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ALGEBRAIC CYCLES AND ANTIHOLOMORPHIC INVOLUTIONS
ON PROJECTIVE SPACES

JACOB MOSTOVOY

ABSTRACT. We study the topology of the groups of real and quaternionic al-
gebraic cycles on complcx projective spaces. By "quaternionic" cycles here we
mean those invariant under the generalized antipodal map on CP2íl+1.

1. Introduction.
The first step in the development of what is known now as "Lawson homol-

ogy" was H.B. Lawson's proof of the algébrale versión of the Thom isomorphism
for a certain class of bundles [9] and, as a consequence, a complete description
of the groups of algébrale cycles on CP" from the topological point of view.

In this paper we describe two real counterparts of the results of [9]. Usu-
ally, the term "real variety" means "complex variety with an antiholomorphic
involution on it". In concrete examples, however, reality comes in very differ-
ent flavours. On the Riemann sphere, for example, there are two essentially
different antiholomorphic involutions: complex conjugation and the antipodal
map. The analogue of the antipodal map exists on any odd-dimensional com-
plex projective space; the "reality" associated with it has a cióse relationship
to quaternions.

Taking this into account, by "real algebraic cycles" in CPn we will mean
those invariant under complex conjugation. Cycles that are invariant under
the generalised antipodal map will be called "quaternionic cycles".

Our main results are the calculations of the homotopy groups of the groups
of real and quaternionic cycles on complex projective spaces. The real case
has already been treated by T.K Lam [8], who calculated the homotopy type
of what he called "groups of mod 2 cycles". We complement his calculation by
computing the homotopy type of the groups of cycles with integral coefncients.
(In a recent work [10] by H.B. Lawson, P.Lima-Filho and M.-L. Michelsohn the
authors also calcúlate the homotopy type of these groups. The results of [10]
are more complete than ours as they include a description of the multiplicativa
structure on the homotopy of the groups of real cycles.)

As for quaternionic cycle groups, we determine theír homotopy type only
rationally. Stronger statements about groups of quaternionic cycles of even
dimensión were obtained by Lawson, Lima-Filho and Michelsohn in [11], but
the rational description of odd-dimensional cycle groups seems to be the best
available at the moment.
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SPLITTING THE AUTOMORPHISM GROUP OF AN ABELIAN
p-GROUP

MARÍA ALICIA AVINO

ABSTRACT. Let G be an abelian p-group sum of finite homocyclic groups G¿.
Here, we determine in which cases the automorphism group of G- splits over
ker<r, where a : Aut(G) +-+ Y[ Aut(G¿/pG¿) is the natural epimorphism.

1. Prelimínaries

Throughout this paper, p is an arbitrary prime and r is a fixed ordinal
number. Let G = (B¿<rG¿ be an abelian p-group, such that G¿ is an homocyclic
group of exponent pn¿ and finitep-rank r¿, with n¿ < n¿+i for all i. It is known
that £ the endomorphism ring of G is isomorphic to the ring E(G) of all row
finite r x r-matrices (Ay) where Ay- G Hom(Gi, Gj). We denote by A(H), the
automorphism group of a group H and consider A(H) as the group of units of
the endomorphism ring E(H).

Let a be the natural epimorphism ofA(G) onto the product of theA(Gi/pGi).
We have the following exact sequence (see [2], page 256)

(1.1) 1 - kero- - A(G) -* l[A(Gi/pGi) ^ J|GLrt(Zp) -» 1,
i i

where GLr¡(Zp) is the general linear group of r¿ x r¿-matrices over the field Zp.
In this paper we prove Theorem (2.1) which together with Theorem (1.1)

proved in [1] and [3], give a necessary and sufficient condition for the decom-
position ofA(G) as a semidirect product ofker a — A(G)byIl(G) = fl¿ GLr^Zp),
whenever p > 5. For the cases p — 2, 3 we give suííicient and necessary con-
ditions for such decomposition in case rc¿ + 1 < n¿+i for all i.

Because the p-rank of G¿ is finite, Hom(G¿, Gj) = pnJ'n¡Mr¡xrj(Zp"i) for i <
j, where Mr¿xrj(Zp",) denotes the additive group of r¿ x r,-matrices over the
integers modulo pn-.

