world networks, various researchers have studied the
viability of defining random graphs with any degree sequence (Bender and Canfield
1978; Łuczak 1992; Molloy and Reed 1995) and characterizing some properties of
a network by its degree distribution (Molloy and Reed 1998; Albert et al. 2000;
Callaway et al. 2000; Cohen et al. 2000; Newman et al. 2001; Pastor-Satorras and
Vespignani 2001).

In this paper, the contact network in the disease spread model is described
as a simple, undirected and static random graph with general degree distribution.
Conditional on the realization of the random graph, the spread of disease proceeds
on the contact network according to the stochastic mechanism described in Section 3.
(In the alternative framework of Andersson (1998) the set of infected vertices evolves
deterministically given a random graph of infectious contacts.)

An important feature of a graph is what is called a component. A component in
a graph is a subset of vertices each of which is reachable from all others by paths
through the network. It is natural to think that if there are few edges in the graph,
most of the vertices are disconnected from one another, and the components have
small sizes. Erdős and Rényi (1960) (see also Molloy and Reed 1995) provided a
threshold result for graphs Gn,m, where the n vertices are joined by m edges which
are placed between pairs of vertices chosen uniformly at random: as the number of
vertices n increases to infinity, if m = cn + o(n) for c < 1/2, then a.s. the graph has
no component with size greater than O(log n), and no component has more than one
cycle. If m > cn for c > 1/2 there are constants ε, δ > 0 depending on c such that
a.s. as n tends to infinity Gn,m has a component of at least εn vertices and at least δn
cycles, known as a giant component, and no other component has more than O(log n)

vertices or more than one cycle.
From the definitions of a component and an epidemic, it is clear that epidemics

can occur only in graphs where giant components are present.
Molloy and Reed (1995) generalized Erdős and Rényi’s findings for a random

graph with general degree sequence having a limiting distribution. For the mean
degree above a certain threshold, in general there will be only one giant component,
and other components will be small and with total size fraction S0 → 0 as n → ∞.

The threshold results of Molloy and Reed are understood also to apply to random
graphs with general degree distribution in the sense used by Newman (2002), where
an independent and identically distributed (i.i.d.) sequence K1, K2, . . . of degrees is
generated from the distribution, and the graph is randomly selected from among all
graphs with a given set of n vertices having degrees given by the set {K1, . . . , Kn};
and similarly, they apply to random graphs with general degree distribution in the
sense used by Durrett (2007), in which the degree sequence K1, K2, . . . is assigned
randomly to vertices, each vertex is given a number of half-edges equal to its degree,
and half-edges are randomly paired.

In Molloy and Reed (1995), given a degree sequence, the authors regard the
graphs as generated in an iterative process in which two vertices are connected in
each step by randomly selecting the edge that connects them from the set of all
possible edges. The selection of an edge in each step is weighted with respect to
the product of the respective residual degrees that still have to be allocated for each
of its endpoints. The algorithm we use in this paper to simulate the networks is based
on the algorithm of Molloy and Reed, and presented in the Appendix.
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2.1.2 Non-Poisson Degree Distributions

For a large number of networks the degree distribution is well described with a
discrete power law distribution (also known as a zeta distribution):

Pr (K = k) ∝ k−δ; δ > 1, k ∈ {1, 2, . . .}.
Barabási and Albert (1999) called the networks with power-law degree distribu-
tion scale-free (SF) networks since their degree kernel distribution function {pk =
Pr (K = k)} remains unchanged when scaling k with any constant a. That is, pak ∝
a−δk−δ ∝ pk.

The identification of networks with power-law degree distributions has given im-
petus to the development of new studies of the dynamics that are naturally associated
to network structures. Barabási and Albert (1999) pointed out that this kind of
network can potentially model generic properties of many real-world networks, and
they proposed that the properties of these networks could be explained, as the final
product of a model in which a network grows dynamically.

There are major topological differences between the random graphs Gn,p and SF
networks. For the former, most vertices have approximately the same number of
links E(K) since the decay of the distribution’s tail guarantees the absence of vertices
with appreciably more links than E(K). In contrast, the power-law distribution
implies the existence of numerous vertices with only a few links, and a few vertices
with a very large number of links. Thus SF networks are extremely heterogeneous.

The power law distribution has finite r-th moment only if its parameter δ is larger
than r + 1. Since in later results we require a distribution with finite first moments,
we illustrate some outbreak characteristics on networks using the polylogarithmic
(δ, γ ) distribution

Pr (K = k) = k−δ exp(−k/γ )

Liδ(exp(−1/γ ))
; δ > 1, γ > 0, k ∈ {1, 2, . . .},

where Liδ(t) = ∑∞
i=1 ti/ iδ .

The polylogarithmic distribution tends to a power law distribution as γ → ∞,
and like the power law distribution, it can generate very heterogeneous networks.
However all its moments are finite for any value of δ and γ .

3 Outbreaks in Networks

Since some infections require very specific contact between individuals to propagate,
their outbreaks are heavily affected by the population connectivity patterns that
characterize the type of contact that can result in infection transmission (Bailey 1975;
Anderson and May 1991).

The disease models we consider map this contact pattern in terms of random
graphs or random networks. The vertices in the graph represent individuals or units
(such as hospital wards, institutions and cities) susceptible to becoming infected and
transmitting the illness. The links between them represent the kind of contacts that
can lead to a transmission of the infection between two individuals or units.

This section studies some characteristics of the final results for an outbreak
happening in a population with a simple random graph contact structure among
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individuals. Key characteristics include the probability of an outbreak to develop
into a large outbreak (epidemic), and the mean and variance for the outbreak size,
which is the size of the total affected population.

