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DYNAMIQUE DES GROUPS D’AUTOMORPHISMES DE C, 0

FRANK LORAY

Abstract

We present a short survey about the dynamics of finitely generated sub-
groups of Aut(C, 0). In fact, we sum-up the results which seem essential for us
into two theorems which are the consequence of an amount of works over the
last century on the subject. The first one asserts that solvable subgroups act,
in general, like the affine group of C at a neighborhood of infinity. The second
one shows that the dynamics are systematicaly chaotic (density of orbits, of
fixed points, ...) as soon as the subgroup is non solvable.

Résumé

Nous présentons un bref survol de la dynamique des sous-groupes de type
fini de Aut(C, 0). En fait, nous résumons les résultats qui nous semblent es-
sentiels sous la forme deux théorémes qui sont le fruit d’un siecle de travaux
sur le sujet. Le premier nous dit que les sous-groupes résolubles agissent, en
général, comme le groupe affine sur C au voisinage de I'infini. Le second mon-
tre qu'a contrario la dynamique est systématiquement chaotique (densité des
orbites, des points fixes, etc...) dés lors que le sous-groupe n’est pas résoluble.
Loriginalité de cet exposé vient peut-étre de la simplicité et de I'efficacité avec
laquelle nous avons tenté de présenter résultats et démonstrations.

0. Introduction

On note Aut(C, 0) le groupe pour la composition des germes de transforma-
tions conformes localement inversibles de C fixant O :

Aut(C,0) = {f(2) =az+... ; f € C{z} et a # 0}.

On définit la dynamique d’un sous-groupe G de type fini de Aut(C, 0) comme
suit. On se donne un systéeme de générateurs fi,..., f, € Aut(C, 0) de G et
un voisinage U de 0 € C sur lequel les générateurs f; et leurs inverses fi,, =
ff"” sont bien définis injectifs pour i = 1,..., p. La dynamique qui nous
intéresse est celle du pseudo-groupe G engendré sur U par les transformations

1991 Mathematics Subject Classification: 34A20, 58F23.
Keywords and phrases: pseudo-groupes conformes, points fixes, densité des orbites, feuil-
letages holomorphes et holonomie.
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THE PSEUDO-ARC

WAYNE LEWIS

Abstract

The pseudo-arc is the simplest nondegenerate hereditarily indecomposable
continuum. It is, however, also the most important, being homogeneous, hav-
ing several characterizations, and having a variety of useful mapping proper-
ties.

The pseudo-arc has appeared in many areas of continuum theory, as well as
in several topics in geometric topology, and is beginning to make its appearance
in dynamical systems.

In this monograph, we give a survey of basic results and examples involv-
ing the pseudo-arc. A more complete treatment will be given in a book [133]
dedicated to this topic, currently under preparation by this author.

We omit formal proofs from this presentation, but do try to give indications
of some basic arguments and construction techniques.

Our presentation covers the following major topics.

Construction
Homogeneity

. Characterizations

. Mapping properties

. Hyperspaces
Homeomorphism groups

Continuous decompositions

® N e oA W oN o

Dynamics

1991 Mathematics Subject Classification: Primary: 54F50; Secondary: 54F15,54F65.
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PARITY OF MOD p BETTI NUMBERS

AVNER ASH

Abstract

We construct nondegenerate pairings in the “middle dimension” on parts
of the mod-p cohomology of a p-manifold with boundary of odd dimension n.
When n = 1 (mod 4), the pairings are alternating. As a corollary we explain
the experimental results of [AM1] that if N is an odd prime, N < 223, and
5 < p < 23 then the mod p quasi-cuspidal homology in degree 3 of I'o(N) of
GL(3,Z)1s even dimensional if N # 1 (mod p), and odd dimensional otherwise.

1. Introduction

Let p be a prime, m a positive integer, and let M denote a compact 2m +
1-dimensional p-manifold with (possibly empty) boundary. This means that
locally M is a quotient of a manifold (or a manifold with boundary) by a group
which acts with finite stabilizers with orders prime to p. We define the interior
coilomology of M to be the image of H*(M, aM) in H*(M), and we denote it by
Hi(M).