Evidently A(G) = 1 + /, where

/ - {(Ay)rxr e E(G)\Au = O(modp), for all ¿} .

If r is a natural number, then G is finite and because GLr.:(ZP) does not have any
normal p-subgroup, A(G) is the maximal normal p-subgroup of A(G), denoted
0P(A(G)).

Consider the exact sequences

(1.2;) 1 -* ker A, -» A(Gi) -* GLri(Zp) -» 1,
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THE RANGE OF A SYSTEM OF FUNCTIONALS FOR THE
MONTEL UNIVALENT FUNCTIONS

ALEXANDER VASIL'EV AND PETER PRONIN

ABSTRACT. The paper is devoted to applications of the method of moduli of
families of curves to estimation of the range of the system of functionals
nA2)|> I/"'(Z)|X — 1 < z < O in the class of univalent maps from the unit disk
with two preassigned positive real valúes O, w e (0,1).

1. Introduction

Denote by U the unit disk {z : z < 1} in the complex plañe C. We consider
the class Mfoj) of all univalent holomorphic maps f : U — > C normalized by the
conditions /"(O) = O and f(a>) — w, where to G (O, 1). This class of functions
is known as the class of the Montel functions (see e.g., [3-6, 9]). We men-
tion here the systematic treatment of these functions made by J. Krzyz, E. J.
Zlotkiewicz, R. J. Libera [3-6, 9, 11]. In particular, for the class M(w) J. Krzyz,
E. J. Zlotkiewicz [6] have found the Koebe set, i. e. Rf^MW f(U), J. Krzyz
[3-5] in the series of papers has defined the set of valúes of f(z) for z fixed
in U by the varíational method. This study was continued by M. O. Reade,
E. J. Zlotkiewicz [11]. Recently, the study of the bounded Montel functions has
been started by R. J. Libera, E. J. Zlotkiewicz [9] and by the authors [14, 15].
The distortion theorems for the class S of all univalent holomorphic functions
with the normalization /"(O) = O, /'(O) — 1 are well-known as well as estimates
of systems of functionals depending on the derivative of f. The rotation in the
class S helps us to derive them but for the classes M(w) and its subclass of
bounded functions. In [13] we have found some sharp estimates of functionals
connected with the distortion under the Montel functions. Namely, for z = r

. l (1- w)2(l + r)

with the extremal function

(1 -
and

with the extremal function
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ON A MELLIN TRANSFORM OF THE GENERALIZED HERMITE
POLYNOMIALS

MESUMA K. ATAKISHIYEVA, NATIG M. ATAKISHIYEV AND LUIS EDGAR VICENT

ABSTRACT. We derive Mellin transforms for the generalized Hermite polyno-
mials H¡, (*) and for a corresponding extensión of the exponential function
exp(x).

Szego introduced in [1] an orthogonal polynomial system {H£ (x)}, defined
as

H(J^(x\ (-1V1 22n n\1/2)(^2\)

where ¿A > —1/2 and L(£\x) are the Laguerre polynomials. These polynomials
are orthogonal with respect to the weight function x 2{J- e~x , x e IR, i.e.,

(2) H(X)H(X)\edX = 2 « \F +/,+ Smn,

where [x] denotes the greatest integer not exceeding x, The H£ (x) are called
generalized Hermite polynomials since the zero valué of the parameter ¡¿ cor-
responds to the ordinary Hermite polynomials Hn(x), i.e., H(®}(x) = Hn(x).
Szego gave also the differential equation

(3) *« + 2(/A - x2)^- + 2nx ~ enx-1} H%\x) = O,
dx

where 9n = 2/x(n — 2[n/2]). Many other well-known formulae for the Hermite
polynomials Hn(x] have analogues for the generalized case (for a detailed dis-
cussion of the properties of Hn (x) see [2]-[4]). For example, the recurrence
formula

(4) Hx) = 2xH^\x} - 2(/i + 0n) fí!^), /i > O,

is readily verified, as well as the differentiation formula

(5) x - H^(x) = 2nx Hx) + 2(n - 1) Qn H2(x).