Andersson (1998) proved that when the number of initial patients is negligible,
and the degree distribution has finite (4 + ε) moment for some ε > 0, the infectious
process can be regarded as a branching process for large networks. This result is
based on McKay (1985), and with more recent results (Janson 2009) we only require
the second degree to be finite to be able to justify this approximation.

Using the branching process approximation Newman (2002) obtained the mean
outbreak size for outbreaks that remain small (sub-critical outbreak).

As well, for the case of outbreaks that evolve into epidemics, Newman (2002)
showed that the degrees of individuals who are infected during an outbreak have a
larger mean than the overall mean degree for the vertices in the graph. We present an
alternative proof of this fact taking into account that the realized infectious period
of an infected individual is the same period the agent uses for transmission to any
of the susceptible neighbouring vertices. We also study the variance for the degree
distribution of infected individuals.

3.1 Fundamentals

We denote by K the degree random variable for the graph and by {pk} the degree
distribution of a randomly chosen vertex. We denote the probability generating
function (p.g.f.) of this distribution by GK(s).

If instead of directly choosing a vertex, we randomly select it by choosing an edge,
we have that its degree distribution Ke has probability function proportional to kpk.
Since the p.g.f. of Ke is equal to

GKe(s) = sG′
K(s)

E(K)
, (1)

then the degree obtained after excluding the edge we arrived along has p.g.f.

GK1(s) = G′
K(s)

E(K)
. (2)

We call the latter degree the excess degree and denote it as K1.
Consider a pair of individuals who are connected, one of whom, i, is infective and

the other, j, is susceptible. Suppose that the infectious contacts for i and j occur as
a Poisson process with rate r, and that the infective individual remains infective for
a time l (infectious period). After this period the infective individual is considered
removed. Then the probability that the individual i transmits the infection to j at
some time during its infectious period is

Pr (disease is transmitted from i to j) = 1 − e−rl. (3)

In pursuance of introducing individual variation of the infectious rate and period,
we assume that the infectious contact rates {Rij} and infectious periods {Ii} are ran-
dom variables that are independent with distributions FRij(·) and FIi(·), respectively.
In this case, the conditional probability that the individual i transmits the infection to
j during its entire infectious period, given that Ri = r and Ii = l, corresponds to Eq. 3.
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From here and up to Section 3.3 we consider that {Rij} and {Ii} are independent
random variables with distributions FR(·) and FI(·), respectively. Then the marginal
probability that the infective i transmits the disease to the connected susceptible j
(the transmissibility) is

π := Pr(disease is transmitted)

=
∫ ∞

0

∫ ∞

0

(
1 − e−rl) dFR(r)dFI(l) = E(R,I)

(
1 − e−RI) .

An occupied edge is an edge of the network on which the disease is transmitted. Then
an edge between an initially susceptible and an infected individual becomes occupied
with probability π .

The infectious period is a random variable, but with the same value affecting all
the neighbouring susceptible individuals. Then, for example, the probability that two
given susceptible individuals connected to the same infectious individual become
infected is

∫ ∞

0

(

1 −
∫ ∞

0
e−rldFR(r)

)2

dFI(l) = EI

[(
1 − ER

(
e−RI |I))2

]
.

In the particular case that the infectious period is constant (I ≡ l), the last probability
is just π2.

Due to the fact that an infected individual, or occupied vertex, is a vertex that
is reachable by an occupied edge, we can say that the outbreak size corresponds
to the size of the cluster of occupied vertices. In order to study the outbreak size
we examine the occupied edges at the end of the outbreak. We define the occupied
degree KT and occupied excess degree KT1 of a vertex (respectively) as the number of
occupied edges connected to the vertex, and the number of occupied edges resulting
from the infection of the vertex.

It is important to notice that although the contact structures we study in this
paper are undirected, KT and KT1 are defined in terms of the infectious flow in the
population. All following analyses also take into account this natural flow.

To obtain analytic results, we assume, as a simple approximation, that the contact
network approximates a forest, so that once an infection spreads to a vertex, it cannot
reach that vertex by any other route. Once infection spreads to a vertex along an
edge, all other edges with that vertex as an endpoint can be thought of as directed
away from the vertex, so that the component of occupied edges grows tree-like
(Andersson 1998).

This approximation is appropriate for sub-critical outbreaks (Andersson 1998;
Molloy and Reed 1995), since below that value the number of cycles in the occupied
component is at most one. To derive the expressions for the mean and variance of
the final outbreak size we restrict to these kinds of outbreaks.

The main consequence of infected cases growing tree-like is that the number of
possible new infections coming directly from a secondary case depends only on its
excess degree and the agent’s transmissibility.

If T j is the final status (1 = infected, 0 = not infected) of a single vertex connected
to the patient zero i then the total number of occupied edges connected to patient
zero i having neighbor vertices j1, . . . , jK is

∑K
s=1 T js .
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Since the variables {T js |I = l} are i.i.d. random variables with distribution which
is Bernoulli

(
1 − ER(e−Rl)

)
, the p.g.f GKT (s) of KT is

GKT (s) = EI
[
GK

(
s + (1 − s)ER

(
e−RI |I))] . (4)

Similarly, the p.g.f. of the new cases originated by a secondary case is

GKT1(s) = EI
[
GK1

(
s + (1 − s)ER

(
e−RI |I))] . (5)

If the infectious rate is a characteristic of the infectious individual, that is, like
the infectious period, it is considered to be the same for all the connections to an
infectious vertex, then Eqs. 4 and 5 become

GKT (s) = E(R,I)
[
GK

(
s + (1 − s)e−RI)] , and

GKT1(s) = E(R,I)
[
GK1

(
s + (1 − s)e−RI)] .