‘In this paper we prove the existence of a natural filtration on the m-dimen-
sional mod p interior cohomology of M with trivial coefficients such that the
successive quotients (except for the first) support a naturally defined nonde-
generate bilinear form. This form is symmetric if m is odd and alternating
if m is even. Hence in the latter case these quotients are even dimensional
if p is odd. We do this under the hypothesis that there is no p-torsion in the
(m — 1)-st integral homology of the boundary of M.

Our construction uses the Bockstein spectral sequence and Lefschetz dual-
ity. Similar results for ordinary cohomology appear in [R] and [B] for manifolds
without boundary, and in [W] for manifolds with boundary, assuming that the
homology of the boundary in dimensions m and m + 1 vanishes.

The motivation of this paper was to explain the experimental findings of
[AM1] concerning the parity of the dimension of the quasi-cuspidal mod p ho-
mology of ['o(N) in GL(3, Z). Here N is an odd prime and I'o(XN) is the subgroup

1991 Mathematics Subject Classification: 11F75, 57TN65.
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A CHARACTERIZATION OF POSITIVE UNIT FORMS

M. BAaroOT

Abstract

This paper considers unit forms, i.e. positive definite quadratic forms with
unitary coefficients in the quadratic terms. The classes of equivalence of con-
nected unit forms are given by Dynkin diagrams. A characterization is pre-
sented by the associated bigraphs of positive definite unit forms which are
equivalent to A, for some integer n.

1. Introduction and results

An integral quadratic form

q:Z"—7Z, qx)=) qx(@P+ > gx@)x())
i=1

i<

is called unit form provided ¢g; = 1 for all ;. Unit forms play an important
role in the theory of representations of algebras as associated forms to a finite
dimensional algebra over an algebraically closed field: the Tits form and in case
the algebra has finite global dimension also the Euler form. Their properties,
such as (weak) positivity or (weak) non-negativity, reflect properties of the
algebras, see for example [4, 5, 2, 3].

The form is positive if g(x) > 0 for all non-zero x € Z". Clearly, for a positive
unit form g we must have |g;;| < 1foralli < j. For convenience we set gj; = g;;
for i < j. To a unit form q : Z" — Z we associate a bigraph B(q) with vertices
1,..., n and edges as follows. Two different vertices i and j are joined by —g;;
full edges if g;; < 0 and by g;; broken edges if g;; > 0. Clearly, any reduced
bigraph (that is, between two vertices i and j there are not both full and broken
edges) I" without loops is isomorphic to B(g) for some unit form g, which we
denote by q(I'). A unit form gq is connected if so is B(g). In the following we
assume that bigraphs are reduced and without loop, furthermore, for a bigraph
B, we define [i, jl, = —q(B);;.

The frame of a bigraph B is the graph ®(B) which is obtained from B by
turning the broken edges into full ones.

1991 Mathematics Subject Classification: 11D09, 11H55.
Keywords and phrases: unit form, Dynkin-diagram.
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DEFORMATIONS OF COMPLEX HYPERSURFACES ON
G/P AND AN INFINITESIMAL TORELLI THEOREM

PEDRO L. DEL ANGEL R.

Abstract

This paper addresses the problem whether the family of complex hypersur-
faces of a given multidegree on a generalized flag manifold (G/P) is a locally
complete deformation or not. An explicit solution to this problem is given in
theorem (3.2) for the classical groups, the special groups are considered inde-
pendently in theorems (5.2) and (6.1). The question was previously considered
by J. Wehler on [5] for hypersurfaces in a manifold of complete flags (that is,
G = SL, and P = B a Borel subgroup of G). We will actually follow the line of
[5] and this reduces the question to the vanishing of the group H%(G/P, 7(—d)).

By the same token one can give conditions under which the infinitesimal
Torelli theorem holds for every smooth hypersurface of given multidegree in
a generalized flag manifold. Here we use a criterion developed by Flenner in
[3] to reduce the question to the vanishing of certain cohomology groups and
the surjectivity of certain maps (see theorem (4.2)). It is done, for the classical
gropus, in theorem (4.2), and for the special groups in theorems (5.4) and (6.3).

This article is divided in two parts, part 1 (especially sections 2-4) consider
only the case of classical groups, while the special groups (except for G5, where
our method only work for the case of the Borel subgroup) are treated in part
two (sections 5 and 6).

In section 0 we introduce the necessary notations and some well known facts
about generalized flag manifolds for groups of classical type.

