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UNIFORM BEHAVIOR OF FAMILIES OF GALOIS
REPRESENTATIONS ON SIEGEL MODULAR FORMS AND THE

ENDOSCOPY CONJECTURE

LUIS V. DIEULEFAIT

Abstract. We prove the following uniformity principle: if one of the Galois
representations in the family attached to a genus two Siegel cusp form of
weight k > 3, “semistable” and with multiplicity one, is reducible (for an
odd prime p), then all the representations in the family are reducible. This,
combined with Serre’s conjecture (which is now a theorem) gives a proof of the
Endoscopy Conjecture.

1. Introduction

In this article, we will consider a genus two Siegel modular form f of level
N and weight k > 3 (and multiplicity one) and the family of four dimensional
symplectic Galois representations attached to it. We assume also that we are
in a case where this family is “semistable”. In [D1], we have treated the level
1 case, giving conditions on f to ensure that these Galois representations have
generically large image. In particular we have imposed an irreducibility condi-
tion on one characteristic polynomial of Frobenius (see [D1], condition (4.8)) to
obtain a large image result. Furthermore, with the same irreducibility condi-
tion, we showed in [D2], again for the level 1 case, that for every p > 4k−5 the
p-adic representations are irreducible. The only possible reducible case to be
considered is the case of two 2-dimensional irreducible components having the
same determinant (all other cases can not occur if f is not of Saito-Kurokawa
type, cf. [D1], [D2]), and from the results of [D2] this case can only happen if
all characteristic polynomials are reducible, i.e., the 2-dimensional components
will have coefficients in the same field as the 4-dimensional representations:
the field E generated by the eigenvalues of f .

In section 2 we will generalize the main results of [D1] and [D2] to the
semistable case.

One of the consequences of Tate’s conjecture on the Siegel threefold is that
reducibility for the Galois representations attached to f must be a uniform
property: if it is verified at one prime, then all the representations in the
family are reducible. In this article, we will prove this uniformity principle:

Theorem (1.1). Let f be a genus 2 Siegel cuspidal Hecke eigenform of weight
k > 3 and level N , having multiplicity one, such that the attached Galois
representations ρf,λ are “semistable”. Suppose that for some odd prime `0 - N ,
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λ0 | `0, the representation ρf,λ0 is reducible. Then the representations ρf,λ are
reducible for every λ.

Moreover, if this happens, either f is of Saito-Kurokawa type or f is endo-
scopic.

After excluding the Saito-Kurokawa case, we will prove the result more
generally for compatible families of geometric, pure and symplectic four-di-
mensional Galois representations which are “semistable”.

A previous version of this preprint dates from 2003, and since several pa-
pers using the results contained there have appeared since then, we prefer
to present first (sections 2 and 3) the results contained in that early version,
which constitute the “core” of this paper: this corresponds to the proof of “uni-
formity of reducibility” for “almost every” prime, and with the extra condition
`0 > 4k− 5. At the end of the paper (section 4) we will indicate how to (easily)
remove this assumption on `0. Finally, we will prove that a standard combi-
nation of these results with Serre’s conjecture allows us to remove the “almost
every” in the result and gives also the Endoscopy Conjecture, i.e., the modu-
larity (up to twist) of the irreducible components.

What follows is a brief description of the tools that will appear in the proofs
in the “core” part. We will use (as in [D2], section 4) as starting point Taylor’s
recent results on the Fontaine-Mazur conjecture and the meromorphic con-
tinuation of L-functions for odd two-dimensional Galois representations (see
[T2], [T3] and [T4]). Then, we will combine some of the results and techniques
in [D1] (in particular the information about the description of the action of
inertia obtained via p-adic Hodge theory) with Ribet’s results (see [R]) on two-
dimensional semistable Galois representations (slightly generalized to higher
weights), and finally Cebotarev density theorem, the fundamental theorem of
Galois theory, and some group theory will suffice for the proof.

2. Preliminaries

As we already explained, the goal of sections 2 and 3 is to prove a theorem
which is weaker than theorem (1.1), namely we will prove the following:

Theorem (2.1). Let f be a genus 2 Siegel cuspidal Hecke eigenform of weight
k > 3 and level N , having multiplicity one, such that the attached Galois
representations ρf,λ are “semistable”. Suppose that for some prime `0 > 4k −
5, `0 - N , λ0 | `0, the representation ρf,λ0 is reducible. Then the representations
ρf,λ are reducible for almost every λ.

From now on we will make the following assumption: f is a genus 2 level N
Siegel cuspidal Hecke eigenform of weight k > 3, having multiplicity one, and
not of Saito-Kurokawa type (theorem (2.1) is trivial in the Saito-Kurokawa
case, where by construction the Galois representations are reducible, with
one 2-dimensional and two 1-dimensional components). Let E = Q({an}) be
the field generated by its Hecke eigenvalues. Then, there is a compatible
family of Galois representations constructed by Taylor [T1] and Weissauer
[W2] verifying the following:
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For any prime number ` and any extension λ of ` to E we have a continuous
Galois representation

ρf,λ : GQ → GSp(4, Eλ)
unramified outside `N and with characteristic polynomial of ρf,λ(Frob p))
equal to

Polp(x) = x4 − apx3 + (a2
p − ap2 − p2k−4)x2 − app2k−3x + p4k−6

for every p - `N . If ρf,λ is absolutely irreducible, then it is defined over Eλ.
In general, we can not guarantee that the field of definition is Eλ, but the

residual representation ρ̄f,λ can be formally defined in any case (see [D1]) as
a representation defined over the residue field of λ, Fλ. Nevertheless, not
knowing the field of definition of the representations that we will study is not
a serious problem: we can work instead with the “field of coefficients” (*), i.e.,
the field generated by the coefficients of the characteristic polynomials Polp(x);
this field contains all the information we need.

The representations ρf,λ are known to have the following properties (cf [W1],
[W2], [D1]): they are pure (Ramanujan conjecture is satisfied) and if ` - N
they are crystalline with Hodge-Tate weights {0, k − 2, k − 1, 2k − 3}. This
last property makes possible, via Fontaine-Laffaille theory, to obtain a precise
description of the action of the inertia group at ` on the residual representation
ρf,λ: it acts through fundamental characters of level one or two, with exponents
equal to the Hodge-Tate weights (see [D1] for more details).

We will need a further restriction: we want the representations to be “semi-
stable” at every prime of N (see the definition below).

Since we will not use the fact that our representations are modular, we can
change to the more general setting of a family of four-dimensional symplectic
Galois representations {ρλ} with coefficients in a number field E (not neces-
sarily defined over Eλ, see (*)), det ρλ = χ4k−6, which are pure, and such that
there exists a finite set S with, for every ` 6∈ S, ρλ unramified outside {`} ∪ S,
crystalline at ` with Hodge-Tate weights as above, and “semistable” at primes
in S, i.e., verifying the following: ρλ restricted to Iq is a unipotent group for
every q ∈ S.

For every p 6∈ S we still denote by Polp(x) the characteristic polynomial of
the image of Frob p and ap the trace of this image. The representations being
symplectic, we have the standard factorization

(2.2) Polp(x) = (x2 − (ap/2 +
√
dp)x + p2k−3)(x2 − (ap/2−

√
dp)x + p2k−3) .

The results of generically large image and irreducibility proved in previous
articles for the level 1 case (see [D1], theorem 4.2, and [D2], theorems 2.1 and
4.1) hold also in this generality:

Theorem (2.3). Let {ρλ} be a family of Galois representations verifying the
above properties, with k > 3. Assume that there is a prime p 6∈ S such that

(2.4)
√
dp /∈ E

where dp is defined by formula (2.2). Then for all but finitely many of the primes
satisfying

dp /∈ (Fλ)2
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and, more generally, for all primes λ in E except at most for a set of Dirichlet
density 0, the image of ρλ is

Ak
λ = {g ∈ GSp(4,OEλ

) : det(g) ∈ (Q∗` )4k−6},

where OEλ
denotes the ring of integers of Eλ.

Keeping condition (2.4) we also have: for every prime ` ≥ 4k − 5, ` 6∈ S, λ | `,
the representation ρλ is absolutely irreducible.

Differences from the level 1 case:
The proof of the above results given in [D1] and [D2] extends automatically

to the semistable case: recall that the determination of the images is done by
considering the image of the residual mod λ representations and eliminating
all non-maximal proper subgroups of GSp(4,Fλ). When considering reducible
cases (cf. [D1], sections 4.1 and 4.2) if we allow arbitrary ramification at a
finite set S then we have to allow the character appearing as one-dimensional
component or determinant of a two-dimensional component of a reducible ρ̄λ
to ramify at S, but in the semistable case it is easy to see that this character
will not ramify at primes in S. The same applies to the case of image equal
to a group G having a reducible index 2 normal subgroup M (cf. [D1], section
4.4), the quadratic Galois character G/M can not ramify at primes of S if we
assume semistability. Up to these easy remarks, the whole proof translates
word by word to the semistable case.

Remark (2.5). Recall that condition (2.4) was introduced (cf. [D1]) specif-
ically to deal with the case where the image of ρ̄λ is reducible, with two 2-
dimensional irreducible components of the same determinant. All other cases
of non-maximal image can be discarded, for almost every prime, without using
condition (2.4).

Remark (2.6). In [D1], the large images result was proved (for the case of
conductor 1) with an additional condition, called “untwisted”: this condition
was imposed to eliminate the possibility that the projective residual image
falls in a smaller symplectic group PGSp(4, k′), k′ a proper subfield of k, where
k is the field generated by the traces of the residual representation. We have
not included a similar condition in the above theorem because in the following
lemma, we will explain that this condition is superfluous, i.e., that the case of
smaller projective symplectic group can never happen if we assume semista-
bility. In particular, this applies to level 1 Siegel cusp forms, so the condition
“untwisted” can be removed from theorem 4.2 of [D1].

Lemma (2.7). Let {ρλ} be a compatible family of Galois representations as
above (in particular, a semistable family). Then for every prime q > 2k−2, q 6∈ S
and Q a prime in E dividing q, if we call G the image of ρ̄Q and P (G) its
projectivization, P (G) lies in PGSp(4, k) if and only if G lies in GSp(4, k), for
every subfield k of FQ.

Proof. A similar result, for semistable two-dimensional representations, is
lemma 2.4 in [R]. The proof given there translates word by word, once we have
explained why in our case we also have an element c in the inertia group Iq
such that χ(c) is a generator of F∗q and the trace of ρ̄Q(c) is a non-zero element
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of Fq (we know a priori, from the description of the action of Iq, that this trace
will be in Fq, what requires a proof is the fact that it is not 0).

We have given in [D1], proposition 3.1, a description of the action of Iq that
applies in the current situation, because we are assuming that ρQ is symplectic
and crystalline with Hodge-Tate weights {0, k−2, k−1, 2k−3}, and q > 2k−2.
Let ψ be a level 2 fundamental character, and take c ∈ Iq such that ψ(c)
generates F∗q2 . We have four possibilities for the trace of c, whose values are,
after a suitable factorization:

(1 + χ(c)k−1)(1 + χ(c)k−2)

(ψ(c)k−2 + ψ(c)(k−2)q)(ψ(c)k−1 + ψ(c)(k−1)q)

(1 + ψ(c)(k−2)+(k−1)q)(1 + ψ(c)(k−1)+(k−2)q)

(ψ(c)k−2 + ψ(c)(k−1)q)(ψ(c)k−1 + ψ(c)(k−2)q)
In all cases, the inequality q > 2k − 2 implies that these traces are not 0.

3. Uniformity of reducibility

At this point, we can say that the validity or not of condition (2.4) at some
prime p 6∈ S determines the behavior of the family of representations ρλ: If con-
dition (2.4) is satisfied, then we have generically large image and irreducibility
for every ` sufficiently large compared with the weights.
What happens if condition (2.4) is not satisfied at any prime? This implies
that the factorization (2.2) takes place over E, i.e., that for every p 6∈ S, Polp(x)
reduces over E. The coefficients of all characteristic polynomials Polp(x) gen-
erate an order O of E, and if we restrict to primes λ not dividing the conductor
of this order (we are neglecting only finitely many primes), we see that the field
generated by the coefficients of the mod λ reduction of all the Polp(x) gives
the whole Fλ. Thus, we see that for almost every prime, the failure of (2.4)
implies that ρ̄λ has its image in GSp(4,Fλ) and not in a smaller symplectic, but
all characteristic polynomials reduce over Fλ: in this case the image can not be
the whole symplectic group, because in the group GSp(4,Fλ) most of the ma-
trices have IRREDUCIBLE characteristic polynomial, and we know that for
almost every prime only one possibility (see remark (2.5) after theorem (2.3),
and lemma (2.7)) remains:

Lemma (3.1). Let {ρλ} be as in the previous section, and assume that for
every p 6∈ S, condition (2.4) is not satisfied. Then, for almost every prime λ,
the residual representation ρ̄λ is reducible with two 2-dimensional irreducible
components of the same determinant.

(3.2) A reducible member in the family: Residual consequences. From
now on, assume that for a prime q > 4k − 5, q 6∈ S, Q | q, the Q-adic repre-
sentation ρQ is reducible. We know (using semistability and purity) that the
only possible case is the case of two 2-dimensional irreducible components both
with determinant χ2k−3. Thus we have

(3.3) ρQ ∼= σ1,Q ⊕ σ2,Q

Since this representation is reducible, the last part of theorem (2.3) implies
that condition (2.4) must fail at every prime. Therefore, σ1,Q and σ2,Q will
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also have coefficients in E and lemma (3.1) implies that for every prime λ in a
cofinite set Λ of primes of E, ρ̄λ will satisfy

ρ̄λ ∼= π1,λ ⊕ π2,λ

where πi,λ is an irreducible two dimensional representation defined over Fλ

having determinant χ2k−3, for i = 1, 2 and for every λ ∈ Λ.
Moreover, we can determine the image of ρ̄λ for almost every prime in Λ:

Lemma (3.4). Keep the above assumptions. For every prime λ ∈ Λ2, a cofinite
subset of Λ, the image of ρ̄λ is a subgroup of GSp(4,Fλ) conjugated toMλ = {A×
B ∈ GL(2,F1,λ) × GL(2,F2,λ) : det(A) = det(B) ∈ F2k−3

` }, where F1,λ,F2,λ ⊆ Fλ

are the fields of coefficients of π1,λ and π2,λ .

Proof. We have assumed that the representations ρλ have a finite ramifica-
tion set S and they are semistable at every prime q ∈ S. A fortiori, the same
applies to their residual components πi,λ. Moreover, these two dimensional
representations are irreducible for every λ ∈ Λ. In a similar situation, Ribet
has proved a large image result for ` ≥ 5, but he assumes that the action of I`,
given by fundamental characters of level 1 or 2, has weights (i.e., exponents
of the fundamental characters) 0 and 1. The main point of his proof is to ex-
clude the dihedral case. In our case, using the information on the Hodge-Tate
decomposition, we have this extra condition at I` also verified by the twisted
representation πi,λ ⊗ χ−k+2 for, say, i = 2 (cf. [D1],[D2]). On the other hand,
for π1,λ Ribet’s result still holds if we restrict to primes ` > 4k−5, because the
weights of the action of I` being 0 and 2k− 3, the projectivization of the image
if I` gives a cyclic group of order (` ± 1)/ gcd(` ± 1, 2k − 3) > 2, and this is all
that you need to follow Ribet’s argument. We also have a statement as lemma
(2.7) for these two dimensional representations, again adapting lemma 2.4 in
[R].

We conclude (cf. [R], theorem 2.5 and the remark after) that for ` suffi-
ciently large, the images of both irreducible components are conjugated to the
subgroup of matrices in GL(2,Fi,λ) with determinant in F2k−3

` .

Finally, to prove that the image of ρ̄λ is as we want, it remains to show that
the Galois fields corresponding to P (π1,λ) and P (π2,λ) are disjoint (P denotes
projectivization). These fields having Galois groups isomorphic to the simple
groups PGL(2,Fi,λ) or PSL(2,Fi,λ), they are either disjoint or equal: the second
is not possible because the restriction of these two projective representations
to I` are different, and this proves the result.

(3.5) A reducible member in the family: λ-adic consequences. In the
decomposition (3.3) of ρQ it is clear that σ1,Q has Hodge-Tate weights {0, 2k−3}
and σ2,Q has Hodge-Tate weights {k − 2, k − 1} (or viceversa).

Now, we invoke a result of Taylor (see [T2] and [T3], recall that q > 4k − 5)
asserting that for a representation such as σ1,Q it is possible to find a totally
real number field F such that it is modular when restricted to this field, and
therefore it agrees on F with the Q-adic motivic irreducible Galois represen-
tation (constructed by Blasius and Rogawski) attached to a Hilbert modular
form h. This implies that σ1,Q appears in the cohomology of the restriction of
scalars of the motive Mh associated to h, and it can be checked from the fact
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that the Q-adic representation of the absolute Galois group of F attached to h
has descended to a 2-dimensional representation ofGQ, Cebotarev density the-
orem, and the fact that all modular Galois representations in the family {σh,λ}
attached to h are known to be irreducible, that the whole family descends to
a compatible family {σ1,λ} of Galois representations of GQ containing σ1,Q. To
do this, one has to write the representation σ1,Q as in the proof of theorem 6.6
in [T3], and define the representations σ1,λ formally in the same way using
the strongly compatible families associated to the base change of h to each
Ei (recall that, for each i, F/Ei is soluble, cf. [T3]). Then, following an idea
suggested to us by R. Taylor, one can check that the virtual representations
σ1,λ constructed this way are true Galois representations by applying the ar-
guments of [T4], section 5.3.3.
It follows from the main result of [T3] that the family {σ1,λ} is a strongly com-
patible family (cf. [T3] for the definition) of Galois representations. Strong
compatibility proves the last steps of the following:

Proposition (3.6). Let ρQ be as above, reducible as in (3.1), and let σ1,Q be
its irreducible component having Hodge-Tate weights {0, 2k − 3}. Then there
exists a compatible family of Galois representations {σ1,λ} containing σ1,Q, such
that for every ` 6∈ S, λ | `, the representation σ1,λ is unramified outside {`} ∪ S,
is crystalline at ` with Hodge-Tate weights {0, 2k − 3}, and is semistable at
every prime of S. Of course, these representations are pure because ρQ is.

Recall that, the representation ρλ being symplectic, for every g ∈ GQ the
roots of ρλ(g) come in reciprocal pairs: {α, χ2k−3(g)/α, β, χ2k−3(g)/β}.

The following lemma is a first approach to compare the representations σ1,λ

and ρλ:

Lemma (3.7). For every ` 6∈ S, λ | `, and every g ∈ GQ, the roots of σ1,λ(g)
form a pair of reciprocal roots of those of ρλ(g).

Proof. From the compatibility of the families {σ1,λ} and {ρλ} and the fact
that σ1,Q is a component of ρQ the lemma is obvious for the dense set of Frobe-
nius elements at unramified places. Then, by continuity and Cebotarev the
lemma follows for every element of GQ.

Recall that Λ2 denotes the cofinite set of primes of E where lemma (3.4) is
satisfied. We will shrink this set again by eliminating a finite set of primes,
namely, those primes where the image of σ1,λ fails to be maximal: in fact, if we
call E′ ⊆ E the field of coefficients of this family of representations and O′ its
ring of integers, using semistability and again the slight modification of the
methods of [R] to higher weights (as we did before to obtain lemma (3.4)) we
see that for almost every prime λ ∈ E the image of σ1,λ can be conjugated to
the subgroup of GL(2,O′λ) of matrices with determinant in Z2k−3

` (after proving
the similar result for the residual representations, we apply a lemma of Serre
in [S1] that shows that the λ-adic image is also large).

Remark. Here we need to know that the residual representations σ̄1,λ are
almost all irreducible. This follows again from the good properties of the λ-adic
family: purity, the fact that they are all crystalline with Hodge-Tate weights
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{0, 2k−3} (and the uniform description of inertia that one gets from this), and
semistability.

Thus, we exclude from Λ2 the finite set of primes where the image of σ1,λ

fails to be maximal, and we obtain a cofinite set Λ3 where the residual image
of ρλ is the full Mλ and the image of σ1,λ is maximal.

We want to extract more information from the relation derived in lemma
(3.7). To start with, we work at the level of residual representations. Observe
that the same relation proved in lemma (3.7) holds for the roots of the matrices
in the image of the residual representations ρ̄λ and σ̄1,λ:

Lemma (3.8). Let λ be a prime in Λ3. Then in the decomposition ρ̄λ ∼= π1,λ⊕
π2,λ we have π1,λ

∼= σ̄1,λ.

Remark. Of course, we should write the above equality with πi,λ for i = 1
or 2. But to fix notation, we will always call π1,λ the component of ρ̄λ where
the inertia group at ` acts with weights 0 and 2k− 3 (as we did in section 3.1);
this is a good way to distinguish the two components, and of course this is the
only component that deserves being compared to σ̄1,λ.

Proof. Take λ ∈ Λ3. Let L be the Galois field corresponding to ρ̄λ, thus
Gal(L/Q) ∼= Mλ, and B the one corresponding to σ̄1,λ Thus if F′λ is the residue
field of O′λ and Uλ = {A ∈ GL(2,F′λ) : det(A) ∈ F2k−3

` }, Gal(B/Q) ∼= Uλ.
We want to prove that B ⊆ L. Let M = L ∩ B, and consider an element
z ∈ Gal(B/M). Let ž be a preimage of z in Gal(Q̄/M), which we can choose
such that ρ̄λ(ž) = 14 (because it is trivial on M = L ∩ B). Then, the residual
version of lemma (3.7) implies that 1 is a double root of the characteristic
polynomial of σ̄1,λ(ž). This implies that the group Gal(B/M) is unipotent, but
this group is a normal subgroup of Gal(B/Q) ∼= Uλ, and Uλ has no non-trivial
unipotent normal subgroup, thus B = M , i.e., B ⊆ L.

Then, we have a projection φ : Gal(L/Q)→ Gal(B/Q), that is to say, φ sends
Mλ onto Uλ and thus σ̄1,λ is a quotient of ρ̄λ.

Since ρ̄λ ∼= π1,λ⊕π2,λ we conclude that σ̄1,λ
∼= πi,λ with i = 1 or 2, and using

the information on the Hodge-Tate decompositions we see that i = 1.

(3.9) Proof of Theorem (2.1). We start by observing that part of the proof
of lemma (3.8) can be translated to the λ-adic setting. Take λ ∈ Λ3, and call L′

the (infinite) Galois field corresponding to ρλ and B′ the one corresponding to
σ1,λ. Recall that Gal(B′/Q) is isomorphic to the subgroup U ′λ of GL(2,O′λ) com-
posed of matrices with determinant in Z2k−3

` , and therefore again we have a
group with no non-trivial unipotent subgroups, thus we conclude from lemma
(3.7) as in the proof of lemma (3.8) that B′ ⊆ L′ and that we have a projection
φ′ : Gal(L′/Q) → Gal(B′/Q). We have φ′ ◦ ρλ = σ1,λ. Let us consider the nor-
mal subgroup Gal(L′/B′) of Gal(L′/Q), i.e., we are considering the restriction
ρλ|ker φ′ . The elements in this subgroup fix B′, thus by lemma (3.7) we see that
the corresponding matrices in GSp(4,Oλ) will have 1 as a double root.

On the other hand, we know that the residual representation ρ̄λ ∼= π1,λ ⊕
π2,λ
∼= σ̄1,λ⊕π2,λ has maximal imageMλ (see lemmas (3.4) and (3.8)). Moreover,
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the representation σ1,λ being a “deformation” of π1,λ which is disjoint from
π2,λ (in the sense established during the proof of lemma (3.4), i.e., up to the
equality of determinants), we see that restricting to kerφ′ will only shrink the
image of π2,λ by making the determinant trivial, in other words: the residual
representation ρλ|ker φ′ has image

(3.10) SL(2,F2,λ)⊕ 12 ⊆Mλ .

So, what do we know about ρλ|ker φ′? We have determined its residual image
and we also know that all matrices in its image have 1 as a double root: this last
property extends to the Zariski closure of the image, and using the information
we have together with the list of possibilities for this Zariski closure given in
[T1], we see that the image of ρλ|ker φ′ must be contained in SL(2,Oλ) ⊕ 12. If
we call O′′λ ⊆ Oλ the field generated by the traces of the image of ρλ|ker φ′ , we
can apply a lemma of Serre (cf. [S1]) (and Carayol’s lemma for the assertion
about the field of definition, cf. [C]) and conclude from (3.10) that the image of
ρλ|ker φ′ must be conjugated to SL(2,O′′λ)⊕ 12.

Remark. kerφ′ fixes B′ which is an infinite extension of Q, but Serre’s
lemma can still be applied because GQ is compact and the fixer of B′ is a closed
subgroup.
Thus, we conclude that Image(ρλ) ⊆ GSp(4, Ēλ) contains a normal subgroup
isomorphic to SL(2,O′′λ)⊕12, and the quotient by this subgroup gives U ′λ. But
it is easy to see that the normalizer of SL(2,O′′λ)⊕12 in GSp(4, Ēλ) is contained
in the reducible group GL(2, Ēλ) ⊕ GL(2, Ēλ). Thus, ρλ is reducible, for every
λ ∈ Λ3, and σ1,λ is one of its two-dimensional irreducible components.

4. From Theorem (2.1) to Theorem (1.1)

Recall that the results and proofs given in previous sections date from 2003.
The result of “existence of compatible families” that we proved in section 3.2
were extended in [D3], which is a “sequel” to this paper, where it was applied
to prove some cases of the Fontaine-Mazur conjecture.

Moreover, this result is key in the proof of Serre’s conjecture given in [D4],
[KW1], [K], [D5] and [KW2].

In the case of Hodge-Tate weights {0, 1} the results of potential modularity
of Taylor do not imply that the representation is motivic, but as observed in [D3]
we still can apply the techniques explained in section 3.2 and prove existence
of families. In this case, the natural restriction becomes `0 > 2.

As in the previous sections, we assume that we are not in the Saito-Kuro-
kawa case (thus the reducible case must be a case of two 2-dimensional irre-
ducible components).

Thus, if `0 is odd, `0 - N , we consider the irreducible component σ2,λ0 of ρλ0

having Hodge-Tate weights {k−2, k−1} and we apply existence of compatible
families to σ2,λ0 ⊗ χ2−k instead of σ1,λ0 .

The rest of the proof given in the previous sections extends word by word,
except that σ2,λ0 and σ1,λ0 exchange roles. We conclude that theorem (2.1) is
still true if we change the assumption `0 > 4k − 5 by `0 > 2.
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We have shown that for almost every prime λ the representation ρλ in our
compatible family is reducible, and one of its 2-dimensional irreducible com-
ponents is σ2,λ, a representation that lies in a strongly compatible family. It
is obvious (from the definition of compatibility) that the second components,
even if they are a priori defined only for almost every prime, will also form a
compatible family, let us call them σ1,λ. Moreover, from the formula:

ρλ ∼= σ1,λ ⊕ σ2,λ

we see not only the compatibility of the σ1,λ but also that the representations
σ1,λ are crystalline if ` is not in the ramification set S, of Hodge-Tate weights
{0, 2k− 3}, with ramification set contained in S and semistable or unramified
locally at primes of S.

At this point, we apply an argument based on Serre’s conjecture, which is
now a theorem (cf. [D5] and [KW2]). Serre proved in [S2] using his conjecture
that compatible families of Galois representations as {σ2,λ ⊗ χ2−k} or {σ1,λ}
are modular. The fact that {σ1,λ} is a priori only defined for almost every λ
is irrelevant for the argument of Serre: he only needs residual modularity
in infinitely many characteristics, not in ALL characteristics (it is a typical
patching argument). The essential condition is that the family is compatible,
with constant Hodge-Tate weights and uniformly bounded conductor.

We conclude that the families {σ2,λ ⊗ χ2−k} and {σ1,λ} correspond to repre-
sentations attached to classical modular forms, of weight 2 and 2k−2, respec-
tively, and obviously this implies in particular that the family {σ1,λ} is also
defined for EVERY prime λ. This concludes the proof of theorem (1.1).

Remark (4.1). Observe that in the particular case of a level 1 Siegel cusp-
form, we conclude irreducibility for p > 2 if it is not of Saito-Kurokawa type.
The reason is that one of the 2-dimensional components would give rise to a
level 1 weight 2 classical modular form.

Remark (4.2). What we have shown is that our result of uniformity of re-
ducibility, combined with Serre’s conjecture (now a theorem), implies the truth
of the Endoscopy Conjecture in the semistable case.

Remark (4.3). Our result of “uniformity of reducibility” can be extended to
the non-semistable case, with the same arguments. In fact, this have been done
recently by Skinner and Urban (cf. [SU], section 3). The argument of Serre
explained above also applies here, so also the Endoscopy Conjecture follows in
this case.

5. Final Remarks

The Galois representations attached to a Siegel cusp form f of level greater
than one are known to satisfy the semistability condition when the ramified
local components of (the automorphic representation corresponding to) f are of
certain particular types (for example, a Steinberg representation), as follows
from recent works of Genestier-Tilouine and Genestier (cf. [GT]). Thus, the
results in this article apply to these cases. We thank J. Tilouine for pointing
out this fact to us.
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OMNIPRESENT EXCEPTIONAL MODULES FOR HYPERELLIPTIC
CANONICAL ALGEBRAS

HAGEN MELTZER

Abstract. A hyperelliptic algebra Λ is a canonical algebra in the sense of
Ringel of type (2, 2, . . . , 2). Using universal extensions we give an explicit de-
scription of all but finitely many omnipresent exceptional modules of minimal
rank over those algebras. All these modules will be exhibited by matrices
involving as coefficients the parameters appearing in the definition of Λ as a
bound quiver.

1. Introduction

Let k be a field and A = kQ/I a finite dimensional k-algebra of quiver type.
It is well known that a finite dimensionalA-module is given by choosing a finite
dimensional vector space for each vertex and a linear map for each arrow of Q
such that the relations defined by the ideal I are satisfied. We are interested
in explicit descriptions of the indecomposable A-modules by matrices.

In [3] Gabriel computed all indecomposable modules for a path algebra
A = kQwhereQ is a Dynkin quiver. For canonical algebras all indecomposable
modules are described in the domestic case in [8] and [6]. Whereas in general
one cannot expect explicit descriptions of all indecomposable modules one often
can get more information for exceptional modules. Recall that anA-moduleM
is called exceptional if End(M) is a division ring and ExtiA(M,M) = 0 for i ≥ 1.
A result of Ringel states that for the path algebraA = kQ of each quiverQ any
exceptional module can be exhibited by matrices involving as coefficients 0 and
1 [14]. A similar result was proved by Draexler in [2] for representation-finite
algebras.

In this paper we study exceptional modules over a canonical algebra of type
(2, 2, . . . , 2) with t entries. More precisely, let Λ be the quotient kQ/I where Q
is the quiver
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and I is the ideal in kQ generated by all paths βiαi−β1α1−λiβ2α2, i = 3, . . . , t,
where the λi are pairwise distinct non-zero elements of k. We always assume
that t ≥ 3. Without loss of generality one can suppose that λ3 = 1. If t ≥ 5
then Λ is of wild representation type and is called hyperelliptic. For a general
definition of canonical algebras (of quiver type) we refer to [13].

We denote by mod(Λ) the category of finitely generated right Λ-modules. For
a Λ-module M the rank is given by the formula rk(M) = dimkM0 − dimkMc.
It is known from [4] that the indecomposable Λ-modules of rank zero form a
separating tubular family in the category of finite dimensional Λ-modules.

Following [11] an exceptional Λ-module M of positive rank is called om-
nipresent if for each non-zero Λ-module S of rank zero there is a non-zero map
M → S. In fact one always can assume that a module of positive rank can
be considered as omnipresent, possibly considered as a module over a canon-
ical algebra of smaller type (see the discussion in (2.3)). It follows from [11],
Proposition 6.3.3, that the rank of an omnipresent exceptional module over a
canonical algebra Λ of type (2, 2, . . . , 2), t entries, is greater than or equal to
t − 1. In this paper we are going to describe by explicit matrices almost all
omnipresent exceptional Λ-modules of this minimal rank t− 1.

In [12] it was shown that for a tubular canonical algebra A each exceptional
module over A can be exhibited by matrices involving as coefficients 0, 1 and
−1 ifA is of type (3, 3, 3), (2, 4, 4) or (2, 3, 6) and by matrices involving as entries
0, 1,−1, λ,−λ and λ−1 ifA is of type (2, 2, 2, 2) andA is defined by a parameter
λ4 = λ. Also in the hyperelliptic case the described omnipresent exceptional
modules of minimal rank will be given by matrices having as coefficients the
parameters appearing in the definition of the algebra. Of course one can
find other matrices, note however that each exceptional module is uniquely
determined by its dimension vector [11], Proposition 4.4.1 and our result can
be understood as a solution of a typical problem to find in a certain sense
”normal forms”.

In order to describe our matrices we will use the following notations. For a
natural number n let In be the n× n-identity matrix. Define

Xn =
[

In
0 · · · 0

]
, Yn =

[
0 · · · 0

In

]
, Zn =


0 · · · 0 1
0 · · · 0 0
. . .
0 · · · 0 0

∈Mn+1,n(k)

Further, for i = 3, . . . , t, we denote Vn(λi) = Xn + λiYn ∈Mn+1,n(k) and

Un(λi) =



1 0 0 · · · 0 0 0
λi 1 0 · · · 0 0 0
0 λi 1 · · · 0 0 0

. . .
. . .

0 0 0 · · · λi 1 0
0 0 0 · · · 0 λi 1


∈Mn,n(k).

We now define the following right Λ-modules Ln, n ≥ 1. Put Ln(0) =
k(n+1)+(t−2)n, Ln(i) = k(t−1)n, for i = 1, . . . , t, Ln(c) = kn+(t−2)(n−1). The matrices
for Ln are given by
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Ln(α1) =


Xn

In
. . .

In

, Ln(β1) =


In

Xn−1
. . .

Xn−1

,

Ln(α2) =


Yn

In
. . .

In

, Ln(β2) =


In

Yn−1
. . .

Yn−1

,

Ln(αi) =



Vn(λi) Zn
Un(λi)

. . .
Un(λi)

. . .
Un(λi)


, Ln(βi) =


In

Xn−1
. . .
Xn−1


for i = 3, . . . , t. In each matrix there are (t− 2) blocks of the same form and in
Ln(αi) the matrix Zn stands in the first row over the (i − 2) − th block Un(λi)
counting from the left to the right. All the remaining entries are zero.

Proposition (1.1). For eachn ≥ 1 the moduleLn is omnipresent exceptional
and of minimal rank t− 1.

Our main result will be the following:

Theorem (1.2). The matrices given in Theorem (4.20) together with those
in 5.2-5.4 provide explicit descriptions of all but finitely many omnipresent
exceptional Λ-modules of minimal rank t− 1.

2. Omnipresent exceptional vector bundles for hyperelliptic
weighted projective lines

(2.1). In [4] Geigle and Lenzing associated to each canonical algebra of
quiver type Λ a weighted projective line X such that the category of coher-
ent sheaves coh(X) is derived equivalent to the category mod(Λ) of finite di-
mensional Λ-modules. We assume that Λ is of type (2, 2, . . . , 2), t entries, and
defined by parameters λ3, . . . , λt. Let L(p) be the rank one abelian group on
generators ~x1, ~x2,. . . ,~xt with relations 2~x1 = 2~x2 = · · · = 2~xt =: ~c. Then each
element of L(p) can be written in normal form ~x = n~c +

∑t
i=1 εi~xi with n ∈ Z

and εi ∈ {0, 1}. We further denote by ~ω = (t − 2)~c −
∑t

i=1 xi the dualizing
element of L(p). We recall that L(p) is an ordered group with

∑t
i=1 N~xi as its

set of positive elements.
In the hyperelliptic case X is the projective spectrum of the L(p) graded

algebra

S =
k[X1, . . . , Xt]

〈X2
i −X2

1 − λiX2
2, i = 3, . . . , t〉

where deg(Xi) = ~xi. The elements ~x of L(p) are in one to one correspondence
with the line bundles O(~x) on X, see [4], Proposition 2.1. Further, for
two line bundles OX(~x) and OX(~y) the space of homomorphisms is given by
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Hom(OX(~x),OX(~y)) = S~y−~x. In particular, if ~x = n~c +
∑t

i=1 εi~xi is in normal
form then we have dimkHom(O,OX(~x)) = n+1 if n ≥ 0 and Hom(O,OX(~x)) = 0
if n < 0.

The derived equivalenceDb(coh(X))
∼=→ Db(mod(Λ)) is given by a tilting sheaf

T on coh(X) of the form

T = O ⊕
⊕

1≤i≤t

O(~xi)⊕O(~c)

such that End(T ) ∼= Λ.
Denote by vect(X) (respectively coh0(X)) the category of vector bundles

(respectively finite length sheaves) on X. Moreover, let coh+(X) (respectively
coh−(X)) be the full subcategory of vect(X) formed by all vector bundles
whose indecomposable summands F satisfy the condition Ext1

X(T, F ) = 0
(respectively HomX(T, F ) = 0). Further, we denote by mod+(Λ) (mod0(Λ) ,
respectively mod−(Λ)) the full subcategories of mod(Λ) formed by all Λ-modules
whose indecomposable summands have positive rank (zero rank, respectively
negative rank).

Under the equivalence Db(coh(X))
∼=→ Db(mod(Λ)) the subcategory coh+(X)

(respectively coh0(X)) corresponds to mod+(Λ) (respectively mod0(Λ)) by means
of F 7→ HomX(T, F ) and coh−(X)[1] corresponds to mod−(Λ) by means of
F [1] 7→ Ext1

X(T, F ). Note that there are no non-zero morphisms from mod0(Λ)
to mod+(Λ), from mod−(Λ) to mod0(Λ) and from mod−(Λ) to mod+(Λ).

The Auslander-Reiten translation τX in coh(X) is given by shift with the du-
alizing element ~ω and gives rise to Serre duality Ext1

X(F,G) ' DHomX(G, τXF )
where D denotes the standard duality Homk(−, k)). For more details concern-
ing sheaves on weighted projective lines we refer to [4].

(2.2). Let X be a weighted projective line of arbitrary representation type.
A sheaf E ∈ coh(X) is called exceptional if EndX(E) is a division ring and
Ext1

X(E,E) = 0. It follows from [10] and [7] that EndX(E) ' k. Exceptional
sheaves on weighted projective lines were studied in [11]. We recall some basic
facts.

Definition (2.3). An exceptional vector bundle E on a weighted projective
line X is called omnipresent if for each non-zero finite length sheaf S there is
a non-zero map E → S.

Since each object in coh0(X) has finite length and since each vector bundle
maps to each simple sheaf of τX-order 1 it is sufficient to require in the definition
above that there is a non-zero map from E to each simple exceptional sheaf.

Each exceptional vector bundle E ∈ coh(X) ”is” omnipresent on some
weighted projective line Y of possibly smaller weight type. Indeed, assume
that E ∈ coh(X) is an exceptional vector bundle which is not omnipresent.
Then there is a simple exceptional sheaf S such that HomX(E,S) = 0. Since
there are no non-zero maps from finite length sheaves to vector bundles we
conclude by Serre duality Ext1

X(E,S) ' HomX(S, E(ω)) = 0 and therefore E
belongs to the left perpendicular category⊥S in the sense of Geigle and Lenzing
[5]. Now, the left perpendicular category with respect to all simple exceptional
finite length sheaves with the property above is equivalent to a category of
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coherent sheaves on a weighted projective line Y of smaller weight type [5],
section 9. Since the embedding coh(Y) ↪→ coh(X) is exact and rank preserving
E can be considered as an omnipresent exceptional vector bundle on Y. Now,
if E is in addition in coh+(Λ) then the module HomX(T,E) can be considered by
”shrinking of arrows” as an omnipresent exceptional module over the canonical
algebra corresponding to Y. More precisely, applying the functor HomX(−, E)
to the exact sequences

0→ O(j~xi)→ O((j + 1)~xi)→ Si,j → 0(2.4)

in [5], 2.5.2, one gets isomorphisms for the linear maps HomX(O((j+1)~xi), E)→
HomX(O(j~xi), E) for which HomX(E,Si,j) = 0. These isomorphisms can be
chosen as identities, the corresponding arrows are hence redundant.

Proposition (2.5). The rank r of an omnipresent exceptional vector bundle
on a weighted projective line X of type (2, 2, . . . , 2) with t entries satisfies the
inequality r ≥ t− 1.

This is special case of [11], Theorem 7.3.3.

Proposition (2.6). Let X be a weighted projective line of type (2, 2, . . . , 2)
with t entries. Then there is, up to duality and line bundle shift, a unique
omnipresent exceptional vector bundle of minimal rank t− 1 on X.

We recall briefly from [11] the construction of those bundles. For this we
use the concept of mutations of exceptional sequences (see [15], [10]). The
pair ε = (O(~c),O(−~ω)) is an exceptional pair in coh(X), i.e. both sheaves are
exceptional and HomX(O(−~ω),O(~c)) = 0 = Ext1

X(O(−~ω),O(~c)). Now by [11],
Theorem 7.3.6, the left mutation of ε yields an exceptional bundle E as the
middle term of an exact sequence

0→ O(−~ω)→ E → Ext1
X(O(~c),O(−~ω))⊗O(~c)→ 0.(2.7)

Dually, the right mutation of ε yields an exceptional bundle E′ as the middle
term of an exact sequence

0→ DExt1
X(O(~c),O(−~ω))⊗O(−~ω)→ E′ → O(~c)→ 0.(2.8)

where⊗ = ⊗k. In other terminology these exact sequences are called universal
extensions (compare section 3).

We have Ext1
X(O(~c),O(−~ω)) ∼= DHomX(O,O(~c + 2~ω)) and ~c + 2~ω = (t − 3)~c,

therefore the vector space Ext1
X(O(~c),O(−~ω)) has dimension t − 2. Thus

rk(E) = t − 1 = rk(E′). The bundles E and E′ are omnipresent and related
by vector bundle duality. For the first statement it is sufficient to apply for
each simple exceptional sheaf S the functor Hom(−,S) to the exact sequences
(2.7) and (2.8) and the result follows easily using the exact sequences (2.4) with
S = Si,j . It is proved in [11], Theorem 7.3.6, that each omnipresent exceptional
vector bundle on X is a line bundle shift of E or E′.
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3. Universal extensions

(3.1). In [12] we gave a description how the matrices of a module L over a
canonical algebra can be computed provided L is a middle term of a universal
extension in mod(Λ) and the matrices of the end terms are known. We recall
the main idea and specify to the situation of a canonical algebra Λ = kQ/I of
type (2, 2, . . . , 2), t entries, and defined by parameters λ3, . . . , λt.

Denote by Q0 the set of vertices and by Q1 the set of arrows of the quiver
Q. Let M and N modules over Λ. Define C0(M,N) =

⊕
i∈Q0

Homk(M(i),N(i))
and C1(M,N) =

⊕
(γ:i→j) Homk(M(j),N(i)) where the sum is taken over all

arrows γ ∈ Q1. Further, let δM,N : C0(M,N) → C1(M,N) be the map given
by δM,N ((fi)i∈Q0 ) = (fiM(γ)−N(γ)fj)γ∈Q1 . Denote by U(M,N) the subspace of
C1(M,N) consisting of all (fγ)γ∈Q1 satisfying the following

N(α1)fβ1 + fα1M(β1) + λi(N(α2)fβ2 + fα2M(β2)) = N(αi)fβi + fαiM(βi)

for i = 3, . . . , t.
Then the image =(δM,N ) is contained in U(M,N) and induces a map δM,N :

C0(M,N)→ U(M,N) and we have the following result:

Proposition (3.2) ([12], Proposition 3.4). Ext1
Λ(M,N) ∼= U(M,N)/=(δM,N ).

(3.3). Let (M,N) be an exceptional pair in coh(X), i.e. M and N are
exceptional objects in coh(X) and HomX(M,N) = 0 = Ext1

X(M,N) = 0. Assume
further that dimkExt1

X(M,N) = m. Moreover we suppose that M and N are
in mod+(Λ).

We consider universal extensions

0→ N → L→ Ext1
Λ(M,N)⊗M → 0,(3.4)

0→ DExt1
Λ(M,N)⊗N → L′ →M → 0(3.5)

in mod(Λ) in the sense of [1]. This means in our situation that the connecting
homomorphism of the functor HomΛ(M,−) applied to (3.4) (respectively of the
functor HomΛ(−,N) applied to (3.5)) is an isomorphism.

The modulesL andL′ are exceptional because they are obtained by applying
a left respectively right mutation to the exceptional pair (M,N) in the heredi-
tary category coh(X) [10]. In particular L and L′ are uniquely determined by
their dimension vectors [11], Theorem 4.4.1, thus by M and N .

