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ON THE VALUE SET OF n!m! MODULO A LARGE PRIME

VICTOR C. GARCÍA

Abstract. We prove that for a large prime number p

#{n!m! (mod p) : 1 ≤ n, m ≤ p} ≥
(

41
48 + o(1)

)
p.

This improves previously known results from Chen and Dai [1] and Garaev,
Luca, and Shparlinski [5].

1. Introduction

The problem of distribution of factorials modulo a prime number p has been
a topic of much investigation, see, for example, the recent papers [1]–[7], [10]
and references therein. In [8], F11, it is conjectured that about p/e of the
residue classes modulo p are missed by the sequence n!. If this conjecture
were true, the sequence n! modulo p should assume about (1 − 1/e)p distinct
values, see [2] for some results of this spirit. This in turn would imply the
representability of every residue class modulo p as a product of two factorials.
Unconditionally, in [5] it was shown that

#{n!m! (mod p) : 1 ≤ n, m ≤ p} ≥ 5
8 p + O(p1/2 log2 p),

which has been improved in [1] to

#{n!m! (mod p) : 1 ≤ n, m ≤ p} ≥ 3
4 p + O(p1/2 log2 p).

In the present paper, using hybrid character sum estimates, we improve this
further to the following result.

Theorem (1.1). The following bound holds:

#{n!m! (mod p) : 1 ≤ n, m ≤ p} ≥ 41
48 p + O(p1/2 log3 p).

2. Proof

Let
E = {n!m! (mod p) : 1 ≤ n, m ≤ p}.

The starting point, as in [1, 2, 5], is to employ the congruence

(2.1) (2x − 1)! · (p − 2x)! ≡ 1 (mod p),

which holds for any positive integer x ≤ p1, where p1 = (p − 1)/2.
Let

E1 = {2, 4, . . . , 2p1}.
Let E2 be the set of positive odd integers less than p and having the form

(2x − 1)∗ (mod p), 1 ≤ x ≤ p1.
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Here a∗ is defined from aa∗ ≡ 1 (mod p).
Let E3 be the set of positive odd integers less than p which can be represented

in the form (2z)∗ (mod p), for some 1 ≤ z ≤ p1, and at the same time in the
form

(2x)∗(2x + 1)∗ (mod p), 1 ≤ x ≤ p1 − 1.

Next, we define E4 be the set of positive odd integers less than p which can be
represented in the form (2z)∗ (mod p) for some 1 ≤ z ≤ p1 and at the same
time in the form

(2x − 1)∗(2x)∗(2x + 1)∗ (mod p)

for some 1 ≤ x ≤ p1 − 1 satisfying the conditions(
4(2x − 1)(2x)(2x + 1) + 1

p

)
= −1,

(
1− 3x2

p

)
= −1.

Here and below
(
·
p

)
is the Legendre symbol. Finally, we define E5 to be the

set of positive odd integers less than p which can be represented in the form
(2z)∗ (mod p) for some 1 ≤ z ≤ p1 and at the same time in the form

(2x − 1)∗(2x)∗(2x + 1)∗ (mod p)

for some 1 ≤ x ≤ p1 − 1 satisfying the conditions(
4(2x − 1)(2x)(2x + 1) + 1

p

)
= −1,

(
1− 3x2

p

)
= 1.

To each number of the set Ei we associate the residue class to which this
number belongs. With this convention, since (2x)!(p − 2x)! ≡ 2x (mod p), we
have E1 ⊂ E .

If u ∈ E4 or u ∈ E5, then u ≡ (2x − 1)∗(2x)∗(2x + 1)∗ (mod p) for some
x ≤ p1 − 1. Together with (2.1) this yields

u ≡ (2x − 2)! · (p − 2x − 2)! (mod p),

whence u ∈ E . Thus, E4 ⊂ E , E5 ⊂ E . The same argument shows that E2 ⊂
E , E3 ⊂ E .

It is also easy to see that Ei ∩ Ej = ∅ for 1 ≤ i 6= j ≤ 5. Indeed, if, for

example, u ∈ E3, then
(

4u∗+1
p

)
= 1, while if u ∈ E4∪E5, we have

(
4u∗+1

p

)
= −1.

Hence E3∩E4 = ∅, E3∩E5 = ∅. The other cases are verified similarly. Therefore,

|E| ≥ |E1|+ |E2|+ |E3|+ |E4|+ |E5| =
p − 1

2
+ |E2|+ |E3|+ |E4|+ |E5|.

We claim that the following estimates hold:

|E2| ≥ ( 1
4 + o(1))p, |E3| ≥ ( 1

16 + o(1))p,(2.2)

|E4| ≥ ( 1
32 + o(1))p, |E5| ≥ ( 1

96 + o(1))p.(2.3)
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In order to estimate |E4|, we let I to be the number of solutions of the system
of congruences 

2r − 1 ≡ (2x − 1)∗(2x)∗(2x + 1)∗ (mod p)
2z ≡ (2x − 1)(2x)(2x + 1) (mod p)(

4(2x−1)(2x)(2x+1)+1
p

)
= −1(

1−3x2

p

)
= −1

under the conditions

1 ≤ x ≤ p1 − 1, 1 ≤ z ≤ p1, 1 ≤ r ≤ p1.