In section 1 we state auxiliary combinatoric results.

In section 2 we prove a vanishing theorem for the groups H*(G /P, 7(—d)) if
Gis oftype A[, B[, C[ or D[.

Section 3 is devoted to the problem of deformations of hypersurfaces, and
section 4 considers the question of the infinitesimal Torelli theorem for those
groups.

Section 5 deals with the case of groups of type Eg, E; and Eg, while the
groups of type F} are considered in section 6.

1991 Mathematics Subject Classification: 14C25.
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ON CURVES AND ORBITS OF MATRICES

A. G. RAGGI-CARDENAS AND L. SALMERON

Abstract

Given an algebraically closed field %, we consider the action of the general
linear group G over the space £"*", of n x n matrices, given by conjugation.
We prove the following geometric fact: Let £: 2 — k"*" be any curve which
does not lie in some G-orbit, then there is a curve ¢ which hits exactly the same
orbits as ¢ does (with only finitely many possible exceptions) and satisfies the
additional property U(t), U(¢') are not conjugate for all pairs of different points
t,t' in a cofinite subset of k.

1. Introduction

(1.1). Throughout this note % denotes an algebraically closed field. Let £2"*"
denote the afine space of n x n matrices over k. Then the general linear group
G = G, acts on £"*" by conjugation. We write M = N whenever the matrices
M and N belong to the same orbit under this action. By definition a curve
(line) ¢ in k"*" is a map ¢: k — k"*" such that all entries of /(¢) are described
by polynomials in ¢ (resp. of the form 4(¢) = tM + N, where M, N are fixed
matrices in £"*"). Abusing the language, we shall say that a curve ¢ lies in a
constructible subset .# of £**", if £(t) € .# for almost all ¢ € k. A curve ¢ is
called degenerate if it lies in one orbit of £7*". It is called reliable if ((t) 2 ¢(t,),
for all pairs of different points #, #; in a cofinite subset of k. Finally, we say
that the curve £ in k"*" reparametrizes the non-degenerate curve ¢ in £"*" if,
for almost all ¢ € &, there is a? € k with £(z) = €(2).

Given a curve £ in """, we denote the set G Im(¢) simply by G¢. Thus the
curve ¢ reparametrizes the non-degenerate curve £ iff £ lies in GY. Naturally,
in this case, we call Z a reparametrization of ¢. With all this notation in mind,
the following is easy to show.

Remarks (1.2). If the curve 7 reparametrizes the non-degenerate curve ¢,
then / is non-degenerate. Moreover, in the class of non-degenerate curves in

1991 Mathematics Subject Classification: 14D22.
Keywords and phrases: family, moduli space, stratification, vector spaces, endomorphisms,
canonical forms.

This work was partially supported by DGAPA-UNAM, grant PAPIIT-IN103397

117



Bol. Soc. Mat. Mexicana (3) Vol. 5, 1999

MAXIMAL RESOLVABILITY OF SOME TOPOLOGICAL SPACES

Luis MIGUEL VILLEGAS SILVA

Abstract

We use several methods to show that some classes of topological spaces (e.g.
Fréchet-Urysohn, biradial, bisequential, free groups and x-bounded groups)
are maximal resolvable. We also obtain such decompositions for certain prod-
uct spaces.

1. Introduction

This paper deals with the problem of finding conditions for maximal or at
least large resolvability of topological spaces. The concept of resolvability was
introduced by Hewitt [H] and also by Katétov. We use the idea of Katétov in
order to explain the origin of the problem.

In 1947 Katétov [K1] posed the following problem: Is there a topological
space X without isolated points which has the property that every real-valued
function defined on X is continuous at some point? Another related question
was formulated in [M1]: Does there exist a dense in itself topological space X
such that every real-valued function defined on X is continuous on some open
dense subspace of X?

Consider a space X which contains two disjoint dense subspaces E and D
such that X = D U E. Define a function f: X — R by f(E) = 0 and f(D) = 1.
It is obvious that f cannot be continuous at any point of X.

So we must look for the positive answer of Katetov’s question in the class of
irresolvable spaces, i.e., those spaces which contain no disjoint dense sets.