We cali attention to the fact that the generalized Hermite polynomials (1)
are actually linear combinations of the ordinary Hermite polynomials Hn(x) of
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REMARK ON FINITELY SMOOTH LINEARIZATION OF LOCAL
FAMILIES OF HYPERBOLIC VECTOR FIELDS WITH

RESONANCES OF HIGH ORDER

L. ORTIZ-BOBADILLA, A. ORTIZ-RODRÍGUEZ, E. ROSALES-GONZÁLEZ

ABSTRACT. We consider smooth local families which are deformations of
germs of smooth vector fields whose linearization at the singular point has
a hyperbolic collection A of distinct eigenvalues. We prove that for any finite
k there exists a natural number N such that a family exhibiting in A no
resonances of order N and below is CMinearizable. An explicit bound for N
is given.

1. Introduction

From the well-known theorems of smooth and finitely srnooth classification
of smooth vector fields we know that, under the hypothesis of hyperbolicity of
the singular point, the formal equivalence of two germs of vector fields implies
the C^-equivalence of them for any k (Chen, [CH]). Moreover, a vector field
with resonant linear part at the singular point can be, in general, linearized
by means of a finitely smooth change of variables. One of the first results
in this direction belongs to S. Sternberg [S]. The works of Samovol [SA] and
G.Belitskii [B] give better bounds of the degree of diñerentiablility.

In this paper, we consider families of real smooth vector fields that are
local in the phase variables and parameters. Given a smooth vector field and a
smooth perturbation of it we may ask when this perturbation is C¿-equivalent,
for some k > 1, to the linear family. To answer this question, we consider a
germ at the origin of a smooth hyperbolic vector field v(x) such that its linear
part at the origin has distinct eigenvalues. If the lowest order of resonances
that the eigenvalues may genérate is sufficiently high, then the /e-differentiable
normal form of any small perturbation of the field v(x) is the linear family. The
difíerentiability of the change of variables depends only on the eigenvalues of
the non-perturbed vector field. The bound of the order of the smoothness is
obtained by using the homotopy method and the order of smoothness of the
solutions of the first variation equation along the trajectories of the field.

(1.1) Basic defínitions. In this section the basic notions and definitions are
given. Unless otherwise stated, in the present paper smoothness of an object
(field, map) always means infinite smoothness.

2000 Mathematics Subject Classification: 34C20, 34D10.
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HAMILTONIAN FORMALISM FOR FIBERWISE LINEAR
DYNAMICAL SYSTEMS

RUBÉN FLORES ESPINOZA AND YURII VOROBJEV

ABSTRACT. We study the Hamiltonization problem for fiberwise linear dy-
namical systems on a vector bundle in a wide class of symplectic structures.
Two types of results are presented: (i) a Hamiltonization criterion is formu-
lated as the solvability of some differential equations on the base including a
matrix equation of Lax's type; (ii) a geometric interpretation of these equations
is given in terms of symplectic connections. We consider some examples where
there are nontrivial obstructions to the existence of Hamiltonian structures
for fiberwise linear dynamics.

Introduction

The purpose of this paper is to present a Hamiltonian formalism for a special
class of autonomous dynamical systems on vector bundles, namely, fiberwise
linear systems. In a natural way, such systems appear under the linearization
of nonlinear dynamics at invariant submanifolds in the phase space. Moreover,
a family of time-dependent linear equations can be viewed as a fiber-wise linear
system on a vector bundle over the base = (time space) x (parameter space).

We say that a smooth vector field V on a vector bundle E over a base B defines
a fiberwise linear dynamical system if the fiow of V is a fiber preserving map
and its restriction to each fiber is a vector space isomorphism. So that the
base B (as the zero section of E) is the distinguished invariant submanifold of
such a system. We are interested in the Hamiltonization problem: when is a
fiberwise linear system (E, V) Hamiltonian with respect to a certain symplectic
2-form on E (or on a neighborhood of B in E)?