If we assume that matrices for M and N are known we have the following
receipt to obtain matrices forL andL′. Take a basisF1, . . . , Fm of a complement
of =(δM,N ) in U(M,N). Then by Proposition (3.2) the residue classes of the
elements F1, . . . , Fm modulo the image of δM,N form a basis of Ext1

Λ(M,N).
Each Fs is of the form Fs = (f (s)

γ )γ∈Q1 where f (s)
γ : Mj → Ni is a matrix for the

arrow γ : i→ j (we identify linear maps with matrices).
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For each arrow γ : i→ j in Q1 there is a commutative diagram

0 // N(j)
(1

0) //

N(γ)
��

L(j) = N(j)⊕M(j)⊕m
(0 1) //

L(γ)
��

M(j)⊕m //

M(γ)
��

0

0 // N(i)
(1

0)
// L(i) = N(i)⊕M(i)⊕m

(0 1)
// M(i)⊕m // 0,

whereM(γ) = M(γ)⊕m,L(γ) =
(

N(γ) φγ
0 M(γ)

)
andφγ is a map fromM(j)⊕m

to N(i). We put
φγ =

(
f (1)
γ f (2)

γ . . . f (m)
γ

)
.

Dually, for each arrow γ : i→ j in Q1 there is a commutative diagram

0 // N(j)⊕m
(1

0) //

N(γ)
��

L′(j) = N(j)⊕m ⊕M(j)
(0 1) //

L′(γ)
��

M(j) //

M(γ)
��

0

0 // N(i)⊕m
(1

0)
// L′(i) = N(i)⊕m ⊕M(i)

(0 1)
// M(i) // 0,

where N(γ) = N(γ)⊕m, L′(γ) =
(

N(γ) φ′γ
0 M(γ)

)
and φ′γ is a map from M(j)

to N(i)⊕m. We put

φ′γ =


f (1)
γ

f (2)
γ

. . .
f (m)
γ

 .

Theorem (3.6). The modules L and L′ described by the matrices above are
exceptional.

For the exact sequence (3.5) the assertion was shown in [12], Proposition
3.7, in the general situation of an arbitrary canonical algebras. The other case
follows by dual arguments.

4. Construction of explicit matrices

(4.1). We start with the universal extension in coh(X)

0→ O → F → Ext1
X(O(~c + ~ω),O)⊗O(~c + ~ω)→ 0(4.2)

which is obtained from (2.7) by shift with ~ω (note that Ext1
X(O(~c + ~ω),O) '

Ext1
X(O(~c),O(−~ω))).

For an element ~x ∈ L(p) the shift of (4.2) with ~x yields an exact sequence

0→ O(~x)→ F (~x)→ Ext1
X(O(~c + ~ω),O)⊗O(~c + ~ω + ~x)→ 0(4.3)

which again is a universal extension. Similarly we get a universal extension

0→ DExt1
X(O(~c + ~ω),O)⊗O(~x)→ F ′(~x)→ O(~c + ~ω + ~x)→ 0.(4.4)
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Lemma (4.5). Let ~x ∈ L(p) be given in normal form ~x = n~c +
∑t

i=1 εi~xi,
εi ∈ {0, 1} and assume that exactly r of the entries εi are 1, where 0 ≤ r ≤ t.

(a) If n ≥ 0 and n + r − 1 ≥ 0 then O(~x),O(~c + ~ω + ~x) ∈ mod+(Λ) and
consequently F (~x), F ′(~x) ∈ mod+(Λ).

(b) If F (~x) ∈ mod+(Λ) (respectively F ′(~x) ∈ mod+(Λ)) then n + r − 1 ≥ 0,
hence n ≥ 1− t.

Proof. Observe first that a bundleG is in mod+(Λ) if and only if Ext1
X(O(~c), G)

= 0 because for each indecomposable direct summand O(~y) of T there is a
monomorphismO(~y) ↪→ O(~c). We further can assume, up to permutation, that
~x = n~c +

∑t
i=t−r+1 ~xi.

(a) By Serre duality we have Ext1
X(O(~c),O(~x)) ' DHomX(O(~x),O(~c + ~ω)) '

DHomX(O,O(~c + ~ω − ~x)). If ~x is given in normal form as indicated then the
normal form of the element ~c + ~ω − ~x equals (−1− n)~c +

∑t−r
i=1 ~xi. Thus n ≥ 0

implies HomX(O(~x),O(~c+ ~ω)) = 0. Further we have Ext1
X(O(~c),O(~c+ ~ω+~x)) '

DHomX(O(~c + ~ω + ~x),O(~c + ~ω)) ' DHomX(O,O(−~x)). The normal form
of −~x is (−n − r)~c +

∑t
i=t−r+1 ~xi. Since by assumption −n − r < 0 we

get HomX(O,O(−~x)) = 0. Applying the functor HomX(O(~c),−) to the exact
sequences (4.3) and (4.4) we obtain that F (~x) and F ′(~x) belong to mod+(Λ).

(b) Assume that F (~x) ∈ mod+(Λ) (respectively F ′(~x) ∈ mod+(Λ)) . Then
applying the functor HomX(O(~c),−) to the exact sequence (4.3) (respectively
(4.4)) we see that Ext1

X(O(~c),O(~c+~ω+~x)) = 0. We infer from Serre duality that
HomX(O,O(−~x)) = 0. Since the normal form of −~x is (−n − r)~c +

∑t
i=t−r+1 ~xi

it follows that −n− r < 0. �

(4.6). In addition to the matrices described in the introduction we will need
the following notations. We define

Zn+1,n+r =


0 · · · 0 1
0 · · · 0 0
. . .
0 · · · 0 0

 ∈Mn+1,n+r(k),

W (s)
n+1,n+r =


0 · · · 0 1 0 · · · 0
0 · · · 0 0 0 · · · 0
. . .
0 · · · 0 0 0 · · · 0

 ∈Mn+1,n+r(k)

both matrices have only one non-zero entry, for W (s)
n+1,n+r this is at the position

(1, s).
Take an element ~x ∈ L(p), again written in normal form ~x = n~c+

∑t
i=1 εi~xi,

and assume that n ≥ 0 and n + r − 1 ≥ 0. Moreover, we first assume that
ε1 = ε2 = 0. We suppose further that exactly r of the entries εi are 1, thus
without loss of generality, we can write ~x = n~c +

∑t
i=t−r+1 ~xi. The universal

extension (4.3) (respectively (4.4)) yield universal extensions in mod(Λ)

0→ N → L→M⊕ t−2 → 0,(4.7)

0→ N⊕ t−2 → L′ →M⊕ t−2 → 0,(4.8)
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where all terms belong to mod+(Λ) and dimkExt1
Λ(M,N) = m (recall that

N = HomX(T,O(~x)) and M = HomX(T,O(~x + ~c + ~ω))). Using the formula
for the dimension of the homomorphism spaces between line bundles we get
the dimension vectors for N and M , namely N(0) = kn+1, N(a) = kn for
a = 1, . . . , t−r,N(b) = kn+1, for b = t−r+1, . . . , t,N(c) = kn, andM(0) = kn+r,
M(a) = kn+r for a = 1, . . . , t − r, M(b) = kn+r−1 for b = t − r + 1, . . . , t,
M(c) = kn+r−1 (recall from (4.1) that n > 1 or n = 0 and r > 1). Explicit
matrices for rank 1 modules for arbitrary canonical algebras were described
in [12], Proposition 4.3. In our situation one can take the following:

N(α1) = Xn, N(α2) = Yn,

N(αa) = Vn(λa) for a = 3, . . . , t− r,
N(αb) = Un+1(λb) for b = t− r + 1, . . . , t,

N(βa) = In, for a = 1, . . . , t− r,
N(βb) = Xn for b = t− r + 1, . . . , t,

M(α1) = M(α2) = In+r,

M(αa) = Un+r(λa) for a = 3, . . . , t− r,
M(αb) = Vn+r−1(λb) for b = t− r + 1, . . . , t

M(βa) = Xn+r−1 for a = 1 and a = 3, . . . , t− r,
M(β2) = Yn+r−1

M(βb) = In+r−1 for b = t− r + 1, . . . , t.

In order to determine matrices for the modulesL andL′ as described in section
3 we have to compute a complement of =(δM,N ) in U(M,N).

We write an element of U(M,N) as a matrix of matrices F =


fα1 fβ1

fα2 fβ2

. . .
fαt fβt


and define the following

F3 =



0 0
0 0

Zn+1,n+r 0
0 0
. . .
. . .
. . .
. . .
0 0


, F4 =



0 0
0 0
0 0

Zn+1,n+r 0
0 0
. . .
. . .
. . .
0 0


, . . . , Ft−r =



0 0
0 0
0 0
. . .
0 0

Zn+1,n+r 0
0 0
. . .
0 0



Ft−r+1=



W (1)
n+1,n+r 0

0 0
W (1)

n+1,n+r 0
. . .

W (1)
n+1,n+r 0

W (1)
n+1,n+r−1 0
. . .

W (1)
n+1,n+r−1 0


, Ft−r+2 =



W (2)
n+1,n+r 0

0 0
W (2)

n+1,n+r 0
. . .

W (2)
n+1,n+r 0

W (2)
n+1,n+r−1 0
. . .

W (2)
n+1,n+r−1 0


, . . . , Ft =



W (r)
n+1,n+r 0

0 0
W (r)

n+1,n+r 0
. . .

W (r)
n+1,n+r 0

W (r)
n+1,n+r−1 0
. . .

W (r)
n+1,n+r−1 0


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(For i = 3, . . . , t−r eachFi has only one non-zero matrix, namely fαi = Zn+1,n+r.
Moreover, for s = 1, . . . , r in the element Ft−r+s we have non-zero matrices
for fαa , a = 1 and a = 3, . . . , t − r, namely fαa = W (s)

n+1,n+r, and for fαb ,
b = t − r + 1, . . . , t, namely fαb = W (s)

n+1,n+r−1. It is easily checked that
Fi ∈ U(M,N) for i = 3, . . . , t. We denote by H the linear hull of F3, . . . , Ft.

Lemma (4.9). H ∩ =(δM,N ) = 0.

Proof. Assume that a linear combination c3F3 + · · · + ctFt is of the form
δM,N (v) for some v ∈ C0(M,N). Then v is given by linear maps f0 : kn+r →
kn+1, fa : kn+r → kn, for a = 1, 2, . . . , t − r, fb : kn+r−1 → kn+1, for
b = t − r + 1, . . . , t, and fc : kn+r−1 → kn. Denote f0 = (si,j)1≤i≤ n+1, 1≤j≤ n+r,
fa = (f (a)

i,j )1≤i≤ n, 1≤j≤ n+r, for a = 1, . . . , t− r, fb = (f (b)
i,j )1≤i≤ n+1, 1≤j≤ n+r−1, for

b = t− r + 1, . . . , t, and fc = (ti,j)1≤i≤ n, 1≤j≤ n+r−1.
Then from δM,N (v) = c3F3 + · · ·+ ctFt we obtain the following equations

f0M(α1)−N(α1)f1 =ct−r+1W
(1)
n+1,n+r+ct−r+2W

(2)
n+1,n+r+. . .+ctW

(r)
n+1,n+r,(4.10)

f0M(α2)−N(α2)f2 = 0(4.11)

f0M(αa)−N(αa)fa =caZn+1,n+r+ct−r+1W
(1)
n+1,n+r+ct−r+2W

(2)
n+1,n+r+. . .(4.12)

· · ·+ ctW
(r)
n+1,n+r for a = 3, . . . , t− r,

f0M(αb)−N(αb)fb = ct−r+1W
(1)
n+1,n+r−1 + ct−r+2W

(2)
n+1,n+r−1 + . . .(4.13)

· · ·+ ctW
(r)
n+1,n+r−1 for b = t− r + 1, . . . , t,

faM(βa)−N(βa)fc = 0, for a = 1, . . . , t.(4.14)

Taking the matrices for M and N given in section 4.6 we show that all
coefficients ci are zero. First, for a = 1 and a = 3, . . . , t − r the equation
(4.14) simplifies to faXn+r−1 = fc which implies

f (a)
i,j = ti,j for 1 ≤ i ≤ n, 1 ≤ j ≤ n + r− 1.(4.15)

Similarly, again using (4.14) we obtain f2Yn+r−1 = fc and consequently

f (2)
i,j = ti,j−1 for 1 ≤ i ≤ n, 2 ≤ j ≤ n + r.(4.16)

Now, applying (4.10) we get f0 = Xnf1 + ct−r+1W
(1)
n+1,n+r + ct−r+2W

(2)
n+1,n+r +

· · · + ctW
(r)
n+1,n+r and therefore sn+1,j = 0 for j = 1, . . . , n + r , si,j = ti,j

for i = 2, . . . , n and j = 1, . . . , n + r − 1 , si,n+r = f (1)
i,n+r for i = 1, . . . , n,

s1,j = t1,j + ct−r+j for j = 1, . . . , r and s1,j = t1,j for j = r + 1, . . . , n + r− 1.
Using this and also (4.11), which simplifies to the equation f0 = Ynf2, it

follows by induction (from i = 0 to i = n− 1) that

f (2)
n−i,1 = 0 and tn−i,j = 0 for j = 1, . . . , n + r− 1− i.(4.17)

In particular, for i = n − 1 we obtain t1,j = 0 for j = 1, . . . , r. and we infer
that

cj = 0 for j = t− r + 1, . . . , t.(4.18)
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Similarly, it follows by induction (from i = 1 to i = n) that

f (1)
i,n+r = 0 and ti,j = 0 for j = r + i, . . . , n + r− 1.(4.19)

Thus we have shown that fc = 0 and f0 = 0. We prove now ca = 0 for
a = 3, . . . t − r. The equation (4.12) yields −V (λa)fa = caZn+1,n+r and from
(4.15) and the fact that fc = 0 we see that the in the matrix fa the first n+r−1
columns are zero. Then it follows from λa 6= 0 that ca = 0. This finishes the
proof. �

Theorem (4.20). The modules L and L′ as constructed in Theorem (3.6)
using the basis elements F3, . . . , Ft defined in section 4.6 are exceptional om-
nipresent and of rank t− 1.

Proof. Using Proposition (3.2) and the fact that dimkExt1
X(O(~c),O(−~ω+~c)) =

t−2 Lemma (4.9) implies thatH⊕=(δM,N ) = U(M,N). The elementsF3, . . . , Ft
form a basisH and therefore the modulesL andL′ are exceptional by Theorem
(3.6). Obviously we have rk(L) = t − 1 = rk(L′). Moreover L and L′ are
omnipresent because the bundles E and E′ in (2.7) and (2.8) are omnipresent.

�

Observe that Proposition (1.1) is a special case of Theorem (4.20), namely
for ~x = n ·~c, n ∈ N.

5. Further omnipresent exceptional modules

(5.1). In this chapter we assume that ~x = n~c +
∑t

i=1 εi~xi is in normal form
with n ≥ 0 but ε1 6= 0 or ε2 6= 0. We describe rank 1 modules N and M
corresponding respectively to line bundlesO(~x) andO(~c+~ω+~x) in the universal
extension (4.3) and (4.4) and give basis elements F3, . . . , Ft of a complement of
=(δM,N ) in U(M,N). In this way according to Theorem (3.6) we again define
omnipresent exceptional modules of rank t−1. The proofs thatH∩=(δM,N ) = 0
are similar to that of Lemma (4.9) and are left to the reader.

(5.2). case ε1 = 1, ε2 = 0.
We have, up to permutation of the arms of the hypelliptic algebra, ~x =

n~c + ~x1 +
∑t

i=t−r+1 ~xi for some r. In this case the module N differs from that
defined in 4.6 only by N(1) = kn+1, N(α1) = In+1 and N(β1) = Xn. Moreover
we have M(0) = kn+r+1, M(a) = kn+r+1 for a = 2, . . . , t − r, M(b) = kn+r

for b = 1 and b = t − r + 1, . . . , t, M(c) = kn+r. M(α1) = Xn+r, M(α2) = In+r,
M(αa) = Un+r+1(λa) for a = 3, . . . , t−r,M(αb) = Vn+r(λb) for a = t−r+1, . . . , t,
M(β2) = Yn+r, M(βa) = Xn+r for a = 3, . . . , t − r, M(βb) = Xn+r for b = 1 and
b = t− r + 1, . . . , t− r.

The elements F3, . . . , Ft−r are given as in 4.6 by replacing only the matrix
Zn+1,n+r by Zn+1,n+r+1 in each Fs and for s = 1, . . . , r we define for Ft−r+s
by fαa = W (s)

n+1,n+r+1 for a = 1 and a = 3, . . . , t − r and fαb = W (s)
n+1,n+r for

b = t− r + 1, . . . , t, fαa2
= 0 and fαβa = 0 for 1 ≤ a ≤ t.

(5.3). case ε1 = 0, ε2 = 1.
We can assume that ~x = n~c+~x2 +

∑t
i=t−r+1 ~xi for some r with 0 ≤ r ≤ t−2.

Then the modules N and M differ from that in (5.2) only by N(1) = kn,
N(2) = kn+1, N(α1) = Xn, N(α2) = In+1, N(β1) = In, N(β2) = Yn,
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M(1) = kn+r+1, M(2) = kn+r M(α1) = In+r+1, M(α2) = Yn+r, M(β1) = Xn+r,
M(β2) = In+r.

The elements F3, . . . , Ft−r are defined as in (5.2). We further define

Ft−r+1 =



W (2)
n+1,n+r+1 0

0 0
W (2)

n+1,n+r+1 0
. . .

W (2)
n+1,n+r+1 0
W (2)

n+1,n+r 0
. . .

W (2)
n+1,n+r 0


, Ft−r+2 =



W (3)
n+1,n+r+1 0

0 0
W (3)

n+1,n+r+1 0
. . .

W (3)
n+1,n+r+1 0
W (3)

n+1,n+r 0
. . .

W (3)
n+1,n+r 0


, . . . , Ft =



W (r+1)
n+1,n+r+1 0

0 0
W (r+1)

n+1,n+r+1 0
. . .

W (r+1)
n+1,n+r+1 0
W (r+1)

n+1,n+r 0
. . .

W (r+1)
n+1,n+r 0


.

We remark that 

W (1)
n+1,n+r+1 0

0 0
W (1)

n+1,n+r+1 0
. . .

W (1)
n+1,n+r+1 0
W (1)

n+1,n+r 0
. . .

W (1)
n+1,n+r 0


∈ =(δM,N ).

(5.4). case ε1 = 1, ε2 = 1.
We can assume that ~x = n~c+~x1 +~x2 +

∑t
i=t−r+1 ~xi for some r. The moduleN

differs from that in 4.6 only by N(i) = kn+1 for i = 1, 2, N(α1) = N(α2) = In+1,
N(β1) = Xn, N(β2) = Yn Moreover, we have M(0) = kn+r+2, M(a) = kn+r+2

for a = 3, . . . , t − r, M(b) = kn+r+1 for b = 1, 2 and b = t − r + 1, . . . , t,
M(c) = kn+r+1. M(α1) = Xn+r+1, M(α2) = Yn+r+1, M(αa) = Un+r+2(λa) for
a = 3, . . . , t− r, M(αb) = Vn+r+1(λb) for b = t− r+ 1, . . . , t, M(βa) = Xn+r+1 for
a = 3, . . . , t− r and M(βb) = In+r+1 for b = 1, 2 and b = t− r + 1, . . . , t− r,

The elements F3, . . . , Ft−r are defined as in 4.6 replacing only in each each
Fs the matrix Zn+1,n+r by Zn+1,n+r+2. We further define

Ft−r+1 =



W (2)
n+1,n+r+1 0

0 0
W (2)

n+1,n+r+2 0
. . .

W (2)
n+1,n+r+2 0

W (2)
n+1,n+r+1 0
. . .

W (2)
n+1,n+r+1 0


, Ft−r+2 =



W (3)
n+1,n+r+1 0

0 0
W (3)

n+1,n+r+2 0
. . .

W (3)
n+1,n+r+2 0

W (3)
n+1,n+r+1 0
. . .

W (3)
n+1,n+r+1 0


, . . . , Ft =



W (r+1)
n+1,n+r+1 0

0 0
W (r+1)

n+1,n+r+2 0
. . .

W (r+1)
n+1,n+r+2 0

W (r+1)
n+1,n+r+1 0
. . .

W (r+1)
n+1,n+r+1 0


.

(5.5). We prove Theorem (1.2). By (2.1) an omnipresent exceptional module
of rank t−1 over Λ corresponds to an omnipresent exceptional vector bundle of
rank t−1 over the associated weighted projective line X. Applying Proposition
(2.6) such a bundle is obtained by line bundle shift from the bundle E,
respectively E′, of the exaxt sequence (2.7), respectively (2.8). Now Lemma
(4.5) (b) says that if the shifted bundle F (~x) is in mod+(Λ) (respectively F ′(~x)
is in mod+(Λ)) and ~x is given in normal form ~x = n~c+

∑t
i=1 εi~xi then n ≥ 1− t.

Moreover we know from part (a) of Lemma (4.5) that if n > 0 or if n = 0 and
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r ≥ 1 then the bundles F (~x), F ′(~x) are in mod+(Λ) and are moreover middle
terms of universal extensions of objects from mod+(Λ). In these cases explicit
descriptions for their matrices are given in Theorem (4.20) and in (5.2)–(5.4).
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LARGE ANNIHILATORS IN CAYLEY-DICKSON ALGEBRAS II

This paper is dedicated to the memory of Guillermo Moreno, who
made many contributions to the study of Cayley-Dickson algebras.

DANIEL K. BISS, J. DANIEL CHRISTENSEN, DANIEL DUGGER,
AND DANIEL C. ISAKSEN

Abstract. We establish many previously unknown properties of zero-divisors
in Cayley-Dickson algebras. The basic approach is to use a certain splitting
that simplifies computations surprisingly.

1. Introduction

Cayley-Dickson algebras are non-associative finite-dimensional R-division
algebras that generalize the real numbers, the complex numbers, the quater-
nions, and the octonions. This paper is a sequel to [DDD], which explores some
detailed algebraic properties of these algebras.

Classically, the first four Cayley-Dickson algebras, i.e., R, C, H, and O, are
viewed as at least somewhat well-behaved, while the larger Cayley-Dickson
algebras are considered to be pathological. There are several different ways
of making this distinction. One difference is that the first four algebras do
not possess zero-divisors, while the higher algebras do have zero-divisors. Our
primary long-term goal is to understand the zero-divisors in as much detail as
possible. The specific purpose of this paper is to build directly on the ideas of
[DDD] about zero-divisors with large annihilators.

Our motivation for studying zero-divisors is their potential for useful ap-
plications in topology; see [Co] for more details. The modern study of Cayley-
Dickson algebras has also been taken up in the papers [A], [ES], [M1], [M2],
and [M3].

Let An be the Cayley-Dickson algebra of dimension 2n. The central idea of
the paper is to use a certain additive splitting of An (as expressed indirectly
in Definition (3.1)) to simplify multiplication formulas. Multiplication does
not quite respect the splitting, but it almost does (see Proposition (4.1)).
Theorem (4.5) is the technical heart of the paper; it supplies expressions for
multiplication of elements of a codimension 4 subspace of An that are simpler
than one might expect.

These simple multiplication formulas lead to detailed information about
zero-divisors and their annihilators. Section (5) takes a straightforward
approach: just write out equations and solve them as explicitly as possible.
Our simple multiplication formulas make this feasible. This leads to Theorem
(5.10), which almost completely computes the dimension of the annihilator of
any element. There are two ways in which the theorem fails to be complete.

2000 Mathematics Subject Classification: 17A20.
Keywords and phrases: Cayley Dickson-algebras, zero-divisor.
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First, it only treats annihilators of elements in a codimension 4 subspace ofAn.
Second, rather than determining the dimension of an annihilator precisely, it
gives two options, which differ by 4.

We currently have no solution to the first problem. However, in this regard,
it was already known that one codimension 2 slice is easy to deal with, so the
restriction is really only codimension 2. We intend to address this question in
future work.

The second problem has a partial solution in Theorems (6.7) and (6.12),
which distinguish between the two possible cases. We find that the answer
for An+1 depends inductively not just on an understanding of zero-divisors in
An but also on a detailed understanding of annihilators in An (see Definition
(6.1)). Therefore, the description in these theorems is not as explicit as we
might like.

Fortunately, we have a complete understanding of zero-divisors and their
annihilators in A4 [KY], Section 3.2, [M1], Corollary 2.14, [DDD], Sections 11
and 12. This allows us to make calculations about zero-divisors in A5 that are
not yet possible for An with n ≥ 6. Section (7) contains the details of these
calculations in A5. Consequently, even though we have not made this result
explicit in this article, it is possible to completely understand in geometric
terms the zero-divisors in a codimension 4 subspace of A5. This goes a long
way towards completely describing the zero-divisors of A5.

In addition to the concrete results in Section (7) about A5, Section (8)
gives a number of results about spaces of zero-divisors in An for arbitrary
n. Consider for a moment only the zero-divisors whose annihilators have
dimension differing from the maximum possible dimension by a fixed constant.
We show in Theorem (8.12) that, in a certain sense, the space of such zero-
divisors does not depend on n. This is a kind of stability result for zero-divisors
with large annihilators; it was alluded to in [DDD], Remark 15.8. The basic
approach is to use the previous calculations of dimensions of annihilators,
together with bounds on the dimensions of annihilators from [DDD] (see
Theorem (2.3.2)).

The paper contains a review in Section (2) of the key properties of Cayley-
Dickson algebras that we will use. Only some of the material is original; it
quotes many results from [DDD] that will be relevant here.

We make one further remark about generalities. Many of our results have
hypotheses that eliminate consideration of the classical algebras R, C, H, and
O, even though sometimes this is not strictly necessary. From the perspective
of this paper, these low-dimensional algebras behave significantly differently
thanAn for n ≥ 4. We eliminate them to avoid awkward but easy special cases.

(1.1) Statement of Results. We now present a summary of our technical
results.

Recall that An is additively isomorphic to An−1 × An−1, so elements of An

are expressions (a, b), where a and b belong to An−1. See Section (2) for a
multiplication formula with respect to this notation. An is also isomorphic to
An−1 ×An−1 as a real inner product space.

The element in = (0, 1) of An has many special properties that will be
described below. Let Cn be the linear span of 1 = (1, 0) and in; it is a subalgebra
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of An isomorphic to the complex numbers. Let Hn+1 be the linear span of (1, 0),
(0, 1), (in, 0), and (0, in); it is a subalgebra ofAn+1 isomorphic to the quaternions.

It turns out that An is naturally a Hermitian inner product space. The
Hermitian inner product of two elements a and b is the orthogonal projection
of ab∗ onto Cn. We say that two elements a and b are C-orthogonal if their
Hermitian inner product is zero.

Results of [DDD] suggest that we should pay particular attention to ele-
ments of An+1 of the form (a,±ina) with a in the orthogonal complement C⊥n of
Cn. Every element of the orthogonal complement H⊥n+1 of Hn+1 can be written
uniquely in the form

1√
2

(
a,−ina

)
+

1√
2

(
b, inb

)
,

where a and b belong to C⊥n . We use the notation {a, b} for this expression. We
insert the ungainly scalars 1√

2
in order to properly normalize some formulas

that appear later. We would like to consider the product of two elements {a, b}
and {x, y} of H⊥n+1.

Proposition (1.1.1). Let a, b, x, and y belong to C⊥n , and suppose that a
and b are C-orthogonal to both x and y. Then

{a, b}{x, y} =
√

2{ax, by}.

This result is proved at the beginning of Section (4). The formula is re-
markably simple, but it is not completely general because of the orthogonality
assumptions on a, b, x, and y. Most of Section (4) is dedicated to generalizing
this formula and understanding the resulting error terms.

Recall that the annihilator Ann(x) of an element x of An is the set of all
elements y such that xy = 0. Proposition (1.1.1) is the key computational step
in the following theorem about annihilators, which is proved in Section (5).

Theorem (1.1.2). Let n ≥ 3, and let a and b be non-zero elements of C⊥n .
Then the dimension of the annihilator of {a, b} is equal to dim Ann a+dim Ann b
or dim Ann a + dim Ann b + 4.

In order to distinguish between the two cases of Theorem (1.1.2), we need
the following definition.

Definition (1.1.3). The D-locus is the space of all elements {a, b} of An+1

with a and b in C⊥n such that

(1) a and b are C-orthogonal,
(2) a and Ann(b) are orthogonal, and
(3) b and Ann(a) are orthogonal.

The following result is proved in Section (6).

Theorem (1.1.4). Let a and b be non-zero elements of C⊥n . If {a, b} does not
belong to the D-locus in An+1, then the dimension of the annihilator of {a, b}
is dim Ann a + dim Ann b. If {a, b} belongs to the D-locus in An+1, then the
dimension of the annihilator of {a, b} is dim Ann a + dim Ann b + 4.
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For example, if neither a nor b are zero-divisors inAn and a and b are not C-
orthogonal, then {a, b} is not a zero-divisor. If neither a nor b are zero-divisors
in An but are C-orthogonal, then {a, b} does belong to the D-locus in An+1 and
is thus a zero-divisor. On the other hand, the theorem also shows that if a or
b is a zero-divisor, then {a, b} is a zero-divisor regardless of whether or not it
belongs to the D-locus. In summary, if a and b are C-orthogonal, then {a, b} is
always a zero-divisor.

In Section (7), we explicitly work out the meaning of Definition (1.1.3) when
a and b belong to A4. The only difficult case occurs when both a and b have
non-trivial annihilators, i.e., when both a and b are zero-divisors in A4. This
case is explicitly handled in Theorem (7.5).

Finally, Section (8) provides some general results about zero-divisors with
very large annihilators. Recall from [DDD] that the largest annihilators in An

are (2n − 4n + 4)-dimensional.

Definition (1.1.5). Let n ≥ 4, and let c be a multiple of 4 such that
0 ≤ c ≤ 2n − 4n. The space T cn is the space of elements of unit length in
An whose annihilators have dimension at least (2n − 4n + 4)− c.

In other words, T c
n consists of the zero-divisors with annihilators whose

dimensions are within c of the maximum.

Theorem (1.1.6). Let n ≥ 4, and let c be a multiple of 4 such that 0 ≤ c ≤
2n − 4n. If n ≥ c

4 + 4, then T c
n+1 is equal to the space of elements of the form

{a, 0} or {0, a} such that a belongs to T c
n .

Theorem (1.1.6), which is proved in Section (8), tells us that for sufficiently
large n, the space T c

n+1 is diffeomorphic to the disjoint union of two copies of
T c
n . The case c = 0 was proved in [DDD], Theorem 15.7. An interesting open

question is to determine explicitly the geometry of a connected component of
T c
n for n sufficiently large; this connected component depends only on c.

2. Cayley-Dickson algebras

The Cayley-Dickson algebras are a sequence of non-associative R-
algebras with involution. See [DDD] for a full explanation of their basic prop-
erties.

These algebras are defined inductively. We start by defining A0 to be R
with trivial conjugation. Given An−1, the algebra An is defined additively to
be An−1 ×An−1. Conjugation in An is defined by

(a, b)∗ = (a∗,−b),

and multiplication is defined by

(a, b)(c, d) = (ac − d∗b, da + bc∗).

One can verify directly from the definitions thatA1 is isomorphic to the com-
plex numbers C; A2 is isomorphic to the quaternions H; and A3 is isomorphic
to the octonions O.

We implicitly view An−1 as the subalgebra An−1 × 0 of An.
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(2.1) Complex structure. The element in = (0, 1) of An enjoys many special
properties. One of the primary themes of our long-term project is to fully
exploit these special properties.

Let Cn be the R-linear span of 1 = (1, 0) and in. It is a subalgebra of An

isomorphic to C.

Lemma (2.1.1) (DDD, Proposition 5.3). Under left multiplication, An is a
Cn-vector space. In particular, if α and β belong to Cn and x belongs toAn, then
α(βx) = (αβ)x.

As a consequence, the expression αβx is unambiguous; we will usually
simplify notation in this way.

The real part Re(x) of an element x of An is defined to be 1
2 (x + x∗), while

the imaginary part Im(x) is defined to be x − Re(x).
The algebraAn becomes a positive-definite real inner product space when we

define 〈a, b〉R = Re(ab∗) [DDD], Proposition 3.2. If a and b are imaginary and
orthogonal, then ab is imaginary. Hence, ba = b∗a∗ = (ab)∗ = −ab. In other
words, orthogonal imaginary elements anti-commute. A simple calculation
shows that aa∗ and a∗a are both equal to 〈a, a〉R for all a in An [DDD],
Lemma 3.6.

We will need the following slightly technical result.

Lemma (2.1.2). Let x and y be elements ofAn such that y is imaginary. Then
x and xy are orthogonal.

Proof. We wish to show that Re(x(xy)∗) equals zero. This equals−Re((xx∗)y)
by [DDD], Lemmas 2.6 and 2.8, which is zero because y is imaginary and
because xx∗ is real.

The real inner product allows us to define a positive-definite Hermitian
inner product on An by setting 〈a, b〉C to be the orthogonal projection of ab∗

onto the subspace Cn of An [DDD], Proposition 6.3. We say that two elements
a and b are C-orthogonal if 〈a, b〉C = 0.

We will frequently consider the subspace C⊥
n of An; it is the orthogonal

complement of Cn (with respect either to the real or to the Hermitian inner
product). Note that C⊥n is a Cn-vector space; in other words, if a belongs to C⊥n
and α belongs to Cn, then αa also belongs to C⊥n [DDD], Lemma 3.8.

Lemma (2.1.3) ([DDD], Lemmas 6.4 and 6.5). If a belongs to C⊥n , then left
multiplication by a is Cn-conjugate-linear in the sense that a · αx = α∗ · ax for
any x in An and any α in Cn. Moreover, left multiplication is anti-Hermitian
in the sense that 〈ax, y〉C = −〈x, ay〉∗C.

Similar results hold for right multiplication by a. See also [M2], Lemma
2.1, for a different version of the claim about conjugate-linearity.

The conjugate-linearity of left and right multiplication is fundamental to
many later calculations. To emphasize this point, we provide some computa-
tional consequences. The next lemma can be interpreted as a restricted kind
of bi-conjugate-linearity for multiplication.

Lemma (2.1.4). Let a and b be C-orthogonal elements of C⊥n , and let α and
β belong to Cn. Then αa · βb = α∗β∗ · ab.
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Proof. By left conjugate-linearity, αa · βb = β∗(αa · b). Use right conjugate-
linearity twice to compute that β∗(αa · b) = β∗(ab · α). Because a and b are
C-orthogonal, ab belongs to C⊥n . Therefore, β∗(ab · α) = β∗(α∗ · ab) by left
conjugate-linearity again. Finally, this equals α∗β∗ · ab by Lemma (2.1.1).

Norms of elements in An are defined with respect to either the real or
Hermitian inner product: | a |=

√
〈a, a〉R =

√
〈a, a〉C =

√
aa∗; this makes

sense because aa∗ is always a non-negative real number [DDD], Lemma 3.6.
Note also that |a |=|a∗ | for all a. We will frequently use that a2 = − |a |2 if a
is an imaginary element of An.

Lemma (2.1.5). Let a belong to C⊥n , and let α and β belong to Cn. Then
αa · βa = − |a |2 αβ∗.

Proof. Follow the same general strategy as in the proof of Lemma (2.1.4).
However, instead of using that ab belongs to C⊥n , use that a2 = − | a |2 is
real.

One consequence of Lemma (2.1.5) is that | αa |=| α || a | if α belongs to Cn

and a belongs to C⊥n . This follows from the computation αa · αa = − |a |2 αα∗.

(2.2) The subalgebra Hn.

Definition (2.2.1). Let Hn be the R-linear span of the elements 1, in, in−1,
and in−1in of An.

The notation reminds us that Hn is a subalgebra isomorphic to the quater-
nions. Many of the results that follow refer to Hn and its orthogonal comple-
ment H⊥n .

In terms of the product An = An−1 ×An−1, Hn is the R-linear span of (1, 0),
(0, 1), (in−1, 0), and (0, in−1). By inspection, Hn is a Cn-linear subspace ofAn. It
is also equal to Cn−1×Cn−1. Also, H⊥n and C⊥n−1×C⊥n−1 are equal as subspaces
of An.

(2.3) Zero-divisors and annihilators. A zero-divisor is a non-zero ele-
ment a of An such that there exists another non-zero element b in An with
ab = 0. The annihilator Ann(a) of a is the set of all elements b such that
ab = 0. In other words, Ann(a) is the kernel of left multiplication by a.

Lemma (2.3.1) ([M1], Corollary 1.9 and [DDD], Lemma 9.5). If a is a zero-
divisor in An, then a belongs to C⊥n .

Theorem (2.3.2) ([DDD], Theorem 9.8 and Proposition 9.10). The dimen-
sion of any annihilator in An is a multiple of 4 and is at most 2n − 4n + 4.

See also [M1], Corollary 1.17, for another proof of the first claim.

Lemma (2.3.3). Let a belong to C⊥n . For any b in An, the product ab is
orthogonal to Ann(a).

Proof. Let c belong to Ann(a). Use Lemma (2.1.3) to deduce that 〈ab, c〉C =
−〈b, ac〉∗C. This equals zero because ac = 0.

Let Im(a) be the image of left multiplication by a. Lemma (2.3.3) implies
that Im(a) is the orthogonal complement of Ann(a) in An.
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(2.4) Projections. We still need a few technical definitions and results. We
provide complete proofs for the following results because their proofs do not
already appear elsewhere.

Definition (2.4.1). For any a in An, let πC(a) be the orthogonal projection of
a onto Cn, and let π⊥

C (a) be the orthogonal projection of a onto C⊥n .

By definition, πC(ab∗) equals 〈a, b〉C for any a and b.

Lemma (2.4.2). Let a and b belong to An. Let b = b′ + b′′, where b′ is
the C-orthogonal projection of b onto the C-linear span of a and where b′′ is
the C-orthogonal projection of b onto the C-orthogonal complement of a. Then
πC(ab) = ab′, and π⊥C (ab) = ab′′. Similarly, πC(ba) = b′a, and π⊥C (ba) = b′′a.

Proof. Note that ab = ab′ + ab′′. The first term belongs to Cn by Lemma
(2.1.5), while the second term belongs to C⊥n because a and b′′ are C-orthogonal.
Similarly, ba = b′a+ b′′a, where b′a belongs to Cn and b′′a belongs to C⊥n .

Corollary (2.4.3). For any a and b in C⊥n , πC(ab) = πC(ba)∗ and π⊥C (ab) =
−π⊥C (ba).

Proof. Write b = b′ + b′′, where b′ is the C-orthogonal projection of b onto
a and where b′′ is the C-orthogonal projection of b onto the C-orthogonal
complement of a. By Lemma (2.4.2), πC(ab) = ab′ and πC(ba) = b′a. It
follows from Lemma (2.1.5) that (ab′)∗ = b′a. This finishes the first claim.

For the second claim, Lemma (2.4.2) implies that π⊥C (ab) = ab′′ and
π⊥C (ba) = b′′a. Because a and b′′ are imaginary and orthogonal, ab′′ =
−b′′a.

Corollary (2.4.4). Let a belong to An, and let α belong to Cn. Then
πC(αa) = απC(a) = πC(aα).

Proof. This is an immediate consequence of Lemma (2.4.2) and the fact that
Cn is commutative.

One way to interpret Corollary (2.4.4) is that πC is a C-linear map.

Corollary (2.4.5). Let a and b belong to An. Then ab belongs to Cn if and
only if b belongs to the C-linear span of a and Ann(a).

Proof. In the notation of Lemma (2.4.2), observe that ab belongs to Cn if
and only if ab′′ is zero.

3. Notation

Definition (3.1). For any a and b in C⊥n , let {a, b} be the element

1√
2

(
a + b, in(−a + b)

)
of An+1.
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Whenever we write an expression of the form {a, b}, the reader should
automatically assume that a and b belong to C⊥n ; nevertheless, we have tried
to be explicit with this assumption. The reason for the factors 1√

2
will show

up in Lemma (3.5) and Lemma (4.1.1), where we study the metric properties
of the notation {a, b}.

Lemma (3.2). Let (x, y) belong to H⊥n+1, i.e., let x and y belong to C⊥n . Then

(x, y) =
1√
2
{x + iny, x − iny}.

The subspace H⊥n+1 of An+1 is equal to the subspace of all elements of the form
{a, b} with a and b in C⊥n .

Proof. For the first claim, check the definition. This immediately implies
that every element of H⊥n+1 can be written in the form {a, b} for some a and b

in C⊥n .
On the other hand, let a and b belong to C⊥n . Then a+ b and in(−a+ b) also

belong to C⊥n , so
(
a + b, in(−a + b)

)
belongs to H⊥n+1.

Recall that left multiplication makesAn+1 into a Cn+1-vector space. We now
describe multiplication by elements Cn+1 with respect to the notation {a, b}.

Definition (3.3). If α belongs to Cn, then α̃ is the image of α under the R-
linear map Cn → Cn+1 that takes 1 to 1 and in to in+1.

Lemma (3.4). Let a and b belong to C⊥n , and let α belong to Cn. Then

α̃{a, b} = {α∗a, αb}.

Proof. Compute directly that in+1{a, 0} = {−ina, 0} and in+1{0, b} =
{0, inb}.

Lemma (3.5). For any a and b in C⊥n ,

|{a, b}|2=|a |2 + |b |2 .

Proof. According to Definition (3.1), |{a, b}|2 equals

1
2

(
|a + b |2 + | in(−a + b) |2

)
.

As a consequence of Lemma (2.1.5), this expression equals

1
2

(
|a + b |2 + |−a + b |2

)
,

which simplifies to |a |2 + |b |2 by the parallelogram law.

The absence of scalars in the above formula is the primary reason that the
scalar 1√

2
appears in Definition (3.1).
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4. Multiplication Formulas

This section is the technical heart of the paper. We establish formulas for
multiplication with respect to the notation of Section (3). The rest of the paper
consists of many applications of these formulas.

Proposition (4.1). Let a, b, x, and y belong to C⊥n , and suppose that a and
b are both C-orthogonal to x and y. Then

{a, b}{x, y} =
√

2{ax, by}.

Proof. We begin by computing that {a, 0}{x, 0} equals

1
2

(
ax + inx · ina,−inx · a + ina · x

)
.

Apply Lemma (2.1.4) to simplify this expression to
1
2

(
ax − xa, in · xa − in · ax

)
.

Note that ax = −xa because a and x are imaginary and orthogonal, so this
expression further simplifies to

(ax,−in · ax),

which equals
√

2{ax, 0}. A similar calculation shows that

{0, b}{0, y} =
√

2{0, by}.
Next we compute that {a, 0}{0, y} equals

1
2

(
ay − iny · ina, iny · a + ina · y

)
.

Again use Lemma (2.1.4) to simplify to
1
2

(
ay + ya,−in · ya − in · ay

)
,

but this equals zero because ay = −ya.
A similar calculation shows that {0, b}{x, 0} = 0.

Remark (4.2). Proposition (4.1) already gives a sense of how easy it is to
express certain zero-divisors using the notation {a, b}. For example, the
product {a, 0}{0, y} is always zero as long as a and y are C-orthogonal elements
of C⊥n .

Because of the orthogonality hypotheses on a, b, x, and y, Proposition (4.1)
does not quite describe how to multiply arbitrary elements of H⊥n+1. Therefore,
we need more multiplication formulas to handle various special cases.

Lemma (4.3). Let a belong to C⊥n . Then

{0, a}{a, 0} = −{a, 0}{0, a} =|a |2 (0, in).

Proof. Compute that {0, a}{a, 0} equals

1
2

(
a2 − ina · ina,−2ina · a

)
.

Lemma (2.1.5) implies that the first coordinate is zero and that the second
coordinate is |a |2 in.
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Finally, observe that {0, a} and {a, 0} are orthogonal and imaginary; there-
fore they anti-commute.

We write π̃C for the composition of the projection An → Cn with the map
Cn → Cn+1 described in Definition (3.3).

Corollary (4.4). Leta and b be Cn-linearly dependent elements of C⊥n . Then

(1) {a, 0}{b, 0} = π̃C(ab)∗.
(2) {0, a}{0, b} = π̃C(ab).
(3) {a, 0}{0, b} = π̃C(ab) · (0, in).
(4) {0, a}{b, 0} = −π̃C(ab)∗ · (0, in).

Proof. Since b belongs to the Cn-linear span of a, we may write b = αa for
some α in Cn. Lemma (2.1.5) implies that ab equals −|a|2α∗, so π̃C(ab) equals
−|a|2α̃∗.

On the other hand, {a, 0}{αa, 0} equals {a, 0} · α̃∗{a, 0} by Lemma (3.4),
which also equals −|{a, 0}|2α̃ by Lemma (2.1.5). Finally, this equals −|a|2α̃ by
Lemma (3.5). This establishes formula (1). The calculation for formula (2) is
similar.