In this paper we are interested on finding a decomposition of a space into
a union of large families of disjoint dense sets. All of our results go in this
direction. Section 2 presents the necessary notation, definitions and results
which form the basic preliminary material for the rest of the paper. In Section
3 we discuss the resolvability of spaces satisfying some kind of convergence
conditions. Every x-bounded topological group of large cardinality is maxi-
mal resolvable as is shown in Section 5 (see remarks at the beginning of that

1991 Mathematics Subject Classification: Primary 22A05, 20K45, 54D20; secondary 54H11.
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A NOTE ON CHEBYSHEV’S ‘OTHER’ INEQUALITY

JOSE A. CANAVATI AND FERNANDO GALAZ-FONTES

Abstract

Here we show that Chebyshev’s inequality f du f f(x)g(x)du > f f(x)du

f &(x)dpu, can be generalized into several different contexts, by means of ele-
mentary measure theoretical arguments.

1. Introduction

Let 11 be a probability measure on the real line and f(x) and g(x) i increasing
functions. Then

/ f(0g() du > / £(x) e / 2z) d

says that the random variables f(x) and g(x) are positively correlated. This is
Chebyshev’s ‘other’ inequality (cf. [1],[2],[4]).

In this note we would like to explore more general settings in which this
inequality holds. For this we start with the following result originally observed
by Andreief (1883) (cf. [2]) for the case of the finite interval [a, b] and a positive
measure u is given by an integral: wu([s, ¢]) = f o(t) dt (a < s <t <b), where
o is a nonnegative integrable function on [a, b].

CHEBYSHEV’S ‘OTHER’ INEQUALITY. If f(x)and g(x) are continuous functions
on [a, b] satisfying

*) [fx) - f(y)] [g(x)— g(y)] >0 forall xy€la,bl,
then

b b b b
(+%) [ an [ gt du> [ @ du [ e du.

The condition (*) is read “f(x) and g(x) are similarly ordered” (cf. [3]).

1991 Mathematics Subject Classification: 28C10, 28C15.
Keywords and phrases: Chebyshev inequality, topological group.
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PERTURBED ZEROS OF CLASSICAL
ORTHOGONAL POLYNOMIALS

R. G. Campros

Abstract

It is well known that the set of N zeros of polynomials satisfying linear
homogeneous second order differential equations is the solution of certain sys-
tem of N nonlinear equations depending on a function related to one of the
coefficients of the differential equation and, in the case of the classical orthog-
onal polynomials, to the corresponding weight function. By perturbing such a
function we generate sets of perturbed zeros. This procedure yields a linear
problem for the differences between the original and perturbed zeros. The ma-
trix of this linear problem is the one used by Stieltjes to show the monotonic
variation of the zeros of the classical orthogonal polynomials. The elementary
method presented here can be used to give a bound for the error produced in
approximating the original set of zeros by the perturbed one. As simple ex-
amples we obtain a bound for the euclidean norm of the vector of differences
between the zeros of Hermite polynomials and those of (appropriately scaled)
Gegenbauer and factorial polynomials.

1. An approximation problem
Let f be a polynomial of degree N satisfying the second order differential
equation

(1.1) @) + ay(O)f'(t) + ao(@)f () = 0.

It is well known that the N zeros of f, x1, Xs, ..., x,, satisfy the nonlinear
equations

Yoo (x;)
(1.2) 3y N & LN PN W )

-1 xj — X - 'y(xj)

1991 Mathematics Subject Classification: 33A65, 26A78, 15A45.
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ON THE POINCARE-LYAPUNOV CENTRE THEOREM

MARCO BRUNELLA AND MASSIMO VILLARINI

Abstract

We give a geometric proof and a slight generalization of a result of Sibuya
and Urabe concerning a higher dimensional version of the classical Poincaré -
Lyapunov Centre Theorem. This is done from a complexified point of view.

1. Introduction

The classical Poincaré-Lyapunov Centre Theorem says that a centre-type
singularity of an analytic vector field on the plane has an analytic first integral,
provided that the linear part of the vector field at the singular point generates
a (nontrivial) rotation. Equivalently, up to a multiplication by a nonvanishing
function, the vector field is linearizable near the nondegenerate centre. A
geometric proof of this result was given by Moussu [4]: his argument motivated
part of this article.