Under this scenario, the main relationships which follow in Section 3.2 remain the
same.

In another particular case, when I is constant
(
I ≡ l0, r0, l0 ∈ R+)

then Eqs. 4
and 5 reduce to

GKT (s) = GK (1 + (s − 1)π) and GKT1(s) = GK1 (1 + (s − 1)π) ,

as expressed in Newman (2002).

3.2 Final Outbreak Size Mean and Variance

Let Z be the total number of infected individuals, including the initial cases. In the
following computations we assume that there exists only one patient zero, but the re-
sults can easily be extended when we have more cases, as noted in Andersson (1998).

Newman et al. (2001) derived an expression for the first moment of Z based on
the p.g.f.’s of Z , the occupied degree, the final total number of infected at the end of
an occupied edge Z1, and the excess occupied degrees. In this section we also obtain
the variance of Z since both moments are straightforward to obtain and can provide
useful information about the distribution of the final outbreak size.

Using the derivative of Z ’s p.g.f. Newman et al. (2001) extracted the expression

E(Z ) = 1 + E(KT)

1 − E(KT1)
= 1 + π E(K)

1 − π E(K1)
. (6)

The last relation can be also be derived considering that the outbreak evolves
as a branching process, in discrete time by generations. If there exists only one
patient zero at time 0, then the p.g.f of the number of infected at time 1 is GKT (s);
at time 2 the p.g.f. is GKT ◦ GKT1(s); at time 3 the p.g.f. is GKT ◦ GKT1 ◦ GKT1(s),
and so on. Then the mean numbers of individuals infected at times 1, 2, 3 are
E(KT), E(KT)E(KT1) and E(KT)[E(KT1)]2, respectively. Hence the mean of the
total number of individuals that have been infected up to time n is

1 +
n−1∑

m=0

E(KT)[E(KT1)]m,

that converges to Eq. 6 as n → ∞ when E(KT1) < 1.
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From Eq. 6 we have that E(Z ) diverges when E(KT1) = π E(K1) approaches 1.
The quantity π E(K1) coincides with the replacement number R, representing the
expected excess number of occupied edges of a typical infected vertex. In fact, it is
easy to see that the outbreak has a finite mean size if and only if R < 1.

Furthermore, from Eq. 6 we have the critical transmissibility threshold for the
outbreak to become an epidemic:

πc := 1

G′
K1

(1)
= E(K)

E(K2) − E(K)
. (7)

Then if π < πc the outbreak remains finite with probability 1 and E(Z ) < ∞, while
if π > πc, the outbreak becomes an epidemic (in the sense that E(Z ) = ∞) with
positive probability.

Following Pastor-Satorras and Vespignani (2001) (also Pastor-Satorras and
Vespignani 2003), we note that the transmission threshold (Eq. 7) approaches zero
as E(K2) increases. Thus, in a network with a large enough degree variance, any
infectious disease outbreak will have the potential to turn into an epidemic.

For some specific cases, Newman (2002) and Meyers et al. (2003) obtained the
mean final outbreak size, and they compared their results using the average final
outbreak size observed in a large number of computational simulations. However,
the authors did not explicitly describe the behavior of the deviations from the mean.

The outbreak size variance allows us to describe the most likely final scenarios,
providing more information to help decision makers prepare the necessary resources
to handle future outbreaks. In Section 3.2.1 we describe how the range of scenarios
can change for a fixed mean outbreak size. Thus, in order to complement Newman’s
results (Newman 2002), we next derive the expression for the variance of the final
outbreak size.

The variance of the final outbreak size is

Var(Z ) = Var(KT E(Z1) + 1) + E(KTVar(Z1))

= E(Z1)
2Var(KT) + Var(Z1)E(KT) (8)

where Z1 is the size of the component at the end of a randomly chosen occupied
edge.

Similarly

Var(Z1) = E(Z1)
2Var(KT1) + Var(Z1)E(KT1).

Now, since

E(Z1) = 1

1 − E(KT1)
,

then

Var(Z1) = E(Z1)
2Var(KT1)

1 − E(KT1)
= E(Z1)

3Var(KT1),

and it follows that

Var(Z ) = E(Z1)
2
[
Var(KT) + E(Z1)Var(KT1)π E(K)

]
, (9)
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where

Var(KT) = [
Var(K) + E(K)2 − E(K)

]
π2 − E(K)2π2 + E(K)π, (10)

Var(KT1) = [
Var(K1) + E(K1)

2 − E(K1)
]
π2 − E(K1)

2π2 + E(K1)π, (11)

and

π2 = EI

[(
1 − ER

(
e−RI |I))2

]
,

E(K1) = E(K2)

E(K)
− 1, and

Var(K1) = 1

E(K)

(

E(K3) − E(K2)2

E(K)

)

.

Hence Var(Z ) can be computed using the expressions 9, 10 and 11.
From Eq. 9 it is clear that the variance for the final outbreak size depends on the

infectious rate and period through π and π2 and on the connectivity structure through
the first three moments of K. Hence, fixing the distributions of R and I, the final
outbreak results can vary widely depending only on the heterogeneity of the con-
nectivity pattern (skewness of the degree distribution). Then even if E(Z ) < ∞ with
probability 1, a large number of individuals may be infected for large values of E(K3).