Next, {a, 0}{0, αa} equals {a, 0} · α̃{0, a} by Lemma (3.4), which also equals
α̃∗ ·{a, 0}{0, a} by Lemma (2.1.4). Finally, this equals−|a|2α̃∗(0, in) by Lemma
(4.3), establishing formula (3). The calculation for formula (4) is similar.

We are now ready to give an explicit formula for multiplication of arbitrary
elements of H⊥n+1.

Theorem (4.5). Let a, b, x, and y belong to C⊥n . Then {a, b}{x, y} equals
√

2{π⊥C (ax), π⊥C (by)}+ π̃C
(
xa + by

)
+ π̃C

(
ay − xb

)
(0, in).

Proof. We begin by computing {a, 0}{x, 0}. Write x = x′ + x′′, where x′

belongs to the C-linear span of a and x′′ is C-orthogonal to a. Then

{a, 0}{x, 0} = {a, 0}{x′, 0}+ {a, 0}{x′′, 0}.

The first term equals π̃C(ax′)∗ by Corollary (4.4), which in turn equals π̃C(x′a)
by Corollary (2.4.3). This is the same as π̃C(xa) by Lemma (2.4.2). The second
term equals

√
2{ax′′, 0} by Proposition (4.1), which equals

√
2{π⊥C (ax), 0} by

Lemma (2.4.2). The computation for {0, b}{0, y} is similar.
Now consider the product {a, 0}{0, y}. Write y = y′ + y′′, where y′ belongs

to the C-linear span of a and y′′ is C-orthogonal to a. Then

{a, 0}{0, y} = {a, 0}{0, y′}+ {a, 0}{0, y′′}.

The first term equals π̃C(ay′) · (0, in) by Corollary (4.4), which is the same as
π̃C(ay) · (0, in) by Lemma (2.4.2). The second term equals zero by Proposition
(4.1). The computation for {0, b}{x, 0} is similar.

Remark (4.6). The three terms in the formula of Theorem (4.5) are orthog-
onal. The first term belongs to H⊥n+1; the second term belongs to Cn+1; and the
third term belongs to Hn+1 ∩ C⊥n+1, which is also the C-linear span of (0, in) or
the R-linear span of (in, 0) and (0, in).
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Theorem (4.5) shows how to compute the product of two elements of H⊥n+1.
On the other hand, it is easy to multiply elements of Hn+1; this is just
ordinary quaternionic arithmetic. In order to have a complete description
of multiplication onAn+1, we need to explain how to multiply elements of Hn+1

with elements of H⊥n+1.
Lemma (3.4) shows how to compute the product of an element of H⊥n+1 and

an element of Cn+1. It remains only to compute the product of an element
of H⊥n+1 and an element of Hn+1 ∩ C⊥n+1, i.e., the C-linear span of (0, in). The
following lemma makes this computation.

Lemma (4.7). Let a and b belong to C⊥n . Then

(0, in){a, b} = −{a, b}(0, in) = {b,−a}.

Proof. Compute directly that (0, in){a, 0} = {0,−a} and that (0, in){0, b} =
{b, 0}. Also, use that orthogonal imaginary elements anti-commute.

(4.1) Inner product computations.

Lemma (4.1.1). Let a, b, x, and y belong to C⊥n . Then

〈{a, b}, {x, y}〉C = 〈a, x〉∗C + 〈b, y〉C.

Proof. We need to compute the projection of the product −{a, b}{x, y} onto
Cn+1. Theorem (4.5) immediately shows that this projection equals −π̃C(xa +
by), which is equal to 〈x, a〉C + 〈b, y〉C. Finally, recall that 〈x, a〉C = 〈a, x〉∗C.

Corollary (4.1.2). Let a, b, x, and y belong to C⊥n . Then

〈{a, b}, {x, y}〉R = 〈a, x〉R + 〈b, y〉R.

Proof. Use Lemma (4.1.1), recalling that the real inner product equals the
real part of the Hermitian inner product.

(4.2) Subalgebras. Suppose that a and b are C-orthogonal elements of C⊥n
that both have norm 1. Suppose also that a and b satisfy the equations
a · ab = −λb and b · ba = −λa for some non-zero real number λ. These
equations guarantee that a and b generate a 4-dimensional subalgebra of An;
the subalgebra is isomorphic to H when λ = 1. This remark concerns the
possible values for λ, and therefore addresses the classification problem for
4-dimensional subalgebras of Cayley-Dickson algebras. See [CD], Section 7
for detailed information on 4-dimensional subalgebras of A4. In particular, in
A4, the only possible values for λ are 1 and 2 [CD], Theorem 7.1.

Given a and b as in the previous paragraph, compute that

1√
2
{a, b} · 1√

2
{b,−a} =

1√
2
{ab,−ba}+ (0, in)

using Theorem (4.5). Next, compute that

1√
2
{a, b}

(
1√
2
{ab,−ba}+ (0, in)

)
= −λ + 1√

2
{b,−a}

using Proposition (4.1) and Lemma (4.7). This uses that a and ab are C-
orthogonal by Lemma (2.1.2) and also the equations involving a, b, and λ. A
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similar calculation can be performed with the roles of 1√
2
{a, b} and 1√

2
{b,−a}

switched.
We have shown that 1√

2
{a, b} and 1√

2
{b,−a} satisfy the same equations

as a and b do, except that λ is replaced by λ + 1. Using the argument of
[CD], Theorem 7.1 (which can be applied even when n > 4), it follows that for
every positive integer r and every sufficiently large n (depending on r), there
is a subalgebra of An that is isomorphic to the non-associative algebra with
R-basis {1, x, y, z} subject to the multiplication rules

x2 = y2 = z2 = −1, xy = −yx = z
√
r, yz = −zy = x

√
r, zx = −xz = y

√
r.

This algebra is isomorphic to H when r = 1.
Another consequence of our multiplication formulas is the following obser-

vation about sets of mutually annihilating elements.

Lemma (4.2.1). Let n ≥ 3. If C⊥n contains two sets {x1, . . . , x2n−3} and
{y1, . . . , y2n−3} of size 2n−3 such that xixj = 0 = yiyj for all i 6= j and each
xi is C-orthogonal to each yj , then the product {xi, 0}{xj , 0} is zero when i 6= j,
and {xi, 0}{0, yj} is zero for all i and j.

Proof. Compute with Proposition (4.1).

Corollary (4.2.2). The space C⊥n contains 2n−3 distinct non-zero elements
such that the product of any two distinct elements is zero.

Proof. We will actually prove the stronger result that C⊥n contains two
sets {x1, . . . , x2n−3} and {y1, . . . , y2n−3} of distinct non-zero elements such that
xixj = 0 = yiyj for all i 6= j and each xi is C-orthogonal to each yj .

The proof is by induction on n, using Lemma (4.2.1). The base case n = 3
is trivial; it just calls for the existence of two orthogonal elements of the six-
dimensional subspace C⊥3 of A3.

Now suppose for induction that the sets {x1, . . . , x2n−3} and {y1, . . . , y2n−3}
exist in An. Consider the subset of An+1 consisting of all elements of the form
{xi, 0} or {0, yj}. There are 2n−2 such elements, and Lemma (4.2.1) implies
that the product of any two distinct such elements is zero.

Also consider the subset ofAn+1 consisting of all elements of the form {yj , 0}
or {0, xi}. Again, there are 2n−2 such elements, and the product of any two
distinct such elements is zero.

Finally, by Lemma (4.1.1) and the induction assumption, the elements
described in the previous two paragraphs are C-orthogonal.

Corollary (4.2.2) is also relevant to subalgebras of Cayley-Dickson algebras.
The R-linear span of 1 together with a set of mutually annihilating elements
is a subalgebra of An. These subalgebras are highly degenerate in the sense
that xy = 0 for any pair of orthogonal imaginary elements. Corollary (4.2.2)
implies that An contains such a subalgebra of dimension 1 + 2n−3. In fact, we
have shown that An contains two such subalgebras whose imaginary parts are
C-orthogonal.

Question (4.2.3). Does An contain a degenerate subalgebra of dimension
larger than 1 + 2n−3?
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5. Annihilation in H⊥n+1

In this section, we apply the multiplication formulas of Section (4) to
consider zero-divisors in An+1.

Proposition (5.1). Let a, b, x, and y belong to C⊥n . Then {a, b}{x, y} = 0 if
and only if

(i) π⊥C (ax) = 0,
(ii) π⊥C (by) = 0,

(iii) xa + by = 0, and
(iv) πC(ay − xb) = 0.

Proof. Parts (i), (ii), and (iv) are immediate from Theorem (4.5). It follows
from (i) and (ii) that πC(xa + by) = xa + by. Therefore, part (iii) also follows
from Theorem (4.5).

The conditions of Proposition (5.1) are redundant. For example, condition
(i) follows from conditions (ii) and (iii). However, it is more convenient to
formulate the proposition symmetrically.

Proposition (5.2). Let n ≥ 3. Let a and b be non-zero elements of C⊥n . Then
H⊥n+1 ∩ Ann{a, b} is equal to the space of all {αa + x, βb + y} such that:

(1) x belongs to Ann(a), and y belongs to Ann(b);
(2) α and β belong to Cn;
(3) |a |2 α+ |b |2 β∗ = 0; and
(4) (β∗ − α)πC(ab) + πC(ay − xb) = 0.

Proof. We want to solve the equation {a, b}{z, w} = {0, 0} under the as-
sumption that z andw belong to C⊥n (see Lemma (3.2)). Using Proposition (5.1),
this is equivalent to solving the four equations

π⊥C (az) = 0(5.3)

π⊥C (bw) = 0(5.4)

za + bw = 0(5.5)

πC(aw− zb) = 0.(5.6)

By Corollary (2.4.5), Equations (5.3) and (5.4) are the same as requiring that z
belongs to the C-linear span of a and Ann(a) and thatw belongs to the C-linear
span of b and Ann(b). Therefore, we may write z = αa + x and w = βb + y for
some α and β in Cn, some x in Ann a, and some y in Ann b. We also know that
x and y belong to C⊥n by Lemma (2.3.1); this is where we use that a and b are
non-zero.

Substitute the expressions for z and w in Equations (5.5) and (5.6) to obtain

(αa + x)a + b(βb + y) = 0(5.7)

πC

(
a(βb + y)− (αa + x)b

)
= 0.(5.8)

Equation (5.7) simplifies to −|a|2α− |b|2β∗ = 0 by Lemma (2.1.5) and the fact
that xa = by = 0. This is condition (3) of the proposition.
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Equation (5.8) can be rewritten as

πC(β∗ · ab − ab · α) + πC(ay − xb) = 0(5.9)

by Lemma (2.1.3). Apply Corollary (2.4.4) to the second part of the first term
of Equation (5.9) to obtain the equation (β∗−α)πC(ab) +πC(ay−xb) = 0. This
is condition (4) of the proposition.

Theorem (5.10). Letn ≥ 3, and let a and b be non-zero elements of C⊥n . Then
dim Ann{a, b} equals dim Ann a + dim Ann b or dim Ann a + dim Ann b + 4.

Proof. First we will use Proposition (5.2) to analyze H⊥n+1 ∩ Ann{a, b}. Let
V be the space of elements {αa + x, βb + y} such that α and β belong to Cn,
x belongs to Ann a, and y belongs to Ann b. The dimension of V is equal to
dim Ann a + dim Ann b + 4. Recall from Lemma (3.4) that for γ in Cn,

γ̃{αa + x, βb + y} = {γ∗αa + γ∗x, γβb + γy}.

This shows that V is a Cn-vector space, and Condition (3) of Proposition (5.2)
is a non-degenerate conjugate-linear equation in the variables α and β. Hence
there is a subspace of V of dimension dim Ann a+ dim Ann b+ 2 that satisfies
condition (3).

Condition (4) of Proposition (5.2) is a conjugate-linear equation in the
variables α, β, x, and y, which may or may not be non-degenerate and
independent of condition (3). This establishes that

dim Ann a+dim Ann b ≤ dim(H⊥n+1∩Ann{a, b}) ≤ dim Ann a+dim Ann b+2.

Lemma (2.3.1) implies that Ann{a, b} is contained in C⊥n+1. Note that
H⊥n+1 is a codimension 2 subspace of C⊥n+1. Therefore, the codimension of
H⊥n+1 ∩ Ann{a, b} in Ann{a, b} is at most 2. This establishes the inequality

dim Ann a + dim Ann b ≤ dim Ann{a, b} ≤ dim Ann a + dim Ann b + 4.

The desired result follows from Theorem (2.3.2), which tells us that the
dimension of any annihilator is a multiple of 4.

Theorem (5.10) gives two options for the dimension of Ann{a, b}; Section (6)
below contains conditions on a and b that distinguish between these two cases.

One might also be concerned that Theorem (5.10) applies only to elements
{a, b} in which both a and b are non-zero because it relies on Proposition (5.2).
For completeness, we also review from [DDD] the simpler situation of elements
of the form {a, 0} and {0, a}. The following proposition can be proved with the
formulas of Section (4).

Proposition (5.11) ([DDD], Theorem 10.2). Let n ≥ 4, and let a belong
to C⊥n−1. Then the element {a, 0} of An is a zero-divisor whose annihilator
Ann{a, 0} equals the space of all elements {x, y}where x belongs to Ann(a) and
y is C-orthogonal to 1 and a. Similarly, the element {0, a} of An is a zero-
divisor whose annihilator Ann{0, a} equals the space of all elements {x, y}
where y belongs to Ann(a) and x is C-orthogonal to 1 and a. In either case, the
dimension of the annihilator is dim Ann(a) + 2n−1 − 4.

In fact, [DDD], Theorem 10.2, was a major inspiration for the notation {a, b}.
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6. The D-locus

In Section (5), we started to consider Ann{a, b} when a and b are arbitrary
elements in C⊥n , i.e., when {a, b} is an arbitrary element of H⊥n+1. Theorem
(5.10) told us that except for some simple well-understood cases covered in
Proposition (5.11), the dimension of Ann{a, b} is either dim Ann a+dim Ann b
or dim Ann a+dim Ann b+4. The goal of this section is to distinguish between
these two cases.

Definition (6.1). TheD-locus is the space of all elements {a, b} ofAn+1 with
a and b in C⊥n such that

(1) a and b are C-orthogonal,
(2) a and Ann(b) are orthogonal, and
(3) b and Ann(a) are orthogonal.

Remark (6.2). Since Ann(b) is a C-subspace of An, a is orthogonal to Ann(b)
if and only if a is C-orthogonal to Ann(b). Similarly, b is orthogonal to Ann(a)
if and only if b is C-orthogonal to Ann(a). Thus, conditions (2) and (3) of
Definition (6.1) can be rewritten in terms of C-orthogonality.

Also, Ann(b)⊥ is equal to the image of left multiplication by b (see Lemma
(6.9) below), so condition (2) is also equivalent to requiring that a = bx for
some x. Similarly, condition (3) is also equivalent to requiring that b = ay for
some y.

The point of the following lemma is to determine precisely when condition
(4) of Proposition (5.2) holds.

Lemma (6.3). Suppose that a and b belong to C⊥n . Then {a, b} belongs to the
D-locus if and only if

(β∗ − α)πC(ab) + πC(ay − xb) = 0

for all α and β in Cn, x in Ann(a), and y in Ann(b).

Proof. Since α, β, x, and y are independent, the displayed expression
vanishes if and only if πC(ab) = 0, πC(xb) = 0 for all x in Ann a, and ay = 0 for
all y in Ann b. The first equation just means that a and b are C-orthogonal,
the second equation means that b is C-orthogonal to Ann(a), and the third
equation means that a is C-orthogonal to Ann(b).

Lemma (6.4). If {a, b} is non-zero and does not belong to the D-locus, then
the dimension of Ann{a, b} ∩H⊥n+1 is equal to dim Ann(a) + dim Ann(b).

Proof. Let V be the subspace of An+1 consisting of all elements of the form
{αa+x, βb+y}, where α and β belong to Cn, x belongs to Ann(a), and y belongs
to Ann(b). The dimension of V is dim Ann(a) + dim Ann(b) + 4. As in the proof
of Theorem (5.10), V is a Cn-vector space.

According to Proposition (5.2), Ann{a, b} ∩H⊥n+1 is contained in V . In fact,
it is the subspace of V defined by the two conjugate-linear equations

|a |2 α+ |b |2 β∗ = 0(6.5)

(β∗ − α)πC(ab) + πC(ay − xb) = 0.(6.6)
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Thus, we only need to show that Equations (6.5) and (6.6) are non-degenerate
and independent. Equation (6.5) is non-degenerate because | a | or | b | is
non-zero. Equation (6.6) is non-degenerate by Lemma (6.3).

It remains to show that Equations (6.5) and (6.6) are independent. There
are three cases to consider, depending on which part of Definition (6.1) fails to
hold for a and b.

If a and b are not C-orthogonal, then πC(ab) is non-zero. Substitute the
values α = − |b |2, β =|a |2, x = 0, and y = 0 into the two equations; note that
Equation (6.5) is satisfied, while Equation (6.6) is not satisfied because the
left-hand side equals (|a |2 + |b |2)πC(ab). This shows that the two equations
are independent because they have different solution sets.

Next, suppose that a is not orthogonal to Ann(b). There exists an element
y0 of Ann(b) such that a and y0 are not C-orthogonal. This means that πC(ay0)
is non-zero. Substitute the values α = 0, β = 0, x = 0, and y = y0 into the
two equations; note that Equation (6.5) is satisfied, while Equation (6.6) is not
satisfied because the left-hand side equals πC(ay0). This shows that the two
equations are independent because they have different solution sets.

Finally, suppose that b is not orthogonal to Ann(a). Similarly to the previous
case, choose x0 in Ann(a) such that πC(ax0) is non-zero. Substitute the values
α = 0, β = 0, x = x0, and y = 0 into the two equations; note that Equation
(6.5) is satisfied, while Equation (6.6) is not satisfied.

Theorem (6.7). Let a and b be non-zero elements of C⊥n . If {a, b} does
not belong to the D-locus, then Ann{a, b} is contained in H⊥n+1. Moreover, the
dimension of Ann{a, b} is dim Ann a + dim Ann b.

Proof. Recall from Lemma (2.3.1) that Ann{a, b} is a subspace of C⊥n+1.
Also, H⊥n+1 is a codimension 2 subspace of C⊥n+1. Therefore, the codimension of
Ann{a, b} ∩ H⊥n+1 in Ann{a, b} is at most 2. Together with Lemma (6.4), this
implies that the dimension of Ann{a, b} is at least dim Ann a+ dim Ann b and
at most dim Ann a+ dim Ann b + 2. However, the dimension of Ann{a, b} is a
multiple of 4 by Theorem (2.3.2), so it must equal dim Ann a+dim Ann b. This
shows that Ann{a, b} equals Ann{a, b} ∩ H⊥n+1 because their dimensions are
equal; in other words, Ann{a, b} is contained in H⊥n+1.

Theorem (6.7) computes the dimension of Ann{a, b} for any {a, b} that does
not belong to the D-locus. However, it leaves something to be desired because
it does not explicitly describe Ann{a, b} as a subspace of An+1. The difficulty
arises from our use of the fact that the dimension of Ann{a, b} is a multiple
of 4.

Question (6.8). Describe Ann{a, b} explicitly when {a, b} does not belong to
the D-locus.

The rest of this section considers annihilators of elements that belong to the
D-locus.

Lemma (6.9). Suppose that a and b belong to An, and suppose that b is
orthogonal to Ann(a). There exists a unique element x such that ax = b and x
is orthogonal to Ann(b).
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Proof. This is a restatement of Lemma (2.3.3).

Definition (6.10). Let a and b belong toAn, and suppose that b is orthogonal
to Ann a. Then b

a
is the unique element such that a b

a = b and such that b
a is

orthogonal to Ann a.

Beware that the definition of b
a is not symmetric. In other words, it is not

always true that b
aa = b.

Lemma (6.11). Let a and b be C-orthogonal elements of C⊥n , and suppose that
b is orthogonal to Ann(a). Then b

a belongs to C⊥n and is C-orthogonal to both a
and b.

Proof. If a = 0, then Ann a is all of An so b = 0 and b
a also equals 0. In this

case, the claim is trivially satisfied. Now assume that a is non-zero.
For the first claim, note that 〈a, a b

a 〉C = 〈a, b〉C = 0. By Lemma (2.1.3), this
equals −〈a2, ba 〉

∗
C. But a2 is a non-zero real number, so b

a is C-orthogonal to 1
as desired.

Next, note that a b
a = b is orthogonal to Cn, so

〈
a, ba

〉
C = πC(b) is zero. Also,

compute that 〈
b
a , b
〉

C =
〈
b
a , a

b
a

〉
C = −

〈(
b
a

)2
, a
〉∗

C

using Lemma (2.1.3). But
(
b
a

)2
is a real scalar, which is C-orthogonal to a

because we assumed that a belongs to C⊥n .

Theorem (6.12). Let a and b be non-zero elements of C⊥n , and suppose that
{a, b} belongs to the D-locus. Then Ann{a, b} is the C-orthogonal direct sum
of:

(1) the space of all elements {x, y} such that x belongs to Ann(a) and y belongs
to Ann(b);

(2) the C-linear span of the element
{
|b |2 a,− |a |2 b

}
;

(3) the C-linear span of
{
b
a ,−

a
b

}
+
√

2(0, in), where b
a and a

b are described in
Definition (6.10).

In particular, the dimension of Ann{a, b} is equal to dim(Ann a)+dim(Ann b)+
4.

Proof. It follows from Proposition (5.2) that Ann{a, b} contains the space
described in part (1). Recall that Lemma (6.3) implies that condition (4) of
Proposition (5.2) vanishes.

Next, note that
{
|b |2 a,− |a |2 b

}
satisfies the conditions of Proposition

(5.2). It corresponds to α =|b |2, β = − |a |2, x = 0, and y = 0.
Finally, we want to show that {a, b}

{
b
a ,−

a
b

}
+
√

2{a, b}(0, in) is zero. Lemma
(6.11) says that Proposition (4.1) applies to the first term, which therefore
equals

√
2
{
a b
a ,−b

a
b

}
. This simplifies to

√
2{b,−a}. Lemma (4.7) lets us

compute that the second term is
√

2{−b, a}, as desired.
We have now exhibited a subspace of Ann{a, b} whose dimension is

dim Ann a + dim Ann b + 4. Theorem (5.10) implies that we have described
the entire annihilator.
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Recall that Lemma (4.1.1) describes how to compute Hermitian inner prod-
ucts. Using this lemma, parts (1) and (2) are C-orthogonal because a and b
are C-orthogonal to Ann(a) and Ann(b) respectively. Parts (1) and (3) are C-
orthogonal by Definition (6.10). Parts (2) and (3) are C-orthogonal by Lemma
(6.11).

7. The D-locus in A5

The goal of this section is to explicitly understand the D-locus in A5 (see
Definition (6.1)). Unlike most of the rest of this paper, this section uses
computational techniques that apply in A4 but have not yet been made to
work in general.

Let us consider whether elements of the form {a, 0} belong to the D-locus.
If a is non-zero, then part (2) of Definition (6.1) fails. Therefore, {a, 0} belongs
to the D-locus only if a = 0. Similarly, {0, b} belongs to the D-locus only if
b = 0.

From now on, we may suppose that a and b are non-zero. If b is not a
zero-divisor, then it is easy to determine whether {a, b} belongs to theD-locus.
Namely, b must be C-orthogonal to a and to Ann(a) because condition (2) of
Definition (6.1) is vacuous. By symmetry, a similar description applies when
a is not a zero-divisor. Since annihilators in A4 are well-understood ([KY],
Section 3.2, [M1], Corollary 2.14, [DDD], Sections 11 and 12), it is relatively
straightforward to completely describe the elements {a, b} belonging to the
D-locus in A5 such that a or b is not a zero-divisor.

There is only one remaining case to consider. It consists of elements of
the form {a, b}, where a and b are both zero-divisors in A4. We will focus
on such elements in the rest of this section. First we need some preliminary
calculations in A4.

Lemma (7.1). Let a belong to C⊥3 . If b is C-orthogonal to 1 and a, and α
belongs to C3, then the element {a, 0} of A4 is orthogonal to the annihilator of
{b, αa}.

Proof. Let c be the element of A3 such that bc = a; in other words,
c = −(1/|b |2)ba. Note that c is C-orthogonal to both a and b by Lemma (2.1.2).

Using Proposition (4.1), compute that {b, αa}{ 1√
2
c, 0} = {a, 0}. Finally, use

Lemma (2.3.3) to conclude that {a, 0} is orthogonal to Ann{b, αa}.

Lemma (7.2). Let a be a non-zero element of C⊥3 . If a zero-divisor in A4 is
C-orthogonal to {a, 0} and is orthogonal to Ann{a, 0}, then it is of the form
{b, αa}, where b is C-orthogonal to a and α belongs to C.

Proof. Suppose that x is a zero-divisor in A4 that is C-orthogonal to {a, 0}
and is orthogonal to Ann{a, 0}. Write x in the form {b, c}+ (β, γ), where b and
c belong to C⊥3 while β and γ belong to C3.

Recall from [DDD], Theorem 10.2, that Ann{a, 0} consists of elements of
the form {0, y}, where y is any element of A3 that is C-orthogonal to 1 and
to a. Since x is orthogonal to Ann{a, 0}, Lemma (4.1.1) implies that c is C-
orthogonal to all such y. In other words, c belongs to the C-linear span of a;
i.e., c = αa for some α in C3.
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Since {a, 0} and x are C-orthogonal, Lemma (4.1.1) says that b is C-
orthogonal to a. Note, in particular, that b and c are C-orthogonal.

Let x1 = b + c + β and x2 = −i3b + i3c + γ so that x = (x1, x2). Recall from
[DDD], Proposition 12.1, that since x is a zero-divisor, x1 and x2 are imaginary
orthogonal elements of A3 with the same norm.

Multiplication by i3 preserves norms in A3. Since x1 and x2 have the same
norm, it follows that β and γ have the same norm. This uses that b and c are
orthogonal, as we have already shown.

Since x1 and x2 are orthogonal, it follows that β and γ are orthogonal. This
uses that b and c are each orthogonal to both i3b and i3c since b and c are
C-orthogonal.

Next, since x1 and x2 are imaginary, it follows that β and γ are R-scalar
multiples of i3. We have shown that β and γ are both orthogonal and parallel
and also have the same norm. It follows that β and γ are both zero.

Proposition (7.3). Let a, b, and c belong to C⊥3 , and suppose that a is non-
zero. Suppose also that {b, c} is a zero-divisor inA4. The element {{a, 0}, {b, c}}
belongs to the D-locus in A5 if and only if b is C-orthogonal to a and c belongs
to the C-linear span of a.

Proof. First suppose that b is C-orthogonal to a and c belongs to the C-linear
span of a. Lemma (4.1.1) implies that {a, 0} and {b, c} are C-orthogonal.

By [DDD], Theorem 10.2, the annihilator of {a, 0} consists of elements of
the form {0, y}, where y is C-orthogonal to 1 and a. Therefore, Lemma (4.1.1)
implies that {b, c} is orthogonal to Ann{a, 0}.

Lemma (7.1) implies that {a, 0} is orthogonal to Ann{b, c}. This finishes
one implication.

For the other implication, suppose that {{a, 0}, {b, c}} belongs to theD-locus
in A5. Lemma (7.2) implies that b is C-orthogonal to a and that c belongs to
the C-linear span of a.

Suppose that a = (a1, a2) is a zero-divisor in A4. We recall from [KY],
Section 3.2, [M1], Corollary 2.14, [DDD], Sections 11 and 12, some algebraic
properties of a. First of all, a1 and a2 are imaginary orthogonal elements of A3

with the same norm. The R-linear span of 1, a1, a2, and a1a2 is a 4-dimensional
subalgebra 〈〈a1, a2〉〉 of A3 that is isomorphic to the quaternions. The notation
indicates that the subalgebra is generated by a1 and a2.

The annihilator Ann(a) is a four-dimensional subspace of A4 consisting of
all elements of the form (y,−cy), where c is the fixed unit vector with the same
direction as a1a2 and x ranges over the orthogonal complement of 〈〈a1, a2〉〉.
The subspace 〈〈a1, a2〉〉 × 〈〈a1, a2〉〉 is orthogonal to Ann(a). Let Eig2(a) be
the orthogonal complement of Ann(a) and 〈〈a1, a2〉〉 × 〈〈a1, a2〉〉. This space
consists of all elements of the form (y, cy), where c and x are as above. Direct
calculation shows that Eig2(a) is equal to the space of all elements b of A4

such that a(ab) = −2b. From this perspective, it is the 2-eigenspace of the
composition of left multiplication by a and left multiplication by a∗ = −a.

Corollary (7.4). Let a = (a1, a2) and b = (b1, b2) be zero-divisors in A4.
Then {a, b} belongs to the D-locus in A5 if and only if b belongs to the R-linear
span of (a1,−a2), (a2, a1), and Eig2(a).
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Proof. Since a1 and a2 are orthogonal and have the same norm, there exists
an imaginary element c of unit length such that a2 = ca1. There exists an
automorphism of A3 that takes c to −i3. Therefore, we may assume that
c = −i3. In other words, we may assume that a = {a1, 0}.

Then Eig2(a) is equal to the space of all elements of the form {y, 0}, where y
is C-orthogonal to 1 and a. Also, {0, a} equals (a1,−a2), so the C4-linear span
of {0, a} is the same as the R-linear span of (a1,−a2) and (a2, a1).

Finally, apply Proposition (7.3).

Recall that V2(R7) is the space of orthonormal 2-frames in R7. In the
following theorem, we identify this space with the space of elements (a1, a2) of
A4 such that a1 and a2 are orthogonal imaginary unit vectors in A3.

Theorem (7.5). Consider the space X consisting of all elements {a, b}
belonging to the D-locus in A5 such that a and b are zero-divisors with unit
length. Let ξ be the 4-plane bundle over V2(R7) whose unit sphere bundle has
total space diffeomorphic to the 14-dimensional compact simply connected Lie
group G2 (see [DDD], Section 7). Then X is diffeomorphic to the unit sphere
bundle of ξ⊕ 2, where ξ⊕ 2 is the fiberwise sum of the vector bundle ξ with the
trivial 2-dimensional bundle.

Proof. First, identify V2(R7) with the space of all zero-divisors in A4 with
unit length. Let η be the bundle over V2(R7) whose fiber over a is the space
of all ordered pairs (a, b) such that b is a unit length element of Eig2(a). The
bundle ξ is also a bundle over V2(R7), but the fiber over a is the space of all
ordered pairs (a, b) such that b is a unit length element of Ann(a).

Using the notation in the paragraphs preceding Corollary (7.4), the isomor-
phism Eig2(a)→ Ann(a) : (y, cy) 7→ (y,−cy) induces an isomorphism from η to
ξ.

Next consider the space of all ordered pairs (a, b) such that a is a unit
length zero-divisor and b belongs to the R-span of (a1,−a2) and (a2, a1), where
a = (a1, a2). The map that takes (a, b) to a is a trivial 2-plane bundle.

Corollary (7.4) shows that X is the unit sphere bundle of η⊕ 2.

Remark (7.6). An obvious consequence of Theorem (7.5) is that X is diffeo-
morphic to the total space of an S5-bundle over V2(R7). This bundle is the
fiberwise double suspension of the usual S3-bundle over V2(R7) that is used to
construct G2.

8. Stability

Sections (5) and (6) described many properties of annihilators of elements
of the form {a, b}. This section exploits these properties to study large
annihilators, i.e., annihilators in An whose dimension is at least 2n−1.

We begin with a result that could have been included in [DDD], but its
significance was not apparent at the time.

Theorem (8.1). Let n ≥ 3, and let a belong toAn. If the dimension of Ann(a)
is at least 2n−1, then a belongs to H⊥n .
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Proof. Leta = (b, c). We claim that b and c are both zero-divisors; otherwise,
[DDD], Lemma 9.9, would imply that Ann(a) has dimension at most 2n−1 − 1.
Lemma (2.3.1) implies that b and c belong to C⊥n−1.

Theorem (8.1) is important in the following way. When searching for zero-
divisors with large annihilators, i.e., with annihilators whose dimension is at
least half the dimension ofAn, one need only look in H⊥n . Fortunately, Sections
(5) and (6) study zero-divisors in H⊥n in great detail.

Next we show by construction that the bound of Theorem (8.1) is sharp
in the sense that there exist elements of An that do not belong to H⊥n but
whose annihilators have dimension 2n−1−4. Recall that an element a of An is
alternative if a ·ax = a2x for all x. For every n, there exist elements of An that
are alternative. For example, a straightforward computation shows that if a
is an alternative element of An−1, then (a, 0) is an alternative element of An.

Proposition (8.2). Let a be any non-zero alternative element of C⊥n−1 such
that |a| = 1. Then Ann(in−1, a) is equal to the set of all elements of the form
(x, ain−1 · x) such that x is C-orthogonal to 1 and to a. In particular, the
dimension of Ann(in−1, a) is equal to 2n−1 − 4.

Proof. Let x be C-orthogonal to both 1 and a. Using Lemma (2.1.3), compute
that the product (in−1, a)(x, ain−1 · x) is always zero. We have exhibited a
subspace of Ann(in−1, a) that has dimension 2n−1 − 4. By Theorem (8.1), this
subspace must be equal to Ann(in−1, a).

A proof of Proposition (8.2) also appears in [M3], Theorem 4.4.

Question (8.3). Find all of the elements of An that have annihilators of
dimension 2n−1 − 4.

The paper [DDD] began an exploration of the largest annihilators in An.
Recall from Theorem (2.3.2) that the annihilators inAn have dimension at most
2n − 4n+ 4. Moreover, Theorem 15.7 of [DDD] gives a complete description of
the elements whose annihilators have dimension equal to this upper bound.
The rest of this section provides more results in a similar vein.

Definition (8.4). Let n ≥ 4, and let c be a multiple of 4 such that 0 ≤ c ≤
2n − 4n. The space T cn is the space of elements of length one in An whose
annihilators have dimension at least (2n − 4n + 4)− c.

This is a change in the definition of T c
n from that used in [DDD]. The

elements of T c
n are unit length zero-divisors whose annihilators are within

c dimensions of the largest possible value. The space T 0
4 is diffeomorphic to

the Stiefel manifold V2(R7) of orthonormal 2-frames in R7 [DDD], Section 12.
We have imposed the condition n ≥ 4 in order to avoid trivial exceptions

to our results involving well-known properties of An for n ≤ 3. Also, we have
imposed the condition c ≤ 2n−4n to ensure that every element of T c

n is always
a zero-divisor.

It follows from Lemma (2.3.1) that T c
n is contained in C⊥n . Thus, if a and b

lie in T c
n , then it makes sense to talk about {a, b}. Note that if a is in T c

n then
{a, 0} and {0, a} lie in T c

n+1. This is because, according to Proposition (5.11),
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both Ann{a, 0} and Ann{0, a} have dimension equal to dim Ann(a) + 2n − 4.
Consequently, T c

n+1 contains a disjoint union of two copies of T c
n .

Definition (8.5). The space T c
n is stable if T c

n+1 is diffeomorphic to the space
of elements of the form {a, 0} or {0, a} such that a belongs to T c

n .

For n ≥ 4, the space T 0
n is stable [DDD], Proposition 15.6; a vastly simpler

proof appears below. In fact, our goal is to completely determine which spaces
T c
n are stable.

Proposition (8.6). Let n ≥ 4, and let a belong to An. If the dimension of
Ann(a) is at least 2n − 8n + 24, then a is of the form {b, 0} or {0, b} with b in
C⊥n−1.

Proof. Suppose that the dimension of Ann(a) is at least 2n − 8n+ 24. Note
that 2n−1 ≤ 2n − 8n + 24, so the dimension of Ann(a) is at least 2n−1. By
Theorem (8.1), a belongs to H⊥n .

Write a = {x, y} for some x and y in C⊥n−1. Assume for contradiction that
both x and y are non-zero. By Theorem (5.10), the dimension of Ann(a) is at
most dim Ann(x) + dim Ann(y) + 4. But the dimensions of Ann(x) and Ann(y)
are at most 2n−1 − 4n+ 8 by Theorem (2.3.2), so the dimension of Ann(a) is at
most 2n − 8n + 20. This is a contradiction, so either x or y is zero.

Proposition (8.7). If n ≥ 4, c ≥ 0, and n ≥ c
4 + 4, then T c

n is stable.

Proof. It follows from the inequalities that c ≤ 2n − 4n.
Let a belong to T c

n+1. Note that 2n+1 − 4n − c ≥ 2n+1 − 8n + 16, so Ann(a)
has dimension at least 2n+1 − 8(n+ 1) + 24. Proposition (8.6) implies that a is
of the form {b, 0} or {0, b}. The result then follows directly from Proposition
(5.11).

Lemma (8.8). For n ≥ 3, there exists an element {a, b} belonging to the D-
locus in An+1 such that a and b are elements of C⊥n whose annihilators have
dimension 2n − 4n + 4.

Proof. The proof is by induction on n. The base case is n = 3. Since every
element of A3 has a trivial annihilator, this case just requires us to choose two
C-orthogonal elements from the 6-dimensional space C⊥3 .

Now suppose that a′ and b′ are elements of C⊥n whose annihilators have
dimension 2n − 4n + 4. Suppose also that {a′, b′} belongs to the D-locus in
An+1.

Consider the elements a = {a′, 0} and b = {b′, 0} of An+1. By Proposition
(5.11) and the induction assumption, a and b have annihilators of dimension
2n+1 − 4(n + 1) + 4, as desired.

It remains to show that {a, b} belongs to the D-locus in An+2. By Lemma
(4.1.1) and the induction assumption, a and b are C-orthogonal. Proposition
(5.11) describes Ann(a) and Ann(b). By inspection of this description, b is C-
orthogonal to Ann(a) because b′ is C-orthogonal to Ann(a′) by the induction
assumption. Similarly, a is C-orthogonal to Ann(b).

Lemma (8.9). For n ≥ 4, there exist non-zero elements a and b in C⊥n such
that Ann{a, b} has dimension 2n+1 − 8n + 12.
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Proof. By Lemma (8.8), there exist non-zero elements of C⊥n such that {a, b}
belongs to the D-locus in An+1 and such that Ann(a) and Ann(b) both have
dimension 2n − 4n+ 4. Now apply Theorem (6.12) to conclude that Ann{a, b}
has dimension 2n+1 − 8n + 12.

Remark (8.10). Lemma (8.9) shows that the bound of Proposition (8.6) is
sharp. Substitute n − 1 for n in the lemma to construct an element of An

whose annihilator has dimension 2n − 8n + 20.

Proposition (8.11). Let n ≥ 4, let c ≤ 2n − 4n, and let n ≤ c
4 + 3. Then T c

n

is not stable.

Proof. Note that 2n+1−4(n+1)+4−c ≤ 2n+1−8n+12. Now apply Lemma
(8.9) to construct an element {a, b} belonging to T c

n+1 such that both a and b
are non-zero.

Theorem (8.12). Let n ≥ 4, and let c be a multiple of 4 such that 0 ≤ c ≤
2n − 4n. Then T c

n is stable if and only if n ≥ c
4 + 4.

Proof. Combine Propositions (8.7) and (8.11).

We give two illustrations of the theorem.

Corollary (8.13). The space of zero-divisors in A5 whose annihilators are
16-dimensional is diffeomorphic to two disjoint copies of V2(R7).

Proof. Apply Theorem (8.12) with n = 5 and c = 0.

Corollary (8.13) is the same as [DDD], Corollary 14.7. The proof is vastly
more graceful than the one in [DDD]. This demonstrates the power of our
computational perspective.

Corollary (8.14). The space of zero-divisors in A6 whose annihilators are
at least 40-dimensional is diffeomorphic to two disjoint copies of the space of
zero-divisors in A5 whose annihilators are at least 12-dimensional.
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MODEL CATEGORIES AND CUBICAL DESCENT

LLORENÇ RUBIÓ I PONS

Abstract. We prove that the subcategory of fibrant objects of a simplicial
model category is a cohomological descent category, in the sense of GuillÚn
and Navarro, if and only if an acyclicity criterion holds.

1. Introduction

Let k be a field of characteristic zero, Sm(k) the category of smooth schemes
over k and Sch(k) the category of separated and finite type schemes over k.
GuillÚn and Navarro have proved [6] an extension result for cohomological
functors defined on Sm(k) to cohomological functors defined on Sch(k). Classi-
cal cohomogical functors take values in the category of graded abelian groups
or in the category of abelian chain complexes. In order to apply their main re-
sult to non-abelian situations, such as the rational homotopy type of C-schemes
or to motives of singular varieties, they introduced the notion of (cohomologi-
cal) descent category, a higher category variation of Verdier triangulated cate-
gories, as a good class of categories in which cohomology theories take values.

A descent category [6] is, essentially, a triple (D, E, s) given by a cartesian
category D with initial object 0, a saturated class of morphisms E of D, called
weak equivalences, and for every cubical type � (see section 4.1) a functor

s� : (�,D)→ D ,

called simple, from �-diagrams inD toD, analogous to the limit, that is natural
in � in a precise sense and satisfies the following properties:

1. Multiplicativity. The simple of an object X considered as a diagram
is isomorphic to X, and for every pair (X,Y) of �-diagrams there is an
isomorphism s�(X × Y)→ s�X × s�Y.

2. Factorisation. For every � × �′-diagram X = (Xαβ) there is an isomor-
phism µ : sαβXαβ → sαsβXαβ.

3. Exactness. Let f : X → Y be a morphism of �-diagrams. If it is a
pointwise weak equivalence, then the morphism s�f : s�X → s�Y is a weak
equivalence.

4. Acyclicity criterion. A morphism f : X0 → X1 is a weak equivalence if
and only if the simple of the �1-diagram

X0
f−→ X1 ← 0

is acyclic, that is, the initial object of D is weakly equivalent to it.
In fact, an extended acyclicity criterion must hold:

2000 Mathematics Subject Classification: 18G55, 55P42, 55U35.
Keywords and phrases: model categories, descent categories, acyclicity criterion.
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4’. Extended acyclicity criterion. For every augmented diagram X+ of type
�+
n , the morphism X0 → s�n

X is a weak equivalence if and only if the morphism
0→ s�+X+ is a weak equivalence.

One problem that appears is to have sufficiently many examples of descent
categories. Model categories, with the homotopy limit functor as simple
functor, are natural candidates to be descent categories, as the homotopy
limit has the factorisation and exactness properties for fibrant objects. We
prove that the subcategory of fibrant objects of a simplicial model category is
a cohomological descent category if and only if the acyclicity criterion holds.
In particular, in a simplicial model category the extended acyclicity criterion
is equivalent to the acyclicity criterion.

All stable model categories satisfy the acyclicity criterion. Thus we have
as a corollary that the category of fibrant spectra is a cohomological descent
category. This result has applications in algebraic K-theory [12].

We remark that the category of topological spaces and homotopy weak
equivalences does not verify the acyclicity criterion. We have to take ho-
mology isomorphisms. We prove that the category of CW-complexes with h∗-
isomorphisms is a homological descent category, where h is a homology theory.

We restrict to simplicial model categories, where a homotopy limit functor
is defined. This should not be an important restriction, as it is known that
a cofibrantly generated, proper model category with a realization axiom is
Quillen equivalent to a simplicial model category [14].

2. Recollections and notations

(2.1) Model categories were introduced by Quillen [13]. We use the definition
adopted by Hirschhorn [7], 7.1, which has stronger conditions than Quillen’s
(all small limits and colimits are required to exist, and also functorial factorisa-
tions in axiom five). Modern references of model categories use this definition,
but we observe that in our case the stronger conditions are not necessary.

GivenM a simplicial model category, tensoring an object X by a simplicial
set K is denoted by X ⊗K, and F (K,X) denotes the cotensorisation (usually
denoted by XK ).

By adjointness properties [4], II 2.1 and 2.2, F (K,−) preserves limits and
F (−, X) converts colimits to limits. We also have F (K×L,X) ∼= F (K,F (L,X))
[7], 9.1.11.

(2.2) A model category is pointed if the initial and final objects coincide. In
this case the initial and final object is denoted by ∗. Let ∗ also denote the one
point simplicial set. There are isomorphisms F (∗, X) = X and F (K, ∗) = ∗.

An object X in a pointed model category is acyclic if either of the natural
morphisms ∗ → X or X → ∗ is a weak equivalence, in which case both are.

(2.3) Recall that X is fibrant if X → ∗ is a fibration. Fibrant objects are
closed by cotensoring and by taking finite products.

(2.4) The homotopy category Ho(C) of a model category C is obtained by in-
verting the weak equivalences. Weak equivalences are saturated: a morphism
f : X → Y is a weak equivalence if, and only if, it is an isomorphism in the
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homotopy category [7], 8.3.10. See [6], 1.5.1 for the notion of saturated in the
context of descent categories.