We consider the multidimensional analog of the planar centre dynamics: we
will call it multicentre. We will give, in the same spirit of [4], a geometric proof
of a result of Urabe and Sibuya [6], stating that an analytic multicentre, with
linear part at the singular point which generates a multirotation (see defini-
tions in the next section), is always linearizable. Moreover we will generalize
the quoted result by Urabe and Sibuya. The main tools in the proof of these
results are the analytic extension up to the origin of the period function, ob-
tained through the analysis of the complexification of the vector field, and the
use of a theorem by Bochner [3] on the linearization of compact group actions
in a neighbourhood of a fixed point. As a byproduct of these arguments we
obtain still another proof of Poincaré - Lyapunov Centre Theorem.

2. Linearization of multicentres

An isolated singular point O of a planar vector field is a centre if there
exists a neighbourhood U of O, such that U \ {O} is filled by closed nontrivial
trajectories. A centre at O is nondegenerate if the linear part at O of the vector
field has eigenvalues +iw , @ > 0. The classical Poincaré - Lyapunov Centre
Theorem [5], [2] states

1991 Mathematics Subject Classification: Primary: 34A20, 34D20; Secondary: 57515,58F23.
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GEOMETRIC INVARIANTS OF SMOOTH
LOW DIMENSIONAL DYNAMICAL SYSTEMS

FRANCISCO SOLIS

Abstract

The determination of invariants of lower dimensional dynamical systems
that are captured by local adaptive Galerkin bases is achieved. We explicitly
compute these invariants for the cases of smooth curves and smooth surfaces
in R3. We show that these invariants contain geometrical information, such as
dimension and extrinsic information. We discover that the coordinate system
associated with these bases is given by a generalization of a canonical system,
namely the Frenet frame.

1. Introduction

Often when one studies a dynamical system the interest is in the behavior
of the orbits after long periods of time. Many systems exhibit transient behav-
ior followed by an asymptotic motion lying on a subset of the phase space, an
attracting set. More importantly, this subset is contained in some finite dimen-
sional manifold. One can try to understand the different levels of complexity
of the orbits by analyzing the geometric structure of the attracting sets.

Two basic properties of these attracting sets that we will consider are its
dimension and its local geometric shape. To study these properties we recon-
sider the idea, from [1], of embedding the attracting set, which we assume to
be a smooth manifold, in a set of local patches and finding in each patch a
coordinate system which is optimal in the sense that the error of the projection
of the orbits on this system is minimal.

Assume that there is a dynamical system acting on a separable Hilbert space
H with an attractor X which has an invariant measure . From now on, we
assume that X is a manifold with suppp = X.

Consider any orthonormal basis {b;}:°,. For any h € H we define the error
of projecting the orbit of &, ¢(h, ¢), into the first & basis elements as:

k
ex(h,t) = p(h,t) = > < Plh,8),b; > b;.

i=1

1991 Mathematics Subject Classification: 34A26, 58F12.
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A UNIFORM BOUNDEDNESS PRINCIPLE FOR
SPACES WITH A FAMILY OF PROJECTIONS

CHARLES SWARTZ

Abstract

We establish a uniform boundedness principle for operators defined on a
topological vector space which is equipped with a family of projections satis-
fying a gliding hump property and with values in a semi-convex topological
vector space. Applications to spaces of vector-valued functions are given.

In [Sw2], [Sw3], we established a uniform boundedness principle for locally
convex spaces which are equipped with a family of projection operators satis-
fying a gliding hump and a decomposition property. Earlier similar uniform
boundedness results for locally convex spaces with a family of projection oper-
ators were established by Drewnowski, Florencio and Pail and used to show
that the space of Pettis integrable functions, while not usually complete, is
always barrelled ((DFP1], [DFP2)); see also [DFFP] for further similar results.
In this note we show that the methods of [Sw2], [Sw3], based on the Antosik-
Mikusinski Matrix Theorem, can be used to establish a uniform boundedness
principle for non-locally convex spaces and show that in the locally convex
space case the spaces have a property stronger than being barrelled.

We begin by fixing the notation and terminology which will be employed
in the sequel. Let E be a Hausdorff topological vector space and let A be
an algebra of subsets of a set S. We assume that there exists a mapping
P: A — L(E), the space of continuous linear operators from E into E. For
A € A we write P (A) = P4 and assume that Py = 0, Ps = I, the identity
operator on E, and that P is finitely additive. In order to establish our uniform
boundedness principle we impose two further conditions on the mapping P. We
first describe the gliding hump property which will be imposed.