In order to limit the number of infected individuals, control measures usually have
as a goal to decrease R to a value less than 1 by reducing the agent’s transmissibility,
the expected number of contacts or the size of the susceptible population. The
above results suggest that it is important to reduce concomitantly the variance of
the excess degree. To achieve this goal, for example, some vaccination procedures
target individuals with high degree since this can result in the use of fewer vaccines
than when randomly selecting them.

3.2.1 Output Variation Due to Network Heterogeneity (R < 1)

To illustrate the possible outbreak outcomes we consider three networks with
different heterogeneity levels. They are networks with degenerate (m), Poisson (λ)

and polylogarithmic (δ, γ ) degree distributions. That is,

1 pk =
{

1 if k = m, m ∈ {2, 3, ...},
0 otherwise;

2 pk =
⎧
⎨

⎩

λk exp(−λ)

λ! if k ∈ {0, 1, . . .}, λ > 0,

0 otherwise;

3 pk =
⎧
⎨

⎩

k−δ exp(−k/γ )

Liδ(exp(−1/γ ))
if k ∈ {1, 2, . . .}, δ > 1, γ > 0,

0 otherwise.

The three kinds of networks are paired to compare the variability of the final
outbreak sizes, in the cases when their mean final outbreak sizes are the same.
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We pair the degenerate and Poisson networks and we call this pair (N1, N2). We
consider also the pair formed by the Poisson and polylogarithmic networks (N2, N3).
We suppose that R and I are constants (R ≡ r, I ≡ l), so that π = 1 − exp(−rl).

For the first pair of networks, the parameter of the degenerate network is m = 4
and the Poisson network’s parameter is set equal to

λ(π) = n/(1 + π).

In Fig. 1a the black line is the natural logarithm of their theoretical E(Z ) (denoted
as log(E(Z ))), that coincides for all values of π .

Similarly, for the second pair (N2, N3) we fixed the parameters of the polylog-
arithmic distribution and obtained the parameter of the Poisson network that will
result in the same log(E(Z )). The parameters of the polylogarithmic network are
δ = 1.3, γ = 50, and for a given value of π , the parameter of the Poisson network is

λ(π) = Liδ−1(a)/Liδ(a)

1 − π
[
Liδ−2(a)/Liδ−1(a) − Liδ−1(a)/Liδ(a) − 1

] ,

where a = exp(−1/γ ).

As in Fig. 1a, Fig. 2a depicts the common log(E(Z )) for this second pair of
networks.

In order to verify the agreement between the expressions derived for the mean and
variance of the final outbreak sizes and their empirical values in network simulations,
we simulated 10,000 outbreaks for each element in the pair of networks to be
compared (each network had 100,000 vertices), considering a handful of different
values of π . The logarithms of the average simulated final outbreak sizes are depicted
in Figs. 1a and 2a as crosses and circles.

Figures 1b and 2b display the logarithms of the standard deviation differences, for
the final outbreak size for networks belonging to the pairs (N1, N2) and (N2, N3),
respectively. The logarithms of the standard deviation differences based on the

(a) (b)

Fig. 1 Log mean final outbreak size and log difference of the variances for the paired networks
(N1, N2)
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(a) (b)

Fig. 2 Log mean final outbreak size and log difference of the variances for the paired networks
(N2, N3)

simulated outbreaks are included as blue crosses. The variances for the pair (N1, N2)

are very similar for small π and they increase with π . The same increasing tendency
is observed in the second pair of networks, but in this case the difference grows more
rapidly.

In the case of the first pair (N1, N2), the outbreaks will tend to affect similar
numbers of individuals, while in the second case (N2, N3) we see that the mean
final outbreak sizes are equal, but the variance of outbreak size for the network with
polylogarithmic degree distribution can be much larger. This characteristic points
to the fact that for larger values of π , while most of the outbreaks occurring in this
network will die out almost immediately after starting, a few outbreaks will result in a
large number of infected individuals. To put this another way, when R < 1 it is usual
to observe more infected individuals in a homogeneous than in a highly heteroge-
neous network. In this sense the heterogeneity tends to protect the population from
larger outbreaks, but at the same time there exists the possibility that the outbreak
evolves into a much larger outbreak than if evolving in a homogeneous network.
This property reflects the shape of the degree distribution since, clearly, one factor
closely related to the total number of infected individuals is the degree of the first
individual(s) that is (are) infected.

Based on the one-sided Chebyshev inequality we can obtain crude probability
intervals for the final outbreak size Z based only on its mean μ and variance σ 2 as

P(Z < kσ + μ) ≥ k2

1 + k2
, (12)

where k ∈ R+.
The bounds provided by the Chebyshev inequality are conservative but in general

cannot be improved when distributions are arbitrary.
Where the mean is the same, as for the paired graphs (N1, N2) and (N2, N3), then

for a fixed value of k in Eq. 19, the Chebyshev probability intervals for Z depend
exclusively on the values of the variances.



Methodol Comput Appl Probab

3.2.2 Conditional Mean and Variance (R > 1)

As noted above, when R < 1, the final outbreak size has a proper distribution and
the mean and variance are given by Eqs. 6 and 9.

From the properties of the p.g.f., the probability that the final size outbreak grows
to epidemic levels is 1 − GKT (u) where u is the smallest root of

GKT1(u) = u. (13)

See Andersson (1998) and Durrett (2007).
If R ≤ 1 then u = 1 and all outbreaks remain small. On the other hand, if R > 1,

then u < 1 and there exists a positive probability that an outbreak becomes an epi-
demic. Based on this result, Meyers (2007) noted that the probability of an epidemic,
when R > 1, conditioned on patient zero having degree k, is 1 − (1 − π + πu)k.