An important example of fiberwise linear dynamics is the first variation
equation of a (nonlinear) Hamiltonian system. As was shown in [MRR], in the
case of the tangent bundle E — TB of a symplectic manifold, the first variation
equation of every Hamiltonian vector field on B is again Hamiltonian with
respect to the so-called tangent symplectic structure on TB. In this situation,
the zero section B is realized as an invariant Lagrangian submanifold.

Our point is the Hamiltonization of fiberwise linear systems on general
vector bundles in the class of proper (pre)symplectic structures. A proper sym-
plectic structure íl on a vector bundle E —» B is characterized by the prop-
erty: the zero section B is a symplectic submanifold in (E, íl). Such setting
of the Hamiltonization problem is motivated by some problems in classical
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JOINABLE CONTINUA-AN APPLICATION OF INVERSE LIMITS

WILLIAM S. MAHAVIER

ABSTRACT. Wo describe an inverse limit construction to construct continua
M, called joinable continua, which can be separated by cut points into two
mutually separated sets each having a closure homeomorphic to M. Our
construction can yield a dense set of such cut points. We also give conditions
under which an inverse limit on [0,1] has a non-degenérate cnd continua.
We show that if K is an inverse limit of maps on [O, 11 each having O and 1
as fixed points, thcn there is a joinable continuum having an end continuum
homeomorphic to K.

1. Introduction

In [8] the author announced and in [9] the author described an example of an
hereditarily decomposable chainable continuum M which contains no are and
which contains only two non-homeomorphic subcontinua. As part of the proof
that the example had the claimed properties, it was shown that the continuum
contains two points a and 6 such that if/ii and h-¿ are two homeomorphisms of
M onto HI and //2 respectively and H\2 = {h^b}} — {hz(a}} then Hi\jH2

is homeomorphic to M. We cali such continua joinable and we say that HI and
H<¿ are joined end to end.

Ares are joinable continua and joinable continua can be easily constructed as
follows. Let C be the Cantor set on the interval [0,1]. For each maximal open
interval (a, b) in the complement of C, let M(a>¿) be, for example, a circle having
(a, b] as a diameter. The unión of C with these circles is a joinable continuum
M. In a similar manner one can describe irreducible joinable continua. It is
less easy to see how to construct joinable continua with a non-degenerate end
continuum. In working on [9] we discovered a general method of construct-
ing such continua which we felt was of independent interest because of the
interesting way in which inverse limits are used in the construction.

It is the purpose of this note to provide an introduction to some of the tools
in the study of inverse limits on the unit interval [O, 1] and to describe our
construction of joinable continua.

2. Basic deñnitions and techniques

/ denotes the unit interval [0,1] and a map is a continuous function, A
map on I is a continuous surjection of / onto 7. A continuum is a nonde-
generate, compact, connected metric space and a chainable continuum is a
continuum which, for each e > O, can be covered by a finite collection of open

2000 Mathematics Subject Classification: 54F15, 54B99, 54D80.
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A FEW REMARKS ON CONNECTED SETS IN HYPERSPACES OF
HEREDITARILY DISCONNECTED SPACES

E. POL AND R. POL

ABSTRACT. We provide several observations about connected sets in the space
of compact subsets of hereditarily disconnected separable spaces, related to a
question asked by Illanes and Nadler.

1. Introduction

All our spaces are separable metrizable. Our terminology follows Kura-
towski [4].

A space is hereditarily disconnected if it contains no connected subsets ex-
cept the singletons. Given a space X we denote by 3CCX") the space of compact
nonempty subsets of X equipped with the Vietoris topology (i. e., the exponen-
tial topology [4], § 17 and § 42).

Alejandro Illanes and Sam B. Nadler, Jr., asked in [2], Question 83.5, if for
a hereditarily disconnected X, the space OC(X) is hereditarily disconnected (a
clarification of the terminology and notation: in [2] hereditarily disconnected
spaces are called totally disconnected, cf. p. 101, and the space 3C(X) is denoted
by <2X, TV), cf. Def. 1.1 and 1.5).

The aim of this note is to answer this question (in two different ways), and
to supply two results shedding some more light on this phenomenon.

Example { 1. 1). There exists a hereditarily disconnected space M and a Can-
tor set K c M such that the set S = {K} u {K U {¿} : í e M \ is connected
in the hyperspace

Example (1.2). There exists a hereditarily disconnected space X and a non-
one-point connected set S in 9C(X) consisting of pairwise disjoint compacta
in X.