(2.5) If C is a small category, BC denotes the classifying space or nerve of C.
If α is an object of C, C ↓α denotes the category of objects of C over α. We use the
notations and definitions of [7] concerning classifying spaces, overcategories,
homotopy limits and homotopy cofinal functors.

3. Homotopy limits

In this section we recall briefly the definition of the homotopy limit of a
diagram in a simplicial model category and its main properties.

(3.1) Given C a small category andM a category, a C-codiagram ofM, or a
codiagram of type C is a functor C → M and (C,M) denotes the category of
codiagrams of type C.

If X is an object ofM, C ×X denotes the constant codiagram of type C (with
all morphisms equal to the identity of X).

We use the prefix co- here to be consistent with the terminology used in [6],
where a diagram of type C is a functor Cop →M.

Definition (3.1.1). Let X be C-codiagram of a simplicial model category M.
The homotopy limit of X, holim X, is the equaliser of the morphisms∏

α∈Ob(C)

F (B(C ↓α),Xα)
φ−→−→
ψ

∏
(σ:α→α′)∈C

F (B(C ↓α),Xα′ )

where the projection of φ in the factor σ : α → α′ is the composition of the
natural projection from the product with the morphism

σ
1B(C↓α)
∗ : F (B(C ↓α),Xα)→ F (B(C ↓α),Xα′ )

and the projection of ψ to the factor σ : α→ α′ is the composition of the natural
projection from the product with the morphism

F (B(σ∗), 1Xα′
) : F (B(C ↓α′),Xα′ )→ F (B(C ↓α),Xα′ ) ,

where σ∗ : (C ↓α)→ (C ↓α′).

Example (3.1.2). Given an object X of a simplicial model category M,
holim C ×X = F (BC, X), as is easily seen from [2], XI, 2.3.

(3.2) We recall the basic properties of homotopy limits in a simplicial model
categoryM. Observe that homotopy invariance and cofinality require point-
wise fibrant diagrams. We could drop the fibrant hypothesis doing a functorial
fibrant replacement in the definition of the homotopy limit. In that case func-
torial factorisations in the definition of model category are necessary.

3.2.1. The homotopy limit is an end. The homotopy limit of a C-codiagram is
the end of the functor Cop × C →M, (α, α′) 7→ F (B(C ↓α),Xα′ ). We can write

holim X =
∫
α

F (B(C ↓α),Xα)

with the notation of [10] (cf. [7], 18.3.2 and 18.3.6). Therefore end properties
as the Fubini theorem hold [10].
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3.2.2. The homotopy limit is functorial with respect to both variables:
a) If X and Y are C-codiagrams, a morphism f : X → Y induces a morphism

holim f : holim X → holim Y .

b) If F : C → D is a functor between small categories and X a D-codiagram,
a C-codiagram F∗X is induced. Then there is a natural morphism

holim
D

X → holim
C

F∗X

induced by the morphisms F∗ : B(C ↓α)→ B(D↓Fα) [7], 19.1.8.

3.2.3. The homotopy limit is particularly well behaved with respect to point-
wise fibrant diagrams:

i) If X and Y are pointwise fibrant and f is a pointwise fibration, then
holim f is a fibration [7], 18.5.1. In particular, the homotopy limit of a
pointwise fibrant diagram is fibrant.

ii) Homotopy invariance [7], 18.5.3. If X and Y are pointwise fibrant and f
is a pointwise weak equivalence, then holim f is a weak equivalence of
fibrant objects.

iii) Cofinality theorem [7], 19.6.7b. If the functor F : C → D is homotopy left
cofinal and X is pointwise fibrant, the natural morphism holimD X →
holimC F∗X is a weak equivalence.

3.2.4. The homotopy limit considered as a functor from the category of C-co-
diagrams toM preserves limits. This property is deduced as in [16], lemma
5.11, where is stated for spectra.

(3.3) Homotopy fibre and acyclicity criterion. We define the homotopy
fibre of a morphism f : X → Y in a pointed simplicial model category M as
hofib f = holim(X → Y ← ∗). The fibre of f is lim(X → Y ← ∗).

Definition (3.3.1) (Acyclicity criterion). A simplicial model categoryM satis-
fies the acyclicity criterion if a morphism f : X → Y with X and Y fibrant is a
weak equivalence if and only if the homotopy fibre hofib f is acyclic.

4. Simple functor of a cubical codiagram

In this section we define the simple functor of a codiagram by the homo-
topy limit. This functor is defined over the category CodiagΠM of cubical
codiagrams with variable type in the category Π. We begin by recalling the
definition of the category Π of cubical types [6], 1.1.1. After defining the cat-
egory of codiagrams we define the simple functor and then we explain how to
extend the definition to augmented cubical codiagrams.

(4.1) Cubical types. Associate to a non-empty set S the set of non-empty
subsets, ordered by inclusion: that defines the category �S . The category
�{0,1,...,n} is denoted by �n. An element α of �n is identified with a non zero
element of {0, 1}n+1

Given S and T two finite sets, any injective map u : S → T defines a functor
�u : �S → �T .

Associate to a family S = (Si)i∈I , with I a finite set, the cartesian product
Πi∈I�Si with the product order. Write �S = Πi∈I�Si .
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The objects of the category Π of cubical types are the families (Si)i∈I of non-
empty finite sets, with I a finite set. Given S = (Si)i∈I and T = (Tj)j∈J , a
morphism u : S → T of Π is an injective map u : ΠiSi → ΠjTj such that, for
every α = (αi) ∈ �S , exists β = (βj) ∈ �T such that u(Παi) = Πβj .

Now we turn to augmented cubical types. Associate to a finite set S, possibly
empty, the set �+

S of subsets of S, ordered by inclusion. Observe that �+
n is a

cube of dimension (n + 1).
For example, the categories �2 and �+

2 are represented by

111 110oo

101

;;vvvv
100oo

::vvvv

011

OO

010oo

OO

001

OO

;;vvvv

and

111 110oo

101

;;vvvv
100oo

::vvvv

011

OO

010oo

OO

001

OO

;;vvvv
000oo

OO

::vvvv

,

where identities and compositions of two non-identity morphisms are not
represented.

(4.2) The category CodiagΠM. Given δ : � → �′ a morphism of Π, there is
an induced inverse image functor

δ∗ : (�′,M)→ (�,M)

defined by F 7→ δ∗(F ) := F ◦ δ.
The category CodiagΠM of cubical codiagrams is defined as follows. An

object is a pair (X,�), where � ∈ ObΠ and X : � → M is a �-codiagram. A
morphism (Y,�′)→ (X,�) is a pair (a, δ) where δ : �→ �′ is a morphism of Π
and a : δ∗Y → X is a natural transformation of functors of (�,M).

The category CodiagΠD of codiagrams is analogous to the category DiagΠD
of diagrams [6], 1.2.1.

(4.3) Simple functor of a codiagram. Let Mf be the category of fibrant
objects of a simplicial model category. Let � be an object of Π. The simple
functor

s : CodiagΠMf →Mf

associates to a �-codiagram X the object defined by the homotopy limit
s�(X) = holim X.

If we have (Y,�′) → (X,�) a morphism in CodiagΠMf given by δ : � → �′

and a : δ∗Y → X, the functorial properties of the homotopy limit (see section
3.2.3) allow us to define the composition

s�′Y = holim
�′

Y → holim
�

δ∗Y → holim
�

X = s�X ,

which gives the covariance of the functor.
A codiagram X is acyclic if the object sX is acyclic.
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5. Simple of an augmented cubical codiagram

In this section we explain first how the simple functor is extended to
augmented cubical codiagrams. Then we prove that the acyclicity criterion
is equivalent to an extended acyclicity criterion in a simplicial model category.
The proof generalises a property of cubes of spectra, following [17], 1.1. For a
similar result for the case of topological spaces see [5], 1.1.

First observe that the homotopy limit of an augmented cubical codiagram
X+ is X0, as the codiagram has an initial object. Thus the simple functor of an
augmented cubical codiagram is not the homotopy limit.

The functor s is extended to augmented cubical codiagrams by using the cone
construction [6], 1.4.3. It can be calculated as follows. Given a �+

n -codiagram
X+, view it as a morphism of two �+

n−1-codiagrams, f : X+
0 → X+

1 . The simple
object associated to X+ is obtained as the simple of the �+

n−1-codiagram which
in each degree α has the homotopy fibre of fα. This construction does not
depend on the order chosen [6], 1.4.3.

In particular if f : X → Y is a �+
0 -codiagram, its simple is the homotopy

fibre of f .
The acyclic augmented cubes are also called homotopy cartesian cubes.
Augmented cubical types allow induction, as �+

n = �+
1 × �n−1. Non-

augmented cubical types do not have this property. The lemmas below give
homotopy left cofinal functors which allow induction in some cases.

Lemma (5.1). The functor f : �n → �+
n−1 defined by (i, j) 7→ (j) is homotopy

left cofinal.

Proof. Given α = (1, j) ∈ �n, the category (f ↓ f (α)) is isomorphic to the
category (�n ↓ α) and thus contractible.

Lemma (5.2). The functor f : �1×�n−1 → �n defined by f ((0, 1), k) = (0, k),
f ((1, 1), k) = (1, k) and f ((1, 0), k) = (1, 0, . . . , 0) is homotopy left cofinal.

Proof. It is easy to see that the required categories are contractible: the
category (f ↓ (1, 0, . . . , 0)) is isomorphic to �n−1, the category (f ↓ (0, k))
is isomorphic to (�n−1 ↓ (k)) and the category (f ↓ (1, k)) is isomorphic to
(�n ↓ (1, k)).

Lemma (5.3). LetM be a pointed simplicial model category. Given a functor
E : �n → M such that E1,k is acyclic for every k ∈ �n−1, then there is a weak
equivalence holim�n

E ' holim�n−1 E0,−.

Proof. Let f be the functor of lemma (5.2). The result is deduced by
cofinality, Fubini and homotopy invariance (E1,k is acyclic):

holim
�n

E '−→ holim
�1×�n−1

f∗E ∼= holim
j∈�1

holim
k∈�n−1

Ef (j,k)'

'holim(∗ → ∗ ← holim
k∈�n−1

E0,k) ∼= holim
�n−1

E0,− .
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Proposition (5.4). Let Mf be the category of fibrant objects of a pointed
simplicial model category where the acyclicity criterion holds. There is a weak
equivalence

s�+X+ ' hofib(X0 → holim
�n

X) .

Proof. We use induction on n. The case n = 0 holds by definition.
Define E+ : �+

n → Mf by E0,j = hofib(X0,j → X1,j), and E1,j =
hofib(X1,j → X1,j). Thus, s�+

n
X+ = s�+

n−1
E+

0,−.

By induction and lemma (5.3) above s�+
n−1

E+
0,− ' hofib(E0→holim�n−1 E0,−)

' hofib(E0 → holim�n
E).

To finish it is enough to see that hofib(X0 → holim�n
X) is weakly equivalent

to hofib(E0 → holim�n
E).

To this end, define Y : �+
n → Mf by Y0,j = Y1,j = X1,j, where j ∈ �+

n−1.
Consider the functor f : �n → 1 × �+

n−1 defined by (i, j) 7→ (1, j). By lemma
(5.1) above this functor is homotopy left cofinal. As �+

n−1 has an initial object
and by cofinality theorem we have:

X1,0,...,0
'−→ holim

�+
n−1

X+
1,−

'−→ holim
�n

f∗(X+
1,−) = holim

�n

Y .

Consider the following commutative diagram:

X0
//

β

��

Y0 = X1,0,...,0

γ '
��

holim�n
X // holim�n

Y

.

If we calculate its simple by rows we obtain hofib(E0 → holim�n
E), by

definition of E. If we calculate its simple by columns we obtain the homotopy
fiber of the first column, hofib(X0 → holim�n

X), as the homotopy fiber of the
second column is trivial by the acyclicity criterion.

Corollary (5.5). Let Mf be the category of fibrant objects of a simplicial
model category where the acyclicity criterion holds. An augmented codiagram
X+ : �+

n → Mf is acyclic if, and only if, the canonical morphism X0 →
holim�n

X is a weak equivalence.

Proof. This follows from the above proposition and the acyclicity criterion.

6. Main result

A cohomological descent category [6], 1.5.3, 1.7.1, is given by (D, E, s, µ, λ)
satisfying the eight properties (CD1)op to (CD8)op below, which are stated here
for D =Mf and E the class of weak equivalences.

Let M be a pointed simplicial model category and Mf the subcategory of
fibrant objects. Let s be the simple functor defined by the homotopy limit.

By the general properties of ends [10], given �,�′ ∈ Π, we have a natural
transformation of functors

µ�,�′ : s� ◦ s�′ → s�×�′

such that µ�,�′ (X) : s� ◦ s�′ (X) → s�×�′ (X) is an isomorphism for every
�×�′-codiagram X. This isomorphism is called the Fubini isomorphism.
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The morphism λ�S
(X) : X = F (∗, X) → F (B(�S ), X) is the one induced by

the simplicial set morphism B(�S )→ ∗.

Theorem (6.1). The category Mf of fibrant objects of a pointed simplicial
model category where the acyclicity criterion holds, with the class E of weak
equivalences, the simple functor s andµ and λ defined above, is a cohomological
descent category.

Proof. See (CD1)op to (CD8)op below.

(CD1)op. Mf is a cartesian category with initial object.

Proof. Recall that a category is cartesian if it has all finite products, and
Mf has them.

(CD2)op. The class of weak equivalences is a saturated class of morphisms,
stable by products: if f : X → X′ and g : Y → Y ′ are weak equivalences, then
f × g : X × Y → X′ × Y ′ is a weak equivalence.

Proof. In every model category, the class of weak equivalences is saturated
(see section 2.4).

The stability by products is seen obtaining X × Y as a homotopy limit of a
discrete diagram and using (CD5)op.

If δ : �→ �′ is a morphism of Π, there is a direct image functor

δ∗ : (�,M)→ (�′,M)

such that if X is a �-codiagram ofM then δ∗X is the �′-codiagram defined by

(δ∗X)β =

{
Xα if β = δ(α), α ∈ �

∗ if β ∈ �′ \ δ(�)

with the evident morphisms. This definition is dual to the one for diagrams
[6], 1.2.2.

(CD3)op. s : CodiagΠMf →Mf is a covariant functor such that if δ : �→ �′ is
a morphism of Π and X is a �-codiagram ofMf , the morphism s�′δ∗X → s�X
is a weak equivalence.

Proof. The functor s has been defined in section 4.3.
We may assume that � = �S = �S1×· · ·×�Ss and �′ = �T = �T1×· · ·×�Tt

with t ≥ s , and that the morphism δ is induced by inclusions Si ⊂ Ti and
constants γs+1 ∈ Ts+1, . . . , γt ∈ Tt.

Thus δ embeds �S as a full subcategory of �T . Moreover, there are no
arrows from a vertex of �T \ δ(�S ) to a vertex of δ(�S ). These properties and
the definition of δ∗ gives us an isomorphism holim�T

(δ∗X) ∼= holim�S
X.

Recall that a monoidal functor between monoidal categories is strong [10,
XI.2] if the Knneth and unit morphisms are isomorphisms. If the second
category has a saturated class of morphisms, we say that the functor is
quasistrong if the Knneth and unit morphisms belong to the saturated class
(GuillÚn and Navarro say quasi-strict [6, 1.5.2]) .

Recall that an op-monoidal functor is defined similarly to a monoidal functor
with the directions of the Knneth and unit morphisms reversed.



MODEL CATEGORIES AND CUBICAL DESCENT 301

(CD4)op. For every object � of Π, the functor s� : (�,Mf ) → Mf is op-
monoidal and quasistrong.

Proof. In fact we prove that s� is a strong op-monoidal functor. The Knneth
morphism σ = σ�(X,Y) : s�(X×Y)→ s�X× s�Y is an isomorphism because
holim preserves limits:

s�(X × Y) = holim(X × Y) ∼= holim(X)× holim(Y) = s�(X)× s�(Y).

Observe that σ is natural in (X,Y).
The unit morphism σ1

� : s�(1 × �) → 1 is clearly an isomorphism: the
realization of a constant codiagram in the initial object 1 is F (K, 1) = 1 (see
example 3.1.2).

Finally, it is clear that σ and σ1 verify the associativity and unit restrictions
and that s� is an op-monoidal functor.

(CD5)op. If f : X → Y is a morphism of �-codiagrams of Mf such that
for every α ∈ �, fα is a weak equivalence, then s�f : s�X → s�Y is a weak
equivalence.

Proof. This is exactly the homotopy invariance property of the homotopy
limit (3.2.3).

We introduce now the category CorealΠM of corealisations, which is analo-
gous to the category RealΠM of realisations [6, 1.2.1]

Given δ : �→ �′ a morphism of Π, there is an induced direct image functor

δ∗ : ((�,M),M)→ ((�′,M),M)

defined by f 7→ δ∗(f ) := f ◦ δ∗.
The category CorealΠM of corealisations of cubical codiagrams is defined

as follows. An object is a functor s� ∈ ((�,M),M). A morphism from
s�′ ∈ ((�′,M),M) to s� ∈ ((�,M),M) is a morphism δ : � → �′ of Π and a
natural transformation of functors s�′ → δ∗s� of ((�′,M),M).

Remark (6.2). The category CorealΠM has a structure of monoidal category:
Given �,�′ ∈ Π, s� ∈ ((�,M),M) , s�′ ∈ ((�′,M,M)), the composition

s� ◦ s�′ : ((�×�′),M)→M
is defined by

s� ◦ s�′ (X) = s�(α 7→ s�′ (β 7→ Xαβ)).
The unit object is the evaluation functor Av : (�0,M)→M.

(CD6)op. (s, µ, λ0) : Πop → CorealΠMf , � 7→ (s� : (�,Mf ) → Mf ), is a
quasistrong monoidal functor.

Proof. In fact we prove that (s, µ, λ0) is a strong monoidal functor. A (strong)
monoidal functor (s, µ, λ0) : (Π,×,�0)→ (CodiagΠMf , ◦, Av) is given by

(i) a functor s : Π→ CorealΠMf ,
(ii) for every pair (�,�′) of Π × Π, a (iso)morphism of CorealΠMf (i.e. a

natural transformation of functors)

µ�,�′ : s� ◦ s�′ → s�×�′

natural in (�,�′), and
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(iii) a (iso)morphism of CorealΠMf

λ0 : Av→ s�0

compatible with the associativity and unit restrictions.

If we consider X ∈ Mf as a �0-codiagram, s�0X = F (∗, X) ∼= X and
Av(X) = X. It is clear that we have a natural transformation of functors
λ0 : Av→ s�0 such that λ0(X) is an isomorphism.

It is easy to see that µ and λ0 satisfy the associativity and unit restrictions,
so we are done.

Given S a non-empty finite set, s�S
(�S ×X) = F (B(�S ), X) = F (∆S , X) (see

example 3.1.2). For S =
∏

i Si, if we set ∆S =
∏

i ∆Si , the equality also holds.
We denote by i� the functor X 7→ �×X.

(CD7)op. The morphism λ is a monoidal natural transformation from the
functorG : � 7→ idMf

to the monoidal functorH : � 7→ s�◦i�, which coincides
with λ0 over �0.

Proof. For every � ∈ Π and X ∈ Mf , the morphism λ�(X) is natural in
� and X, and therefore defines a natural transformation from G : Πop →
(Mf ,Mf ), � 7→ idMf

, to H : Πop → (Mf ,Mf ), � 7→ s� ◦ i�.
The naturality of λ in � is clear: for every morphism �S → �T of Π, the

diagram

X
id //

λ�S
(X)

��

X

λ�T
(X)

��
s�T

(i�T
X) = F (∆T , X) // s�S

(i�S
X) = F (∆S , X)

commutes.
It is also clear that λ is natural in X: if X → Y is a morphism ofMf ,

X

λ�(X)
��

// Y

λ�(Y )
��

F (∆, X) // F (∆, Y )

commutes.
We have to see that the natural transformation λ is monoidal. The functors

G andH are between monoidal categories: (Πop,×,�0) and ((Mf ,Mf ), ◦, idMf
).

We observe that, given X ∈Mf ,

H(�) ◦H(�′)(X) = (s� ◦ i�) ◦ (s�′ ◦ i�′ )(X) = s�(i�[s�′ (i�′X)]) =

= F (∆, F (∆′, X)) ∼= F ((∆× ∆′), X),

and that

H(�×�′)(X) = s�×�′ ◦ i�×�′ (X) = s�×�′ (i�×�′X) = F ((∆× ∆′), X)

where ∆ = B� and ∆′ = B�′. This defines the morphism in (Mf ,Mf )

H2(�,�′) : s�×�′ ◦ i�×�′ → (s� ◦ i�) ◦ (s�′ ◦ i�′ ).
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For allX ∈Mf the isomorphism s�0 (i�0X) = F (∗, X)→ X defines a morphism
in (Mf ,Mf )

H0 : idMf
→ s�0 ◦ i�0 .

We have that (H,H2,H0) is a monoidal functor.
Now we see that the natural transformation λ is monoidal and that it

coincides with λ0 over �0.

(CD8)op. Suppose that the acyclicity criterion holds in Mf . For every
codiagram X : �S → Mf , where S is a finite non-empty set and every
augmentation ε : X0 → X, the morphism λε := s�(ε) ◦ λ�(X0) : X0 → s�X
is a weak equivalence if and only if the canonical morphism 0 → s�+X+ is a
weak equivalence.

Proof. This result is exactly corollary 5.5.

Everything can be dualised, and we obtain the following dual statement of
the main theorem:

Theorem (6.3) (Dual statement). The categoryMc of cofibrant objects of a
pointed simplicial model category where the dual acyclicity criterion holds, with
the class E of weak equivalences, the simple functor defined by the homotopy
colimit and µ and λ defined dually as those above, is a homological descent
category.

7. Examples

Our initial target was to prove that the category of fibrant spectra, in the
sense of Bousfield and Friedlander [1], is a cohomological descent category
with the homotopy limit. The result applies to any of the model categories of
spectra available, including symmetric spectra [9] and orthogonal spectra [11].
The acyclicity criterion follows from the fact that model categories of spectra
are stable.

(7.1) Stable model categories. Recall that the homotopy category of a point-
ed model category supports a suspension functor Σ with a right adjoint loop
functor Ω. A stable model category is a pointed model category where the
functors Ω and Σ in the homotopy category are inverse equivalences.

The homotopy category of a stable model category is triangulated [8, 7.1.6].
The cofibre and fibre sequences of [8, 6.2.6] (see also [13, 1.3]) coincide up to
sign [8, 7.1.11] and define the distinguished triangles.

Proposition (7.1.1) (Acyclicity criterion for stable simplicial model cate-
gories). LetM be a stable simplicial model category. A morphism f : X → Y
with X and Y fibrant is a weak equivalence if and only if the homotopy fibre
hofib f is acyclic.

Proof. By saturation and passing to the homotopy category, the result
follows from the following property of triangulated categories: If

X
f−→ Y

g−→ Z → ΣX

is a distinguished triangle in a triangulated category, then g is an isomorphism
if and only if X ∼= 0.
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The dual acyclicity criterion also holds, replacing the homotopy fibre by the
homotopy cofibre. Thus stable simplicial model categories are homological and
cohomological descent categories with the homotopy colimit and the homotopy
limit respectively.

Example (7.1.2). See [15] for a list of examples of interesting stable simplicial
model categories, to which our main result applies, including modules over ring
spectra, presheaves of spectra, and spectra categories related to equivariant
stable homotopy theory and motivic stable homotopy of schemes.

(7.2) Simplicial sets and topological spaces. We have worked with pointed
model categories for simplicity, but everything can be done in unpointed model
categories. In that case the extra hypothesis of fibrant initial object is needed.

Topological spaces with homology isomorphisms is the second example of
homological descent category of [6]. Usual weak homotopy equivalences can
not be used because the acyclicity criterion does not hold if spaces are not
arc-wise connected.

Here we recover this example and, furthermore, we obtain the same result
for simplicial spaces and CW-complexes with h∗-equivalences respect to a
homology theory h.

We only have the homological case because there is not an acyclicity criterion
with the homotopy fibre for topological or simplicial spaces.

Proposition (7.2.1). Leth be a homology theory on the category of simplicial
sets. The category of simplicial sets with the homotopy colimit and the h∗-
equivalences is a homological descent category.

Proof. Bousfield localisation respect to a homology theory h∗ gives a model
category structure on simplicial sets where weak equivalences are those
morphisms which induce isomorphism in homology and cofibrations are the
usual ones.

Moreover, with its usual simplicial structure it is a simplicial model category
[4, X.3]. As the simplicial structure does not change, the homotopy colimit in
this simplicial structure is the usual. As cofibrations remain unchanged, all
simplicial sets are h∗-cofibrant.

The result follows from the dual statement of the main theorem, observing
that The mapping cone sequence gives the acyclicity criterion for any h∗.

The same result is true for CW-complexes, as Bousfield localisation can be
done in topological spaces and the simplicial structure part of the proof of [4,
X.3] only relies in the Mayer-Vietoris sequence.

In the case of singular homology we do not need to take CW-complexes
because the homotopy colimit has the homotopy invariance property with re-
spect to homology equivalences without the assumption of pointwise cofibrant
diagrams [3, 5.16].
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schémas lisses, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 1–91.
[7] P. S. Hirschhorn, Model categories and their localizations, volume 99 of Mathematical

Surveys and Monographs, American Math. Soc., Providence, RI, 2003.
[8] M. Hovey, Model categories, Vol. 63 of Mathematical Surveys and Monographs, American

Math. Soc., Providence, RI, 1999.
[9] M. Hovey, B. Shipley, and J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (1), (2000),

149–208.
[10] S. Mac Lane, Categories for the working mathematician, Vol. 5 of graduate Texts in

Mathematics, Springer-Verlag, New York, second edition, 1998.
[11] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of diagram

spectra, Proc. London Math. Soc. (3) 82 (2) (2001), 441–512.
[12] P. Pascual Gainza and L. Rubi¾ i Pons, Algebraic k-theory and cubical descent, Preprint

Arxiv math.AG/2257, 2007.
[13] D. G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, Vol. 43. Springer-Verlag,

Berlin, 1967.
[14] C. Rezk, S. Schwede, and B. Shipley, Simplicial structures on model categories and

functors, Amer. J. Math. 123 (3) (2001), 551–575.
[15] S. Schwede and B. Shipley, Stable model categories are categories of modules, Topology 42

(1) (2001), 103–153.
[16] R. W. Thomason, Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4)
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EQUIVALENT NORMS ON DIRICHLET SPACES OF
POLYHARMONIC FUNCTIONS ON THE BALL IN RN

OLIVERA DJORDJEVIĆ AND MIROSLAV PAVLOVIĆ

Abstract. We define Dp
α,k

(B), where B is the unit ball in RN , to be the class
of those polyharmonic functions f of order k on B for which

|f (0)| +
(∫

B

|∇f (x)|p(1− |x|2)α dV (x)

)1/p

<∞,

and we present four equivalent norms on Dp
α,k

(B). We also consider some
equivalent norms on Bloch type spaces.

1. Introduction

Let RN (N ≥ 2) denote the N-dimensional Euclidean space. A (real-valued)
function f defined in a domain G ⊂ RN is said to be polyharmonic of order
k ≥ 1 if ∆kf ≡ 0 in G, where ∆ denotes the ordinary Laplacian. The class
of all such functions is denoted by Hk(G). In this note we consider the case
G = B, where B = BN is the unit ball centered at the origin. By the Almansi
representation theorem [1], if f ∈ Hk(B), then there exist unique harmonic
functions Amf such that

(1.1) f (x) =
k−1∑
m=0

(1− |x|2)mAmf (x), x ∈ B.

Conversely, if fm ∈ H(B) := H1(B), then the function f (x) =
∑k−1

m=0(1 −
|x|2)mfm(x) is polyharmonic of order k.

For 0 < p < ∞, and α > −1, we define the Dirichlet type space Dp
α,k(B) to

be the class of f ∈ Hk(B) for which

‖f‖Dp
α

:= |f (0)|+
(∫

B

|∇f (x)|p(1− |x|2)α dV (x)
)1/p

<∞,

where dV is the normalized Lebesgue measure on B, and ∇f is the gradient
of f,

∇f = (D1f, . . . , DNf ),

|x|2 = x2
1 + . . . + x2

N , and

Dif (x) =
@f

@xi
.

2000 Mathematics Subject Classification: 31B05, 30D55.
Keywords and phrases: polyharmonic functions, maximal function, Hardy spaces.
Supported by MNZŽS Serbia, Project 144010.
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In this note we present some equivalent norms on Dp
α. For a function

f ∈ C1(B) we denote by Rf the radial derivative of f,

Rf (x) =
N∑
i=1

xiDif (x), x = (x1, . . . , xN ),

and
Rsf = sf + Rf, s ≥ 0.

Thus R0 = R.
The main results of our paper are the following theorems.

Theorem (1.2). For 0 < p <∞, α > −1, and k ≥ 2, the following quantities
are equivalent norms on Dp

α,k(B) :

Q1(f ) = |f (0)|+
(∫

B

|Rf (x)|p(1− |x|2)α dV (x)
)1/p

,

Q2(f ) =
k−1∑
m=0

|Amf (0)|+
N∑

i,j=1

(∫
B

|Tijf (x)|p(1− |x|2)α dV (x)
)1/p

.

Our second result concerns two equivalent norms which involve the “Al-
mansi coordinates”.

Theorem (1.3). For 0 < p <∞, α > −1, and k ≥ 2, the following quantities
are equivalent norms on Dp

α,k(B) :

Q3(f ) =
k−1∑
m=0

|Amf (0)|+
k−1∑
m=0

(∫
B

|∇Amf (x)|p(1− |x|2)α+mp dV (x)
)1/p

,

Q4(f ) = ‖A0f‖Dp
α

+
k−1∑
m=1

(∫
B

|Amf (x)|p(1− |x|2)α+(m−1)p dV (x)
)1/p

.

Note that Q3 can be written as

Q3(f ) =
k−1∑
m=0

‖Amf‖Dp
α+mp

,

while

Q4(f ) = ‖A0f‖Dp
α

+
k−1∑
m=0

‖Amf‖Lp
α+(m−1)p

,

where

(1.4) ‖f‖Lp
α

=
(∫

B

|f (x)|p(1− |x|2)α dV (x)
)1/p

.

(We will use the expression (1.4) even if f is a vector-valued function.) Thus the
equivalence ‖f‖Dp

α
� Q3(f ) means that the space Dp

α,k is the direct sum of the
harmonic spacesDp

α+mp, m = 0, . . . , k−1,while the equivalence ‖f‖Dp
α
� Q4(f )

means that Dp
α,k is the direct sum of the harmonic space Dp

α and the harmonic
Bergman spaces H(B) ∩ Lp

α+(m−1)p, m = 1, . . . k − 1.
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The equivalence ‖f‖Dp
α
� Q1(f ) can be viewed as a generalization of a

theorem of Hardy and Littlewood on harmonic conjugates [3, Theorem 5],
which we state as follows:

Theorem (A). Let F be a function holomorphic in the unit disk D := B2 ⊂
C = R2. If the function (@/@r)(ReF )(reiθ) belongs toLp

α(D),where p > 0, α > −1,
then so does the derivative F ′.

Note that in this situation, R(Re f ) = r(@/@r)(ReF ) and |F ′| = |∇(Re f )|
and so Theorem (A) coincides with the equivalence ‖f‖Dp

α
� Q1(f ) for N = 2,

k = 1.

2. Some formulas

The tangential derivatives Tijf (1 ≤ i, j ≤ N) are defined by

Tijf (x) = xiDjf (x)− xjDif (x).

If f ∈ C2(B), then there hold the formulas:

(2.1) DiRf = Dif + RDif = R1Dif ;

DiTijf = Djf + TijDif,

DjTijf = −Dif + TijDjf,(2.2)

DkTijf = TijDif (k 6= i, k 6= j);

(2.3) RRf = Rf +
N∑

i,j=1

xixjDiDjf ;

TijTijf = xiδijDjf + x2
iDjDjf − xiDif − xixjDiDjf

− xjDjf − xixjDiDjf + xjδijDif + x2
jDiDif ;

where δij is the Kronecker delta. From this and (2.3) we get

(2.4) RRf +
1
2

N∑
i,j=1

TijTijf = (2−N)Rf + |x|2∆f,

where ∆ is the ordinary Laplacian,

∆f =
N∑
i=1

DiDif.

By successive application of (2.1) and (2.2) we get

∆kRf = 2k∆kf + R∆kf,

∆Tijf = Tij∆f.

As a consequence we get the well known facts:

Proposition (A). If f is in Hk(B), then so are Rf and Tijf (1 ≤ i, j ≤ N).

Using the fact that Tij annihilates radial functions, we get:
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Proposition (B). If f is given by (1.1), then

(2.5) Tijf (x) =
k−1∑
m=0

(1− |x|2)mTijAmf (x), x ∈ B.

This provides another proof that Tij preserves Hk(B).
(We write A(s) � B(s) to denote that A(s)/B(s) lies between two positive

constants independent of s.)

3. Subharmonic behavior

The class QNS(B). Let QNS(B) denote the class of non-negative measurable
functions u on B for which there exists a constant Q = Q(u) such that

(3.1) u(a) ≤ Qε−N
∫
B(a,ε)

udV

whenever
B(a, ε) := {x : |x − a| < ε} ⊂ B.

Members of QNS(B) are called quasi-nearly subharmonic functions [9, 10].
The class QNS contains non-negative subharmonic functions. Observe that
(3.1) implies

(3.2) sup
B(a,ε)

u ≤ Cε−N
∫
B(a,2ε)

udV, B(a, 2ε) ⊂ B.

Theorem (B). [5, 10] Let p > 0. If u ∈ QNS(B), then up ∈ QNS(B), and
Q(up) ≤ Cp,NQ(u).

The class HC1(G). This class consists of all locally Lipschitz functions f on B
for which there exists a constant Q′ = Q′(f ) such that

(3.3) |∇f (a)| ≤ Q′

ε
sup
B(a,ε)

|f |, whenever B(a, ε) ⊂ B.

Note that a locally Lipschitz function is differentiable almost everywhere
and in particular the gradient is defined almost everywhere. If∇f (a) does not
exist, then we interpret |∇f (a)| as

|∇f (a)| = lim sup
x→a

|f (x)− f (a)|
|x − a|

.

The classOC1(B). This is the subclass ofHC1(B) consisting of those f for which

|∇f (a)| ≤ Q′′

ε
sup{ |f (x)− f (a)| : x ∈ B(a, ε)},

where Q′′ = Q′′(f ) is a constant.

Theorem (C). [5] (a) If f ∈ HC1(B), then |f | ∈ QNS(B), and Q(|f |) ≤
CNQ

′(f ).
(b) If f ∈ OC1(B), then both |f | and |∇f | belong to QNS(B), and Q(|∇f |) ≤

CNQ
′′(u).

Theorem (D). [6, 7] If f is a function polyharmonic in B, then f ∈ OC1(B).
Moreover if f ∈ Hk(B), then Q′′(u) ≤ Ck,N (where Ck,N depends only on k
and N).
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As a consequence we have the following generalization of a theorem of Hardy
and Littlewood [3] (N = 2) and Fefferman and Stein [2] (N ≥ 3).

Theorem (E). If u = |f |p, u = |Rf |p, u = |∇f |p, or u(x) = |Ti,jf (x)|p, where
f ∈ Hk(B), and p > 0, then u satisfies (3.2) with C depending only on p, k and
N.

4. Lp-inequalities for QNS-functions

The following theorem was proved in [7] in the case of polyharmonic func-
tions. However the proof was based only on the condition f ∈ HC1(B). There-
fore we omit the proof.

Theorem (4.1). If f ∈ HC1(B), p > 0 and α ∈ (−∞,∞), then

(4.2) ‖ |∇f | ‖Lp
α+p
≤ C‖f‖Lp

α
.

In order to state a maximal theorem we let

u+(ρy) = sup
0≤r≤ρ

|u(ry)| = sup
0≤t≤ρ

|u(tρy)|, 0 ≤ ρ < 1, y ∈ @B.

Theorem (4.3). If u ∈ QNS(B), α > −1 and p > 0, then

(4.4) ‖u+‖Lp
α
≤ C‖u‖Lp

α
.

where C depends only on p, α and Q(u).

Let P (x, y) denote the Poisson kernel,

P (x, y) =
1− |x|2

|x − y|N
.

Since
∫
@B P (x, y)dσ(y) = 1, where dσ is the normalized surface measure on

@B, we see that Theorem (4.3) is obtained from the following lemma, by using
integration in polar coordinates, i.e., the formula∫

B

φ(x)dV (x) = N

∫ 1

0
rN−1dr

∫
@B

φ(ry)dσ(y).

Lemma (4.5). If u ∈ QNS(B), α > −1 and p > 0, then∫ 1

0
rN−1u+(ry)p(1− r2)α dr ≤ C

∫
B

u(x)p(1− |x|2)αP (x, y)dV (x), y ∈ @B.

For the proof we need the following elementary lemma.

Lemma (A). [4] Let β > 0, and {Aj}∞0 a sequence of real numbers. Then

∞∑
j=0

2−jβ|Aj+1|p ≤ C|A0|p + C
∞∑
j=0

2−jβ|Aj+1 −Aj |p,

where C depends only on β.
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Proof of Lemma (4.5). We can assume that p = 1 because u ∈ QNS(B)
implies up ∈ QNS(B), by Theorem (B). Let rj = 1 − 2−j for j ≥ 0. Then, by
Lemma (A),∫ 1

0
rN−1(1− r2)αu+(ry)dr ≤ C

∞∑
j=0

2−j(α+1)u+(rj+1y)

≤ Cu(0) + C
∞∑
j=0

2−j(α+1) ( u+(rj+1y)− u+(rjy)
)

≤ C
∞∑
j=0

2−j(α+1) sup
rj≤r≤rj+1

u(ry).

By (3.2) with a = aj := (rj + rj+1)y/2 and ε = (rj+1 − rj)/2 = 2−j−2,

(4.6) 2−j(α+1) sup
rj≤r≤rj+1

u(ry) ≤ C2−j(α+1)2jN
∫
B(aj ,2−j−1)

u(x)dV (x).

On the other hand, simple calculation shows that |x − ajy| ≤ 2−j−1 implies

2−j−2 ≤ 1− |x|, |x − y| ≤ 2−j+1

Hence
2−j2jN ≤ 2N+2 P (x, y), for x ∈ B(aj , 2−j−1).

From this and (4.6) we get

2−j(α+1) sup
rj≤r≤rj+1

u(ry) ≤ C2−jα
∫
rj−1≤|x|≤rj+2

P (x, y)u(x)dV (x)

≤ C

∫
rj−1≤|x|≤rj+2

(1− |x|)αP (x, y)u(x)dV (x)

(r−1 = 0) where we have used the inclusion

{x : |x − aj | ≤ 2−j−1} ⊂ {x : rj−1 ≤ |x| ≤ rj+2}.

Now the desired conclusion is easily obtained by summation from j = 0 to
∞.

Theorem (4.7). For a Borel measurable function u on B and s > 0, let

Isu(x) =
∫ 1

0
ts−1u(tx)dt, x ∈ B.

If u ∈ QNS(B), p > 0 and α > −1, then

‖Isu‖Lp
α
≤ C‖u‖Lp

α+p
.

Proof. Write Isu as

Isu(ρy) =
1
ρs

∫ ρ

0
ts−1u(ty)dt, y ∈ @B, 0 < ρ < 1.

Hence

|Isu(ρy)| ≤ 1
s

sup
B(0,1/2)

u + 2s+1
∫ ρ

0
u(ty)dt, y ∈ @B, 0 < ρ < 1.
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Since, by (3.2),
sup

B(0,1/2)
u ≤ C‖u‖Lp

α+p
,

it suffices to prove that
‖Ju‖Lp

α
≤ C‖u‖Lp

α+p
,

where

Ju(ρy) =
∫ ρ

0
u(ry)dr.

To show this we proceed in a similar way as in the proof of Lemma (4.5).
Namely,

‖f‖p
Lp
α

=
∞∑
j=0

∫ rj+1

rj

NrN−1dr

∫
@B

(Ju)(ry)p(1− r2)α−1 dσ(y).

On the other hand, it is easy to show that
∞∑
j=0

∫ rj+1

rj

NrN−1(Ju)(ry)p(1− r2)α−1dr ≤ C
∞∑
j=0

(∫ rj+1

0
u(ry)dr

)p

2−jα.

Now we use Lemma (A) to show that the last quantity is equivalent to

A :=
∞∑
j=0

(∫ rj+1

rj

u(ry)dr

)p

2−jα.

Since

A ≤
∞∑
j=0

2−jp2−jα sup
rj<r<rj+1

u(ry)p,

we can proceed as in the proof of Lemma 1 to get∫ 1

0
rN−1(Ju(ry))p(1− r2)α dr≤C

∫
B

u(x)p(1− |x|2)α+pP (x, y)dV (x), y ∈ @B.

Now integration in polar coordinates gives

‖Ju‖Lp
α
≤ C‖u‖Lp

α+p
,

which completes the proof of the theorem.

5. Inequalities for polyharmonic functions

In [7], the following decomposition theorem for polyharmonic Bergman
spaces is proved.

Theorem (F). If f is given by (1.1), 0 < p <∞, and α > −1, then

‖f‖Lp
α
�

k−1∑
m=0

‖Amf‖Lp
α+mp

, f ∈ Hk(B).

Here we prove:

Theorem (5.1). Let α > −1 and p > 0. Then

‖f − f (0)‖Lp
α
� ‖Rf‖Lp

α+p
� ‖∇f‖Lp

α+p
, f ∈ Hk(B).



314 OLIVERA DJORDJEVIĆ AND MIROSLAV PAVLOVIĆ

Proof. We have

f (x)− f (0) =
∫ 1

0

Rf (tx)
t

dt.

Hence

|f (x)− f (0)| ≤ sup
|x|<1/4

|∇f (x)|+ 4
∫ 1

0
|Rf (tx)|dt.

On the other hand,

∇f (x) =
∫ 1

0
(∇Rf )(tx)dt,

whence
sup
|x|<1/4

|∇f (x)| ≤ sup
|x|<1/4

|∇Rf (x)|.

But
sup
|x|<1/4

|∇Rf (tx)| ≤ C sup
|x|<1/2

|Rf (x)|

because Rf is polyharmonic and therefore belongs to HC1. Also since Rf ∈
QNS(B), we have

sup
|x|<1/2

|Rf (x)| ≤ C‖Rf‖Lp
α+p
.

Combining the above inequalities we get

|f (x)− f (0)| ≤ C‖Rf‖Lp
α+p

+ 4
∫ 1

0
|Rf (tx)|dt.

Now the inequality
‖f − f (0)‖Lp

α
≤ C‖Rf‖Lp

α+p

follows from Theorem (4.7) (s = 1). Since |Rf (x)| ≤ |x||∇f (x)| and ‖∇f‖Lp
α+p
≤

C‖f‖Lp
α
, by Theorem (4.1), we see that the proof is finished.

6. Proof of the main results

Theorem (6.1). For 0 < p <∞, α > −1, and k ≥ 2,we haveQ1(f ) � ‖f‖Dp
α
.

Proof. The inequality Q1(f ) ≤ C‖f‖Dp
α

is obvious. On the other hand, we
have

‖DiRf‖Lp
α+p
≤ C‖Rf‖Lp

α
, 1 ≤ i ≤ N,

by Theorem (4.1). But since DiRf = R1Dif, we can use the formula

(6.2) IsRsu = RsIsu = u

(with u = Dif ) together with Theorem (4.7) to get

‖Dif‖Lp
α
≤ C‖Rf‖Lp

α
,

which concludes the proof.

Lemma (6.3). If f is a harmonic function on B, p > 0 and α > 0, then

Q2(f ) � ‖f‖Dp
α
.
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Proof. The inequality Q2(f ) ≤ C‖f‖Dp
α

is obvious. To prove the reverse
inequality, observe that (2.4) implies

(6.4)
1
2

N∑
i,j=1

TijTijf = −RN−2Rf.

Since

Q2(f ) =
N∑

m=0

|Amf (0)|+
N∑

i,j=1

‖Tijf‖Lp
α

we see that (6.4) and Theorem (4.1) imply

‖RN−2Rf‖Lp
α+p
≤ CQ2(f ).

Now we use the formula (6.2) with u = Rf, s = N − 2 together with Theorem
(4.7) to conclude that

‖Rf‖Lp
α
≤ C‖RN−2Rf‖Lp

α+p
≤ CQ2(f ),

for N ≥ 3. In the case N = 2 we can use Theorem (5.1) to get

‖Rf‖Lp
α
≤ C‖RRf‖Lp

α+p
≤ CQ2(f ),

Now the result follows from Theorem (6.1).