On the other hand, as pointed out by Yan (2008), when R > 1 some outbreaks will
become epidemics and some will stay small and those outbreaks that remain small
will be indistinguishable from a branching process with replacement number:

R∗ = G′
KT1

(u) < 1. (14)

For details refer to Athreya and Ney (1972) or Grimmett and Stirzaker (2001).
Then Eqs. 6 and 8 can be generalized to the conditional mean and variance:

E(Z |small outbreak, prob small outbreak = u) = 1 + E(KT)

1 − E(KT1|u)
, (15)

Var(Z |small outbreak, prob small outbreak = u)

= [E(Z1|u)]2 Var(KT) + Var(Z1|u)E(KT), (16)

where

E(KT1|u) = G′
KT1

(u),

Var(KT1|u) = G′′
KT1

(u) + E(KT1|u)(1 − E(KT1|u))

E(Z1|u) = 1

1 − E(KT1|u)
, and

Var(Z1|u) = [E(Z1|u)]3Var(KT1|u).

3.2.3 Example

We consider simulated outbreaks with constant transmissibility π , in Poisson(λ =
2.101) and Polylogarithmic(δ = 2, γ = 13) networks with 100,000 vertices. For each
kind of network and each of three different transmissibility values, we simulated
10,000 outbreaks using 100 networks, and obtained the probability intervals derived
from Eq. 12 and their coverage (Table 2).

Table 1a, b presents the theoretical and empirical mean and standard deviation of
the final outbreak sizes in each network and Table 2 displays the upper bounds for
the final outbreak sizes derived from these statistics and their respective coverage for
three different probability levels.
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Table 1 Theoretical and
empirical final outbreak size
mean and SD

Theoretical Empirical

(a) Poisson(2.101)-network
π = 0.10, R = 0.21 Mean 1.26 1.27

SD 0.65 0.67
π = 0.20, R = 0.42 Mean 1.72 1.71

SD 1.47 1.43
π = 0.30, R = 0.63 Mean 2.70 2.71

SD 3.53 3.65
(b) Polylog(2,13)-network

π = 0.10, R = 0.38 Mean 1.31 1.33
SD 1.09 1.17

π = 0.20, R = 0.76 Mean 2.59 2.56
SD 8.52 7.88

π = 0.25, R = 0.95 Mean 10.71 9.06
SD 117.46 66.79

(c) Polylog(2,13)-500,000 vertices network
π = 0.10, R = 0.38 Mean 1.31 1.32

SD 1.09 1.25
π = 0.20, R = 0.76 Mean 2.59 2.93

SD 8.52 10.76
π = 0.25, R = 0.95 Mean 10.71 12.57

SD 117.46 117.59

In the Poisson case, from Table 1a, we can observe a remarkable agreement
between the theoretical and empirical final outbreak size statistics. However, there
exists an appreciable difference between these results when considering the Polylog-
arithmic networks (Table 1b), especially as π increases.

In order to measure the impact that networks with finite number of vertices have
on potentially large outbreaks, we simulated a single Polylogarithmic(δ = 2, γ = 13)
network with 500,000 vertices. Using this network, a total of 10,000 outbreaks were
simulated (always with a randomly selected patient zero) and the corresponding
mean and standard deviation of the final outbreak sizes are presented in Table 1c.
From this table we can appreciate that by increasing the network order to 500,000
vertices, we have good agreement between the derived theoretical two moments and
their empirical counterparts, even in the case where R is close to 1.

In Table 1a–c all of the mean final outbreak sizes are very small (less than 11 indi-
viduals). However, the variances of the final outbreak sizes capture widely differing
scenarios. In the case of a Poisson network, most of the outbreaks would have final
size not far from the mean value, but in the case of the polylogarithmic network, for
example when π = 0.25, it is clear from Table 1b, c that many of the outbreaks will
die out almost immediately and a few will expand to infect hundreds of individuals.

In Table 2, the second column (in each case) corresponds to the upper bound for
Z , namely (kσ + μ) as in Eq. 12, for three different probability levels l = k2/(1 + k2).
The values μ and σ correspond to Eqs. 6 and 9 presented in Table 1.

The third columns of Table 2, like the second ones, show upper bounds for Z, but
here we use the empirical mean and variance of the final outbreak size based on the
10,000 simulated outbreaks, given in Table 1 for the Poisson network and Table 1c
for the Polylogarithmic network.
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Table 2 Probability intervals
for the final outbreak size

Prob. level Upper bound Emp. upper Coverage
bound (%)

Poisson(2.101)-network
π = 0.10

80 % 2.57 2.61 94.95
90 % 3.22 3.27 98.20
95 % 4.11 4.19 99.36

π = 0.20
80 % 4.66 4.57 95.21
90 % 6.12 6.05 98.28
95 % 8.12 7.97 98.86

π = 0.30
80 % 9.76 10.01 96.60
90 % 13.30 13.67 98.06
95 % 18.10 18.64 99.12

Polylog(2,13)-network
π = 0.10

80 % 3.49 3.36 97.42
90 % 4.59 4.39 98.42
95 % 6.08 5.80 98.94

π = 0.20
80 % 19.63 15.91 97.76
90 % 28.15 22.63 98.57
95 % 39.73 31.77 99.10

π = 0.25
80 % 245.62 142.65 98.84
90 % 363.07 209.44 99.12
95 % 522.68 300.20 99.33

Polylog(2,13)-500,000 vertices network
π = 0.10

80 % 3.49 3.82 97.12
90 % 4.59 5.07 98.82
95 % 6.08 6.77 99.25

π = 0.20
80 % 19.63 24.45 98.17
90 % 28.15 35.21 98.83
95 % 39.73 49.84 99.29

π = 0.25
80 % 245.62 247.78 99.13
90 % 363.07 365.37 99.35
95 % 522.68 525.17 99.48

As can be observed, in the polylogarithmic case the theoretical probability inter-
vals tend to be larger than the empirically derived intervals for all levels.