PROPOSITION (1.3). Let X be a hereditarily disconnected space and let S c
3C(X) be connected, Ifthere is a countable element in S then S is a singleton.

PROPOSITION (1.4). Let X be a hereditarily disconnected space. IfS C %(X]
is connected and locally connected then S is a singleton.

2000 Mathemaücs Subject Classification: 54B20, 54D05.
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HOMOTOPY EQUIVALENCE OF SIMPLICIAL SETS WITH A
GROUP ACTION

RAFAEL VILLARROEL-FLORES

ABSTRACT. We describe several theorems that allow us to establish the equi-
variant homotopy equivalenco of two simplicial sets with a group action. They
are also applied vía the nerve functor to the context of categories, especially
to some of those defined by Dwyer in the context of homology decompositions.

1. Introduction

Our purpose in this paper is to generalize known theorems about homeo-
morphism and homotopy equivalence of simplicial sets and categories to the
case when such objects have the action of a finite group G and we are interested
in equivariant homotopy type.

Since many of the G-simplicial sets that we find in practice come from small
G-categories vía the nerve functor, in section 4 we collect some theorems about
this special case. We obtain a generalization of Quillen's Theorem A ([13]). In
section 5 we study the important concept of the homotopy colimit and show
the equivariant versión of its fundamental property, nameíy, that if a map of
diagrams of simplicial sets induces a G-homotopy equivalence between corre-
sponding valúes, then the homotopy colimits of the diagrams are G-homotopy
equivalent.

In section 6 we consider preorders, that is, categories in which there is at
most one morphism between any two objects. When the category is small this
concept is the same as having a set P with a reflexive and transitive binary
relation <, and for those categories we will use such viewpoint. If x and y belong
to P we define x ~ y ifx < y and y < x, and x -< y ifx < y and y ¿ x. Let X>x —
{ y y >- x }. Then, we prove the following, which generalizes Proposition 1.7
from [14]. Recall that we attach topological concepts to categories vía the nerve
functor.

PROPOSITION. Let X be a G-preordered set that has an upper bound for the
length ofchains ofthe forra XQ x x\ • • • -< xn. Let Y be a G-invariant subset of
X that preserves the relation ~. Assume that for all x e X — Y, we have that X>x

is Gx-contractibie. Then the inclusión Y —> X is a G-homotopy equivalence.

In section 7 we consider the categories Xg, Xp defined by Dwyer in [3, 5].
Here C denotes a collection of subgroups ofthe group G. Tríese categories can
be seen to be G-preordered sets, which will be denoted by the same symbols.

2000 Mathematics Subject Classiftcation: Primary: 55N91; Secondary: 18B35,20J06,55U10.
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ESSENTIAL MERIDIONAL SURFACES FOR TUNNEL NUMBER
ONE KNOTS

MARIO EUDAVE-MUÑOZ

ABSTRACT. We show that for each pair of positive integers g and n, there are
tunnel number one knots, whose exteriors contain an essential meridional
surface of genus g, and with 2n boundary components. We also show that
for each positive integer n, there are tunnel number one knots whose exte-
riors contain n disjoint, non-parallel, closed incompressible surfaces, each of
genus n.

1. Introduction

In this paper we consider essential surfaces, closed or meridional, properly
embedded in the exteriors of tunnel number one knots. The exterior of a knot
k is denoted by E(k) — S3 - mtN(k). Recall that a knot k in S3 has tunnel
number one if there exists an are T embedded in S3 with k n r ~ dT, such that
S3 — int N(k U T) is a genus 2 handlebody. Such an are is called an unknotting
tunnel for k. Equivalently, a knot k has tunnel number one if there is an are T
properly embedded in E(k), such that E(k) — int N(T) is a genus 2 handlebody;
in general, the unknotting tunnels we consider are of this type. Sometimes it
is convenient to express a tunnel T' for a knot k as T' — TI U TI, where T\s a
simple closed curve and T<¿ is an are connecting TI and 3N(k}; by sliding the
tunnel we can pass from one expression to the other.