Theorem (6.5). Under the hypotheses of Theorem (1.2) we have Q2(f ) �
‖f‖Dp

α
.

Proof. First we prove that ‖f‖Dp
α
≤ CQ2(f ). By Proposition (B) and Theo-

rem (F) we have

Q2(f ) �
k−1∑
m=0

|Amf (0)|+
k−1∑
m=0

N∑
i,j=1

‖TijAmf‖Lp
α+mp

.

Hence, by Lemma (6.3),

Q2(f ) �
k−1∑
m=0

|Amf (0)|+
k−1∑
m=0

‖ |∇Amf | ‖Lp
α+mp

(= Q3(f )).

Since ‖ |∇Amf | ‖Lp
α+mp
� ‖Amf −Amf (0)‖Lp

α+(m−1)p
for m ≥ 1, we have

(6.6)

Q2(f ) �
k−1∑
m=0

|Amf (0)|+ ‖ |∇A0f | ‖ +
k−1∑
m=1

‖Amf −Amf (0)‖Lp
α+(m−1)p

�
k−1∑
m=0

|Amf (0)|+ ‖ |∇A0f | ‖Lp
α

+
k−1∑
m=1

‖Amf‖Lp
α+(m−1)p

� |A0f (0)|+ ‖ |∇A0f | ‖Lp
α

+
k−1∑
m=1

‖Amf‖Lp
α+(m−1)p

(= Q4(f )).

On the other hand, since

|∇f (x)| ≤ |∇A0f (x)|+
m−1∑
m=1

(1− |x|2)m|∇Amf (x)|+ 2m(1− |x|2)m−1|Amf (x)|,
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we have, by Theorem (4.1),

‖ |∇f | ‖Lp
α
≤ C‖A0f‖Dp

α
+ C

k−1∑
m=1

‖Amf‖Lp
α+(m−1)p

.

This inequality and (6.6) give the required inequality.
In order to prove the reverse inequality it suffices to prove that

(6.7)
k−1∑
m=0

|Amf (0)| ≤ C‖f‖Dp
α
.

Indeed, since |∇f | ∈ QNS, we have

|f (0)|+
∫
B

|∇f (x)|p(1− |x|2)α dV (x) ≥ c(|f (0)|+ sup
|x|<1/2

|∇f (x)|),

and hence

‖f‖Dp
α
≥ c(|f (0)|+ sup

|x|<1/2
|f (x)− f (0)|) ≥ c sup

|x|<1/2
|f (x)|,

where c is a positive constant. On the other hand,∫
@B

f (ry)dσ(y) =
k−1∑
m=0

Amf (0)(1− r2)m, 0 < r < 1.

But the quantity K(a0, . . . , ak−1) = sup0<r<1/2 |
∑k−1

m=0 am(1−r2)m| is a norm on
Rk, and this implies

k−1∑
m=0

|Amf (0)| ≤ CK(f ) ≤ C sup
0<r<1/2

∫
@B

|f (ry)|dσ(y) ≤ C sup
|x|<1/2

|f (x)|,

which completes the proof.

7. Bloch type spaces

We define Bα,k (α > 0, k = 1, 2, . . .) to be the class of those f ∈ Hk(B) for
which

(7.1) ‖f‖Bα := |f (0)|+ sup
x∈B

(1− |x|2)α|∇f (x)| <∞.

The space B1,1 is known as the harmonic Bloch space. The following theorem
is proved in a similar way as Theorem (1.2); the proof is even simpler and
therefore is omitted.

Theorem (7.2). For α > 0, and k ≥ 2, the following quantities are equiva-
lent norms on Bα,k(B) :

P1(f ) = |f (0)|+ sup
x∈B
|Rf (x)|p(1− |x|2)α,

P2(f ) =
k−1∑
m=0

|Amf (0)|+
N∑

i,j=1

sup
x∈B
|Tijf (x)|(1− |x|2)α,

P3(f ) =
k−1∑
m=0

|Amf (0)|+
k−1∑
m=0

sup
x∈B
|∇Amf (x)|(1− |x|2)α+m,
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P4(f ) = ‖A0f‖Bα +
k−1∑
m=1

sup
x∈B
|Amf (x)|(1− |x|2)α+(m−1).

In order to state another result, we define the Lq-oscillation (0 < q ≤ ∞) of
f over the ball B(x, r) ⊂ B as

(7.3) oscq(f, x, r) =
(

1
rN

∫
B(x,r)

|f (z)− f (x)|qdV (z)
)1/q

.

Note that V (B(x, r)) = rN . In the case q = ∞, equation (7.3) should be
interpreted as

osc(f, x, r) = sup
z∈B(x,r)

|f (z)− f (x)|.

Theorem (7.4). Let 0 < q ≤ ∞, α > 0 and 0 < c < 1. Then the quantity

P5(f ) = |f (0)|+ sup
x∈B

(1− |x|2)α−1oscq(f, x, c(1− |x|))

is an equivalent norm on Bα,k.

Proof. We consider only the case q < ∞. It is easy to check that a QNS-
function u on B satisfies the condition

sup
|z−x|<ε/2

u(z)q ≤ C

εN

∫
B(x,ε)

u(z)q dV (z), B(x, ε) ⊂ B.

Since a polyharmonic function f belongs toOC1(B) (Theorem (D)), this implies

(7.5)
|∇f (x)|q ≤ C

εN+q

∫
B(x,ε)

|f (z)− f (x)|qdV (x)

=
C

εq
(
oscq(f, x, ε)

)q
.

where C is independent of f . Now we take ε = c(1−|x|) and use the hypothesis

(1− |x|2)α−1oscq(f, x, c(1− |x|)) ≤ P5(f )

to get

(7.6) |∇f (x)| ≤ CP5(f )
c(1− |x|)

(1− |x|)(1−α) =
CP5(f )

c
(1− |x|)−α.

This proves part of the theorem.
In the other direction, assume that

M(f ) := sup
x∈B

(1− |x|2)α|∇f (x)| <∞.

It is enough to prove that

sup
x∈B

(1− |x|2)α−1osc(f, x, c(1− |x|)) ≤ CM(f ),

because oscq(f, x, c(1 − |x|)) ≤ osc(f, x, c(1 − |x|)). For we have, by Lagrange’s
theorem,

osc(f, x, c(1− |x|)) ≤ c(1− |x|) sup
z∈B(x,c(1−|x|))

‖∇f (z)‖,
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whence, by hypothesis,

osc(f, x, c(1− |x|)) ≤ c(1− |x|)M(f ) sup
z∈B(x,c(1−|x|))

(1− |z|2)−α.

Now the desired result follows from the inequality

1− c < 1− |z|
1− |x|

< 1 + c, z ∈ B(x, c(1− |x|)),

which is easily deduced from the inequalities |x|−|z| < c(1−|x|) and |z|−|x| <
c(1−|x|) valid for z ∈ B(x, c(1−|x|)).This concludes the proof of the theorem.

Finally we define the mean values of |f | on the ball B(x, r) by

mq(f, x, r) =
(

1
rN

∫
B(x,r)

|f |q dV
)1/q

, 0 < q ≤ ∞.

Using Theorems (E) and (7.2) one can prove the following:

Theorem (7.7). Let α > 0, 0 < q ≤ ∞, and k ≥ 2, and 0 < c < 1, then the
following quantities are equivalent norm on Bα,k :

P6(f ) = |f (0)|+ sup
x∈B

mq(Rf, x, c(1− |x|))(1− |x|2)α,

P7(f ) =
k−1∑
m=0

|Amf (0)|+
N∑

i,j=1

sup
x∈B

mq(Tijf, x, c(1− |x|))(1− |x|2)α.
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JOINT SPECTRA IN WAELBROECK ALGEBRAS

ANTONI WAWRZYŃCZYK

Abstract. In the paper we give a survey of the theory of joint spectra for a
locally convex Waelbroeck algebra W . It includes the Gelfand theory, the de-
scription of joint spectra on a commutative algebra W and the Harte theorem
in the general case. The subspectra generated by W in their subalgebras are
also studied. The rôle of regularities in the spectral theory is emphasized.

Introduction

In developing the theory of spectra and joint spectra of Banach algebras,
the following two properties of these algebras are specially frequently used:

(1) The set G(B) of invertible elements of the Banach algebra B is open.
(2) The inversion mapping G(B) 3 x→ x−1 ∈ G(B) is continuous.
A topological algebra W is a Waelbroeck algebra if it has both properties.

In the original papers of Waelbroeck [22], [23] the algebras, called algebras of
continuous inverse, are supposed moreover to be locally convex.

What part of the spectral theory of Banach algebras is valid for Waelbroeck
algebras? The subject of the present paper is to gather the known results
concerning this question, and to add several new facts.

Besides the direct consequences of basic properties presented in Section 1,
we study in Section 2 a generalization of the Gelfand-Mazur theorem and of the
of Gleason-Kahane-Żelazko theorem. Section 3 presents the generalization of
the Gelfand theory of maximal ideals. The results presented in sections 1-3
are well known, in several cases even in a more general form. For this material
the reader is refered to the monographs [13], [8] and the articles [1], [2], [3],
[24].

In Section 4 we define the joint spectra and we prove the analogues of a
theorem of Sołtysiak about the existence of semispectra and of the Żelazko
theorem about the general form of a subspectrum in a commutative Banach
algebra.

Section 5 is devoted to the one-way spectral mapping theorem valid for the
joint spectra defined by families of ideals.

In Section 6 the complete spectral mapping formula, that is, the Harte the-
orem for Waelbroeck algebras is discussed. The method used is based on the
Schur lemma in its algebraic part and on the Gelfand-Mazur theorem as the
analytic argument. This approach is much simpler than the proof from [29];
moreover it is applicable to other topological algebras.

2000 Mathematics Subject Classification: 46J20.
Keywords and phrases: Waelbroeck algebra, ideal, joint spectrum, spectral mapping formula,

regularity, rational convexity.
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In Sections 7 and 8 we present other methods of describing subspectra. One
of them consists in generating subspectrum in a subalgebra of a Waelbroeck
algebra. In the commutative case we study the regularities in a Waelbroeck
algebra and the associated subspectra.

Section 9 describes the rôle of the spectrum of generators. One proves that
in the case of a Q-algebra (in particular for Waelbroeck algebras) the spectrum
of generators is rationally convex.

Most of the results mentioned depend upon the existence of continuous lin-
ear functionals on the algebra. Locally convex Waelbroeck algebras is the class
of topological algebras most exhaustively studied in the present paper.

1. Spectrum of a single element

All algebras considered here are associative, complex and unital, with the unit
denoted by e. Topological algebra A is an algebra provided with the Hausdorff
topology which makes A a topological linear space and such that the mapping
A × A 3 (x, y) → xy ∈ A is continuous. A topological algebra is called an
F -algebra if its topology is metrizable and complete. It is an LC algebra if
the topology is locally convex. If the topology of A is given by a norm which
is submultiplicative: ‖ab‖ ≤ ‖a‖‖b‖, then A is a normed algebra. Banach
algebra is a complete normed algebra. A locally multiplicatively convex algebra
(LMC-algebra) is a topological algebra whose topology can be specified by a
family of submultiplicative seminorms.

An element a ∈ A is invertible if there exists a−1 ∈ A such that aa−1 =
a−1a = e. By G(A) is denoted the subset of elements invertible in A. A
topological algebra is a Q-algebra if G(A) is an open set.

Not all normed algebras are Q-algebras. The necessary and sufficient con-
dition for a normed algebra (B, ‖ · ‖) to be Q-algebra is that

∑∞
j=1 a

j converges
in B for all a ∈ B such that ‖a‖ < 1. The inverse x → x−1 is continuous in a
normed algebra (B, ‖ · ‖) thanks to the elementary inequality

‖b−1 − x−1‖ ≤ 2‖x−1‖2‖b − x‖.

As proved by Banach (see [32]) in an algebra which is an F - and Q-algebra the
inversion is continuous, so it is a Waelbroeck algebra. However the field C(t) of
rational functions with the topology defined by Williamson in [31] is obviously
a Q-algebra but the inverse is not continuous in it.

On the other hand all LMC-algebras have the inversion continuous, but
not all of them are Q-algebras. The algebra C(R) of continuous functions on
the real line provided with the compact-open topology is one of the simplest
examples of this situation.

Let E be a topological unital algebra. For a given x ∈ E the set

σ(x) = {λ ∈ C| x − λe /∈ G(E)}

is the spectrum of x in E.
In what follows we simplify the notation writing x − λ in place of x − λe.
In general the spectrum of an element can be empty (as in the case of a

nonconstant element of C(t)). The spectrum of the function f (x) = exp x in the
algebra C(C) is open and unbounded.
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Theorem (1.1). If E is a Q algebra then σ(x) is compact for an arbitrary
x ∈ E.

Proof. Let x ∈ E. If r ∈ R is sufficiently large then xµ−1−e ∈ G(E) for every
µ ∈ C satisfying |µ| ≥ r, because G(E) is open. Then x − µ = µ(xµ−1 − e) ∈
G(E). So the spectrum of x is bounded. If λ 6∈ σ(x) then by the same argument
there exists ε > 0 such that for |µ| < ε we have x − (λ + µ) ∈ G(E). The
complement of σ(x) is open. The spectrum is closed.

Let A be an algebra and let x ∈ A. The set R(x) = C \ σ(x) is called the
resolvent set of x and the function Rx(λ) = (x − λ)−1 defined on R(x) is the
resolvent of x.

Proposition (1.2). (Resolvent identity) For arbitrary λ, µ ∈ R(x)

Rx(λ)−Rx(µ) = (λ− µ)Rx(λ)Rx(µ).

Theorem (1.3). Let A be a topological algebra. Suppose that the inverse is
continuous onG(A) and that there exists a nonzero linear continuous functional
on A. Then for every x ∈ A,

σ(x) 6= ∅.

Proof. Let g ∈ A′ be such that g(y) 6= 0 for some y ∈ A. The form ϕ : A 3
a → g(ya) is also linear, continuous and satisfies ϕ(e) 6= 0. For x ∈ A, let us
define f (λ) = ϕ(Rx(λ)). By the resolvent identity we obtain

lim
λ→µ

f (λ)− f (µ)
λ− µ

= lim
λ→µ

ϕ(Rx(λ))− ϕ(Rx(µ))
λ− µ

= lim
λ→µ

ϕ

(
Rx(λ)−Rx(µ)

λ− µ

)
= lim

λ→µ
ϕ(Rx(λ)Rx(µ)) = ϕ(Rx(µ)2).

The function f is holomorphic on the whole domain R(x).
Suppose that σ(x) = ∅, so R(x) = C. If we represent

f (λ) = ϕ((x − λ)−1) =
1
λ
ϕ((xλ−1 − e)−1)

we observe that limλ→∞ f (λ) = 0. By Liouville’s theorem f = 0. However, the
same formula also implies

lim
λ→∞

ϕ((xλ−1 − e)−1) = ϕ(e) 6= 0,

so f (λ) 6= 0 for λ sufficiently large. This is a contradiction.

In the case of a Waelbroeck algebra we obtain:

Theorem (1.4). Let W be a Waelbroeck algebra such that W ′ 6= {0}. Then
σ(x) is a compact nonvoid set for every x ∈ W .
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2. Gelfand-Mazur Theorem. Multiplicative functionals

The results obtained in the previous section lead to one of generalized ver-
sions of the celebrated Gelfand-Mazur Theorem.

Theorem (2.1). Let A be a complex unital topological algebra with contin-
uous inverse and such that A′ 6= 0. If A is a division algebra, then A ∼= C.

Proof. Zero is the only non-invertible element in A. On the other hand
every element has a nonzero spectrum. Then for an arbitrary a ∈ A there
exists λ ∈ C such that 0 = a − λ. The proof follows.

One of the most important consequences of the Gelfand-Mazur theorem is
the relation between maximal ideals and multiplicative functionals in the case
of commutative algebras. In order to obtain it we need a result about a quotient
algebra of a Wealbroeck algebra.

Let I be a closed two-sided ideal in a topological algebra E. The space E/I
provided with the natural algebraic and topological structures is a topological
algebra. If E is a Q-algebra then E/I is of the same class. The property of
having continuous inversion is not necesserely conserved when we pass to the
quotient algebra. In the case of the Waelbroeck algebra it does.

Theorem (2.2). [24] Let W be a Waelbroeck algebra and let I be a closed
two-sided ideal in W . Then the quotient algebra W/I is a Waelbroeck algebra.

Proof. The natural projectionπ : W → W/I is open; hence the groupπ(G(E))
is open and G(W/I) is also open. It remains to prove that the inverse in E/I
is continuous.

We prove first that the inverse [x] → [x]−1 is continuous at [e]. Let Ũ be
a neighbourhood of [e] in W/I and let U = π−1(Ũ). By the continuity of the
inverse in W there exists a neighbourhood O of e such that x−1 ∈ U for x ∈ O.
Then [x]−1 = [x−1] ∈ Ũ for [x] in the neighbourhoodπ(O) of [e]. The continuity
of the inverse at [e] is proved.

Suppose that [x] has an inverse [x]−1 = [y] in E/I . Take a neighbourhood
of [x]−1 of the form [y] Ũ, where Ũ is a neighbourhood of [e]. If O is the neigh-
bourhood of e chosen above, then for every g ∈ O the class [gx] is invertible
with [gx]−1 = [x]−1[g]−1 ∈ [y] Ũ. Whence (π(O)[x])−1 ⊂ [y] Ũ. The proof fol-
lows.

Recall basic facts about multiplicative functionals on Q-algebras.

Proposition (2.3). Let A be a Q-algebra and let ϕ : A → C be a nonzero
linear multiplicative functional. Then ϕ is continuous and ϕ(e) = 1.

Proof. If x ∈ A is such that ϕ(x) 6= 0 then ϕ(e)ϕ(x) = ϕ(ex) = ϕ(x) what
implies ϕ(e) = 1. If a ∈ A is invertible then ϕ(a)ϕ(a−1) = ϕ(e) = 1, so ϕ(a) 6= 0.
The kernel of ϕ consists of non-invertible elements. In particular it is not dense
in A what implies that ϕ is continuous.

The kernel of a multiplicative non-zero linear functional is obviously a max-
imal ideal. In the case of a commutative Waelbroeck algebra every maximal
ideal is of this form.
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Theorem (2.4). Let W be a unital commutative LC Waelbroeck algebra.
Then every maximal ideal of W is of codimension one and it is equal to the
kernel of a multiplicative linear functional on W .

Proof. If I is a maximal ideal in W then it is equal to its closure, because
in general a closure of a proper ideal in a Q-algebra is proper. The quotient
algebra W/I is a division algebra and a locally convex algebra. Then W/I is
isomorphic to C by Theorem (2.1) and I is of the codimension one as a kernel
of a continuous multiplicative functional W 3 x→ [x] ∈ W/I ∼= C.

Theorem (2.4) permits us to identify the space of maximal ideals of a complex
locally convex unital commutative Waelbroeck algebra W with the space of
linear multiplicative functionals on W . This space will be denoted by M(W ).

Theorem (2.5). Let W be a unital commutative LC Waelbroeck algebra.
Then the space M(W ) is nonvoid.

Proof. If W is a division algebra then W ∼= C and the corresponding isomor-
phism is an element of M(W ). If W contains a non-invertible element x then
Wx is an ideal. By the Kuratowski-Zorn Lemma it follows that each ideal in
W is contained in a maximal ideal. In particular Wx does. Applying Theorem
(2.4) we obtain an element of M(W ).

The greater part of the Gelfand theory of maximal ideals generalizes to
commutative LC Waelbroeck algebras. The next section will be devoted to this
subject.

The theorem of Gleason-Kahane-Żelazko characterizing multiplicative func-
tionals on a unital Banach algebras is also valid for Waelbroeck algebras.

Theorem (2.6). Let W be a unital complex Waelbroeck algebra. If ϕ is a
lineal functional on W such that ker ϕ consists of noninvertible elements and
ϕ(e) = 1, then ϕ is continuous and multiplicative.

Proof. In the paper [16] the Gleason-Kahane-Żelazko characterization of
multiplicative functionals was extended to all complex unital algebras A such
that σ(x) is bounded for all x ∈ A. By Theorem 1.1 the proof follows.

3. Gelfand transform

In this section A denotes a unital complex commutative LC Waelbroeck
algebra.

By Theorem (2.5) it follows that the space M(A) is nonempty. For every
a ∈ A and ϕ ∈M(A) the value ϕ(a) belongs to the spectrum of a. Every ϕ can
be treated as an element of the space P =

∏
a∈A σ(a). According to Theorem

1.4 σ(a) is compact for every a ∈ A. By Tychonoff theorem the product topology
of P is compact. It is easily seen that the space M(A) is a closed subspace of
P . Provided with the product topology the space M(A) is compact.

The Gelfand transform on A is the mapping which assigns to a ∈ A the
function â on M(A) defined by the formula

â(ϕ) = ϕ(a).
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Obviously âb(ϕ) = â(ϕ)b̂(ϕ). The product topology in M(A) is just the weakest
one for which all functions â, a ∈ A are continuous. The Gelfand transform
is a homomorphism of A into C(M(A)), the algebra of continuous functions on
M(A).

Theorem (3.1). Let A be a commutative LC Waelbroeck algebra. Then the
Gelfand transform on A is continuous.

For the proof of this theorem we refer the reader to [13], VI, Corollary 1.3.
The following simple observations relate the invertibility of an element of

the algebra with the properties of its Gelfand transform.

Proposition (3.2). Let A be a commutative LC Waelbroeck algebra. For
every a ∈ A,

(1) â(M(A)) = σ(a).
(2) a ∈ G(A) if and only if â(ϕ) 6= 0 for all ϕ ∈M(A). This being the case,

(a−1) (̂ϕ) = (â(ϕ))−1.

4. Subspectra. Żelazko theorem.

For a given complex unital algebra B let us denote by Bk
com the space of

k-tuples (a1, . . . , ak) ∈ Bk such that the elements ai, 1 ≤ i ≤ k mutually com-
mute. If (a1, . . . , ak) ∈ Bk

com and p = (p1, . . . , pm) : Ck → Cm is a polynomial
mapping, then p(a1, . . . , ak) is the element ofBm obtained by putting ai in place
of the variable xi in each polynomial pj .

Definition. A subspectrum on B is a mapping which assigns to an arbitrary
(a1, . . . , ak) ∈ Bk

com a compact non-empty set τ(a1, . . . , ak) ⊂ Ck such that the
following properties are valid:

(i) τ(a1, . . . , ak) ⊂
∏

1≤j≤k σ(aj).
(ii) For every (a1, . . . , ak) ∈ Bk

com and for every polynomial mapping

p : Ck → Cm

the the spectral mapping formula holds:

(4.1) p(τ(a1, . . . , ak)) = τ(p(a1, . . . , ak)).

Let us consider particular cases of the spectral mapping formula.
The translation formula

τ(a + λ) = τ(a) + λ,

is obtained by taking p(x) = x + λ.
By considering the monomial p(x, y) = xy we deduce the formula

τ(ab) = {λµ|(λ, µ) ∈ τ(a, b)}
for a, b commuting.

In the case of the projection mapping

π : Ck+1 3 (x1, . . . , xk, xk+1)→ (x1, . . . , xk) ∈ Ck

we obtain the projection property of the subspectrum:

τ(a1, . . . , ak) = π(τ(a1, . . . , ak, ak+1))
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for an arbitrary (k + 1)-tuple of commuting elements.
The majority of subspectra are defined uniquely for k-tuples of mutually

commuting elements; however there exist interesting cases of joint spectra
which at least can be defined for general k-tuples of elements of the algebra,
although the extended function rarely conserves all properties of subspectra.
These objects however are worthy to be studied because their structure ex-
plains the rôle played by ideals in the construction of joint spectra. This is the
case of the approximative point spectrum in Banach algebras.

Let us call semispectrum on a complex unital algebraA a function which as-
signs to an arbitrary (a1, . . . , ak) ∈ Ak a compact non-empty set ω(a1, . . . , ak) ⊂
Ck such that

(1) ω(a1, . . . , ak) ⊂
∏

1≤j≤k σ(aj).
(2) For every (a1, . . . , ak) ∈ Ak and for every polynomial mapping p : Ck →

Cm

(4.2) p(ω(a1, . . . , ak)) ⊂ ω(p(a1, . . . , ak)).

In this noncommutative case it is neccessary to explain the meaning of the
expression p(a1, . . . , ak) for p being a polynomial of k variables.

Consider the algebra A of all linear mappings f : Ak → A with the opera-
tions:

(f + λg)(a1, . . . , ak) = f (a1, . . . , ak) + λg(a1, . . . , ak),

(fg)(a1, . . . , ak) = f (a1, . . . , ak)g(a1, . . . , ak).
Distinguish in this space the constant mapping: (a1, . . . , ak)→ e and the coor-
dinate mappings

xi : (a1, . . . , ak)→ ai, 1 ≤ i ≤ k.

By a polynomial mapping from Ak to Am we mean the map of the form

(p1, . . . , pm)(a1, . . . , ak) = (p1(a1, . . . , ak), . . . , pm(a1, . . . , ak)),

where pi, 1 ≤ i ≤ k belong to the subalgebra of A generated by the constant
and the coordinate mappings.

The relation (2) is called the one-way spectral mapping formula.
Formula (2) implies the translation formula as well as the one-way projec-

tion formula
τ(a1, . . . , ak) ⊂ π(τ(a1, . . . , ak, ak+1)).

The next theorem, which generalizes some results of A. Sołtysiak [18], [19]
determines a necessary and sufficient condition for the existence of a semis-
pectrum on a locally convex Waelbroeck algebra. A theorem of Sołtysiak says
that every semispectrum ω on a Banach algebra W produces a multiplicative
functional on W of special type.

Theorem (4.3). Let ω be a semispectrum on a unital complex Waelbroeck
algebra W . Then there exists a linear multiplicative functional ϕ on W such
that (ϕ(a1), . . . , ϕ(ak)) ∈ ω(a1, . . . , ak) for every a1, . . . , ak ∈ W .

Proof. Let us consider again the space P =
∏

a∈W σ(a), which is compact
by Tichonoff ’s theorem. The elements of P can be treated as functions on
W . For an arbitrary finite system of elements a1, . . . , ak ∈ W let us consider
the space V linearly generated by {ai}1≤i≤k. Let {bj}1≤j≤m be a basis of V .
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The set ω(b1, . . . , bm) is nonempty. Let us choose (λ1, . . . , λm) ∈ ω(b1, . . . , bm).
By the one-way spectral mapping formula applied to the polynomial mapping
(x1, . . . , xm)→ (

∑m
j=1 µ1jxj , . . . ,

∑m
j=1 µljxj) we obtain

(4.4) (
m∑
j=1

µ1jλj , . . . ,
m∑
j=1

µljλj) ∈ ω(
m∑
j=1

µ1jbj , . . . ,
m∑
j=1

µljbj).

Let us define a linear form on V by the formula

f (
m∑
j=1

µjbj) =
m∑
j=1

µjλj .

Formula (3) states that f has the property

(4.5) (f (c1), . . . , f (cl)) ∈ ω(c1, . . . , cl)

for an arbitrary system of elements ofV . Obviously we can extend f to function
on W conserving at least the property f (c) ∈ ω(c).

For an arbitrary system a1, . . . , ak ∈ W let us denote by γ(a1, . . . , ak) the
set of all elements f ∈ P which are linear when restricted to the linear
span of {aj}1≤j≤k and which satisfy (f (a1), . . . , f (ak)) ∈ ω(a1, . . . , ak). The set
γ(a1, . . . , ak) is compact and non-empty. Moreover it follows by the definition
that

γ(a1, . . . , ak, b1, . . . , bm) ⊂ γ(a1, . . . , ak) ∩ γ(b1, . . . , bm).
The family of compact sets γ(a1, . . . , ak) has the finite intersection property
hence there exists f ∈ P such that f ∈ γ(a1, . . . , ak) for an arbitrary system
(a1, . . . , ak) ∈ W . The function f is linear on W and for a1, . . . , ak ∈ A we have
(f (a1), . . . , f (ak)) ∈ ω(a1, . . . , ak) ⊂ σ(a1, . . . , ak). In particular for a single
element a ∈ ker f we have 0 ∈ ω(a) ⊂ σ(a). The kernel of f consists of non-
invertible elements. By Theorem (2.6) the functional f is multiplicative.

Note that, thanks to the thorem of Roitman and Sternfeld mentioned in the
proof of Theorem (2.6), the last theorem is also valid in a more general case of
a unital complex algebra W such that σ(a) is compact for all a ∈ W .

The complete description of all subspectra on a commutative Banach alge-
bra was given by Żelazko in [33]. This result generalizes in a natural way
to commutative LC Waelbroeck algebras. A generalization to other class of
algebras was studied by Kokk [12].

Theorem (4.6). Let W be a unital commutative LC Waelbroeck algebra. Let
τ be a subspectrum on W . Then there exists a unique nonempty compact set
K ⊂M(W ) such that

τ(a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ K}.

Proof. Let us denote by K the set of all ideals I in W such that 0 ∈ τ(a1, . . . ,
ak) for an arbitrary k-tuple (a1, . . . , ak) ∈ Ik.

There is a simple construction of elements of K. Let a1, . . . , ak ∈ W and let
(µ1, . . . , µk) ∈ τ(a1, . . . , ak). Then 0 ∈ τ(a1 −µ1, . . . , ak −µk) by the translation
formula. Let I be the ideal generated by elements a1 − µ1, . . . , ak − µk.

Then for an arbitrary m-tuple cj =
∑k

i=1 bj,i(a − µi) ∈ I , 1 ≤ j ≤ m we
obtain by the spectral mapping formula that τ(c1, . . . , cj) consists of all elements
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of the form (
∑k

i=1 λ1,iνi, . . . ,
∑k

i=1 λm,iνi) where (λ1,1, . . . , λ1,k, . . . , λm,1, . . . , λm,k,
ν1, . . . , νk) belongs to the set

τ(b1,1, . . . , b1,k, . . . , bm,1, . . . , bm,k, a1 − µ1, . . . , ak − µk).

By the projection property the latter set contains an element with the last k
coordinates equal to zero, so 0 ∈ τ(c1, . . . , ck). It follows that I ∈ K.

For an arbitrary I ∈ K, letKI be the set of elements ofK which contain I . If
(Jβ) is a increasing linearly ordered family of elements of KI then J =

⋃
β Jβ

belongs toKI . By the Kuratowski-Zorn LemmaKI contains maximal elements.
We shall prove that maximal elements of KI are maximal ideals of A. Let J
be a maximal element of KI . Suppose that J is not of codimension one in W .
There exists c ∈ W such that λc 6∈ J .

By the projection formula we know that for an arbitrary k-tuple a1, . . . , ak ∈
J there exists µ ∈ C such that (0, . . . , 0, µ) ∈ τ(a1, . . . , ak, c), so by the transla-
tion formula 0 ∈ τ(a1, . . . , ak, c − µ). Let us introduce

δ(a1, . . . , ak) = {µ ∈ C| 0 ∈ τ(a1, . . . , ak, c − µ)}.

This set is nonempty for an arbitrary k-tuple (a1, . . . , ak) ∈ J k. It is compact
because it can be represented as the intersection of a compact set with a closed
set:

{µ ∈ C|(0, . . . , 0, µ) ∈ τ(a1, . . . , ak, c)} = τ(a1, . . . , ak, c) ∩ {0} × C,

where {0} denotes the origin in Ck. Since

∅ 6= δ(a1, . . . , ak, b1, . . . , bm) ⊂ δ(a1, . . . , ak) ∩ δ(b1, . . . , bm),

the family of the compact sets δ(a1, . . . , ak) has the finite intersection property.
Let λ ∈ C be an element of the intersection of all sets δ(a1, . . . , ak), a1, . . . , ak ∈
J .

For arbitrary a1, . . . , ak ∈ J we have 0 ∈ τ(a1, . . . , ak, c − λ). The ideal
generated by a1, . . . , ak, c− λ contains J properly and belongs to KI , what is a
contradiction. It follows that J ∈M(W ).

Every element of K is contained in an element of K ∩M(W ). Denote K =
K ∩M(W ).

Now, (µ1, . . . , µk) ∈ τ(a1, . . . , ak) if and only if there exists J ∈ K such that
ai − µi ∈ J , 1 ≤ i ≤ k, which implies µi = ϕ(ai), where ϕ is the multiplicative
functional corresponding to the maximal ideal J .

It remains to prove that K is compact.
Suppose that J 6∈ K. There exists a k-tuple a1, . . . , ak ∈ J such that

0 6∈ τ(a1, . . . , ak). By the projection property there exists i such that ϕ(ai) 6= 0,
where ϕ is the multiplicative functional corresponding to J . The neighbour-
hood V = {ψ ∈ M(W )|ψ(ai) 6= 0} of J belongs to M(W ) \K. The latter set is
open, hence K is compact.

One of the most important conclusions of the theorem of Żelazko is that every
subspectrum in a commutative Waelbroeck algebra W is uniquely determined
by a family of ideals in W . If K ⊂M(W ) is the compact set which corresponds
to a subspectrum τ by means of Theorem (4.2) then

τ(a1, . . . , ak) = {(µ1, . . . , µk) ∈ Ck| I(a1, . . . , ak) ⊂ J for some J ∈ K}.
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By I(a1, . . . , ak) is denoted the ideal generated in W by elements a1, . . . , ak. As
we will see later, in the noncommutative case there exist important subspectra
constructed in an analogous way.

The monograph [15] provides a comprehensive description of the history and
actual state of the spectral theory of Banach algebras including the theory of
subspectra. It presents also two principal methods of describing the spectra: in
the case of spectra defined only for single elements the concept of a regularity
is used, while the joint spectra are described by means of so called spectral
systems.

In section 8 we describe the subspectra in a commutative Waelbroeck alge-
bra using the concept of regularity.

In the case of a noncommutative Waelbroeck algebra W which is not a Ba-
nach algebra the existence of a subspectrum on W is not obvious. As proved
recently in [28] at least the construction of the Harte spectrum conserves all
properties of the Banach algebra case.

For a given k-tuple (a1, . . . , ak) ∈ Wk in an algebra W we denote by
Il(a1, . . . , ak) (Ir(a1, . . . , ak)) the left (resp. right) ideal of W generated by ele-
ments a1, . . . , ak.

Definition. The left joint spectrum on a unital complex algebra W is defined as
follows:

σl(a1, . . . , ak) = {(λ1, . . . , λk) ∈ Ck| Il(a1 − λ1, . . . , ak − λk) 6= W}
for (a1, . . . , ak) ∈ Wk

com, k = 1, 2, ...
The right joint spectrum σr(a1, . . . , ak) is defined in an analogous way with

the use of the right ideals.
The spectrum σH (a1, . . . , ak) = σl(a1, . . . , ak) ∪ σr(a1, . . . , ak) is called the

Harte spectrum on W .

The Harte spectrum was introduced in [10] in the case of a Banach algebra.
It was proved that σl, σr and σH are subspectra. The following generalization
of this result was proved in [28].

Theorem (4.7). Let W be a unital complex locally convex Waelbroeck alge-
bra. Then σl(a1, . . . , ak), σr(a1, . . . , ak), σH (a1, . . . , ak) are subspectra.

In section 6 we will prove this theorem in a different way. First we need
additional information about subspectra defined by a family of ideals.

5. Subspectra defined by families of ideals

The left spectrum, right spectrum and the Harte spectrum are examples of
spectra defined by means of a family of ideals. This method of constructing
joint spectra can be generalized in the following form:

Definition. Let B be a unital complex algebra and let U be a family of ideals in
B. Let

σU (a1, . . . , ak)={(λ1, . . . , λk) ∈ Ck|∃I ∈ U , (a1 − λ1, . . . , ak − λk) ∈ Ik},
for (a1, . . . , ak) ∈ Bk

com.
The one-way spectral mapping formula is valid for all joint spectra of this

form.
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Proposition (5.1). Let B be a unital complex algebra. For an arbitrary
family of ideals U in B the joint spectrum σU satisfies the formula

p(σU (a1, . . . , ak)) ⊂ σU (p(a1, . . . , ak)),

for (a1, . . . , ak) ∈ Bk
com and p being a polynomial mapping.

Proof. Suppose that the polynomial mapping p : Ck → Cm has the form
p = (p1, . . . , pm). For an arbitrary (µ1, . . . , µk) there exist polynomials fij such
that

pj(x1, . . . , xk)− pj(µ1, . . . , µk) =
k∑
i=1

fji(x1, . . . , xk)(xi − µi)

for 1 ≤ j ≤ m.
If (µ1, . . . , µk) ∈ σU (a1, . . . , ak) then ai−µi ∈ I for some I ∈ U and 1 ≤ i ≤ k.

By the formula above pj(a1, . . . , ak)− pj(µ1, . . . , µk) ∈ I for 1 ≤ j ≤ m. Hence
p(µ1, . . . , µk) ∈ σU (p(a1, . . . , ak)). The proof follows.

It is natural to look for a condition for σU to satisfy the spectral mapping
formula.

Theorem (5.2). Let B be a unital complex algebra. The joint spectrum σU

satisfies the spectral mapping formula if and only if the family of ideals U
satisfies the following condition (P):

for every k-tuple (a1, . . . , ak) ∈ Bk
com such that Il(a1, . . . , ak) ⊂ I ∈ U and for

an arbitrary c ∈ B commuting with ai, 1 ≤ i ≤ k there exists µ ∈ C and J ∈ U
such that a1, . . . , ak, c − µ ∈ J .

Proof. Assume that the condition (P ) is valid. By elementary induction we
can deduce from condition (P ) its generalization which will be called condition
(P1):

for every I ∈ U and for every k-tuple (a1, . . . , ak) ∈ Ikcom and an arbitrary
m tuple c1, . . . , cm ∈ B such that (a1, . . . , ak, c1, . . . , cm) ∈ Bk+m

com there exist
(µ1, . . . , µm) ∈ Cm and J ∈ U such that

a1, . . . , ak, c1 − µ1, . . . , cm − µm ∈ J.

In terms of the joint spectrum σU this is exactly the projection property of
the spectrum.

If (λ1, . . . , λk) ∈ σU (a1, . . . , ak) then by the translation formula 0 ∈ σU (a1 −
λ1, . . . , ak − λk). If all elements a1, . . . , ak, c1, . . . , cm commute, then by (P1)
there exists (µ1, . . . , µm) ∈ Cm such that

0 ∈ σU (a1 − λ1, . . . , ak − λk, c1 − µ1, . . . , cm − µm)

and
(λ1, . . . , λk, µ1, . . . , µm) ∈ σU (a1, . . . , ak, c1, . . . , cm).

Let (a1, . . . , ak) be a commuting k-tuple of elements of B. By Proposition
(5.1)

p(σU (a1, . . . , ak)) ⊂ σU (p(a1, . . . , ak)),

for an arbitrary polynomial mapping p = (p1, . . . , pm).
For simplicity we shall write pj(a) instead of pj(a1, . . . , ak).
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Consider the (k + m)-tuple of elements (p1(a), . . . , pm(a), a1, . . . , ak) which
mutually commute. Let

(λ1, . . . , λm) ∈ σU (p1(a), . . . , pm(a)).

By the projection property proved above there exists (µ1, . . . , µk) ∈ Ck such
that

(λ1, . . . , λm, µ1, . . . , µk) ∈ σU (p1(a), . . . , pm(a), a1, . . . , ak).

There exists J ∈ U such that pj(a)−λj ∈ J for all 1 ≤ j ≤ m and ai−µi ∈ J
for all 1 ≤ i ≤ k. The one-side projection property implies µ = (µ1, . . . , µk) ∈
σU (a1, . . . , ak).

For every j we can represent

pj(a) = pj(µ) +
k∑
i=1

fji(a)(ai − µi).

We obtain pj(a) − λj = pj(µ) +
∑k

i=1 fji(a)(ai − µi) − λj ∈ J . However,∑k
i=1 fji(a)(ai − µi) ∈ J because J is an ideal. It follows that pj(µ) − λj ∈ J

what means that pj(µ) = λj for all 1 ≤ j ≤ m.
This proves

p(σU (a1, . . . , ak)) ⊃ σU (p(a1, . . . , ak)).

The results of this section are purely algebraic. They concern the spectral
mapping formula and have nothing to do with the compactness of subspectra.

Let us observe that the spectra which satisfy the spectral mapping formula
admit “pull backs” in the following sense.

Proposition (5.3). Let A, B be unital complex algebras and let φ : A→ B
be a homomorphism satisfying φ(e) = e. If τ is a joint spectrum defined in Bcom

which has the spectral mapping property

p(τ(b1, . . . , bk)) = τ(p(b1, . . . , bk))

then the mapping defined in Acom by the formula

φ−1τ(a1, . . . , ak) = τ(φ(a1), . . . , φ(ak))

has the spectral mapping property.
If U is a family of ideals in B and σU the corresponding spectrum in B then

the spectrum φ−1σU coincides with σV where V is the family of ideals in A
which are inverse images of elements of U :

V = {φ−1(I)| I ∈ U}.

Proof. The proof of the first part of the proposition is a direct calculus. Let
p = (p1, . . . , pm) be a m-tuple of polynomials of k variables. Then for an arbi-
trary k-tuple (a1, . . . , ak) ∈ Acom we have

p(φ−1τ(a1, . . . , ak)) = p(τ(φ(a1), . . . , φ(ak)))

= τ(p1(φ(a1), . . . , φ(ak)), . . . , pm(φ(a1), . . . , φ(ak)))

= τ(φ(p1(a1, . . . , ak)), . . . , φ(pm(a1, . . . , ak)))

= φ−1τ(p(a1, . . . , ak)).
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By the definition 0 ∈ φ−1σU (a1, . . . , ak) if and only if there exists J ∈ U such
that φ(a1), . . . , φ(ak) ∈ J . The last property is equivalent to the condition
a1, . . . , ak ∈ φ−1(J ) which means 0 ∈ σV (a1, . . . , ak). By the translation prop-
erty the spectra φ−1σU (a1, . . . , ak) and σV (a1, . . . , ak) coincide.

6. Harte theorem for Waelbroeck algebras

This section is dedicated to the proof of Theorem (4.3). We begin with the
purely algebraic aspect of the problem, so suppose first that B is a complex
algebra with unit e. Let I be a left ideal in B and let E be a commutative
subalgebra of B consisting of such that IE ⊂ I .

Consider the set I ordered by inclusion of all ideals J in B which satisfy
I ⊂ J and JE ⊂ J . By the Kuratowski-Zorn Lemma there exists a maximal
element M in I.

Consider the quotient space X = B/M with the natural action of B given
by the formula lb[x] = [bx] and with the action of the algebra E defined by
rb[x] = [xb]. Finally, we define a representation of B × E in the carrier space
X given by

T(b,c)[x] = lbrc[x] = [bxc].

Proposition (6.1). The representation T of B × E on X is irreducible.

Proof. Denote by π : B → X the natural projection. Let V ( X be a B × E-
invariant vector space. In particular V is B-invariant, so J = π−1(V ) is a left
ideal of B containing M . The invariance of V under the action of E implies
JE ⊂ J . By the maximality property of M it follows that J = M .

Denote by D the commutant of the representation T , that is the set of all
linear operators on X which commute with every operator T(b,c), (b, x) ∈ B×E.
The Schur Lemma (see e.g. [5]) leads immediately to the following theorem.

Theorem (6.2). The space D is a division algebra.

The algebra D can be described in terms of the algebra B. Denote

A = {b ∈ B|Mb ⊂M, and bx − xb ∈M, for all x ∈ E}.
It is clear that A is a unital subalgebra of B and M is a two-sided ideal in

A. The right action of A on X can be defined by the formula rb[x] = [xb]. It is
convenient to consider also a modified algebraic product in A. For a, b ∈ A set
a ? b = ba. The algebra (A, ?) is denoted by A, whileM denotes (M,?).

Theorem (6.3). Every element T of D is of the form T [x] = [xb] for some
b ∈ A. Moreover D ∼= {u ∈ B/M| lcu = rcu, ∀ c ∈ E} ∼= A/M.

Proof. Let T ∈ D. Observe T [x] = Tlx[e] = lxT [e] for an arbitrary x ∈ B. If
we denote T [e] = [b] then for every m ∈M we obtain

0 = T [m] = lm[b] = [mb],

giving Mb ⊂M .
The operator T commutes with all rc, c ∈ E, whence

[bc] = rcT [e] = Trc[e] = T [c] = lc[b] = [cb],

so b ∈ A and u = [b] satisfies the condition lcu = rcu for all c ∈ E.
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All elements of D are of the form R[b][x] := [xb] for some b ∈ A. The map
A 3 b→ R[b] is an algebra homomorphism because

R[b?c ][x] = [xcb] = R[b][xc] = R[b]R[c][x].