We say that P satisfies the strong gliding hump property (SGHP) if: x; — 0
inE and {A;} C A pairwise disjoint implies there exist an increasing sequence

{n:} and x € E such that z_: Py, xn, = x, where the series converges in E.
=1

1991 Mathematics Subject Classification: 46A99.
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THE CANONICAL BUNDLE OF A HERMITIAN MANIFOLD

GIL BOR AND LuUls HERNANDEZ-LAMONEDA

Abstract

This note contains a simple formula (Proposition (3.5) in Section 3) for the
curvature of the canonical line bundle on a hermitian manifold, using the
Levi-Civita connection (instead of the more usual hermitian connection, com-
patible with the holomorphic structure). As an immediate application of this
formula we derive the following: the six-sphere does not admit a complex struc-
ture, orthogonal with respect to any metric in a neighborhood of the round one.
Moreover, we obtain such a neighborhood in terms of explicit bounds on the
eigenvalues of the curvature operator. This extends a theorem of LeBrun.

1. Introduction

First, some standard definitions. An almost-complex structure on an even-
dimensional manifold M?" is a smooth endomorphism J:TM — TM, such
that J? = —Id. The standard example is M = C" with J given by the usual
scalar multiplication by i. A holomorphic map between two almost-complex
manifolds (M1, J1) and (M, J5) is a smooth map f: M; — M, satisfying df o
J1 = J3 odf. An almost-complex structure is said to be integrable, or is called
simply a complex structure, if it is locally holomorphicaly diffeomorphic to the
standard example; in other words, for each x € M there exist neighbourhoods
UcCM,xcU,andV C C*, and a holomorphic diffeomorphism f:U — V.

Given an even-dimensional manifold, how is one to decide if it admits a
complex structure? There are some, more or less obvious, necessary condi-
tions (e.g. the existence of an almost-complex structure, which can be tested
by characteristic classes), but in general there is no known answer to this ques-
tion. A well-known example, so far undecided, is the 6-sphere (this is the only
interesting dimension, because in all other dimensions n # 2, 6, the n-sphere
does not admit even an almost-complex structure). This space admits a non-
integrable almost-complex structure, but it is unknown as yet if it admits a
complex structure.

1991 Mathematics Subject Classification: 53C55.
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UNIT ROOT TEST: AN UNCONDITIONAL
MAXIMUM LIKELIHOOD APPROACH

GRACIELA GONZALEZ-FARIAS AND DAVID A. DICKEY

Abstract

We investigate a test for unit roots in autoregressive time series based on
the maximization of the unconditional likelihood. Models including mean and
time trend adjustments are considered. We give percentiles for the resulting
tests which are more powerful than the currently popular least squares tests.
We show that the limit distributions are unchanged for higher order models so
that the tests can be used in models with more than one lag. Both normalized
bias tests and studentized tests are considered.

1. Introduction

Time series modeling often involves the selection and fitting of an ARIMA
(autoregressive integrated moving average) model. The order of integration
is defined as the degree of differencing required to make the series stationary
where stationarity implies constant mean and variance over time and a covari-
ance which depends only on the time separating two observations. The fitting
of a series traditionally involves differencing the data if necessary, until they
appear stationary then fitting autoregressive and moving average parameters
to the (possible differenced) data. We investigate statistical ways to check
whether differencing is necessary.

Appropriate differencing renders a series stationary and thus makes the re-
sulting estimation theory easier to work out. The results tend to be classical in
nature, for example normal limit distribution of estimators. Classic methods of
estimation, such as least squares and maximum likelihood are not necessarily
poor estimation methods for the nonstationary series, however the distribu-
tions are not standard even in the limit. If percentiles of the distributions can
be obtained, then these can be used for hypothesis testing.

For ARIMA models, stationarity can be characterized by a condition on the
roots of a polynomial involving the autoregressive coefficients, called the char-
acteristic polynomial. If all the roots are larger than 1in magnitude, the series
is stationary. Therefore we can base a test for stationarity on the coefficients
or roots of the characteristic polynomial. These in turn must be estimated in

1991 Mathematics Subject Classification: 62M10.
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