Finally, the fourth column, in each part of Table 2, is the proportion of simulated
outbreaks whose size falls in the probability interval given by the third column.

For the Poisson settings, the means and variances of the final outbreak sizes
estimated from the simulated outbreaks are close to the means and variances of
Eqs. 6 and 9, based on the branching process approximation; this fact is reflected
in the closeness of the second and third columns in the Poisson part of Table 2.
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For the polylogarithmic settings with 100,000 vertices, there is a large discrepancy
between second and third columns, particularly in the last case where the theoretical
upper bound is much larger. This results from a difference between the estimated
variance in the simulation and the theoretical variance based on the branching
process approximation. We see that for a network of 100,000 vertices with the pa-
rameter settings of Table 2, to obtain relatively tight Chebyshev bounds, simulation
is really necessary in the case of the polylogarithmic network, while the theoretical
calculations are sufficient in the Poisson case. For a network of 500,000 vertices, the
theoretical calculations are adequate for both. Clearly, the Chebyshev bounds are
conservative, and entirely empirical probability bounds would be smaller in all cases,
but obtainable at greater computing cost.

3.3 Mean Degree of Infected and Uninfected Individuals

Since the infection transmits through the network edges, it is natural to expect that
the larger the degree of a vertex, the more likely the vertex will be affected during the
outbreak. A kind of converse is also true, namely that when the outbreak has taken
its course, the mean degree of affected vertices is larger than the mean degree of
unaffected vertices. In this section we present a new proof of this result, in the context
of our model. The result is important for inference about the contact network from
samples of affected and unaffected vertices and supports control measures that target
the vaccination (protection or isolation) of individuals that are highly connected.

Since the outbreaks transmit along randomly chosen edges, when the outbreak
remains small (R < 1), the degree distribution of secondary infected individuals (Ke)
is P(Ke = k) = kpk/E(K). Then, the degree mean of infected individuals is E(Ke) =
E(K2)/E(K), and by Jensen’s inequality

E(Ke) ≥ [E(K)]2

E(K)
= E(K).

If Pr(K = k) is symmetric or negatively skewed then Var(Ke) < Var(K). In the
case that the degree distribution is positively skewed, we have the following cases

Var(Ke)

⎧
⎨

⎩

>

=
<

⎫
⎬

⎭
Var(K) if γ

⎧
⎨

⎩

>

=
<

⎫
⎬

⎭
SD(K)/E(K),

where γ is the third standardized moment for Pr(K = k). Then, for example, if the
degree distribution is Poisson(λ), γ = 1/

√
λ = SD(K)/E(K), and hence Var(Ke) =

Var(K) for all λ.
When R > 1, a different argument can be used to compare the degree distribution

of vertices inside and outside an epidemic.
Assuming that an infection begins at a randomly chosen vertex in a randomly gen-

erated graph with degree distribution {pk}, and assuming that there is an epidemic,
the probability that any particular vertex is not in a component of occupied vertices
is a constant.
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Again assuming that there is an epidemic, the probability that a vertex is not
affected by the epidemic via one of its edges, given that its degree is k, is

Pr
(
vertex not in epidemic | its degree is k

) =
k∑

i=0

(
k
i

)

qk−i [(1 − q)E(R,I)
(
e−RI)]i

= [
q + (1 − q)E(R,I)

(
e−RI)]k

= [
q + (1 − q)(1 − π)

]k
, (17)

where q is the probability that a vertex selected by randomly choosing one edge (from
which our vertex can be reached) is not in the epidemic; it is assumed that this event
can be regarded as independent from edge to edge.

The parameter q can be computed as follows. We know that if R = G′
KT1

(1) > 1
the probability that an outbreak does not evolve into an epidemic is GKT (u), where
u is the smallest root of Eq. 13. As before, let Ke be the degree of a vertex selected
by randomly choosing one edge. Then Ke has p.f. kpk/E(K) and

Pr
(

vertex selected by randomly
choosing one edge is not in epidemic

∣
∣
∣
∣ its degree is ke

)

= GKT (u) + (1 − GKT (u))
[
q + (1 − q)(1 − π)

]ke
.

Then q can be obtained solving

q = GKT (u) + (1 − GKT (u))GKe (q + (1 − q)(1 − π)) . (18)

Hence the degree distribution of a vertex given that it was not and was infected in
the epidemic are respectively

Pr
(
degree is k| not in epidemic

) =
[
q + (1 − q)(1 − π)

]k
pk

GK (q + (1 − q)(1 − π))

and

Pr
(
degree is k| in epidemic

) =
(

1 − [
q + (1 − q)(1 − π)

]k
)

pk

1 − GK (q + (1 − q)(1 − π))
.

Based on the conditional degree distributions we can easily calculate the respec-
tive conditional degree means. They are

E(K|not in epidemic) =
[
q + (1 − q)(1 − π)

]
G′

K (q + (1 − q)(1 − π))

GK (q + (1 − q)(1 − π))

and

E(K|in epidemic) = E(K) − [
q + (1 − q)(1 − π)

]
G′

K (q + (1 − q)(1 − π))

1 − GK (q + (1 − q)(1 − π))
.