The kernel of this homomorphism consists of the elements ofM, soD ∼= A/M.

Suppose now that B is a topological algebra. The results we are interested
in rest on a theorem of Gelfand-Mazur type, hence the topology of the quotient
D ∼= A/M is essential.

Theorem (6.4). Let W be a locally convex Waelbroeck algebra. Then for
every left ideal I of W and for every set S ⊂ B of mutually commuting elements
such that Ic ⊂ I for all c ∈ E there exists a function S 3 c → µ(c) ∈ C such
that I + Il({c − µ(c)}c∈S ) is a proper ideal of B.

Proof. Denote by E the subalgebra generated in B by elements of S. Let us
construct the ideal M which is the subject of Proposition (6.1) and the division
algebra D = A/M. Let a ∈ A be invertible in B. Define M ′ = M + Ma−1.
Obviously M ′ is a left ideal of B. If e ∈ M ′, that is, if e = m + m′a−1 with
m,m′ ∈ M , then a = ma + m′ ∈ M , which contradicts the invertibility of a.
The ideal M ′ is a proper left ideal. We claim that M ′ ∈ I. For an arbitrary
b ∈ E there exists m ∈M such that ba = ab + m, hence

M ′b = (M + Ma−1)b ⊂M + Ma−1baa−1 = M + Ma−1(ab + m)a−1

= M + Mb + Ma−1ma−1 ⊂M + Ma−1 = M ′.

By the maximality of M in I it follows that M ′ = M , which gives Ma−1 ⊂ M .
Note that ba−1 − a−1b = a−1(ab − ba)a−1 = a−1ma−1 ∈ M giving finally
a−1 ∈ A. The algebraA is a subalgebra of B closed under inverse. This means
thatA is also a locally convex Waelbroeck algebra as well as its quotient algebra
D = A/M. In particular the inverse is continuous in D, so by the Gelfand-
Mazur theorem D ∼= C.

For every s ∈ S the operator rs belongs to D, hence there exists µ(s) ∈ C
such that [xs] = µ(s)[x] for every x ∈ B. This means that B(c − µ(s)) ⊂ M for
every s ∈ S, which ends the proof.

Clearly the right ideal versions of the results are also valid.
Theorem (6.4) is even stronger than the usual projection property (P ) of

the family of all ideals of a locally convex Waelbroeck algebra B. Thanks
to Theorem (5.2) it follows that the left (and right) joint spectrum have the
spectral mapping property. The proof of Theorem (4.3) follows.

7. Subspectra generated by algebra extensions

In this section we describe a very special construction of a subspectrum by
means of a family of ideals. It concerns certain class of subalgebras of LC
Waelbroeck algebras including commutative ones.

Assume that A is a subalgebra of a unital algebra B. We say that A is a
unital subalgebra of B if e ∈ A. Let IlB(A) be the set of left ideals in A which
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do not intersect with G(B). An ideal I ∈ IlB(A) consists of elements which are
not invertible even in B.

Let B be a unital algebra and A ⊂ B be a unital subalgebra of B such that
aAa−1 ⊂ A for every a ∈ A which is invertible in B.

Under the last condition the smallest subalgebra of B which contains A and
is inverse-closed can be described as an algebra of “fractions”.

Denote
R(A) = {b−1a| b ∈ A ∩G(B), a ∈ A}.

If x = b−1a, y = d−1c ∈ R(A) then

x + y = b−1a + d−1c = (db)−1(da + (db)b(db)−1c) ∈ R(A)

because da + (db)b(db)−1c ∈ A according to our supposition. The space R(A)
is a linear space.

On the other hand

xy = b−1ad−1c = b−1d−1dad−1c = (db)−1dad−1c ∈ R(A)

because dad−1c ∈ A.
The space R(A) is a unital subalgebra of B which obviously contains A. An

element x = b−1a ∈ R(A) is invertible in B if and only if a ∈ G(B). This
being the case x−1 = a−1b ∈ R(A), so the algebra R(A) is an inverse-closed
subalgebra of B.

If I is a left ideal in A then the left ideal generated in R(A) by I is equal to
J = {b−1a| b ∈ G(B) ∩ A, a ∈ I}. In particular J is proper if and only if I
does not intersect G(B).

We have proved

Proposition (7.1). Let B be a unital algebra. Let A ⊂ B be a unital
subalgebra of B such that aAa−1 ⊂ A for every a ∈ A ∩ G(B). Then for
(a1, . . . , ak) ∈ Ak

com and U = IlB(A)

σU (a1, . . . , ak) = σ lR(A)(a1, . . . , ak).

Corollary (7.2). Let W be a unital LC Waelbroeck algebra. Let A ⊂ W be
a unital subalgebra of W such that aAa−1 ⊂ A for every a ∈ A ∩ G(W ). If we
put U = IlW (A) then σU is a subspectrum in A.

Proof. The relationσU (a1, . . . , ak) ⊂
∏k

i=1 σ(ai) is obvious. The algebraR(A)
is an inverse-closed subalgebra of W hence G(R(A)) = R(A) ∩W and R(A) is
a LC Waelbroeck algebra. By Theorem (4.3) σ lR(A) has the spectral mapping
property, so by Theorem (5.2) the proof follows.

Example. Let B be a unital algebra. The Waelbroeck spectrum, called also the
rational spectrum of (a1, . . . , ak) ∈ Bk

com, is the set

σR(a1, . . . , ak) = {(µ1, . . . , µk) ∈ C|
p(µ1, . . . , µk) ∈ σ(p(a1, . . . , ak)) for every polynomial p }.

As before σ(a) denotes the usual spectrum of a single element a ∈ B.
Let us denote by A(a1, . . . , ak) the unital (commutative) subalgebra gener-

ated in B by a1, . . . , ak.
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According to the definition, (µ1, . . . , µk) ∈ σR(a1, . . . , ak) if and only if p(a1,
. . . , ak)− p(µ1, . . . , µk) is not invertible in B. We can represent

p(a1, . . . , ak)− p(µ1, . . . , µk) =
k∑
i=1

fi(a1, . . . , ak)(ai − µi)

where fi, 1 ≤ i ≤ k are polynomials.
The condition (µ1, . . . , µk) ∈ σR(a1, . . . , ak) means that the ideal generated

by a1−µ1, . . . , ak−µk in A(a1, . . . , ak) does not intersect G(B). By Proposition
(7.1) σR(a1, . . . , ak) coincides with the usual joint spectrum of (a1, . . . , ak) in the
smallest division-closed subalgebra of B containing A(a1, . . . , ak).

In the case of a Banach algebra B this was proved by Arveson [4].
By Corollary (7.2) the Waelbroeck spectrum in a LC Waelbroeck algebra is

nonempty.

8. Regularities and joint spectra

The definition of the left joint spectrum suggests a natural generali- za-
tion. The condition Il(a1 − λ1, . . . , ak − λk) 6= W means that the ideal Il(a1 −
λ1, . . . , ak − λk) does not intersect G(W ). Let R ⊂ W and let

σRl (a1, . . . , ak) = {(λ1, . . . , λk) ∈ Ck| Il(a1 − λ1, . . . , ak − λk) ∩R = ∅}.

for (a1, . . . , ak) ∈ Wk
com. Taking R = G(W ) we obtain as σRl the left joint spec-

trum.
Note that the set G(W ) can be described in terms of the left spectrum as

{x ∈ W | 0 6∈ σl(x)}. A number of questions arise.
What conditions should a subset R ⊂ W satisfy for the corresponding σRl

to be a subspectrum?
If τ is a subspectrum andRτ = {x ∈ W | 0 6∈ τ(x)}, are σRτ

l , σRτ
r subspectra?

In the affirmative case, which is the relation between them and the original
subspectrum τ?

Satisfactory answers are known only in the case of a commutative Banach
algebra ([7]). The results can be extended on the commutative LC Waelbroeck
algebras.

Let us suppose again that W is a unital commutative LC Waelbroeck alge-
bra. For an arbitrary nonvoid A ⊂ W let us define

A# = {x ∈ W | ∀ϕ ∈ W ′, ϕ(x) = 0⇒ 0 ∈ ϕ(A)}.

Definition. A nonempty set R  W is called, a regularity if
(1). If a, b ∈ W then ab ∈ R if and only if a ∈ R and b ∈ R.
(2). R# = R.

Examples. (1) The set of invertible elements of W is a regularity. Obviously
ab ∈ G(W ) if and only if a ∈ G(W ), b ∈ G(W ). For every a 6∈ G(W ) there exists
a multiplicative functional ϕ such that ϕ(a) = 0. Since kerϕ ∩ G(W ) = ∅ we
obtain a 6∈ G(W )#. Hence G(W )# = G(W ).

(2) Let A be a unital closed subalgebra of W and let R = G(W ) ∩A. Using
the same arguments as in Example 1 we can see that R is a regularity in A.
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Theorem (8.1). Let R be a regularity in W . Then
(1). R is open and contains G(W ),
(2). The set K = {ϕ ∈M(W )| ker ϕ ∩R = ∅} is compact and

(8.2) Rc =
⋃
ϕ∈K

ker ϕ.

Proof. Let a ∈ R. By the first property definingR we have e · x = x ∈ R, so
e ∈ R. For an arbitrary x ∈ G(W ) it follows x ·x−1 = e ∈ R hence in particular
x ∈ R.

Let V be a neighbourhood of e contained in G(W ). If x ∈ R and y ∈ V then
xy ∈ R. The set xV is a neighbourhood of x contained in R, so the regularity
is open.

In order to prove the second part of the theorem, take x ∈ Rc. SinceR# = R
it follows that there exists a linear functional ϕ on W such that ϕ(x) = 0 but
ϕ(y) 6= 0 for every y ∈ R. The kernel of ϕ consists of non-invertible elements,
so by Theorem (2.6) ϕ is continuous and multiplicative. The ideal kerϕ belongs
to M(W ) and does not intersects R. This proves the formula (8.2).

It remains to prove that K = {ϕ ∈M(W )| ker ϕ ∩R = ∅} is compact.
If ϕ 6∈ K, then there exists x ∈ R such that ϕ(x) = 0. The set R is open

hence there exists ε > 0 such that for |µ| < ε we have x + µ ∈ R. Let
U = {ψ ∈M(W )| |ψ(x)| < ε}. It is an open neighbourhood of ϕ. If ψ ∈ U then
ψ(x − ψ(x)) = 0. However x − ψ(x) ∈ R, so ψ 6∈ K. M(W ) \K is open and K is
compact.

We have associated to an arbitrary regularityRa compact subsetK ⊂M(W )
which defines a subspectrum on W by the formula

(8.3) τ(a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ K}.
We are going to prove that the subspectrum τ defined by the formula (6)

coincides with σR.

Theorem (8.4). Let R be a regularity in a commutative LC Waelbroeck al-
gebra W . Then σR is a subspectrum and

σR(a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ K},
where K is the set of maximal ideals of W which do not intersect R.

Proof. Let us denote by A the algebra of all functions on K of the form x̂|K,
x ∈ W . This is a subalgebra of the Banach algebra C(K). Let R = {x̂|K | x ∈
R}. By the definition ofK it follows that the elements ofR are functions which
do not achieve zero on K so they are invertible in C(K).

The condition R# = R implies that every function of the form x̂|K which
nowhere vanishes on K is an element of R. Hence R = A ∩ G(C(K)). By
Theorem (7.1) the mapping defined by the formula

σU (f1, . . . , fk) = {(λ1, . . . , λk) ∈ Ck|I(f1 − λ1, . . . , fk − λk) ∩R = ∅}
is a subspectrum on A.

Proposition (5.3) implies that the “pull back” of σU under the mapping
φ : W 3 x → x̂|K is also a subspectrum. By the very definition it follows
that φ−1σU = σR. This proves that σR is a subspectrum.
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According to Theorem (4.2) there exists a unique compact set K1 ⊂ M(W )
such that

σR(a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ K1}.
It remains to prove that K = K1. Let ϕ ∈ K1 and a ∈ ker ϕ. Hence σR(a)
contains the value ϕ(a) = 0. By the definition of σR the ideal I(a) does not
intersect R. In particular a 6∈ R so ϕ ∈ K. We have proved that K1 ⊂ K.

Now suppose that ϕ 6∈ K1. Then there exists (a1, . . . , ak) ∈ Wk such that

(ϕ(a1), . . . , ϕ(ak)) 6∈ σR(a1, . . . , ak).

By the translation formula 0 6∈ σR(a1−ϕ(a1), . . . , ak−ϕ(ak)). The ideal I(a1−
ϕ(a1), . . . , ak − ϕ(ak)) which belongs to the kernel of ϕ contains an element of
R. Hence ϕ 6∈ K. It proves that K ⊂ K1.

The essential part of this theorem asserts that every finitely generated ideal
ofW which does not intersectR is contained in a maximal ideal not intersecting
R.

We have proved that every regularity defines a subspectrum. If τ is an
arbitrary subspectrum, thenRτ = {x ∈ W | 0 6∈ τ(x)} is a regularity. In fact, by
Theorem (4.2) there exists a compact set Kτ ⊂ M(W ) such that for x ∈ W we
have 0 ∈ τ(x) if and only if ϕ(x) = 0 for some ϕ ∈ Kτ. It assures both properties
defining a regularity:

(1). R#
τ = Rτ,

(2). ab ∈ Rτ if and only if a ∈ Rτ, b ∈ Rτ.
In order to describe the relation between the spectra τ and σRτ we relate

the compact sets corresponding to both objects according to Theorem (4.2).
Theorem (8.2) describes the compact set corresponding to σRτ as the setK of

the maximal ideals of W which do not intersect Rτ. In terms of multiplicative
functionals it means that ϕ ∈ K if and only if for an arbitrary a ∈ W ϕ(a) = 0
implies φ(a) = 0 for some φ ∈ Kτ. This leads to the following result.

Proposition (8.5). If τ is a subspectrum on a commutative LC Waelbroeck
algebra W given by

τ(a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ Kτ}
and

σRτ (a1, . . . , ak) = {(ϕ(a1), . . . , ϕ(ak)) ∈ Ck| ϕ ∈ K} ,
then

K = {ϕ ∈M(W )| ∀a ∈ W â(ϕ) = 0 ⇒ 0 ∈ â(Kτ)}.

The last result suggests the following definition.

Definition. Let W be a commutative LC Waelbroeck algebra. Let K ⊂ M(W )
and let

K̃ = {ϕ ∈M(W )| ∀ a ∈ W ϕ(a) = 0⇒ 0 ∈ â(K)}.
The set K̃ will be called the Ŵ -rationally convex hull of K.

Obviously ˜̃K = K̃. If K̃ = K the set K is called Ŵ -rationally convex.
Proposition (8.3) asserts that the set K defining the subspectrum σRτ is the

Ŵ -rationally convex hull of K. In particular K is Ŵ -rationally convex.
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Example. Let A = A(a1, . . . , ak) be a commutative Banach algebra generated
by elements (a1, . . . , ak). Let M = σ(a1, . . . , ak) ⊂ Ck. It is well known (see
e.g. [34] p. 78) that the set M can be identified with M(A) by means the of the
mapping which associates to z = (z1, . . . , zk) ∈M the multiplicative functional
defined by the formula

ϕz(p(a1, . . . , ak)) = p(z1, . . . , zk)

on the dense subset of A consisting of polynomials of the elements a1, . . . , ak.
Let K ⊂ M be a compact set which is Â-rationally convex. If ϕz 6∈ K

then ϕz 6∈ K̃ neither. There exists a ∈ A such that ϕz(a) = 0 and 0 6∈ â(K).
We can assume that a is of the form a = p(a1, . . . , ak). So p(z1, . . . , zk) = 0
but p(w1, . . . , wk) 6= 0 for w ∈ K. The Â-rationally convex subsets of M are
rationally convex in the usual sense.

9. Spectra of generators

A topological unital algebra B is generated by G ⊂ B if the smallest uni-
tal and closed subalgebra containing G is B itself. It is a classical result
(see e.g. [34]) that for a commutative Banach algebra B generated by a fi-
nite set (a1, . . . , ak) the space M(B) can be identified with the joint spectrum
σ(a1, . . . , ak). Moreover, the latter set is polynomially convex.

V. Müller and A. Sołtysiak [14] have proved that in the case of a noncom-
mutative finitely generated Banach algebra B the identification of M(B) with
σ(a1, . . . , ak) is still valid. The spectrum of generators is nonvoid if and only if
the two sided ideal generated by the elements aiaj − ajai, 1 ≤ i, j ≤ k is not
dense in B.

It was observed by W. Żelazko [36] that in the general case of a finitely
topological algebra B there is an isomorphism

M(B) ∼= σt(a1, . . . , ak)

where M(B) is the set of continuous multiplicative functionals on B and

σt(a1, . . . , ak) = {(µ1, . . . , µk)|e 6∈
k∑
i=1

B(ai − µi)−}.

In this section we generalize this relation in two directions. The finitness
of the set of generators can be is removed if we extend the definition of the
spectrum on infinite sets in a natural way. Moreover, we obtain an interpreta-
tion of the set σU (G) for an arbitrary family of closed ideals by means of a an
apriopriate subset of M(B).

For an arbitrary Waelbroeck algebra B we prove that σU (G) is a rationally
convex set. As observed by R. M. Brooks [6], if B is not a Banach algebra, the
spectrum of generators can fail to be polynomially convex.

A topological algebra generated by a subset S is denoted by A(S).
For a given family U of ideals in a unital topological algebra B we define the

joint spectrum of a set S as follows:

σU (S) = {(µ(s))s∈S |∃I ∈ U , ∀s ∈ S s− µ(s) ∈ I}.
Let

MU = {ϕ ∈M(B)| ker ϕ ∈ U}.
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Theorem (9.1). Let A = A(S) be a unital topological algebra. Let U be an
arbitrary family of closed left ideals in A. Then

σU (S) = {(ϕ(s))s∈S |ϕ ∈MU}.

Proof. Let ϕ ∈ MU . Thus s − ϕ(s) ∈ kerϕ. By assumption the two-sided
ideal kerϕ belongs to U , so the function (ϕ(s))s∈S is an element of σU (S).

Now, suppose that (λs)s∈S ∈ σU (S). We define a functional on the dense
subalgebra of A generated by S and e. Every element of this algebra is of the
form p(s1, . . . , sk), where p ∈ P and s1, . . . , sk ∈ S.

Let
ϕ(p(s1, . . . , sk)) = p(λs1 , . . . , λsk ).

First of all it is neccessary to prove that this definition is correct. According to
the remainder theorem (see [10]) for every polynomialp there exist polynomials
qi such that

p(s1, . . . , sk)− p(λs1 , . . . , λsk ) =
k∑
i=1

qi(s1, . . . , sk)(si − λsi ),

If we suppose p(s1, . . . , sk) = 0 we obtain

−p(λs1 , . . . , λsk ) =
k∑
i=1

qi(s1, . . . , sk)(si − λsi ).

The right hand side is an element of the ideal
∑

s∈S A(s − λs)− which by as-
sumption belongs to some element I of U , so in particular it is a proper ideal.

The left hand side is proportional to the unit e, hence it must be zero. The
definition of f is correct.

By the same remainder formula, the kernel of f consists of elements of the
form

∑k
i=1 qi(s1, . . . , sk)(si − λsi ), that belong to the same closed ideal I ∈ U .

It follows that f is continuous, so it extends to a multiplicative continuous
functional whose kernel is an element of U .

A set B ⊂ Ck is rationally convex if it coincides with its rationally convex
hull

r(B) = {z ∈ Ck| for every polynomial p, p(z) = c ⇒ c ∈ p(B)}.
Let us extend this concept on subset of CS . Let F ⊂ CS and let z = (zs)s∈S ∈

CS .
We say that z ∈ r(F ) if for every polynomial p in k variables and for every

set {s1, . . . , sk} ⊂ S

p(zs1 , . . . , zsk ) = c ⇒ ∃ b ∈ F, c = p(bs1 , . . . , bsk ).

The set F ⊂ CS is rationally convex if r(F ) = F.
Let us equip CS with the topology of pointwise convergence.
Notice that for a Q-algebra A the spectra σ (t)

l and σl coincide and for
a1, . . . , ak ∈ A the spectrum σl(a1, . . . , ak) is compact.

Theorem (9.2). Let A = A(S) be a complex Q-algebra. Let U be a family of
left closed ideals. Then r(σU (S)) = σU (S). In particular, if MU is closed, σU (S)
is rationally convex.
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Proof. If σU (S) = ∅, we have nothing to prove. So we suppose σU (S) 6= ∅.
Let z ∈ r(σU (S)). Define a functional on the subalgebra A0 ⊂ A of elements of
the form p(s1, . . . , sk), si ∈ S setting

f (p(s1, . . . , sk)) = p(zs1 , . . . , zsk ).

The correctness of this definition is proved by arguments used in the proof of
Theorem (9.1). Suppose p(s1, . . . , sn) = 0.

There exists λ ∈ σU (S) such that p(λs1 , . . . , λsk ) = p(zs1 , . . . , zsk ). Then by
the remainder formula

−p(zs1 , . . . , zsk ) = p(s1, . . . , sk)− p(λs1 , . . . , λsk ) =
k∑
i=1

qi(s1, . . . , sk)(si − λsi ).

The right hand side belongs to an ideal I ∈ U , while on the right we have
element proportional to the unit. Hence

f (p(s1, . . . , sk)) = p(zs1 , . . . , zsk ) = 0.

The multiplicative functional f is well defined on A0. As we have seen, its
kernel consists of elements not invertible in A. The algebra A is a Q-algebra,
so this kernel is not dense in A0. It follows that f is continuous and it extends
to a multiplicative, continuous functional on A. The proof can be ended here
if the spectrum in question is σl. In this case by Theorem 9.1 z = f |S ∈ σl(S),
so r(σl(S)) = σl(S).

In the case of a generic U we claim that the functional f belongs to MU .
The Gelfand transform associates to a ∈ A the function â(ϕ) = ϕ(a). The

function â is continuous on M(A) and in the case of a Q-algebra the mapping
A 3 a→ C(M(A)) is continuous (see [13]).

Consider tha algebra A consisting of the functions â|MU . This is a subal-
gebra of C(MU ). Denote by ψ the superposition of the Gelfand transform with
the operator of restriction to MU . Then A = ψ(A0). The image J = ψ(ker f ) is
an ideal in the commutative algebra A. As the above calculation shows, every
element of J vanishes at some point of MU . By Theorem 3.3 [26] it follows
that there exists g ∈ MU such that I ∈ ker g. The kernels of the multi-
plicative functionals f and g in A0 coincide. Hence f = g. We have obtained
f |S = z ∈ σU (S).

In the particular case of a Waelbroeck algebra we obtain

Corollary (9.3). Let W = A(a1, . . . , ak) be a finitely generated Waelbroeck
algebra. Then σl(a1, . . . , ak) ∼= M(W ) is a rationally convex set in Ck.
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[26] A. Wawrzyńczyk, Ideals of functions which achieve zero on a compact set, Bol. Soc. Mat.

Mexicana (3) 7 (2001), 117–121.
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REPRODUCING KERNELS OF WEIGHTED POLY-BERGMAN
SPACES ON THE UPPER HALF-PLANE

JOSUÉ RAMÍREZ ORTEGA

Abstract. Let Π be the upper half-plane. The weighted poly-Bergman spaces
on Π consist of all functions onL2(Π, (λ+1)(2y)λdx dy) satisfying the equation
(@/@z)nf = 0. Reproducing kernels of the weighted poly-Bergman spaces are
obtained via the Fourier transform.

1. Introduction

This paper concerns representations of poly-Bergman and anti-poly-Berg-
man projections on L2 space over the upper half-plane Π with the usual area
measure dxdy and the weighted area measure (λ + 1)(2y)λdxdy. Recall that
the Bergman space of a domain G ⊂ C is defined as the space of all analytic
functions onG belonging toL2(G). The Bergman space is denoted byA2(G). By
definition, the Bergman projection B is the orthogonal projection from L2(G)
onto A2(G). The following integral representation of B is well known ([1])

(Bf )(z) =
∫
G

k(z, ζ)f (ζ)dµ(ζ),

where k(z, ζ) is the Bergman kernel of G, and dµ = dxdy is the Lebesgue
measure.

For G bounded with smooth boundary, the Bergman projection of G has
another representation ([1, 3]), which is expressed in terms of the so-called
two-dimensional Hilbert transform

(SR2f )(z) = − 1
π

∫
R2

f (ζ)
(z− ζ)2 dµ(ζ).

This representation is given by

(1.1) B = I − χGSR2χGS
∗
R2χGI + L,

where χG is the characteristic function ofG andL is a certain compact operator
on L2(G).

A natural generalization ([3]) of the Bergman space is the spaceA2
n(G) of all

n-analytic functions. This space is defined as the subspace of L2(G) consisting
of all functions f (z) = f (x, y) which satisfy the equation(

@

@z

)n

f = 0,

2000 Mathematics Subject Classification: Primary: 47B32, 47B34. Secondary: 47G10.
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where, as usual, 2@/@z = @/@x + i@/@y. The set A2
n(G) thus defined is a closed

subspace ofL2(G) ([8]), and is called the n-poly-Bergman space ofG. Note that
A2

1(G) is the Bergman space of G. From now on the orthogonal projection

Bn : L2(G)→ A2
n(G)

will be called the n-poly-Bergman projection ofG. The true-n-analytic function
space was introduced in [8] as A2

(n)(G) = A2
n(G) 	 A2

n−1(G), where by conven-
tion A2

0(G) = {0}. The true-n-poly-Bergman projection B(n) is defined as the
orthogonal projection from L2(G) onto A2

(n)(G). Obviously

Bn =
n∑

k=1

B(k).

The n-anti-analytic and true-n-anti-analytic function spaces Ã2
n(G) and

Ã2
(n)(G) are defined along the same lines, with @/@z changed to @/@z. The

corresponding orthogonal projections are denoted by B̃n and B̃(n).
A similar representation to (1.1) has been established for Bn when G is

bounded with smooth boundary ([3]). Fortunately, Bn can be expressed in
terms of the two-dimensional Hilbert transform in a very simple way when G
is the upper half-plane Π, as is established in the following theorem.

Theorem (1.2). ([4]) The n-poly-Bergman projection and the n-anti-poly-
Bergman projection of the upper half-plane admit the following representations:

Bn = I − PΠS
n
R2PΠ(S∗R2 )nPΠ,

B̃n = I − PΠ(S∗R2 )nPΠS
n
R2PΠ,

where PΠ = χΠI .

Our aim is to study weighted poly-Bergman spaces of the upper half-plane.
These kind of spaces are defined in Section 2, and they are completely de-
scribed via isomorphisms therein. Their corresponding reproducing kernels
are given in Section 3. The Christoffel-Darboux identity plays an important
role when obtaining reproducing kernels of weighted poly-Bergman spaces.
Let us introduce a preliminary result from which this work has been inspired.

Let F be the Fourier transform on L2(R):

(Ff )(y) =
1√
2π

∫
R
f (t)e−itydt.

Consider the following unitary operators on L2(R2):

U1 = F ⊗ I,

and U2 defined by

(U2f )(x, y) =
1√
2|x|

f

(
x,

y

2|x|

)
.

Let χ± be the characteristic function of R± = {x : ±x > 0}, and let Pn
be the orthogonal projection of L2(R+) onto Ln, where Ln denotes the one-
dimensional subspace of L2(R+) generated by `n(y) = Ln(y)e−y/2χ+(y). As
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usual Ln(y) stands for the Laguerre polynomial of degree n, which is defined
by

Ln(y) =
n∑

k=0

(
n
k

)
(−y)k

k!
.

This work has been developed following ideas used in [8, 9]. Theorem (1.3)
below was proved in [8], and it is important to our purpose.

Theorem (1.3) ([8]). The operator U = U2U1 isomorphically maps A2
(n)(Π)

onto L2(R+)⊗ Ln−1, and maps Ã2
(n)(Π) onto L2(R−)⊗ Ln−1. Consequently,

UB(n)U
∗ = χ+I ⊗ Pn−1,

UBnU
∗ = χ+I ⊗

n∑
k=1

Pk−1,

UB̃(n)U
∗ = χ−I ⊗ Pn−1,

UB̃nU
∗ = χ−I ⊗

n∑
k=1

Pk−1.

As usual Γ(z) denotes the gamma function. We will be using the following
integral formulae ([5]), which are valid for Re ζ > 0:∫ ∞

0
e−tζtκdt =

Γ(κ + 1)
ζκ+1 ,(1.4)

F∗
(

k!
(ζ ± iy)k+1

)
=
√

2π|y|ke−ζ|y|χ± (y).(1.5)

2. Poly-Bergman Spaces and Isomorphisms

For λ ∈ (−1,∞), we will define the weighted poly-Bergman spaces. Consider
the measure dνλ(y) = (λ + 1)(2y)λ on R+. Let dµλ stand for the measure
dxdνλ(y) = (λ+1)(2y)λdxdy on the upper half-plane Π. An n-analytic function
on Π is a function satisfying the equation(

@

@z

)n

f = 0.

The weighted poly-Bergman spaceA2
nλ(Π) consists of alln-analytic functions

on the space L2(Π, dµλ). Analogously, Ã2
nλ(Π) consists of all n-anti-analytic

functions on L2(Π, dµλ), that is, those satisfying the differential equation
(@/@z)nf = 0.

The true-n-analytic and true-n-anti-analytic function spaces are defined by

A2
(n)λ(Π) = A2

nλ(Π)	A2
n−1,λ(Π),

Ã2
(n)λ(Π) = Ã2

nλ(Π)	 Ã2
n−1,λ(Π),

where by convention A2
0λ(Π) = Ã2

0λ(Π) = {0}. The purpose of this section is to
establish an integral representation of the orthogonal projection of each space
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just defined above. The following operators stand for the surjective orthogonal
projection in the appropiate space:

Bnλ : L2(Π, dµλ) −→ A2
nλ(Π),

B(n)λ : L2(Π, dµλ) −→ A2
(n)λ(Π),

B̃nλ : L2(Π, dµλ) −→ Ã2
nλ(Π),

B̃(n)λ : L2(Π, dµλ) −→ Ã2
(n)λ(Π).

Obviously

Bnλ =
n∑

k=1

B(k)λ,

B̃nλ =
n∑

k=1

B̃(k)λ.

The Laguerre polynomials of order λ play an important role in the study of
the weighted poly-Bergman spaces. Recall the way they are defined:

Lλ
n(y) = ey

y−λ

n!
dn

dyn
(e−yyn+λ)

=
n∑
j=0

Γ(λ + n + 1)
Γ(λ + j + 1)

(−y)j

j!(n− j)!
.

The system of functions

`nλ(y) =

√
n!

Γ(λ + n + 1)
Lλ
n(y)yλ/2e−y/2χ+(y), n = 0, 1, 2...

form an orthonormal basis for L2(R+). Let Lnλ be the one-dimensional sub-
space of L2(R+) generated by `nλ(y). Let Pnλ denote the orthogonal projection
from L2(R+) onto Lnλ, which is given by

(Pnλg)(y) = `nλ(y)
∫ ∞

0
g(t)`nλ(t)dt.

Define now the spaces

A2
(n)λ(Π) = L2(R+)⊗ Ln−1,λ,

A2
nλ(Π) = L2(R+)⊗

n−1⊕
k=0

Lkλ,

Ã2
(n)λ(Π) = L2(R−)⊗ Ln−1,λ,

Ã2
nλ(Π) = L2(R−)⊗

n−1⊕
k=0

Lkλ.

Let us introduce the operator T : L2(R+, dνλ)→ L2(R+, dy) given by

(Tf )(y) =
√
λ + 1(2y)λ/2f (y),

which is an isometric isomorphism. Thus I ⊗ T is a unitary operator from
L2(Π, dµλ) onto L2(Π, dxdy).
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Theorem (2.1). The following restrictions of the unitary operatorV = U2(I⊗
T )U1 : L2(Π, dµλ)→ L2(Π, dxdy) are isometric isomorphisms:

V : A2
nλ(Π) → A2

nλ(Π),
V : A2

(n)λ(Π) → A2
(n)λ(Π),

V : Ã2
nλ(Π) → Ã2

nλ(Π),
V : Ã2

(n)λ(Π) → Ã2
(n)λ(Π).

Proof. Since L2(Π, dµλ) = L2(R, dx)⊗L2(R+, dνλ), the operator U1 = F ⊗ I
is an isometric isomorphism on L2(Π, dµλ). The space U1(A2

nλ(Π)) consists of
all functions ϕ(z) = ϕ(x, y) ∈ L2(Π, dµλ) satisfying the equation

U1

(
@

@z

)n

U−1
1 ϕ =

in

2n

(
x +

@

@y

)n

ϕ = 0,

whose general solution is a linear combination of functions of the formϕk(x, y) =
ϕ̃k(x)yke−xy, k = 0, ..., n− 1. Making use of formula (1.4) we infer that ϕk(x, y)
belongs to L2(Π, dµλ) if and only if it has the form

ϕk(x, y) = χ+(x)θλ,k(x)φk(x)yke−xy,

where φk(x) ∈ L2(R, dx) and

θλ,k(x) =

√
(2x)2k2xλ+1

(λ + 1)Γ(λ + 2k + 1)
.

Furthermore ‖ϕk‖L2(Π,dµλ) = ‖φk‖L2(R+).
A direct computation shows that the function (U2(I ⊗T )ϕk)(x, y) is given by

(2.2)
1√

Γ(λ + 2k + 1)
χ+(x)φk(x)ykyλ/2e−y/2.

Thus any function in the space U2(I ⊗T )U1(A2
nλ(Π)) is a linear combination

of functions of the form (2.2):

f (x, y) =
n−1∑
k=0

1√
Γ(λ + 2k + 1)

χ+(x)φk(x)ykyλ/2e−y/2.

Rearranging polynomials in y, f (x, y) can be written in terms of the Laguerre
polynomials of order λ:

f (x, y) =
n−1∑
k=0

χ+(x)ψk(x)

√
n!

Γ(λ + n + 1)
Lλ
k(y)yλ/2e−y/2

=
n−1∑
k=0

χ+(x)ψk(x)`kλ(y),

where ψk ∈ L2(R+). We have just proved that

U2(I ⊗ T )U1(A2
nλ(Π)) = L2(R+)⊗

n−1⊕
k=0

Lkλ = A2
nλ(Π).
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Analogously, it can be proved that the space U2(I ⊗ T )U1(Ã2
nλ(Π)) consists

of all functions of the form

g(x, y) =
n−1∑
k=0

χ−(x)ψk(x)`kλ(y),

where ψk ∈ L2(R−). Therefore U2(I ⊗ T )U1(Ã2
nλ(Π)) = Ã2

nλ(Π).

Corollary (2.3). The surjective orthogonal projections

B1
(n)λ : L2(Π, dxdy) −→ A2

(n)λ(Π),

B̃1
(n)λ : L2(Π, dxdy) −→ Ã2

(n)λ(Π),

are given by

B1
(n)λ = VB(n)λV

∗ = χ+I ⊗ Pn−1,λ,

B̃1
(n)λ = VB̃(n)λV

∗ = χ−I ⊗ Pn−1,λ.

We have explicitly

(B1
(n)λf )(x, y) = χ+(x)`n−1,λ(y)

∫ ∞
0

f (x, t)`n−1,λ(t)dt,

(B̃1
(n)λf )(x, y) = χ−(x)`n−1,λ(y)

∫ ∞
0

f (x, t)`n−1,λ(t)dt.

The Laguerre polynomials of order λ form an orthonormal basis for L2(R+),

which is equivalent to L2(R+) =
∞⊕
k=0

Lkλ. Thus

L2(R+ × R+) =
∞⊕
k=1

A2
(k)λ(Π),

L2(R− × R+) =
∞⊕
k=1

Ã2
(k)λ(Π).

and therefore

L2(Π, dµλ) =
∞⊕
k=1

A2
(k)λ(Π)⊕

∞⊕
k=1

Ã2
(k)λ(Π).

3. Reproducing Kernels of Poly-Bergman Spaces

Let R stand for the operator U2(I ⊗ T ). This operator is given by

(Rf )(x, y) =

√
λ + 1
2|x|

(
y

|x|

)λ/2

f (x,
y

2|x|
),

(R∗f )(x, y) =

√
2|x|
λ + 1

1
(2y)λ/2 f (x, 2|x|y).
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Theorem (3.1). The poly-Bergman projection B(n)λ : L2(Π, dµλ)→!A2
(n)λ(Π)

admits the integral representation

(B(n)λf )(z) =
∫

Π
f (ζ)K(n)λ(z, ζ)dµλ(ζ),

where

K(n)λ(z, ζ) =
1

(iζ − iz)λ+2

n−1∑
j=0

n−1∑
k=0

λjkn

(
z− z
z− ζ

)j (
ζ − ζ
z− ζ

)k

and

λjkn =
(−1)j+kΓ(n)Γ(λ + n)Γ(λ + j + k + 2)

π(λ + 1)Γ(λ + j + 1)j!(n− 1− j)!Γ(λ + k + 1)k!(n− 1− k)!
.

Proof. Since RU1B(n+1)λU
∗
1R
∗ = χ+I ⊗ Pnλ, we have

U1B(n+1)λU
∗
1 = R∗(χ+I ⊗ Pnλ)R.

To simplify our notation, let us define C(n)λ = U1B(n)λU
∗
1 . Thus

(C(n+1)λf )(x, y) = R∗[(χ+I ⊗ Pnλ)Rf ](x, y)

=

√
2|x|
λ + 1

1
(2y)λ/2 ((χ+I ⊗ Pnλ)Rf )(x, 2|x|y)

=

√
2|x|
λ + 1

1
(2y)λ/2 χ+(x)`nλ(2|x|y)

∫ ∞
0

(Rf )(x, t)`nλ(t)dt

= χ+(x)`nλ(2|x|y)
∫ ∞

0

(
t

2|x|y

)λ/2

f (x,
t

2|x|
)`nλ(t)dt

= χ+(x)`nλ(2|x|y)
∫ ∞

0
f (x, τ)

(
τ

y

)λ/2

`nλ(2|x|τ)2|x|dτ.

From the definition ofU1 and the integral representation ofC(n+1)λ we obtain
an integral representation forU∗1C(n+1)λ as follows. For z = x+ iy, the function
h(z) = (U∗1C(n+1)λf )(z) is given by

h(z) =
1√
2π

∫
R

(
χ+(t)`nλ(2|t|y)

∫ ∞
0

f (t, τ)

(
τ

y

)λ/2

`nλ(2|t|τ)2|t|dτ

)
eixtdt

=
1√
2π

∫
R

∫ ∞
0

f (t, τ)χ+(t)

(
τ

y

)λ/2

`nλ(2|t|y)`nλ(2|t|τ)2|t|eixtdτdt

=
n!√

2πΓ(n + λ + 1)

∫
Π

f (t, τ)χ+(t)2t(2tτ)λLλ
n(2ty)Lλ

n(2tτ)e−t(τ−iz)dtdτ.

Let K(n)λ(z, ζ) be the reproducing kernel of A2
(n)λ(Π), that is, (B(n)λf )(z) =

〈f,K(n)λ(z, ·)〉,where 〈·, ·〉 denotes the inner product onL2(Π, dµλ). Then h(z) =
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(B(n+1)λU
∗
1 f )(z) has another representation,

h(z) = 〈(U∗1 f )(ζ), K(n+1)λ(z, ζ)〉

= 〈f (ζ), U1K(n+1)λ(z, ζ)〉, ζ = t + iτ

=
∫

Π
f (t, τ)[(F ⊗ I)ζK(n+1)λ](z, ζ)(λ + 1)(2τ)λdtdτ,

where (F ⊗ I)ζ means that F ⊗ I is acting with respect to the complex vari-
able ζ = t + τi. From a comparison of both integral representations of h =
U∗1C(n+1)λf we obtain the relationship between the kernels involved:

[(F ⊗ I)ζK(n+1)λ](z, ζ)(λ + 1)(2τ)λ =
n!2t(2tτ)λ√

2πΓ(λ + n + 1)
Lλ
n(2ty)Lλ

n(2tτ)e−t(τ−iz)χ+(t)

or

[(F ⊗ I)ζK(n+1)λ](z, ζ) =
n!(λ + 1)−1

√
2πΓ(λ + n + 1)

2tλ+1Lλ
n(2ty)Lλ

n(2tτ)e−t(τ+iz)χ+(t)

=
n∑

j,k=0

λ̃jk(2y)j(2τ)k
(√

2πtλ+j+k+1e−t(τ+iz)χ+(t)
)
,

where

λ̃jk =
(−1)j+kn!Γ(λ + n + 1)

π(λ + 1)Γ(λ + j + 1)j!(n− j)!Γ(λ + k + 1)k!(n− k)!
.

By formula (1.4) we have

K(n+1)λ(z, ζ) =
n∑

j,k=0

λ̃jk(2y)j(2τ)k
Γ(λ + j + k + 2)

(τ + iz− it)λ+j+k+2 ,

which means

K(n+1)λ(z, ζ) =
n∑

j,k=0

λ̃jk(2y)j(2τ)k
Γ(λ + j + k + 2)
(iζ − iz)λ+j+k+2

=
1

(iζ − iz)λ+2

n∑
j,k=0

λjk,n+1

(
2yi
z− ζ

)j ( 2τi
z− ζ

)k

,

where λjk,n+1 = λ̃jkΓ(λ + j + k + 2).

Corollary (3.2). Let K(n)λ(z, ζ) be the reproducing kernel of A2
(n)λ(Π). Then

the Fourier transform of K(n+1)λ(z, ζ) with respect to the real part of ζ = t + iτ
is given by

[(F ⊗ I)ζK(n+1)λ](z, ζ) =
n!(λ + 1)−1

√
2πΓ(λ + n + 1)

χ+(t)2tλ+1Lλ
n(2ty)Lλ

n(2tτ)e−t(τ+iz),

where z = x + iy.
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Theorem (3.3). Let K̃(n)λ(z, ζ) be the reproducing kernel of Ã2
(n)λ(Π). The

poly-Bergman projection B̃(n)λ : L2(Π, dµλ) −→ Ã2
(n)λ(Π) admits the integral

representation

(B̃(n)λf )(z) =
∫

Π
f (ζ)K̃(n)λ(z, ζ)dµλ(ζ),

where

K̃(n)λ(z, ζ) =
1

(iz− iζ)λ+2

n−1∑
j=0

n−1∑
k=0

λjkn

(
z− z
ζ − z

)j (
ζ − ζ
ζ − z

)k

and λjkn is given in Theorem (3.1).

Corollary (3.4). The Fourier transform of K̃(n+1)λ(z, ζ) with respect to the
real part of ζ = t + iτ is given by

[(F ⊗ I)ζK̃(n+1)λ](z, ζ)=
n!(λ + 1)−1

√
2πΓ(λ + n + 1)

χ−(t)2|t|λ+1Lλ
n(2|t|y)Lλ

n(2|t|τ)e−|t|(τ−iz),

where z = x + iy.

We will now establish an integral representation of the poly-Bergman pro-
jection Bnλ. Let Knλ stand for the reproducing kernel of A2

nλ(Π). Obviously

Knλ(z, ζ) =
n∑

k=1

K(k)λ(z, ζ).

By Corollary (3.2), the Fourier transform of Kn+1,λ(z, ζ) with respect to the
real part of ζ is given by
(3.5)

[(F ⊗ I)ζKn+1,λ](z, ζ) =
2χ+(t)tλ+1
√

2π(λ + 1)
e−t(τ+iz)

n∑
k=0

k!
Γ(λ + k + 1)

Lλ
k(2ty)Lλ

k(2tτ).

Let us introduce the following linear functional on the space of all polyno-
mials:

F (p) =
∫ ∞

0
p(t)tλe−tdt.

The monic polynomials Pn(x) = (−1)nn!Lλ
n(x) (n=0,1,...) satisfy the recurrence

relation Pn(x) = (x−λ−2n+ 1)Pn−1(x)− (n−1)(n−1 +λ)Pn−2(x), from which
interesting properties about Pn(x) can be derived ([2, 5]). The norm of Pn(x)
with respect to the functionalF is given by ‖Pn‖ =

√
F (P 2

n ) =
√
n!Γ(λ + n + 1).

Thus, the system of polynomials

pn(x) = (−1)n
√

n!
Γ(λ + n + 1)

Lλ
n(x), n = 0, 1, 2...

is normalized with respect to F , that is, F (pnpm) = δmn. Letting kn = ‖Pn‖−1,
the Christoffel-Darboux identity ([2]) applied to these polynomials takes the
form

n∑
k=0

pk(x)pk(u) =
kn
kn+1

pn+1(x)pn(u)− pn(x)pn+1(u)
x − u
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or
n∑

k=0

k!
Γ(λ + k + 1)

Lλ
k(x)Lλ

k(u) = − (n + 1)!
Γ(λ + n + 1)

N(x, u)
x − u

,

where N(x, u) = Lλ
n+1(x)Lλ

n(u)− Lλ
n(x)Lλ

n+1(u).