A surface S properly embedded in a 3-manifold M is essential if it is incom-
pressible, d-incompressible, and non-boundary parallel. A surface properly
embedded in the exterior of a knot k is meridional if each component of dS is
a meridian of k. Let M be a compact 3-manifold, and let S be a surface in M,
either properly embedded or contained in dM. Let k be a knot in the interior
of M, intersecting S transversely. Let S — S — int N(k). The surface S is prop-
erly embedded in M — iníN(k), and its boundary on dN(k), if any, consists of
meridians of k. We say that S is meridionally compressible in (M, k), if there
is an embedded disk D in M, intersecting k at most once, with S n D — <lD, so
that dD is a nontrivial curve on S, and is not parallel to a component of dS lying
on dN(k). Otherwise S is called meridionally incompressible. In particular if
S is meridionally incompressible in (M, k), then it is incompressible in M - k.

Some results are available on incompressible surfaces in tunnel number
one knot exteriors. Regarding meridional surfaces, it is shown in [GR] that
the exterior of a tunnel number one knot does not contain any essential merid-
ional planar surface. Another proof of this fact is given in [M]. This says that

2000 Mathematics Subject Classification: 57M25, 57N10.
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CHAMPS COMPLETS AVEC SINGULARITES NON ISOLEES SUR
LES SURFACES COMPLEXES

JULIO C. REBELO

Erratum

Le théoréme A de [1] contient une liste de champs de vecteurs a singularité
non isolée qui sont "semi-complets" au voisinage de l'origine de C2. II faut
cependant faire une correction dans cette liste : l'item 4 de l'énoncé de ce
théoréme doit étre remplacé par :

4. X — xaybf(mxc)/dx — nyd/dy) avec m et n dans N* et am - bn = ±1. De
plus, si m ~ n — 1, alors on peut aussi avoir X — (xy}a(x ~ y)f(xd/dx — yd/dy).

L'ommission est situé dans le théoréme (2.6). Plus précisément l'item 2 de
l'énoncé de ce théoréme devrait contenir le champ X — (xyf(x — y)f(x8/dx —
yd/dy). Signalons cependant que ce champ peut étre obtenu par Féclatement
du champ ayant la forme le du théoréme A.

Ceci n'a cependant aucune conséquence sur la classification présentée dans
cet article (quitte á corriger l'item 4 du théoréme A). En particulier Ténoncé
du Corollaire B et celui du théoréme C restent vrais.

Pour vérifier que l'ommission du champ X — (xy}a(x — y)f(xd/dx - yd/dy}
n'a pas d'autres conséquences sur le théoréme A, nous considérons d'abord un
champ X á singularité non isolée en (O/O) e C2 dont la premiére composante
homogéne non nulle est précisément de la forme X = (xy}a(x - y)(xd/dx -
yd/dy). Supposons de plus que X soit semi-complet au voisinage de l'origine.
Alors le champ X se divise par la fonction (x - y). En effet, si X n'est pas
divisible par (x — y), alors l'éclatement de X posséde une singularité oü le
feuilletage singulier associé définit un nceud-col. Ceci est une contradiction
avec le lemme (3.2). Puisque le champ X est done divisible par (x — y), il resulte
que son feuilletage associé est donné par une 1-forme (á singularité isolée)
dont la premiére composante homogéne non nulle est de la forme (xy)a(xd/dx -
yd/dy). On voit immédiatement que cela suffit pour la discussion de la section 3.
En particulier le théoréme 3.1 reste valable.

Maintenant il nous suffit de montrer qu'un champ semi-complet X ayant la
forme (xy)a(x-y)(xd/dx-~yd/dy + X>2), oüX>2 est un champ d'ordre au moins
2 en l'origine est nécéssairement linéarisable (cf. Proposition (3.5)). Observons
cependant que l'ordre de la I—forme temps divisée (section 4) induite sur l'axe
{^y = 0} vaut 2. D'aprés le lemme (4.12), l'holonomie lócale de cet axe est
l'identité. Cela entraine que X est linéarisable d'aprés un résultat bien connu
de Mattei et Moussu.
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