Next we will prove that the mean degree of affected vertices is larger than the
mean degree of the vertices that are unaffected.
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To prove that E(K|in epidemic) ≥ E(K|not in epidemic) it is enough to show

E(K)GK (z) − zG′
K (z) ≥ 0 (19)

where z = q + (1 − q)(1 − π).
Due to the fact that E(K) > 1 there exists u such that G′

k(u) = u. If z < u then
z < GK(z), and since G′

K(z) < G′
K(1), then Eq. 19 immediately follows.

If z > u we use the expansion of the function

H(z) = E(K)GK (z) − zG′
K (z) ,

expressed as

H(z) =
∑

k

∑

j

kpk p jz j −
∑

j

jp jz j

=
∑

j

z j

{
∑

k

kpk pj − jp j

}

=
∑

j

z j {pj[E(K) − j]} . (20)

The coefficients of z j: c j = pj[E(K) − j] are non-negative for values of j ≤ E(K),
and negative for j > E(K), and they sum up to 0.

Now, since z ∈ (0, 1), the function z j is decreasing in j, and then the sum of non
negative terms in Eq. 20 is larger that the absolute value of sum of the rest of the
elements. Therefore H(z) ≥ 0.

Then inequality in Eq. 19 is then strict for values of z ∈ (0, 1) and equal to 0 in the
trivial case z = 1.

3.4 Individual Transmission Rates

There are several infections in which is important to consider that transmission rates
are not i.i.d. r.v.’s, that is, that the probability of transmission from a given individual
i to another j could be drawn from different distributions for different individuals.

A particular case of this variation is related to age-dependent epidemic models.
These kinds of models define, by age levels or as a function of age, parameters such
as mortality and birth rates, attack rates and infectious period parameters (as in
Capasso 2008, Ch. 6). Age-dependent models are important for some diseases, such
as the so-called childhood infections, that tend to target subpopulations. In the case
of smallpox, the age levels define not only the susceptible population but also the
subpopulations corresponding to different susceptibility levels: children younger and
older than 12 months.

In the context of network epidemics, the age-dependent models can also be ex-
tended to describe the mixing patterns between and within age groups. An example
is the use of bipartite networks (Meyers et al. 2003; Hyman et al. 2007) to describe
group membership, which could be age-dependent. However, in this section we
extend our models consider only different finite population distribution functions for
the infectious period and transmission rates, within a random contact network. That
is, we consider the contact network to be essentially independent of the individual
characteristics that define the distributions for the infectious period and transmission
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rate. We take the transmission rate to depend on the transmitter but not on the
recipient.

Generalizing the model studied in the last sections, here we consider that the infec-
tious contact rate and infectious period {Ri} and {Ii} are two series of independent
random variables with distributions {FRi(·)} and {FIi(·)}, so that the probability of
transmission is

πij := Pr (i transmit to j) =
∫ ∞

0

∫ ∞

0

(
1 − e−rl) dFRi(r)dFIi(l).

In contrast to the model presented in the last two subsections, suppose that the
distribution of Ri does vary with respect to the infective individual. Thus, assume
that the transmission rate from an infective i to each of the ki others to whom it is
connected follows a distribution FRi(·), which can be different for each individual i.
The individual distribution variations can be modeled depending on covariates such
as sex, age, ethnicity or health variables.

Similarly we can assume that the distribution of the infectious period Ii is different
for each individual i. Thus the set of individual transmission probabilities is

πi := Pr (i transmit to j) =
∫ ∞

0

∫ ∞

0

(
1 − e−rl) dFRi(r)dFIi(l).

Now, let N be the number of vertices in the graph, where N is large. Since
the occupied degree of a patient zero that is randomly selected is equal to m with
probability

Pr
(
m occupied edges proceeding from a randomly chosen vertex

)

=
N∑

i=1

EIi

[

ERi

[ ∞∑

k=m

Pr
(

m occupied edges
∣
∣
∣
∣
selected vertex is i,
vertex has degree k, Ri, Ii

)

× Pr
(
degree k | select vertex i

) × Pr (select vertex i)
]]

=
N∑

i=1

EIi

( ∞∑

k=m

(
k
m

)
(
1 − ERi

(
e−Ri Ii |Ii

) )m (
ERi

(
e−Ri Ii |Ii

))k−m
pk

1

N

)

,

then the p.g.f. for the occupied degree distribution of patient zero is

GKT (s) = 1

N

N∑

i=1

EIi

[
GK

(
s + (1 − s)ERi

(
e−Ri Ii |Ii

))]
. (21)
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For a secondary case, the distribution of the number of vertices this vertex
infects is

Pr
(
excess occupied degree of vertex is m | vertex was infected

)

=
N∑

i=1

E(Ri,Ii)

[ ∞∑

k=m+1

Pr
(
m exc. occ. degree | infected, degree k, Ri, Ii

)

× Pr
(
degree k | infected i

)
Pr (i| infected)

]

= EIi

(
N∑

i=1

∞∑

k=m+1

(
k − 1

m

)
(
1 − ERi

(
eRi Ii |Ii

))m (
ERi

(
e−Ri Ii |Ii

))k−1−m kpk

E(K)

1

N

)

.

Hence the p.g.f. for the occupied excess degree of a vertex that is a secondary
case is

GKT1(s) = 1

NE(K)

N∑

i=1

EIi

[ ∞∑

k=0

kpk
(
s
(
1 − ERi

(
e−Ri Ii |Ii

)) + ERi

(
e−Ri Ii |Ii

))k−1

]

= 1

NE(K)

N∑

i=1

EIi

[
G′

k

(
s + (1 − s)ERi

(
e−Ri Ii |Ii

))]

= 1

N

N∑

i=1

EIi

[
GK1

(
s + (1 − s)ERi

(
e−Ri Ii |Ii

))]
. (22)

Newman (2002) also derived the p.g.f. for the occupied degree and occupied
excess degree, but effectively under the assumption that an infected vertex shows
independent infectious periods to each of its edges. Our expressions 21 and 22 are
different. These are the weighted average of the individual p.g.f.’s for the occupied
degrees and occupied excess degrees, and it is easy to see that when {Ri} and {Ii} are
both identically distributed they reduce to Eqs. 4 and 5.