Lemma (3.6). We have

(3.7) (n + 1)N(x, u) = uLλ+1
n (u)Lλ

n(x)− xLλ+1
n (x)Lλ

n(u).

Proof. It is well known ([2, 5]) that

(3.8) x
d

dx
Lλ
n+1(x) = (n + 1)Lλ

n+1(x)− (λ + n + 1)Lλ
n(x),

(3.9)
d

dx
Lλ
n+1(x) = −Lλ+1

n (x).

Multiplying equation (3.8) by Lλ
n(u) and taking into account equation (3.9)

we obtain

−xLλ+1
n (x)Lλ

n(u) = (n + 1)Lλ
n+1(x)Lλ

n(u)− (λ + n + 1)Lλ
n(x)Lλ

n(u).

Interchanging x and u,

−uLλ+1
n (u)Lλ

n(x) = (n + 1)Lλ
n+1(u)Lλ

n(x)− (λ + n + 1)Lλ
n(u)Lλ

n(x).

The last two equations imply equation (3.7).

Theorem (3.10). Let Knλ(z, ζ) be the reproducing kernel of A2
nλ(Π). The

poly-Bergman projection Bnλ : L2(Π, dµλ) −→ A2
nλ(Π) admits the integral rep-

resentation

(Bnλf )(z) =
∫

Π
f (ζ)Knλ(z, ζ)dµλ(ζ),

where

Knλ(z, ζ) =
i(z− z− ζ + ζ)−1

(iζ − iz)λ+1

n∑
k=0

n−1∑
j=0

γjkn
(z− z)j(ζ − ζ)k − (z− z)k(ζ − ζ)j

(z− ζ)j+k

and

γjkn =
(−1)j+kΓ(n + 1)Γ(λ + n + 1)Γ(λ + j + k + 1)

π(λ + 1)Γ(λ + j + 1)j!(n− 1− j)!Γ(λ + k + 1)k!(n− k)!
.

Proof. Applying Christoffel-Darboux identity in equality (3.5) we infer that
the function h(z, ζ) = [(F ⊗ I)ζKn+1,λ](z, ζ) has the form

h(z, ζ) = − Γ(n + 2)√
2π(λ + 1)Γ(λ + n + 1)

χ+(t)tλe−t(τ+iz)
N(2ty, 2tτ)

y − τ
.

From the definition of Lλ
n and Lλ

n+1 we get

N(2ty, 2tτ) =
n+1∑
k=0

n∑
j=0

cjk(2t)j+k(τjyk − yjτk),

where

cjk =
(−1)j+kΓ(λ + n + 1)Γ(λ + n + 2)

Γ(λ + j + 1)j!(n− j)!Γ(λ + k + 1)k!(n + 1− k)!
.
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Letting γ̃jk = cjkΓ(n + 2)[π(λ + 1)Γ(λ + n + 1)]−1 we have

h(z, ζ) = −
n+1∑
k=0

n∑
j=0

γ̃jk2j+k
τjyk − yjτk

2y − 2τ

√
2πχ+(t)tλ+j+ke−t(τ+iz)

= −
n+1∑
k=0

n∑
j=0

γ̃jk2j+k
τjyk − yjτk

2y − 2τ
(F ⊗ I)ζ

(
Γ(λ + j + k + 1)

(τ + iz− it)λ+j+k+1

)
.

Therefore

Kn+1,λ(z, ζ) = −
n+1∑
k=0

n∑
j=0

γ̃jk2j+k
τjyk − yjτk

2y − 2τ
Γ(λ + j + k + 1)
(iz− iζ)λ+j+k+1 ,

that is,

Kn+1,λ(z, ζ) = −
n+1∑
k=0

n∑
j=0

γjk
(2τ)j(2y)k − (2y)j(2τ)k

2y − 2τ
1

(iζ − iz)λ+j+k+1
,

where γjk,n+1 = γ̃jkΓ(λ + j + k + 1). The desired formula for the Bergman
kernel follows now immediately.

Making use of Lemma (3.6) we obtain a symmetric form of the Bergman
kernel Knλ, as shown in the following theorem.

Theorem (3.11). The reproducing kernel Knλ(z, ζ) is also given by

Knλ(z, ζ) =
(z−z−ζ+ζ)−1

(iζ − iz)λ+2

n−1∑
j=0

n−1∑
k=0

αjkn

(
z− z

λ + j + 1
− ζ − ζ
λ + k + 1

)
(z− z)j(ζ − ζ)k

(z− ζ)j+k
,

where αjkn = (λ + n)λjkn.

Proof. By using Lemma (3.6) and the property zΓ(z) = Γ(z + 1) we obtain

N(2ty, 2tτ) = 2t
n∑
j=0

n∑
k=0

ajk(2t)j+kyjτk
(

τ

λ + k + 1
− y

λ + j + 1

)
,

where

ajk =
(−1)j+kΓ(λ + n + 1)Γ(λ + n + 2)

(n + 1)Γ(λ + j + 1)j!(n− j)!Γ(λ + k + 1)k!(n− k)!
.

Thus [(F ⊗ I)ζKn+1,λ](z, ζ) equals

−1
y − τ

n∑
j=0

n∑
k=0

α̃jk(2y)j(2τ)k
(

τ

λ + k + 1
− y

λ + j + 1

)
(
√

2πχ+(t)tλ+j+k+1e−t(τ+iz))

where α̃jk = ajkΓ(n + 2)[π(λ + 1)Γ(λ + n + 1)]−1. Therefore Kn+1,λ(z, ζ) equals

−1
y − τ

n∑
j=0

n∑
k=0

α̃jk(2y)j(2τ)k
(

τ

λ + k + 1
− y

λ + j + 1

)
Γ(λ + j + k + 2)

(τ + iz− it)λ+j+k+2

or

Kn+1,λ(z, ζ) =
(2yi− 2τi)−1

(iζ − iz)λ+2

n∑
j=0

n∑
k=0

αjk,n+1
(2y)j(2τ)k

(iζ − iz)j+k

(
2yi

λ + j + 1
− 2τi
λ + k + 1

)
,
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where αjk,n+1 = α̃jkΓ(λ+ j+k+ 2). It is easy to see that αjkn = (λ+n)λjkn.
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QUOTIENT SUBSPACES OF ASYMMETRIC NORMED LINEAR
SPACES

C. ALEGRE AND I. FERRANDO

Abstract. If X is an asymmetric normed linear space and H is a linear
subspace of X, we give conditions under which the quotient space X/H is also
an asymmetric normed space. We study the canonical factorization of a linear
continuous mapping in this setting and, finally, we characterize the dual of
the asymmetric normed space X/H. The results obtained extend well-known
properties of normed spaces to the realm of asymmetric normed spaces.

Quotient subspaces of asymmetric normed linear spaces appear in a natu-
ral way in the theory of these spaces that has been developed in recent years,
mainly motivated by the applications of these topological structures in The-
oretical Computer Science and Functional Analysis (see the bibliography at
the end of the paper). However, no systematic studies of the quotient spaces
have been done up to this moment, although quotient structures have been
shown to be useful in at least two particular matters regarding the general
theory of asymmetric normed linear spaces. The first one is the canonical de-
composition of an asymmetric normed space in a Hausdorff space and a purely
non-Hausdorff space (see [10]). The second one is related to the duality the-
ory of asymmetric normed spaces, which is studied in section 4 of the present
paper (see [11]). Thus, this work is devoted to develop a fundamental theory
supporting the quotient constructions.

1. Introduction and preliminaries

Let X be a real linear space . A function p : X → R+, is an asymmetric norm
on X ([9], [11]) if for all x, y ∈ X and r ∈ R+,

(i) p(x) = p(−x) = 0 if and only if x = 0.
(ii) p(rx) = rp(x).
(iii) p(x + y) ≤ p(x) + p(y).
The pair (X,p) is called asymmetric normed linear space. Asymmetric norms

are also called quasi-norms in [5],[1], [15] etc. and nonsymmetric norms in [2]
.
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If p is an asymmetric norm on X, then the function p−1 defined on X by
p−1(x) = p(−x) is also an asymmetric norm on X, called the conjugate of p.
The function ps defined on X by ps(x) = max{p(x), p−1(x)} is a norm on X.

A subset M of a linear space is called cone or semilinear space if for every
x, y ∈M and a ∈ R+, x+y ∈M and ax ∈M . If p is a function on M satisfying
the conditions of the definition of an asymmetric norm, p will be also called an
asymmetric norm on M .

A quasi-metric on a nonempty set A is a function d : A × A → R+ that
satisfies

(1) d(a, b) = d(b, a) = 0 if and only if a = b.
(2) For every a, b, c ∈ A, d(a, b) ≤ d(a, c) + d(c, b).
Each quasi-metric d on A generates a T0 topology T (d) on A, which has as

basic open sets the d-balls,

Bd(a, r) = {b ∈ A : d(a, b) < r}, a ∈ A, r > 0.

The reader might consult [6] and [12] for more information about quasi-
metric spaces.

An asymmetric norm p on a linear space X induces the quasi-metric dp by
means of the formula

dp(x, y) := p(y − x), x, y ∈ X.

The dp-ball Bdp (x, r), will be simply denoted by Bp
r (x) and the topology T (dq)

will be denoted by τp.
Thus, the sets

Bp
ε (0) = {x ∈ X : p(x) < ε}, ε > 0,

define a fundamental system of neighborhoods of zero for the topology τp, and
for all y ∈ X, the sets Bp

ε (y) = y + Bp
ε (0) define a fundamental system of

neighborhoods of y. The terms p-neighborhood, p-open, p-closed, etc., will
refer to the corresponding topological concepts with respect to that topology.

In [5] there is exhibited a natural class of examples of asymmetric normed
spaces, the normed linear lattices. In fact, it is proved that whenever (X, ‖ · ‖)
is a normed lattice, then p(x) = ‖x+‖ with x+ = sup{x, 0} is an asymmetric
norm on X. Moreover p determines the topology and order of X in the sense of
[6]. This class of asymmetric normed spaces is the most interesting one from
the point of view of applications.

In the last years several authors have applied both asymmetric normed
linear spaces and other related structures from topological algebra and non-
symmetric functional analysis to construct suitable mathematical models in
theoretical computer science ([9, 14, 16], etc) as well as some questions in ap-
proximation theory ( [2, 15, 19], etc).

The properties of the spaces with asymmetric norms have been investigated
in a series of papers emphasizing the similarities with normed spaces, as well
as the differences, see [10, 11, 8, 3, 4, 5, 1] and the references quoted therein.

In the present paper we shall continue the investigation of the properties
of the spaces with asymmetric norms. We study the topological structure of
the linear subspaces in this setting. If (X,p) is an asymmetric normed space
we introduce the concept of (p, p−1)-closed subset of X and we show that the
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(p, p−1)-closed linear subspaces of X play in our context a similar role that the
closed subspaces have played in normed spaces. We define in a natural way
an asymmetric norm on the quotient space X/H whenever H is a (p, p−1)-
closed linear subspace of X. We also study the properties of the quotient
topology in this context. Thus, we analyze the canonical factorization of a
linear continuous function between two asymmetric normed spaces and we
give a complete description of the dual space of X/H.

All linear spaces under consideration are assumed to be defined over the
field of real numbers.

2. Linear subspaces and continuity

If (X,p) is an asymmetric normed space and A is a subset of X we denote
by A

p
the closure of A in the topological space (X, τp).

In a normed space the closure of a linear subspace is a linear subspace. If
(X,p) is an asymmetric normed space andH is a linear subspace ofX, then the
closure H

p
may fail to be a linear subspace of X, as the next example shows.

Example (2.1). In R2 we define the asymmetric norm p((x, y)) := max{x+,
y+}, where x+ := x ∨ 0; remark that the topology τps is the usual topology of
R2. If we consider the subspace H = span {(−1, 1)} it is easy to prove that
H

p
= {(x, y) : x ≥ −y}, which is not a linear subspace of R2.

The following proposition provides information about the closure of a linear
subspace in the context of asymmetric normed spaces.

Proposition (2.2). Let (X,p) be an asymmetric normed linear space and H
a linear subspace of X, then:

(1) H
p

is a cone.

(2) H
p

= −Hp−1

.

(3) H
p ∩Hp−1

is a linear subspace of X.
(4) H is p-closed if and only if H is p−1-closed.

Proof. (1) Let x, y ∈ Hp
. Then given ε > 0, there exist h, h′ ∈ H such that

p(h− x) < ε
2 and p(h′ − y) < ε

2 . Therefore

p(h + h′ − (x + y)) ≤ p(h− x) + p(h′ − y) < ε.

Then h + h′ belongs to H ∩ Bp
ε (x + y), and so x + y ∈ Hp

.
If x ∈ Hp

and α > 0, there is h ∈ H ∩ (x + Bp
ε
α
(0)). Then

p(αh− αx) = αp(h− x) < ε,

and we conclude that αx ∈ Hp
.

(2) If x ∈ Hp
, then for all ε > 0, H ∩ (x + Bp

ε (0)) 6= ∅. Since H = −H, then

H ∩ (−x + Bp−1

ε (0)) 6= ∅ and so −x ∈ Hp−1

.
(3) and (4) are direct consequences of (2).

Definition (2.3). If (X,p) is an asymmetric normed space and A is a subset

of X we say that A is (p, p−1)-closed if A = A
p
∩A

p−1

.
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The linear subspace H considered in Example (2.1) is (p, p−1)-closed, since

H
p

= {(x, y) : x ≥ −y}, Hp−1

= {(x, y) : x ≤ −y}, and so

H
p ∩Hp−1

= {(x, y) : x = −y} = H.

Proposition (2.4). Let (X,p) be an asymmetric normed space andH a linear
subspace of X. If H is (p, p−1)-closed then H is ps-closed.

Proof. Since the topologies τp and τp−1 are coarser than the topology τps it

satisfies that H
ps ⊂ H

p
and H

ps ⊂ H
p−1

. Then H
ps ⊂ H

p ∩Hp−1

= H, and so

H
ps

= H.
The converse of this result is not true. In fact, if we consider the asymmetric

normed linear space (R2, p) of Example (2.1), then the linear subspace H =

span{(1, 1)} is ps-closed and H 6= H
p ∩Hp−1

, since H
p

= H
p−1

= R2.

If (X,p) is an asymmetric normed space, by X∗ is denoted the set

X∗ = {f : (X,p)→ (R, u) : f is linear and continuous}

where (R, u) is the asymmetric normed space induced by the asymmetric norm
u defined on R by u(x) = x+.

Note that f ∈ X∗ if and only if it is a linear and upper semicontinuous form
on (X, τ).

The set X∗ is not necessarily a linear space, but it is a cone in the algebraic
dual of X. The function

p∗(f ) = sup{f (x) : p(x) ≤ 1}

defines an asymmetric norm on the cone X∗ and (X∗, p∗) is called the dual
space of (X,p).

An interesting study of X∗ can be found in [11] and [4].
Now we study the relationship between the elements of X∗ and certain

linear subspaces of X. This will be done with the help of the following result
([5]).

Lemma (2.5). Let (X,p) be an asymmetric normed space. Then f ∈ X∗ if
and only if there is M > 0 such that f (x) ≤Mp(x), for all x ∈ X.

If f is a linear form on X, we denote by ker f the f -null space of X, that is,

ker f = {x ∈ X : f (x) = 0}.

Proposition (2.6). Let (X,p) be an asymmetric normed space and let f be
a linear functional on X. If f ∈ X∗, then ker f is (p, p−1)-closed.

Proof. Suppose that f ∈ X∗. By Lemma (2.5), there is M > 0 such that

f (x) ≤Mp(x) for all x ∈ X. Let x ∈ ker f
p
∩ ker f

p−1

. Then if n ∈ N there exist
xn, yn ∈ ker f such that p(xn − x) < 1/n and p(x − yn) < 1/n. Hence

f (x) = f (x − yn + yn) = f (x − yn) + f (yn) ≤Mp(x − yn) < M/n,

−f (x) = f (xn − x − xn) = f (xn − x) + f (−xn) ≤Mp(xn − x) < M/n,

for all n ∈ N and so f (x) = 0.
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The following example shows that the converse of this result is not true in
our setting.

Example (2.7). If (X, ‖ · ‖) is a normed lattice, and p(x) = ‖x+‖ is the asym-
metric norm associated to the norm, then f ∈ X∗ if and only if f is positive and
f is in the classical topological dual of (X, ‖ · ‖) (see Corollary 1 of [1].) If we
consider the asymmetric normed space given in Example (2.1) and the linear
functional on R2 defined by f (x, y) = −x − y, then ker f is (p, p−1)-closed and
f /∈ X∗, since f is not a positive linear form on (X, τp).

Now we are going to prove that the (p, p−1)-closedness of ker f implies the
semicontinuity of f. We begin by establishing an algebraic lemma.

Lemma (2.8). Let X be a real linear space, f a linear functional on X, and
a ∈ X such that f (a) = −1 and V = f−1(] −∞, 1[). If U is a subset of X such
that αU ⊂ U for 0 < α < 1, then (a + U) ∩ ker f = ∅ if and only if U ⊂ V.

Proof. Suppose thatU ⊂ V. Then if x ∈ U, f (a+x) = −1+f (x) 6= 0, because
x ∈ V , and so (a+U)∩ker f = ∅.Conversely, suppose that x ∈ U and f (x) ≥ 1.
Then x/f (x) ∈ U and f (a + x/f (x)) = 0, hence (a + U) ∩ ker f 6= ∅.

Proposition (2.9). If (X,p) is an asymmetric normed space and ker f is
(p, p−1)-closed, then f ∈ X∗ or −f ∈ X∗.

Proof. Let V = f−1(]−∞, 1[). If f is not the zero linear map (in which case
it is upper semicontinuous) there is a ∈ X such that f (a) = −1. Obviously

a /∈ ker f = ker f
p
∩ ker f

p−1

.

If a /∈ ker f
p
, there exists a p-neighborhood U of zero such that (a + U) ∩

ker f = ∅ and by Lemma (2.8), U ⊂ V and so V is a p-neighborhood of zero.
Hence f is upper semicontinuous, that is, f ∈ X∗.

If a /∈ ker f
p−1

, there exists a p-neighborhood of 0, W , such that (a −W ) ∩
ker f = ∅ and by Lemma (2.8), −W ⊂ V and so V is p−1-neighborhood of zero.
Hence f is lower semicontinuous, that is, −f ∈ X∗.

Corollary (2.10). If X is a normed space and f is a linear form on X, then
f is continuous if and only if ker f is closed.

3. Quotient spaces

If X is a linear space and H is a linear subspace of X, the relation defined
by xRy if x − y ∈ H is an equivalence relation on X. The quotient set is a
linear space called the quotient of X by H and it is denoted by X/H. If x ∈ X
we denote the equivalence class of x by x̂, that is

x̂ = {x + h : h ∈ H} = x + H.

We will denote by π the canonical mapping of X onto X/H, that is, π(x) = x̂
for all x ∈ X.

The following result is quite simple to prove.
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Proposition (3.1). Let (X,p) be an asymmetric normed linear space and H
a linear subspace of X. The function p̂ : X/H −→ R defined by

p̂(x̂) := inf{p(y) : y ∈ x̂} = inf{p(x + h) : h ∈ H}

is positive, subadditive and positively homogeneous.

If p is a norm on X, then p̂ is a norm on X/H if and only if H is closed. In
the setting of asymmetric normed spaces, there are many examples of spaces
where the only p-closed linear subspace is the whole space. This is the case,
for instance, of the asymmetric normed spaces defined by normed lattices.
This fact has motivated the notion of (p, p−1)-closed subspace which has been
introduced in the above section.

Proposition (3.2). Let (X,p) be an asymmetric normed vector space and H
a linear subspace of X. If H is (p, p−1)-closed, then p̂ is an asymmetric norm
on X/H.

Proof. By Proposition (3.1), we only need to prove that the equality p̂(x̂) =
p̂(−x̂) = 0 implies x̂ = 0̂.

If p̂(x̂) = 0, then for ε > 0 there is h ∈ H such that p(x + h) < ε. Thus
x + h ∈ Bp

ε (0) and so h ∈ H ∩ (−x + Bp
ε (0)). Therefore −x ∈ Hp

and, by (2) of

Proposition (2.2), x ∈ Hp−1

.
If p̂(−x̂) = 0, it can be proved with a similar argument that x ∈ Hp

and so

x ∈ Hp ∩Hp−1

= H. Hence x̂ = 0̂.

It is well known that each asymmetric normed space is T0. However, these
spaces are notT1 in general. The following proposition shows that the existence
of p-closed linear subspaces of (X,p) characterizes the T1 axiom of (X/H, p̂).

Proposition (3.3). The asymmetric normed space (X/H, p̂) satisfies the T1

separation axiom if and only if H is p-closed.

Proof. In [7] it is proved that an asymmetric normed space (X,p) has the
T1 property if and only if p(x) = 0 implies x = 0. We will use this argument for
our proof.

Assuming that (X/H, p̂) is a T1 space, we prove by contradiction that H is
p-closed. Suppose that x ∈ Hp

and x /∈ H.
If x ∈ H

p
then for all n ∈ N there is hn ∈ H such that hn ∈ x + Bp

1
n

(0).

Therefore hn = x + zn with zn ∈ Bp
1
n

(0).

If x /∈ H, then zn = hn−x /∈ H, therefore ẑn 6= 0̂, for all n ∈ N. Furthermore,
ẑn = ẑm, for all n,m ∈ N, because zn − zm = hn − hm. Then,

0 ≤ p̂(ẑn0 ) = inf{p(z) : z ∈ ẑn0} ≤ p(zn) ≤ 1
n
,

for all n ∈ N and this implies that p̂(ẑn0 ) = 0 with ẑn0 6= 0̂, which contradicts
the hypothesis.

Assuming that H is a p-closed set, we will prove by contradiction that
(X/H, p̂) has the T1 property. Suppose that p̂(x̂) = 0 and x̂ 6= 0̂.
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If x̂ 6= 0̂ then −x /∈ H. Since H is p-closed, there is ε > 0 such that

(3.4) (−x + Bp
ε (0)) ∩H = ∅.

Since p̂(x̂) = 0, given ε > 0 there is h ∈ H such that p(x + h) < ε. Thus,
(x + h) ∈ Bp

ε (0) and we conclude that

h ∈ H ∩ (−x + Bp
ε (0)),

which contradicts (3.4).

The following lemma, given in [5], characterizes the continuous linear map-
pings between asymmetric normed linear spaces and it will be used later on.

Lemma (3.5). Let (X,p) and (Y, q) be two asymmetric normed linear spaces
and let f be a linear mapping from X into Y. Then f is continuous if and only
if there is M > 0 such that q(f (x)) ≤Mp(x) for all x ∈ X.

The following proposition is quite simple to prove and it shows that the
topology generated by p̂ coincides with the classical quotient topology onX/H.

Proposition (3.6). Let H be a (p, p−1)-closed linear subspace of an asym-
metric normed space (X,p). Then

(1) Bp̂
ε (0̂) = π(Bp

ε (0)), and
(2) π : (X,p) −→ (X/H, p̂) is a continuous and open linear mapping.

If X and Y are two linear spaces and f is a linear mapping from X into Y ,
then f = i ◦ f̂ ◦π where π is the canonical mapping of X onto X/ker f, i is the
embedding of f (X) into Y and f̂ a linear and bijective mapping from X/ker f
on f (X), defined by f̂ (x̂) = f (x).

Proposition (3.7). Let (X,p) and (Y, q) be two asymmetric normed spaces
and f a continuous linear mapping between X and Y . Then:

(1) ker f is (p, p−1)-closed.
(2) (X/ker f, p̂) is an asymmetric normed linear space.
(3) The mapping f̂ : (X/ker f, p̂)→ (f (X), q) is continuous.
(4) f is an open map if and only if f̂ is an open map.

Proof. (1) By Lemma (3.5) , if f is continuous then there is M > 0 such

that q(f (x)) ≤ Mp(x). Let x ∈ ker f
p
∩ ker f

p−1

, then for ε > 0, there are h,
h′ ∈ ker f such that p(x + h) ≤ ε

M and p(−x + h′) ≤ ε
M . Thus,

q(f (x + h)) ≤Mp(x + h) < ε,

q(f (−x + h′)) ≤Mp(−x + h′) < ε,

and by the linearity of f ,
q(f (x) + f (h)) < ε,

q(f (−x) + f (h′)) < ε.

Hence q(f (x)) = 0 = q(−f (x)) and so f (x) = 0, because q is an asymmetric
norm.

(2), (3) and (4) are direct consequences of Proposition (3.2), Lemma (3.5) and
Proposition (3.6), respectively.
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If (X,p) is an asymmetric normed linear space and H is a (p, p−1)-closed
linear subspace of X, the function ps(x) = max{p(x), p−1(x)} is a norm on X,
and since H is ps-closed we have that ‖x̂‖ = inf{ps(x) : x ∈ x̂} is a norm on
X/H.

On the other hand we have that p̂s(x) = max{p̂(x), p̂−1(x)} is also a norm
on X/H. Now, the natural question is to know the relationship between ‖ · ‖
and p̂s.

If H has finite codimension, then X/H is finite dimensional and therefore
the norms on X/H are equivalent. In a general case, since Bps

ε (0) = Bp
ε (0) ∩

Bp−1

ε (0), we have that

B‖·‖ε (0̂) = π(Bps

ε (0)) = π(Bp
ε (0) ∩ Bp−1

ε (0))

⊂ π(Bp
ε (0)) ∩ π(Bp−1

ε (0)) = Bp̂
ε (0̂) ∩ Bp̂−1

ε (0̂) = Bp̂s

ε (0̂).
Hence the topology generated by the norm ‖ · ‖ is finer than the topology
generated by the norm p̂s and moreover, p̂s ≤ ‖ · ‖.

4. The dual space of (X/H, p̂)

Let (X,p) be an asymmetric normed linear space. In Section 2 we have
denoted by (X∗, p∗) the dual space of (X,p), where

p∗(f ) = sup{f (x) : p(x) ≤ 1}.
It is easy to prove that we can compute p∗(f ) by taking the supremum of f (x)
in the open ball Bp

1 (0), that is

p∗(f ) = sup{f (x) : p(x) < 1}.
If H is a (p, p−1)-closed linear subspace of X then ((X/H)∗, p̂∗) is the dual

space of the asymmetric normed space (X/H, p̂), where

(X/H)∗ = {f̂ : (X/H, p̂)→ (R, u) : f is linear and continuous},
and

p̂∗(f̂ ) = sup{f̂ (x̂) : p̂(x̂) ≤ 1} = sup{f̂ (x̂) : p̂(x̂) < 1}.
We recall the definition of isometric cones [13].

Definition (4.1). Two asymmetric cones (X,p) and (Y, q) are said to be iso-
metric if there is a bijectionφ between (X,p) and (Y, q) such that for all x, y ∈ X
and a ∈ R+ :

(i) φ(x + y) = φ(x) + φ(y),
(ii) φ(ax) = aφ(x),
(iii) q(φ(x)) = p(x).

Theorem (4.2). ((X/H)∗, p̂∗) is isometric to (H⊥, p∗), where

H⊥ := {f ∈ X∗ : f (x) = 0,∀x ∈ H}.

We omit the proof of this result since it is a straightforward generalization
of the well known proof of the analogous result in normed context.

Received January 9, 2007

Final version received September 5, 2007



QUOTIENT SUBSPACES OF ASYMMETRIC NORMED LINEAR SPACES 365
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ON TWO NON-TRIVIAL PRODUCTS IN THE STABLE HOMOTOPY
GROUPS OF SPHERES

XIUGUI LIU AND HAO ZHAO

Abstract. In this paper we consider the convergence of some products
in the Adams spectral sequence and show that two products h0k0hm ∈

E
4,2(p1−1)(pm1 +2p1+2)
2 , k0h0hnγ̃s ∈ E

s+4,2(p2−1)(pn2 +sp2
2+(s+1)p2+s)+s−3

2 both are
permanent cycles in the Adams spectral sequence and converge to two new
nontrivial homotopy elements in the stable homotopy groups of spheres π∗S
respectively, where p1 > 5 is a prime, p2 > 7 is a prime, m > 3, n > 4 and
3 6 s < p2 − 2.

1. Introduction and the main results

LetA denote the mod p Steenrod algebra and S denote the sphere spectrum
localized at an odd prime p. To determine the homotopy groups π∗S of spheres
S at p is one of the central problems in the stable homotopy theory. The Adams
spectral sequence (ASS, for short).

Es,t
2 = Exts,tA (Zp,Zp)⇒ πt−sS

has been an invaluable tool in studying the stable homotopy groups of spheres,
where the Es,t

2 -term is the cohomology of A. If a family of generators xi in Es,∗
2

converges nontrivially in the ASS, then we get a family of nontrivial homotopy
elements fi in π∗S. We say that fi is represented by xi ∈ Es,∗

2 and has filtration
s in the ASS. So far, not so many families of homotopy elements in π∗S have
been detected. Recently, Lin got a series of results and detected some new
families in π∗S (cf. [1-4]).

Throughout this paper we always let q = 2(p − 1).
From [7], Ext1,∗

A (Zp,Zp) has Zp-basis consisting of a0 ∈ Ext1,1
A (Zp, Zp),

hi ∈ Ext1,piq
A (Zp,Zp) for all i > 0 and Ext2,∗

A (Zp,Zp) has Zp-basis consisting
of α2, a2

0, a0hi(i > 0), gi(i > 0), ki(i > 0), bi(i > 0), and hihj(j > i + 2, i > 0)
whose internal degrees are 2q+ 1, 2, piq+ 1, pi+1q+ 2piq, 2pi+1q+ piq, pi+1q
and piq + pjq respectively.

LetM be the Moore spectrum modulo a prime p > 5 given by the cofibration

S
p→ S

i→M
j→ ΣS .
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Keywords and phrases: stable homotopy groups of spheres, Adams spectral sequence, May

spectral sequence, Toda-Smith spectrum.
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Let α : ΣqM → M be the Adams map and K be its cofibre given by the
cofibration

ΣqM
α→M

i′→ K
j′→ Σq+1M.

This spectrum which we briefly write as K is known to be the Toda-Smith
spectrum V (1). Let V (2) be the cofibre of β : Σ(p+1)qK → K given by the
cofibration

Σ(p+1)qK
β→ K

ī→ V (2)
j̄→ Σ(p+1)q+1K .

Let γ : Σq(p2+p+1)V (2) → V (2) be the υ3-map. Recall we have the γ-family
{γt ∈ π2(tp3−t−p2−p)+1(S), t > 1} in πs

∗(S) localized at the prime p, where
γt = jj′j̄γt īi′i (see [8], Theorem 2.12).

In [3], Lin proved the existence of third periodicity element in the stable
homotopy groups of spheres πpn+2q+(pn−s)(p+1)q−q−3S which is of order p and is
represented by γpn/s in the E3,∗

2 -term of the Adams-Novikov spectral sequence
(ANSS, for short). On the way of proving the main result, he detected a new
family in the stable homotopy groups of V (1), which is a spectrum closely
related to S. He gave the following theorem:

Theorem (1.1). Let p > 5, n > 1 and hn ∈ Ext1,pnq
A (Zp,Zp) be the known

generator in [7]. Then

(i′i)∗(hn) ∈ Ext1,pnq
A (H∗V (1),Zp) ,

the reduction of hn ∈ Ext1,pnq
A (Zp,Zp), is a permanent cycle in the ASS and

converges to a nontrivial element $n ∈ πpnq−1V (1).

In this paper, we will base on the family of homotopy elements in π∗V (1) in
[3] to detect two new families of filtration 4 and s + 4 in the stable homotopy
groups of spheres π∗S. Our main results can be stated as follows.

Theorem (1.2). Let p > 5, n > 3, then the product

h0k0hn 6= 0 ∈ Ext4,q(pn+2p+2)
A (Zp,Zp)

is a permanent cycle in the ASS and converges to a nontrivial element
α1jj′β2$n ∈ πq(pn+2p+2)−4S of order p, where α1 = jαi.

Theorem (1.3). Let p > 7, n > 4 and 3 6 s < p − 2, then the product

γ̃sh0k0hn 6= 0 ∈ Exts+4,q(pn+sp2+(s+1)p+s)+s−3
A (Zp,Zp)

is a permanent cycle in the ASS and converges to a nontrivial element
γsα1jj′β2$n ∈ πq(pn+sp2+(s+1)p+s)−7S of order p, where γ̃s was given in [5] and
α1 = iαj.

The May spectral sequence (MSS, for short) and the ASS play very important
roles in the proofs of the main theorems.

The paper is arranged as follows: after giving some useful propositions on
the MSS in Section 2, we will make use of the MSS and the ASS to obtain
some low-dimensional Ext groups which will be used in the proofs of the main
theorems in Section 3. Section 4 is devoted to showing the main theorems.
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2. The ASS and the MSS

For the sake of completeness, in this section we first review some knowledge
on the ASS and the MSS. Then we will show some important theorems on the
MSS which will be often used in the proofs of the main theorems.

One of the main tools to determine the stable homotopy groups of spheres
π∗S is the ASS.

Let p be a prime, X a spectrum of finite type and Y a finite dimensional
spectrum. Then there is a natural spectral sequence {Es,t

r , dr}, which is called
Adams spectral sequence

Es,t
2 = Exts,tA ((H∗X; Zp),H∗(Y ; Zp))⇒ ([Y,X]t−s)p ,

where
dr : Es,t

r → Es+r,t+r−1
r .

If X and Y are sphere spectra S, then the Adams spectral sequence(ASS)

Es,t
2 = Exts,tA (Zp,Zp)⇒ (πt−sS)p .

If S is localized at p, then the Adams spectral sequence

Es,t
2 = Exts,tA (Zp,Zp)⇒ πt−sS .

There are three problems in using the ASS: calculation of the E2-term,
computation of the differentials and determination of the nontrivial extensions
fromE∞ to π∗S. So, for computing the stable homotopy groups of spheres with
the ASS, we must compute the E2-term of the ASS, Ext∗,∗A (Zp,Zp). The most
successful method for computing Ext∗,∗A (Zp,Zp) is the MSS.

From [9], there is a May spectral sequence(MSS) {Es,t,∗
r , dr}which converges

to Exts,tA (Zp,Zp) with E1-term

(2.1) E∗,∗,∗1 = E(hm,i|m > 0, i > 0)
⊗

P (bm,i|m > 0, i > 0)
⊗

P (an|n > 0) ,

where E is the exterior algebra, P is the polynomial algebra, and

hm,i ∈ E1,2(pm−1)pi,2m−1
1 , bm,i ∈ E2,2(pm−1)pi+1,p(2m−1)

1 , an ∈ E1,2pn−1,2n+1
1 .

One has dr : Es,t,u
r → Es+1,t,u−r

r and if x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x) · y + (−1)sx · dr(y) .

There exists a graded commutativity of the MSS:

x · y = (−1)ss
′+tt′y · x

for x, y = hm,i, bm,i or an. The first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j ,

d1(ai) =
∑

06k<i

hi−k,kak ,

d1(bi,j) = 0 .
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For each element x ∈ Es,t,∗
1 , we define dim x = s, deg x = t. Then we have:

(2.2)



dim hi,j = dim ai = 1,dim bi,j = 2 ,

deg hi,j = 2(pi − 1)pj = 2(p − 1)(pi+j−1 + · · ·+ pj) ,

deg bi,j = 2(pi − 1)pj+1 = 2(p − 1)(pi+j + · · ·+ pj+1) ,

deg ai = 2pi − 1 = 2(p − 1)(pi−1 + · · ·+ 1) + 1,

deg a0 = 1 ,

where i > 1, j > 0.
By the knowledge on p-adic expression in number theory, we can have that

for each integer t > 0, it can be always expressed uniquely as

t = q(cnpn + cn−1p
n−1 + · · ·+ c1p + c0) + e ,

where 0 6 ci < p (0 6 i < n), p > cn > 0, 0 6 e < q.
In the proofs of the main theorems in Section 3, we need the following two

theorems on the MSS.
Let s and t be two arbitrary positive integers. Suppose t = q(cnpn +

cn−1pn−1+· · ·+c1p+c0)+e, where 0 6 ci < p (0 6 i < n), p > cn > 0, 0 6 e < q.
Suppose h = x1x2 . . . xs ∈ Es,t,∗

1 and h ∈ E(hm,i|m > 0, i > 0)
⊗

P (an|n > 0),
where xi is one of ak or hl,j , 0 6 k ≤ n + 1, 0 6 l + j 6 n + 1, l > 0,j > 0. By
(2.2) we can assume deg xi = q(ci,npn + · · ·+ ci,1p + ci,0) + ei, where ci,j = 0 or
1, ei = 1 if xi = aki , or ei = 0. Then we have

deg h =
s∑
i=1

deg xi = q((
s∑
i=1

ci,n)pn + · · ·+ (
s∑
i=1

ci,1)p + (
s∑
i=1

ci,0)) + (
s∑
i=1

ei).

Denote
∑s

i=1 ci,j and
∑s

i=1 ei by c̄j and ē, 0 ≤ j ≤ n, respectively. Then we have
the following theorem which was given in [6].

Theorem (2.3) ([6], Proposition 2.1). With notation as above. If c̄0−ē > n+1,
then h cannot exist, i.e., Es,t,∗

1 = 0.

Theorem (2.4). With notation as above. If for some j with 0 < j 6 n, c̄j = s.
(1) If there also exist two integers i1 and i2 such that 0 6 i1 < i2 < j and

s > c̄i1 > c̄i2 , then h cannot exist.
(2) If there also exists an integer i such that 0 6 i < j and s > ē > c̄i, then h

cannot exist.
(3) If there also exist two integers i′1 and i′2 such that j < i′1 < i′2 6 n and

s > c̄i′2 > c̄i′1 , then h cannot exist.

Proof. (1) By (2.2), from c̄j = swe can have that in h = x1x2 · · · xs, deg xi =
higher terms +pjq+lower terms for each 1 6 i 6 s.

By
∑s

i=1 ci,i1 = c̄i1 and (2.2), we can easily see that there exist c̄i1 factors in
h such that deg = higher terms +pi1q+lower terms.

From the above discussion and (2.2), we see that there exist at least c̄i1
factors in h such that deg =higher terms+pjq + pj−1q + · · · + pi2q + · · · +
pi1q+lower terms. It follows that

∑s
i=1 ci,i2 > c̄i1 . That is to say, c̄i2 > c̄i1 . But

we also have c̄i1 > c̄i2 . This is a contradiction. It follows that h cannot exist.
This completes the proof of (1).
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(2) the proof of (2) is similar to that of (1)
(3) the proof of (3) is similar to that of (1)

3. Some useful Ext groups

In this section, we make use of the MSS to determine some Ext groups which
will be used in the proofs of the main theorems.

To show that the product k0h0hnγ̃s ∈ Exts+4,t
A (Zp,Zp) is nontrivial, it suffices

to prove that the representative of k0h0hnγ̃s in the MSS is a permanent cycle
and cannot be hit by any differential in the MSS. Thus we first give the
following lemma.

Lemma (3.1). Let p > 7, n > 4, 0 6 s < p − 5, then in the MSS,

Es+6,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s,∗
1 = 0 .

Proof. Let t = pnq + (s + 3)p2q + (s + 4)pq + (s + 3)q + s. Consider h =
x1x2 · · · xm ∈ Es+6,t,∗

1 in the MSS, where xi is one of ak, hl,j or bu,z, 0 6 k 6 n+1,
0 6 l + j 6 n + 1, 0 6 u + z 6 n, l > 0, j > 0, u > 0, z > 0. Assume that
deg xi = q(ci,npn + ci,n−1p

n−1 + · · · + ci,0) + ei, where ci,j = 0 or 1, ei = 1 if

xi = aki , or ei = 0. It follows that dim h =
m∑
i=1

dim xi = s + 6 and

(3.2)

deg h =
m∑
i=1

deg xi

= q((
m∑
i=1

ci,n)pn + · · ·+ (
m∑
i=1

ci,1)p + (
m∑
i=1

ci,0)) + (
m∑
i=1

ei)

= q(pn + (s + 3)p2 + (s + 4)p + s + 3) + s .

By virtue of 0 6 s, s+ 3, s+ 4 < p and the knowledge on the p-adic expression
in number theory, we have from (3.2)

(3.3)



m∑
i=1

ei = s + λ−1q, λ−1 > 0;
m∑
i=1

ci,0 + λ−1 = s + 3 + λ0p, λ0 > 0;
m∑
i=1

ci,1 + λ0 = s + 4 + λ1p, λ1 > 0;
m∑
i=1

ci,2 + λ1 = s + 3 + λ2p, λ2 > 0;
m∑
i=1

ci,3 + λ2 = 0 + λ3p, λ3 > 0;

· · · · · ·
m∑
i=1

ci,n−1 + λn−2 = 0 + λn−1p, λn−1 > 0;
m∑
i=1

ci,n + λn−1 = 1.

Case 1. 0 6 s < p − 6.
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By the facts that dim hi,j = dim ai = 1 and dim bi,j = 2, we can have

6 6 m 6 s + 6 < p − 6 + 6 = p

from dim h =
m∑
i=1

dim xi = s + 6. Notice that ei = 0 or 1, ci,j = 0 or 1, and

m < p. From (3.3), we have

0 6
m∑
i=1

ei,
m∑
i=1

ci,j 6 m < p .

It follows that the number sequence (λ−1, λ0, λ1, λ2, · · · , λn−2, λn−1) must equal
the sequence (0, 0, 0, 0, · · · , 0, 0). Then (3.3) can turn into

m∑
i=1

ei = s,
m∑
i=1

ci,0 = s + 3,
m∑
i=1

ci,1 = s + 4,
m∑
i=1

ci,2 = s + 3,
m∑
i=1

ci,3 = · · · =
m∑
i=1

ci,n−1 = 0,
m∑
i=1

ci,n = 1 .

By (2.2), it is easy to know that there exists a factor h1,n or b1,n−1 among h. By
virtue of the graded commutativity of E∗,∗,∗1 , we can denote by xm the factor
h1,n or b1,n−1. Then h′ = x1x2 . . . xm−1 ∈ El,t−pnq,∗

1 , where l = s+5 (if xm = h1,n)
or s + 4 (if xm = b1,n−1). And we have

(3.4)


m−1∑
i=1

ei = s,
m−1∑
i=1

ci,0 = s + 3,

m−1∑
i=1

ci,1 = s + 4,
m−1∑
i=1

ci,2 = s + 3.

By ci,1 = 0 or 1, we can get
m > s + 5

from
m−1∑
i=1

ci,1 = s + 4. On the other hand, we also have

m 6 s + 6 .

Thus m can equal s + 5 or s + 6.

Since
m−1∑
i=1

ei = s, deg hi,j ≡ 0(mod q) (i > 0, j > 0), deg ai ≡ 1(mod q) (i > 0)

and deg bi,j ≡ 0(mod q) (i > 0, j > 0), then by the graded commutativity of
E∗,∗,∗1 , up to sign h′ must have a factor aj1aj2 · · ·ajs (0 6 j1 6 j2 6 · · · 6 js).
Notice that the degrees of ai’s. We can assume that h′ = ax0a

y
1a

z
2a

k
3xs+1 · · · xm−1,

where 0 6 x, y, z, k 6 s, x + y + z = s. Then from (3.4) we have
x + y + z + k +

m−1∑
i=s+1

ei = s, y + z + k +
m−1∑
i=s+1

ci,0 = s + 3,

z + k +
m−1∑
i=s+1

ci,1 = s + 4, k +
m−1∑
i=s+1

ci,2 = s + 3.

Then
h′′ = xs+1 · · · xm−1 ∈ El−s,t′,∗

1
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where t′ = (s + 3− k)p2q + (s + 4 − z− k)pq + (s + 3− y − z− k)q, and

(3.5)


m−1∑
i=s+1

ei = 0,
m−1∑
i=s+1

ci,0 = s + 3− y − z− k,
m−1∑
i=s+1

ci,1 = s + 4 − z− k,
m−1∑
i=s+1

ci,2 = s + 3− k.

Subcase 1.1. If h = x1x2 · · · xm−1h1,n, then h′ = ax0a
y
1a

z
2a

k
3xs+1 · · · xm−1 ∈

Es+5,t−pnq,∗
1 , h′′ = xs+1 · · · xm−1 ∈ E5,t′,∗

1 .
When m = s + 5, (3.5) can turn into

(3.6)


s+4∑
i=s+1

ei = 0,
s+4∑
i=s+1

ci,0 = s + 3− y − z− k,
s+4∑
i=s+1

ci,1 = s + 4 − z− k,
s+4∑
i=s+1

ci,2 = s + 3− k.

