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Abstract

In this paper we consider higher order numerical methods for approximating composite
control systems defined by coupled hyperbolic PDEs and ordinary differential equations.
The work is motivated by applications to optimization and control of thermal management
systems and systems with delays. We begin with a simple model of a counterflow heat
exchanger found in [2], [3] and [4], where one includes the effect of axial conduction and
boundary control inputs with actuator dynamics. This “full-flux” model is described by the
coupled system
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where the constants hy, hy are heat transfer coefficients, 1, ps are diffusion coefficients and
v1(t, x), va(t, z) are flow velocities for channels one and two, respectively. The flow velocities
v1(t, ) and vq(t, x) are possible control inputs.

For channel one we have the boundary conditions

Ty(t,0) = v(t), m[T1]=(t, L) =0, (2)
where v(-) is a “boundary control term” and for channel two we have

— 2|1 (¢,0) =0, Ty(t,L)=0. (3)
Initial conditions for each channel are given by

T1(0,z) = o(x) and T5(0,2) =9¢(x), 0 <x < L. (4)
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In addition, we assume the actuator dynamics are described by a finite dimensional system
of the form

W, (t) = Ayw,(t) + Bou(t), (5)
or a delay differential equation
W, (t) = Agwe(t) + Ayw,(t —r) + Bou(t), (6)
with output
U(t) =H,w, (t)v (7)

where A,, Ay and A, are n X n matrices, B, is an n x m matrix and r > 0 is a delay.
We formulate these systems as abstract composite distributed parameter systems of the
form

Z21(t) = pA1z1(t) + v(t)Hi2z1(t) + Hizi(t) + Fzo(t)(t) + Biu(t)

(8)
22(t) = AQZQ(t) + Bgu(t)

If in addition, vy (¢, x) and vy(t, ) are control inputs, then (8) becomes an abstract bilinear
control system of the type found in [1]. We use this framework to discuss discuss well-
posedness and computational methods for approximation. In particular and compare finite
element (FE), finite volume (FV) and combined FE-FV methods for optimization and control
of such systems. These schemes are applied to a simple numerical example to illustrate the
idea.
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