Using Eqs. 21 and 22 the results from Section 3.2 can be used immediately. For
example, the mean final outbreak size Eq. 6 becomes

E(Z ) = 1 + E(K)
∑

πi

N

1 − E(K1)
∑

πi

N

,

and its variance 8 has similar changes:

Var(Z ) = Var(KT)
[
1 − E(K1)

∑
πi

N

]2 + Var(Z1)
E(K)

∑
πi

N
,
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where

Var(Z1) = Var(KT1)
[
1 − E(K1)

∑
πi

N

]3 ,

Var(KT) = [
Var(K) + E(K)2 − E(K)

]
∑

πi(2)

N
− E(K)

∑
πi

N

×
(

E(K)

∑
πi

N
− 1

)

,

Var(KT1) = [
Var(K1) + E(K1)

2 − E(K1)
]

∑
πi(2)

N
− E(K1)

∑
πi

N

×
(

E(K1)

∑
πi

N
− 1

)

,

and

πi(2) = EIi

[(
1 − ERi

(
e−Ri Ii |Ii

))2
]
.

4 Discussion and Future Work

Based on our results we argue that in order to picture the most likely outbreak
scenarios it is of high value to compute the variance of the final outbreak size. As
shown by some examples, the variability is not only related to the variability of R
and I but is also strongly linked to the contact network’s heterogeneity.

In terms of control measures, the probability intervals allow us to measure the im-
pact that control measures can have on the upper bounds for the most likely outbreak
sizes, whether they aim to decrease the transmissibility-susceptibility or to modify the
population contact structure.

In this paper we have obtained the expression for the mean and variance of the
final outbreak sizes for a random network with any distribution on the integers.

Here we have also reformulated some of the most important results in Andersson
(1998) and Newman (2002), modifying some of them to take into account the
important fact that the transmissibility of a vertex i to any of its neighbors is affected
by the same realized infectious period of i.

The principal assumption of the model considered here is that the probability of
loops in the graph is negligible and the infection grows tree-like. This characteristic,
as noted by Keeling (1999), Newman et al. (2001), Watts (2002), can be achieved
approximately by considering graphs of high order.

However, in practical cases we may have data from small networks (populations
in long term care facilities, hospitals, etc.). The estimation of the outbreak sizes
can be drawn from simulations as presented in Section 3.2.1 and the example in
Section 3.2.3. Nevertheless, a valuable extension would be to correct the results,
adding the effect of cycles on the excess degree distribution as the infection spreads.

Since in communities or large populations we have a combination of networks
with different connectivity (schools, hospitals, work centers, etc.), it is necessary to
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generalize the results for more complex structures (one special case is the bipartite
population also considered by Newman (2002)).

Due to the fact that the epidemic curve (number of infected individuals over
time) is an important outbreak characteristic used for inferring the infectivity of an
agent during the first stages of the outbreak, it would be of great value to study the
outbreak dynamic in networks over time.

An important assumption in the epidemic model presented here is that the
outbreak evolves very fast compared to demographic and social changes, so that the
network of contacts remains static except for the elimination of edges and vertices
arising from vertices entering into the removal stage after being infected and infec-
tious. Although many infectious agents of interest have a short evolution in the host,
it is necessary to relax this supposition in order to include infections such as AIDS.
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Appendix

The random graphs simulated in this work are constructed based on the algorithm
described in Molloy and Reed (1995). To increase its computational efficiency, it is
divided into two iterative steps. The first one selects a group of edges, where groups
are defined by the degrees of the vertices they connect. In the second step a specific
edge is randomly chosen from the already selected group. A detailed description of
this algorithm is presented next.

1. A sequence of degrees with length n is simulated randomly from the specified
distribution.

2. The sequence is assigned to the nodes identified with labels from 1 to n.
3. A table D with the frequencies (FD) of degree values (VD) is generated. Based

on D, the table PD with the frequencies (FPD) of the possible product values
(VPD) is obtained. Table PD does not completely aggregate VPD by value, but
by the pairs of VD leading to the values. This makes possible to identify for each
edge selected from PD the degrees of its two endpoints. The frequency FPD
of edges with endpoints with degree d1 and d2 corresponds to the number of
possible edges that connect to vertices with degrees d1 and d2. Thus, it is equal
to FD(d1) × FD(d2) if d1 �= d2, and FD(d1) × [FD(d1) − 1]/2 if d1 = d2, where
FD(di) is the number of vertices with degree di.

4. In each step an edge in PD is randomly selected with weighted probability
proportional to FPD × VPD .

5. If the selected edge connects vertices with degree d1 and d2 then two vertices are
randomly sampled from the sets of vertices with degree d1 and d2, respectively.

6. The degree tables D and PD are updated and the process repeats from step 4
until no more edges remain or can be allocated.

http://www.sharcnet.ca
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As proven by the fit shown in Tables 1a–c, this network generating algorithm
proves to be adequate to randomly simulate networks with specified degree se-
quences and as implemented is shown to be time and memory efficient.

The algorithm is implemented in R Development Core Team (2007) and it can be
provided by request to lilialeticia.ramirez@itam.mx.
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