One the one hand, by virtue of ci,2 = 0 or 1, from
s+4∑
i=s+1

ci,2 = s + 3− k we have

k = s + 3−
s+4∑
i=s+1

ci,2 > s + 3− 4 = s− 1 ,

i.e., k > s− 1. On the other hand, from
s+4∑
i=s+1

ci,1 = s + 4 − z− k, we have that

z + k = s + 4 −
s+4∑
i=s+1

ci,1 > s + 4 − 4 = s ,

i.e., z + k = s. By virtue of x + y + z + k = s, we can get that there exist
two possibilities: k = s − 1, z = 1, y = x = 0 and k = s, z = y = x = 0.
If k = s − 1, z = 1, y = x = 0, then h′ = a2a

s−1
3 xs+1 · · · xs+4 with h′′ =

xs+1xs+2xs+3xs+4 ∈ E5,4p2q+4pq+3q,∗
1 = 0. If k = s, z = y = x = 0, then

h′ = as3xs+1 · · · xs+4 with h′′ = xs+1xs+2xs+3xs+4 ∈ E5,3p2q+4pq+3q,∗
1 = 0. Thus in

this case, h is impossible to exist.
When m = s + 6, (3.5) can turn into

s+5∑
i=s+1

ei = 0,
s+5∑
i=s+1

ci,0 = s + 3− y − z− k,
s+5∑
i=s+1

ci,1 = s + 4 − z− k,
s+5∑
i=s+1

ci,2 = s + 3− k.

Similarly, from
s+4∑
i=s+1

ci,2 = s + 3− k, we have

k = s + 3−
s+5∑
i=s+1

ci,2 > s + 3− 5 = s− 2
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by virtue of ci,2 = 0 or 1. Meanwhile, from
s+5∑
i=s+1

ci,1 = s + 4 − z − k, we have

that

z + k = s + 4 −
s+4∑
i=s+1

ci,1 > s + 4 − 5 = s− 1 .

Notice that x+y+z+k = s. It is easy to see that there exist seven possibilities
satisfying the two conditions: k > s − 2 and z + k > s − 1. For the seven
possibilities, we list a table as follows.

The possibility k z y x E5,t′,∗
1

The existence
of h′′ = xs+1 · · · xs+5

The 1st s− 2 1 1 0 E5,q(5p2+5p+3),∗
1 = 0 Nonexistence

The 2nd s− 2 1 0 1 E5,q(5p2+5p+4),∗
1 = 0 Nonexistence

The 3rd s− 2 2 0 0 E5,q(5p2+4p+3),∗
1 = 0 Nonexistence

The 4th s− 1 0 0 1 E5,q(4p2+5p+4),∗
1 = 0 Nonexistence

The 5th s− 1 0 1 0 E5,q(4p2+5p+3),∗
1 = 0 Nonexistence

The 6th s− 1 1 0 0 E5,q(4p2+4p+3),∗
1 = 0 Nonexistence

The 7th s 0 0 0 E5,q(3p2+4p+3),∗
1 = 0 Nonexistence

From the above table, it follows that in this case h can not exist either.
Subcase 1.2. If h = x1x2 · · · xm−1b1,n−1, then h′ = ax0a

y
1a

z
2a

k
3xs+1 · · · xm−1 ∈

Es+4,t−pnq,∗
1 , h′′ = xs+1 · · · xm−1 ∈ E4,t′,∗

1 .
When m = s + 6, h′′ = xs+1 · · · xs+5. Notice that dim xi = 1 or 2. Then we

easily have that

dim h′′ =
s+5∑
i=s+1

dim xi > 5 > 4 = dim h′′ .

This is a contradiction. Thus in this case h′′ cannot exist.
When m = s + 5, h = x1x2 · · · xs+4b1,n−1, then h′ = ax0a

y
1a

z
2a

k
3xs+1 · · · xs+4 ∈

Es+4,t−pnq,∗
1 , h′′ = xs+1 · · · xs+4 ∈ E4,t′,∗

1 . (3.5) can turn into
s+4∑
i=s+1

ei = 0,
s+4∑
i=s+1

ci,0 = s + 3− y − z− k,
s+4∑
i=s+1

ci,1 = s + 4 − z− k,
s+4∑
i=s+1

ci,2 = s + 3− k.

As in subcase 1.1, we can get that k > s−1 and z+k = s. By x+y+z+k = s, we
can know that there also exist two possibilities: k = s−1, z = 1, y = x = 0 and
k = s, z = y = x = 0. If k = s−1, z = 1, y = x = 0, thenh′ = a2a

s−1
3 xs+1 · · · xs+4

with h′′ = xs+1xs+2xs+3xs+4 ∈ E4,4p2q+4pq+3q,∗
1 = 0. If k = s, z = y = x = 0, then

h′ = as3xs+1 · · · xs+4 with h′′ = xs+1xs+2xs+3xs+4 ∈ E4,3p2q+4pq+3q,∗
1 = 0. Thus in

this case h is impossible to exist either.
From Subcases 1.1 and 1.2, we have that when 0 6 s < p − 6, h cannot

exist. Thus Es+6,t,∗
1 = 0.

Case 2. s = p − 6.
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From dim h =
m∑
i=1

dim xi = s + 6 = p − 6 + 6 = p, we have m 6 p by

dim xi = 1 or 2. Since 0 6
m∑
i=1

ei,
m∑
i=1

ci,j 6 m 6 p, 0 6 s = p − 6 < p < q, and

0 < s+3, s+4 < p, by the knowledge of p-adic expression in number theory it is
easy to get that the number sequence (λ−1, λ0, λ1, λ2) must equal the sequence

(0, 0, 0, 0). From (3.3) we have
m∑
i=1

ci,3 = λ3p. By virtue of 0 6
m∑
i=1

ci,3 6 m 6 p,

we have that λ3 may equal 0 or 1.

Subcase 2.1 If λ3 = 0, then
m∑
i=1

ci,3 = 0.

When n = 4, we have
m∑
i=1

ci,4 = 1. From the above results, it follows that

there exists a factor h1,4 or b1,3 among h.
When n > 4, we can similarly discuss and obtain that λ4 may equal 0 or 1.

We claim that
λ4 = 0 .

Otherwise, we would have that λ4 = 1 and
m∑
i=1

ci,4 = p. Then m = p.

For each 1 6 i 6 p, deg xi = higher terms +p4q+lower terms. Since
p∑
i=1

ei = p − 6, deg bi,j ≡ 0(mod q) (i > 0, j > 0), deg ai ≡ 1(mod q) (i > 0) and

deg hi,j ≡ 0(mod q) (i > 0, j > 0), then by the graded commutativity of E∗,∗,∗1 ,
there would exist a factor aj1aj2 · · ·ajp−6 (0 6 j1 6 j2 6 · · · 6 jp−6 6 n + 1)
among xi’s such that for each 1 6 i 6 p − 6, ji > 5 and deg aji = higher terms

p4q+p3q+p2q+pq+q+1. Obviously
m∑
i=1

ci,3 =
p∑
i=1

ci,3 > p−6 which contradicts

m∑
i=1

ci,3 = 0, thus the claim is proved. By induction on j we can get

λj = 0 (4 6 j 6 n− 1) .

It follows that
m∑
i=1

ci,n = 1 ,

that is to say, there is a factor h1,n or b1,n−1 among h.
In all, for n > 4, there exists a factor h1,n or b1,n−1 among h. By virtue of

the graded commutativity of E∗,∗,∗1 , we can denote the factor h1,n or b1,n−1 by
xm. By an argument similar to that used in the proof in Case 1, we can show
that h cannot exist.

Subcase 2.2. If λ3 = 1, then
m∑
i=1

ci,3 = p.

By virtue of ci,3 = 0 or 1 and m 6 p, we can get m = p. By dim h = p, we
can easily show that for each i, dim xi = 1 and

h = x1x2 · · · xp ∈ E(hm,i|m > 0, i > 0)
⊗

P (an|n > 0) .

When n = 4, it is easy to see that
p∑
i=1

ci,4 = · · · =
p∑
i=1

ci,n = 0.
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When n > 4, from (3.3) we have
p∑
i=1

ci,4 + 1 = 0 + λ4p .

From c1,4 = 0 or 1, we have
λ4 = 1 .

By induction on j, we have λj = 1, 4 6 j 6 n − 1. And then we have that
p∑
i=1

ci,3 = p,
p∑
i=1

ci,4 = · · · =
p∑
i=1

ci,n−1 = p − 1, and
p∑
i=1

ci,n = 0.

When n = 4, From
p∑
i=1

ei = p−6,
p∑
i=1

ci,0 = p−3,
p∑
i=1

ci,1 = p−2,
p∑
i=1

ci,2 = p−3,

p∑
i=1

ci,3 = p we can show that h = x1x2 · · · xp cannot exist by Theorem (2.4).

When n > 4, From
p∑
i=1

ei = p − 6,
p∑
i=1

ci,0 = p − 3,
p∑
i=1

ci,1 = p − 2,

p∑
i=1

ci,2 = p − 3,
p∑
i=1

ci,3 = p,
p∑
i=1

ci,4 = · · · =
p∑
i=1

ci,n−1 = p − 1, we also can

show that h = x1x2 · · · xp cannot exist by Theorem (2.4) either.
From Subcases 2.1 and 2.2, we get that when s = p − 6, Es+6,t,∗

1 = 0.
From Cases 1 and 2, the lemma follows.

The following lemma will be used in the proofs of Theorems 3.8 and 4.1. It
was given in [5] and called the representation theorem.

Lemma (3.7) ([5], Theorem 1.1). Let p > 7, 0 6 s < p−3, then the permanent
cycle

as3h3,0h2,1h1,2 ∈ Es+3,t,∗
r

converges to the third Greek letter family element

γ̃s+3 ∈ Exts+3,t
A (Zp,Zp)

in the May spectral sequence, where r > 1, t = (s+3)p2q+(s+2)pq+(s+1)q+s
and γ̃s+3 converges to the γ-element

γs+3 ∈ π(s+3)p2q+(s+2)pq+(s+1)q−3S

in the Adams spectral sequence, where γs+3 = jj′j̄γs+3īi′i ∈ πt−s−3S.

Theorem (3.8). Let p > 7, n > 4, 0 6 s < p − 5, then the product

k0h0hnγ̃s+3 6= 0 ∈ Exts+7,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s
A (Zp,Zp) .

Proof. Since h2,0h1,1, h1,n and as3h3,0h2,1h1,2 ∈ E∗,∗,∗1 are permanent cycles
in the MSS and converge nontrivially to k0, hn, γ̃s+3 ∈ Ext∗,∗A (Zp, Zp) for n > 0
respectively (see Lemma (3.7)),

h2,0h1,1h1,0h1,na
s
3h3,0h2,1h1,2 ∈ Es+7,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s,∗

1

is a permanent cycle in the MSS and converges tok0h0hnγ̃s+3 ∈ Exts+7,∗
A (Zp,Zp).

From Lemma (3.1), we see that

Es+6,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s,∗
1 = 0 ,
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then for r > 1,

Es+6,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s,∗
r = 0 .

Thus the permanent cycle h2,0h1,1h1,0h1,nas3h3,0h2,1h1,2 ∈ Es+7,∗,∗
r does not

bound. That is to say, h2,0h1,1h1,0h1,nas3h3,0h2,1h1,2 ∈ Es+7,∗,∗
r cannot be hit

by any differential in the MSS. It follows that h2,0h1,1h1,0h1,nas3h3,0h2,1h1,2 ∈
Es+7,∗,∗
r is a permanent cycle in the May spectral sequence and converges non-

trivially to k0h0hnγ̃s+3 ∈ Exts+7,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s
A (Zp,Zp). It follows

that

k0h0hnγ̃s+3 6= 0 ∈ Exts+7,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s
A (Zp,Zp) .

The lemma is proved.

Lemma (3.9). Let p > 7, n > 4, 0 6 s < p − 5, 2 6 r 6 s + 7, then in the
MSS,

Es+7−r,q(pn+(s+3)p2+(s+4)p+(s+3))+(s−r+1),∗
1 = 0 .

Proof. We divide the proof into two cases.
Case 1. r = s + 6, s + 7.
When r = s + 6 and r = s + 7, we easily get

Es+7−r,q(pn+(s+3)p2+(s+4)p+(s+3))+(s−r+1),∗
1 = 0

by (2.2).
Case 2. 2 6 r < s + 6.
For convenience, we let t′′ = q(pn + (s+ 3)p2 + (s+ 4)p+ (s+ 3)) + (s−r+ 1).

Consider h = x1x2 · · · xm ∈ Es+7−r,t′′,∗
1 , where xi is one of ak, hl,j or bu,z,

0 6 k 6 n + 1, 0 6 l + j 6 n + 1, 0 6 u + z 6 n, l > 0, j > 0, u > 0,
z > 0. Assume deg xi = q(ci,npn + ci,n−1p

n−1 + · · ·+ ci,0) + ei, where ci,j = 0 or
1, ei = 1 if xi = aki , or ei = 0. We have

deg h =
m∑
i=1

deg xi

= q((
m∑
i=1

ci,n)pn + · · ·+ (
m∑
i=1

ci,2)p2 + (
m∑
i=1

ci,1)p + (
m∑
i=1

ci,0)) + (
m∑
i=1

ei)

= q(pn + (s + 3)p2 + (s + 4)p + (s + 3)) + (s− r + 1),

dim h =
m∑
i=1

dim xi = s + 7− r.

By dim xi = 1 or 2 and 2 6 r < s+6, we can get thatm 6 s+7−r 6 s+7−2 =

s + 5 < p from dim h =
m∑
i=1

dim xi = s + 7− r.

We claim that s − r − 1 > 0. Otherwise, we would have p >
m∑
i=1

ei =

q + (s + 1− r) > q − 5 = 2p − 2− 5 = 2p − 7 > p by 2 6 r < s + 6 and p > 7.
That is a contradiction. The claim follows.
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By an argument similar to that used in Case 1 of Lemma (3.1), we can get

m∑
i=1

ei = s− r + 1,
m∑
i=1

ci,0 = s + 3,
m∑
i=1

ci,1 = s + 4,
m∑
i=1

ci,2 = s + 3,
m∑
i=1

ci,3 = · · · =
m∑
i=1

ci,n−1 = 0,
m∑
i=1

ci,n = 1.

By (2.2), it is easy to see that there exists a factor h1,n or b1,n−1 among h. We
can denote the factor h1,n or b1,n−1 by xm, then h′ = x1 · · · xm−1 ∈ El,t′′−pnq,∗

1 ,
where l = s + 6− r (when xm = h1,n) or s + 5− r (when xm = b1,n−1). And we
have 

m−1∑
i=1

ei = s− r + 1,
m−1∑
i=1

ci,0 = s + 3,

m−1∑
i=1

ci,1 = s + 4,
m−1∑
i=1

ci,2 = s + 3.

Since
m−1∑
i=1

ci,0 −
m−1∑
i=1

ei = s + 3− (s− r + 1) = r + 2 > 2 + 1

by r > 2, we can get that

Es+6−r,t′′−pnq,∗
1 = 0 and Es+5−r,t′′−pnq,∗

1 = 0

by Theorem (2.3), i.e., h′ cannot exist. Thus h cannot exist
From Cases 1 and 2, it follows that Es+7−r,t′′,∗

1 = 0. This completes the proof
of Lemma (3.9)

Theorem (3.10). Let p > 7, n > 4, 0 6 s < p − 5, 2 6 r 6 s + 7, then

Exts+7−r,q(pn+(s+3)p2+(s+4)p+(s+3))+(s−r+1)
A (Zp,Zp) = 0 .

Proof. By Lemma (3.9) and the MSS, Theorem (3.10) easily follows.

4. Proofs of the main theorems

Proof of Theorem (1.2). It is known that h0, k0 ∈ Ext∗,∗A (Zp,Zp) are perma-
nent cycles in the ASS and converge nontrivially to the α-element α1 = jαi
and β-element β2 = jj′β2i′i, respectively.

Meanwhile, from Theorem (1.1), we know that

(i′i)∗(hn) ∈ Ext1,pnq
A (H∗V (1),Zp) ,

the reduction of hn ∈ Ext1,pnq
A (Zp,Zp), is a permanent cycle in the ASS and

converges to a nontrivial element

$n ∈ πpnq−1V (1) .

Now consider the following composition of maps

χ = α1jj
′β2$n : Σpnq−1S

$n−→ V (1)
jj′β2

−→ Σ−2pq−q+2S
α1−→ Σ−2pq−2q+3S .

Since $n ∈ πpnq−1V (1) is represented up to nonzero scalar by

(i′i)∗(hn) ∈ Ext1,pnq
A (H∗V (1),Zp)
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in the ASS, the map χ is represented up to nonzero scalar by

j∗α∗i∗j∗j
′
∗β∗β∗i

′
∗i∗(hn) ∈ Ext4,pnq+2pq+2q

A (Zp,Zp)

in the ASS.
From the knowledge of Yoneda products we know that the composition

j∗j
′
∗β∗β∗i

′
∗i∗ : Ext0,∗

A (Zp,Zp) (i′i)∗−→ Ext0,∗
A (H∗V (1),Zp)

β∗−→

Exts+1,∗+(p+1)q+1
A (H∗V (1),Zp)

(jj′β)∗−→ Exts+2,∗+2pq+q
A (Zp,Zp)

is a multiplication up to nonzero scalar by

k0 ∈ Ext2,2pq+q
A (Zp,Zp) .

Hence, χ is represented up to nonzero scalar by

(jαi)∗(k0hn) ∈ Ext4,pnq+2pq+2q
A (Zp,Zp)

in the ASS.
By virtue of the fact that the homomorphism

(jαi)∗ = (α1)∗ : Exts,tA (Zp,Zp)→ Exts+1,t+q
A (Zp,Zp)

is a multiplication by h0 ∈ Ext1,q
A (Zp,Zp) (cf. [10]), we have that χ is

represented up to nonzero scalar by

h0k0hn ∈ Ext4,pnq+2pq+2q
A (Zp,Zp)

in the ASS.
Just as the proofs of Lemma (3.1) and Theorem (3.8), we can easily show

that
h0k0hn 6= 0 ∈ Ext4,pnq+2pq+2q

A (Zp,Zp) .

Meanwhile, from [7] we have that

Ext4−r,pnq+2pq+2q−r+1
A (Zp,Zp) = 0

for r > 2. Thus it follows that h0k0hn 6= 0 ∈ Ext4,pnq+2pq+2q
A (Zp,Zp) cannot be

hit by any differential in the ASS, and its corresponding homotopy element χ
is nontrivial and of order p. This completes the proof of Theorem (1.2).

To prove Theorem (1.3), it is equivalent to proving the following.

Theorem (4.1). Let p > 7, n > 4 and 0 6 s < p − 5, then the product

γ̃s+3h0k0hn 6= 0 ∈ Exts+7,q(pn+(s+3)p2+(s+4)p+(s+3))+s
A (Zp,Zp)

is a permanent cycle in the ASS and converges to a nontrivial element
γs+3α1jj′β2$n ∈ πq(pn+(s+3)p2+(s+4)p+(s+3))−7S of order p, where γ̃s+3 was given
in [5] and α1 = iαj.

Proof. From Theorem (1.2), the product h0k0hn 6= 0∈Ext4,q(pn+2p+2)
A (Zp,Zp)

is a permanent cycle in the ASS and converges to a nontrivial element
χ = α1jj′β2$n ∈ πq(pn+2p+2)−4S of order p.

Now consider the following composition of maps

λ = γs+3χ : Σq(pn+2p+2)−4S
χ−→ S

γs+3−→ Σ−q((s+3)p2+(s+2)p+(s+1))+3S .
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Since up to nonzero scalar the homotopy element χ is represented by h0k0hn ∈
Ext4,q(p2+2p+2)

A (Zp,Zp) in the ASS respectively, then the above λ is represented
up to nonzero scalar by the product

γ̃s+3h0k0hn 6= 0 ∈ Exts+7,pnq+(s+3)p2q+(s+4)pq+(s+3)q+s
A (Zp,Zp)

in the ASS (see Theorem (3.8)).
Moreover, from Theorem (3.10) we have that γ̃s+3h0k0hn cannot be hit by any

differential in the ASS, and its corresponding homotopy element λ is nontrivial
and of order p. This finishes the proof of Theorem (1.3).
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NEW IMMERSIONS OF GRASSMANN MANIFOLDS

THOMAS A. SHIMKUS

Abstract. LetGk,n denote the kn-dimensional Grassmann manifold of unori-
ented k-planes in Rn+k .Monks [3] obtained a simple description ofH∗(G2,2i−3;
Z2) and used modified Postnikov towers to prove that for i ≥ 3, G2,2i−3 im-

merses in R2i+2−15. We give a finer modified Postnikov tower argument to
prove that for i ≥ 4, G2,2i−3 immerses in R2i+2−17.

1. Statement of Results

Throughout this paper, Z2 will be the coefficient group of all cohomology
groups. Let Gk,n denote the kn-dimensional Grassmann manifold of unori-
ented k-planes in Rn+k, wi denote the ith Stiefel-Whitney class of the canonical
k-bundle γ over BO

(
k
)

= Gk,∞, and w
(
Gk,n

)
denote the total dual Stiefel-

Whitney class of Gk,n.

Theorem (1.1). For i ≥ 4, G2,2i−3 immerses in R2i+2−17 .

This result is proved using modified Postnikov towers (MPTs), which were
described by Gitler-Mahowald [2] and extended to BO(k) −→ BO for odd k by
Nussbaum [5], and improves by two dimensions the corresponding MPT im-
mersion result of [3]. Cohen [1] claims to prove that any d-dimensional mani-
fold immerses in R2d−α(d) where α(d) denotes the number of ones in the binary
expansion of d. Cohen’s claim implies thatG2,2i−3 immerses in R2i+2−i−11. The-
orem (1.1) improves upon this for i = 4 and 5 by showing that G2,13 and G2,29

immerse in R47and R111, respectively, whereas Cohen asserts that G2,13 and
G2,29 immerse in R49and R112, respectively. The best corresponding nonimmer-
sion result is

Theorem (1.2) (Tang). For i ≥ 4, G2,2i−3 does not immerse in R2i+2−2i−17+ε

where

ε =


0 if i ≡ 0 mod 4 ,
1 if i ≡ 1 mod 4 ,
2 if i ≡ 2, 3 mod 4 .

2. Proofs

We begin by recalling key results from [3].

2000 Mathematics Subject Classification: Primary 57R42; Secondary 55S35.
Keywords and phrases: immersions, Grassmann manifolds, modified Postnikov towers.
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Theorem (2.1) (Monks). For i ≥ 3,
(1) A vector space basis forH∗

(
G2,2i−3

)
is the set of all monomialswb

2w
a
1 such

that a < 2i−1 and b < 2i−1−1. The product structure is completely determined
by the relations w2i−1

1 = 0 and w2i−1−1
2 =

∑i−2
j=0 w

2j−1
2 w2i−2j+1

1 .

(2) The total dual Stiefel-Whitney class of G2,2i−3 is

w
(
G2,2i−3

)
= 1 + w1 + w2 + w2

1 + w3
1 + w2w

2
1 .

We also extend a technical lemma from [3] by expanding it to include for-
mulas (5) through (8) below. Each of the eight formulas is a direct consequence
of the Cartan formula and Wu’s formula for the action of the Steenrod algebra
on H∗

(
BO
)

= Z2[w1, w2, . . .], namely,

Sqkwm =
k∑
i=0

(
m + i− k − 1

i

)
wk−iwm+i .

Lemma (2.2). Let m ≥ 0. Then in H∗
(
BO (2)

)
= Z2 [w1, w2] we have

(1) Sq1wm
1 =

{
0 if m is even ,
wm+1

1 if m is odd .

(2) Sq1wm
2 =

{
0 if m is even ,
wm

2 w1 if m is odd .

(3) Sq2wm
1 =

{
0 if m ≡ 0, 1 mod 4 ,
wm+2

1 if m ≡ 2, 3 mod 4 .

(4) Sq2wm
2 =


0 if m ≡ 0 mod 4 ,
wm+1

2 if m ≡ 1 mod 4 ,
wm

2 w
2
1 if m ≡ 2 mod 4 ,

wm+1
2 + wm

2 w
2
1 if m ≡ 3 mod 4 .

(5) Sq3wm
1 =

{
0 if m ≡ 0, 1, 2 mod 4 ,
wm+3

1 if m ≡ 3 mod 4 .

(6) Sq3wm
2 =

{
0 if m ≡ 0, 1, 2 mod 4 ,
wm

2 w
3
1 if m ≡ 3 mod 4 .

(7) Sq4wm
1 =

{
0 if m ≡ 0, 1, 2, 3 mod 8 ,
wm+4

1 if m ≡ 4, 5, 6, 7 mod 8 .

(8) Sq4wm
2 =



0 if m ≡ 0, 1 mod 8 ,
wm+2

2 if m ≡ 2 mod 8 ,
wm+2

2 + wm+1
2 w2

1 if m ≡ 3 mod 8 ,
wm

2 w
4
1 if m ≡ 4, 5 mod 8 ,

wm+2
2 + wm

2 w
4
1 if m ≡ 6 mod 8 ,

wm+2
2 + wm+1

2 w2
1 + wm

2 w
4
1 if m ≡ 7 mod 8 .

Lemma (2.3). For i ≥ 3, Sq4(w2i−1−3
2 w2i−5

1 ) = w2i−1−2
2 w2i−3

1 and

Sq4(w2i−1−4
2 w2i−3

1 ) = 0 in H∗(G2,2i−3).
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Proof. Applying the Cartan formula, the previous lemma, and the relation
w2i−1

1 = 0 yields

Sq4(w2i−1−3
2 w2i−5

1 ) = Sq4w2i−1−3
2 ·w2i−5

1 + Sq3w2i−1−3
2 · Sq1w2i−5

1

+ Sq2w2i−1−3
2 · Sq2w2i−5

1 + Sq1w2i−1−3
2 · Sq3w2i−5

1

+ w2i−1−3
2 · Sq4w2i−5

1

= 0 + 0 + w2i−1−2
2 w2i−3

1 + 0 + 0 = w2i−1−2
2 w2i−3

1 .

Likewise, applying the Cartan formula, the previous lemma, and the rela-
tion w2i−1

1 = 0 yields

Sq4(w2i−1−4
2 w2i−3

1 ) = Sq4w2i−1−4
2 · w2i−3

1 + Sq3w2i−1−4
2 · Sq1w2i−3

1

+ Sq2w2i−1−4
2 · Sq2w2i−3

1 + Sq1w2i−1−4
2 · Sq3w2i−3

1

+ w2i−1−4
2 · Sq4w2i−3

1

= 0 + 0 + 0 + 0 + 0

= 0.

Theorem (1.1). For i ≥ 4, G2,2i−3 immerses in R2i+2−17.

Proof. To simplify the notation we let m = 2i−2−2. We will use a (8m+10)-
MPT

E3 −→ E2 −→ E1 −→ BO

of BO(8m+ 5) −→ BO and show that the stable normal bundle ν : G2,4m+5 −→
BO lifts to E3 and, hence, lifts to BO(8m + 5). We note that since i ≥ 4,
8m + 10 ≤ 2(8m + 5)− 2 as required by Nussbaum [5].

Our (8m + 10)-MPT is

K2

K1

K0

HH
HHj

HH
HHj

H
HHHj

E3

E2
-BK2

k2

E1

BO

?

?

?

p3

p2

-BK1
k1

p1

-BK0
k0
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where

K0 = K(Z2, 8m + 5)×K(Z2, 8m + 7),

K1 = K(Z2, 8m + 6)×K(Z2, 8m + 7)×K(Z2, 8m + 8),

K2 = K(Z2, 8m + 7),

BKs =
ms∏
is=1

K(Z2, cis + 1) if Ks =
ms∏
is=1

K(Z2, cis ),

and k0
8m+6 and k0

8m+8 are the Stiefel-Whitney classes w8m+6 and w8m+8, respec-
tively.

Each vertical map in the above diagram is part of a fiber sequence preceded
by the map from the fiber represented by a diagonal arrow, and followed by
the classifying map represented by a horizontal arrow. The information of
the diagram can be obtained from the Adams spectral sequence (ASS) of the
stunted real projective space P8m+5, which is, in the stable range, the fiber of
BO(8m+5) −→ BO. The following is the ASS chart forπ∗(P8m+5) in dimensions
≤ 8m + 9, (see [4]):

q q
�
�
�
�

qqq q
�
�

5 7∗ = 8m+

ASS chart for π∗(P8m+5)

From Theorem (2.1),w(ν) = 1+w1+w2+w2
1+w3

1+w2w2
1. Thus, ν∗ : H∗(BO)→

H∗(G2,4m+5) sends w8m+6 and w8m+8 to 0 and the map ν : G2,4m+5 → BO lifts
to a map l1 : G2,4m+5 → E1. The lifting l1 is not unique: given any map
α : G2,4m+5 → K0, we obtain another lifting, l′1 : G2,4m+5 → E1, as the com-
posite

G2,4m+5
d−→ G2,4m+5 ×G2,4m+5

α×l1−→ K0 × E1
µ1−→ E1,

where d is the diagonal map. However, all liftings l′1 : G2,4m+5 −→ E1 can be ob-
tained from l1 as we vary α through the homotopy classes of maps G2,4m+5 −→
K0 (see [2, p 95]). This process is referred to as “varying l1 through the
fiber K0.” Since a lifting l1 : G2,4m+5 −→ E1 exists, we search for a lifting
l2 : G2,4m+5 −→ E2 by testing whether or not there is a lifting G2,4m+5 −→ E1

whose induced map sends k1
8m+7, k1

8m+8, and k1
8m+9 to 0. We note that from The-

orem (2.1) it follows that l∗1k
1
8m+7 ∈ span

{
w2i−1−3

2 w2i−3
1 , w2i−1−2

2 w2i−5
1

}
, l∗1k

1
8m+8

∈ span
{
w2i−1−3

2 w2i−2
1 , w2i−1−2

2 w2i−4
1

}
, l∗1k

1
8m+9 ∈ span

{
w2i−1−2

2 w2i−3
1

}
. We will

show that there does exist a lifting l2, and we will consider its variations
through the fiber K1 of p2 : E2 −→ E1 in searching for our desired lifting
l3 : G2,4m+5 −→ E3. We note that l∗2k

2
8m+8 ∈ span

{
w2i−1−3

2 w2i−2
1 , w2i−1−2

2 w2i−4
1

}
.
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In order to determine the indeterminacy for lifting G2,4m+5 in this MPT, we
must know the relations which give rise to the k-invariants. These are com-
puted by the method initiated in [2] and utilized in many subsequent papers by
D. M. Davis and also in papers of K. Y. Lam and/or D. Randall. It is a matter of
building a minimal resolution using Massey-Peterson algebras. The relations
for our (8m + 10)-MPT are given in the table below.

w8m+6

w8m+8

k1
8m+7 : (Sq2 + w2)w8m+6

k1
8m+8 : Sq1w8m+8 + (Sq2 + w2 + w2

1)Sq1w8m+6

k1
8m+9 : Sq2w8m+8 + (Sq4 + w4)w8m+6

k2
8m+8 : Sq1k1

8m+8 + (Sq2 + w2)k1
8m+7

Since w (ν) = 1 + w1 + w2 + w2
1 + w3

1 + w2w2
1 we note that w1 (ν) = w1,

w2 (ν) = w2 + w2
1, and w4 (ν) = w2w2

1.

Lemma (2.4). The induced map of any lifting l1 : G2,4m+5 −→ E1 must send
k1

8m+7 to either 0 or w2i−1−3
2 w2i−3

1 .

Proof. The defining relation Sq1k1
8m+8 + (Sq2 + w2)k1

8m+7 = 0 for k2
8m+8 im-

plies that Sq1(l∗1k
1
8m+8) + (Sq2 + w2 + w2

1)(l∗1k
1
8m+7) = 0. Since

Sq1
(
w2i−1−3

2 w2i−2
1

)
= w2i−1−3

2 w2i−1
1 + 0 = 0

and
Sq1

(
w2i−1−2

2 w2i−4
1

)
= 0 + 0 = 0 ,

Sq1(l∗1k
1
8m+8) = 0 and, hence, (Sq2 + w2 + w2

1)(l∗1k
1
8m+7) = 0.

Then, since

(Sq2 + w2 + w2
1)(w2i−1−3

2 w2i−3
1 ) = w2i−1−2

2 w2i−3
1 + w2i−1−3

2 w2i−1
1 + 0

+ w2i−1−2
2 w2i−3

1 + w2i−1−3
2 w2i−1

1

= 0

and

(Sq2 + w2 + w2
1)(w2i−1−2

2 w2i−5
1 ) = w2i−1−2

2 w2i−3
1 + 0 + w2i−1−2

2 w2i−3
1

+ w2i−1−1
2 w2i−5

1 + w2i−1−2
2 w2i−3

1

= w2i−1−2
2 w2i−3

1 + w2i−1−1
2 w2i−5

1

= w2i−1−2
2 w2i−3

1 +

 i−2∑
j=0

w2j−1
2 w2i−2j+1

1

w2i−5
1

= w2i−1−2
2 w2i−3

1 +
(
w2i−1

1

) i−2∑
j=0

w2j−1
2 w2i−2j+1−4

1

= w2i−1−2
2 w2i−3

1 ,
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in order for (Sq2+w2+w2
1)(l∗1k

1
8m+7)=0 to hold, l∗1k

1
8m+7 must be 0 orw2i−1−3

2 w2i−3
1 .

Based on the correspondence

[G2,4m+5, K0]←→ [G2,4m+5, K(Z2, 8m + 5)]× [G2,4m+5, K(Z2, 8m + 7)],

we begin by considering (homotopy classes of) maps

G2,4m+5 −→ K(Z2, 8m + j)

that correspond to basis elements of H8m+j(G2,4m+5), for j = 5 and 7.
Varying l1 by the map α : G2,4m+5 −→ K0 with

α∗(π∗1 (ι8m+5)) = w2i−1−3
2 w2i−5

1 ∈ H8m+5(G2,4m+5)

and α∗(π∗2 (ι8m+7)) = 0, we have a lifting l′1 such that

(l′1)∗(k1
8m+7) = (α× l1)∗µ∗1(k1

8m+7)

= (α× l1)∗(1⊗ k1
8m+7 + Sq2ι8m+5 ⊗ 1 + ι8m+5 ⊗ w2)

= l∗1(k1
8m+7) + Sq2(w2i−1−3

2 w2i−5
1 ) + w2i−1−3

2 w2i−5
1 · (w2 + w2

1)

= l∗1(k1
8m+7) + w2i−1−2

2 w2i−5
1 + w2i−1−3

2 w2i−3
1 + w2i−1−3

2 w2i−3
1

+ w2i−1−2
2 w2i−5

1 + w2i−1−3
2 w2i−3

1

= l∗1(k1
8m+7) + w2i−1−3

2 w2i−3
1 ,

(l′1)∗(k1
8m+8) = (α× l1)∗µ∗1 (k1

8m+8)

= (α× l1)∗(1⊗ k1
8m+8 + Sq2Sq1ι8m+5 ⊗ 1 + Sq1ι8m+5 ⊗ (w2 + w2

1)

+ Sq1ι8m+7 ⊗ 1)

= l∗1 (k1
8m+8) + Sq2Sq1(w2i−1−3

2 w2i−5
1 ) + Sq1(w2i−1−3

2 w2i−5
1 ) · w2

= l∗1 (k1
8m+8) + Sq2(w2i−1−3

2 w2i−4
1 + w2i−1−3

2 w2i−4
1 )

+ (w2i−1−3
2 w2i−4

1 + w2i−1−3
2 w2i−4

1 ) · w2

= l∗1 (k1
8m+8) ,

and

(l′1)∗(k1
8m+9) = (α× l1)∗µ∗1 (k1

8m+9)

= (α× l1)∗(1⊗ k1
8m+9 + Sq4ι8m+5 ⊗ 1 + ι8m+5 ⊗ w4 + Sq2ι8m+7 ⊗ 1)

= l∗1 (k1
8m+9) + Sq4(w2i−1−3

2 w2i−5
1 ) + w2i−1−3

2 w2i−5
1 · w2w

2
1

= l∗1 (k1
8m+9) + w2i−1−2

2 w2i−3
1 + w2i−1−2

2 w2i−3
1

= l∗1 (k1
8m+9) .

Varying l1 by the map α : G2,4m+5 −→ K0 with

α∗(π∗1 (ι8m+5)) = w2i−1−4
2 w2i−3

1 ∈ H8m+5(G2,4m+5)
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and α∗(π∗2 (ι8m+7)) = 0, we have a lifting l′1 such that

(l′1)∗(k1
8m+7) = (α× l1)∗µ∗1(k1

8m+7)

= (α× l1)∗(1⊗ k1
8m+7 + Sq2ι8m+5 ⊗ 1 + ι8m+5 ⊗ w2)

= l∗1(k1
8m+7) + Sq2(w2i−1−4

2 w2i−3
1 ) + w2i−1−4

2 w2i−3
1 · (w2 + w2

1)

= l∗1(k1
8m+7) + 0 + 0 + 0 + w2i−1−3

2 w2i−3
1 + w2i−1−4

2 w2i−1
1

= l∗1(k1
8m+7) + w2i−1−3

2 w2i−3
1 ,

(l′1)∗(k1
8m+8) = (α× l1)∗µ∗1(k1

8m+8)

= (α× l1)∗(1⊗ k1
8m+8 + Sq2Sq1ι8m+5 ⊗ 1 + Sq1ι8m+5 ⊗ (w2 + w2

1)

+ Sq1ι8m+7 ⊗ 1)

= l∗1(k1
8m+8) + Sq2Sq1(w2i−1−4

2 w2i−3
1 ) + Sq1(w2i−1−4

2 w2i−3
1 ) · w2

= l∗1(k1
8m+8) + Sq2(0 + w2i−1−4

2 w2i−2
1 ) + (0 + w2i−1−4

2 w2i−2
1 ) · w2

= l∗1(k1
8m+8) + 0 + 0 + w2i−1−4

2 w2i
1 + w2i−1−3

2 w2i−2
1

= l∗1(k1
8m+8) + w2i−1−3

2 w2i−2
1 ,

and

(l′1)∗(k1
8m+9) = (α× l1)∗µ∗1(k1

8m+9)

= (α× l1)∗(1⊗ k1
8m+9 + Sq4ι8m+5 ⊗ 1 + ι8m+5 ⊗ w4 + Sq2ι8m+7 ⊗ 1)

= l∗1(k1
8m+9) + Sq4(w2i−1−4

2 w2i−3
1 ) + w2i−1−4

2 w2i−3
1 · w2w

2
1

= l∗1(k1
8m+9) + 0 + w2i−1−3

2 w2i−1
1

= l∗1(k1
8m+9) .

Varying l1 by the map α : G2,4m+5 −→ K0 with

α∗(π∗2 (ι8m+7)) = w2i−1−3
2 w2i−3

1 ∈ H8m+7(G2,4m+5)

and α∗(π∗1 (ι8m+5)) = 0, we have a lifting l′1 such that

(l′1)∗(k1
8m+7) = (α× l1)∗µ∗1(k1

8m+7)

= (α× l1)∗(1⊗ k1
8m+7 + Sq2ι8m+5 ⊗ 1 + ι8m+5 ⊗ w2)

= l∗1(k1
8m+7) ,

(l′1)∗(k1
8m+8) = (α× l1)∗µ∗1(k1

8m+8)

= (α× l1)∗(1⊗ k1
8m+8 + Sq2Sq1ι8m+5 ⊗ 1 + Sq1ι8m+5 ⊗ (w2 + w2

1)

+ Sq1ι8m+7 ⊗ 1)

= l∗1(k1
8m+8) + Sq1(w2i−1−3

2 w2i−3
1 )

= l∗1(k1
8m+8) + w2i−1−3

2 w2i−2
1 + w2i−1−3

2 w2i−2
1

= l∗1(k1
8m+8),
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and

(l′1)∗(k1
8m+9) = (α× l1)∗µ∗1(k1

8m+9)

= (α× l1)∗(1⊗ k1
8m+9 + Sq4ι8m+5 ⊗ 1 + ι8m+5 ⊗ w4 + Sq2ι8m+7 ⊗ 1)

= l∗1(k1
8m+9) + Sq2(w2i−1−3

2 w2i−3
1 )

= l∗1(k1
8m+9) + w2i−1−2

2 w2i−3
1 + w2i−1−3

2 w2i−1
1 + 0

= l∗1(k1
8m+9) + w2i−1−2

2 w2i−3
1 .

Varying l1 by the map α : G2,4m+5 −→ K0 with

α∗(π∗2 (ι8m+7)) = w2i−1−2
2 w2i−5

1 ∈ H8m+7(G2,4m+5)

and α∗(π∗1 (ι8m+5)) = 0, we have a lifting l′1 such that

(l′1)∗(k1
8m+7) = (α× l1)∗µ∗1(k1

8m+7)

= (α× l1)∗(1⊗ k1
8m+7 + Sq2ι8m+5 ⊗ 1 + ι8m+5 ⊗ w2)

= l∗1(k1
8m+7) ,

(l′1)∗(k1
8m+8) = (α× l1)∗µ∗1 (k1

8m+8)

= (α× l1)∗(1⊗ k1
8m+8 + Sq2Sq1ι8m+5 ⊗ 1 + Sq1ι8m+5 ⊗ (w2 + w2

1)

+ Sq1ι8m+7 ⊗ 1)

= l∗1 (k1
8m+8) + Sq1(w2i−1−2

2 w2i−5
1 )

= l∗1 (k1
8m+8) + 0 + w2i−1−2

2 w2i−4
1

= l∗1 (k1
8m+8) + w2i−1−2

2 w2i−4
1 ,

and

(l′1)∗(k1
8m+9) = (α× l1)∗µ∗1 (k1

8m+9)

= (α× l1)∗(1⊗ k1
8m+9 + Sq4ι8m+5 ⊗ 1 + ι8m+5 ⊗ w4 + Sq2ι8m+7 ⊗ 1)

= l∗1 (k1
8m+9) + Sq2(w2i−1−2

2 w2i−5
1 )

= l∗1 (k1
8m+9) + w2i−1−2

2 w2i−3
1 + 0 + w2i−1−2

2 w2i−3
1

= l∗1 (k1
8m+9) .

Coupled with Lemma (2.4) the above analysis of indeterminancies demon-
strates that there exists a lifting G2,4m+5 −→ E1 whose induced map sends
k1

8m+7, k1
8m+8, and k1

8m+9 to 0. Hence, there is a lifting l2 : G2,4m+5 −→ E2 and
we now vary it through the fiber K1 of p2 : E2 −→ E1.

We first vary l2 by the map α : G2,4m+5 −→ K1 characterized by the property
that

α∗(π∗1 (ι8m+6)) = w2i−1−4
2 w2i−2

1 ∈ H8m+6(G2,4m+5)

and α∗(π∗2 (ι8m+7)) and α∗(π∗3 (ι8m+8)) equal 0. With µ2 : K1×E2 −→ E2 denoting
the action map of the fiber K1 on the total space E2 of the principal fibration
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p2, we then have a lifting l′2 : G2,4m+5 −→ E2 such that

(l′2)∗(k2
8m+8) = (α× l2)∗µ∗2(k2

8m+8)

= (α× l2)∗(1⊗ k2
8m+8 + Sq1ι8m+7 ⊗ 1 + Sq2ι8m+6 ⊗ 1

+ ι8m+6 ⊗ w2)

= l∗2(k2
8m+8) + Sq2(w2i−1−4

2 w2i−2
1 ) + w2i−1−4

2 w2i−2
1 · (w2 + w2

1)

= l∗2(k2
8m+8) + 0 + 0 + w2i−1−4

2 w2i
1 + w2i−1−3

2 w2i−2
1 + w2i−1−4

2 w2i
1

= l∗2(k2
8m+8) + w2i−1−3

2 w2i−2
1 .

Varying l2 by the map α : G2,4m+5 −→ K1 with

α∗(π∗2 (ι8m+7)) = w2i−1−2
2 w2i−5

1 ∈ H8m+7(G2,4m+5)

and α∗(π∗1 (ι8m+6)) = α∗(π∗3 (ι8m+8)) = 0, we have a lifting l′2 such that

(l′2)∗(k2
8m+8) = (α× l2)∗µ∗2(k2

8m+8)

= (α× l2)∗(1⊗ k2
8m+8 + Sq1ι8m+7 ⊗ 1 + Sq2ι8m+6 ⊗ 1 + ι8m+6 ⊗ w2)

= l∗2(k2
8m+8) + Sq1(w2i−1−2

2 w2i−5
1 )

= l∗2(k2
8m+8) + 0 + w2i−1−2

2 w2i−4
1

= l∗2(k2
8m+8) + w2i−1−2

2 w2i−4
1 .

Thus there exists a lifting G2,4m+5 −→ BO(8m+ 5) and we have our desired
immersion.
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