Note that for a given nonzero λ ≡ 2z (mod p), if the congruence

(2.4) (2x − 1)2x(2x + 1) ≡ λ (mod p)

has two distinct nonzero solutions x 6≡ y (mod p), then we have

(2y + x)2 ≡ 1− 3x2 (mod p).

This means that given r, the above system of congruence has at most one
solution. This implies that |E4| ≥ I.

Let us analyze the cardinality |E5|. Denote by J the number of solutions of
the system of congruences

2r − 1 ≡ (2x − 1)∗(2x)∗(2x + 1)∗ (mod p)
2z ≡ (2x − 1)(2x)(2x + 1) (mod p)(

4(2x−1)(2x)(2x+1)+1
p

)
= −1(

1−3x2

p

)
= 1

with the conditions

1 ≤ x ≤ p1 − 1, 1 ≤ z ≤ p1, 1 ≤ r ≤ p1.

Given r, we have at most three solutions to this system. Hence, |E5| ≥ J/3,
and we have

(2.5) |E4| ≥ I, |E5| ≥
J

3
.

For I and J we will obtain the asymptotic formulas

I =
p

32
+ O(p1/2 log3 p), J =

p

32
+ O(p1/2 log3 p).

Denote g(x) = (2x − 1)2x(2x + 1). Using basic trigonometric identities, we
obtain

I =
1
p2

p−1∑
a=0

p−1∑
b=0

p1−1∑
x=1

δ(x)γ(x)
p1∑

r=1

p1∑
z=1

e2πi a
p (2r−1−(g(x))∗)e2πi b

p (2z−g(x))

− 1
p2

p−1∑
a=0

p−1∑
b=0

∑
x∈A

δ(x)γ(x)
p1∑

r=1

p1∑
z=1

e2πi a
p (2r−1−(g(x))∗)e2πi b

p (2z−g(x)),

where

2δ(x) = 1−
(

4g(x) + 1
p

)
, 2γ(x) = 1−

(
1− 3x2

p

)
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and
A = {x : 1 ≤ x ≤ p1 − 1, (4g(x) + 1)(1− 3x2) ≡ 0 (mod p)}.

Clearly, |A| ≤ 5. Hence, using the well-known estimate

p−1∑
a=1

∣∣∣∣∣
X+Y∑

n=X+1

e2πian/p

∣∣∣∣∣ < p log p,

we derive∣∣∣∣ 1
p2

p−1∑
a=0

p−1∑
b=0

∑
x∈A

δ(x)γ(x)
p1∑

r=1

p1∑
z=1

e2πi a
p (2r−1−(g(x))∗)e2πi b

p (2z−g(x))
∣∣∣∣

� 1
p2

p−1∑
a=0

p−1∑
b=0

∣∣∣∣∣
p1∑

r=1

e2πi 2ar
p

∣∣∣∣∣
∣∣∣∣∣

p1∑
z=1

e2πi 2bz
p

∣∣∣∣∣� log2 p.

Thus,

I =
1
p2

p−1∑
a=0

p−1∑
b=0

p1−1∑
x=1

δ(x)γ(x)
p1∑

r=1

p1∑
z=1

e2πi a
p (2r−1−(g(x))∗)e2πi b

p (2z−g(x)) + O(log2 p).

Separating the term corresponding to a = b = 0, we obtain

(2.6) I =
p2

1

p2

p1−1∑
x=1

δ(x)γ(x) + R1 + O(log2 p) =
p

32
+ R1 + R2 + O(log2 p),

where

R1 �
1
p2

∑
0≤a,b≤p−1
(a,b) 6=(0,0)

∣∣∣∣∣
p1∑

r=1

e2πi a
p (2r−1)

p1∑
z=1

e2πi b
p 2z

∣∣∣∣∣S(a, b),(2.7)

S(a, b) =

∣∣∣∣∣
p1−1∑
x=1

δ(x)γ(x)e2πi 1
p (a(g(x))∗+bg(x))

∣∣∣∣∣ ,
R2 �

∣∣∣∣∣
p1−1∑
x=1

−
(

4g(x) + 1
p

)
−
(

1− 3x2

p

)
+
(

(4g(x) + 1)(1− 3x2)
p

)∣∣∣∣∣ .
Next, we shall prove that, for 0 ≤ a, b ≤ p − 1 with (a, b) 6= (0, 0),

R1 + R2 � p1/2 log3 p.

Indeed, applying the technique of extending the summation over short inter-
vals to the whole system of residues, we get

S(a, b) =

∣∣∣∣∣∣
p1−1∑
x=1

p−1∑
y=0

′
δ(y)γ(y)e2πi 1

p (a(g(y))∗+bg(y)) 1
p

p−1∑
ν=0

e2πi ν
p (y−x)

∣∣∣∣∣∣
≤ 1

p

p−1∑
ν=0

∣∣∣∣∣
p1−1∑
x=1

e2πi νx
p

∣∣∣∣∣
∣∣∣∣∣∣
p−1∑
y=0

′
δ(y)γ(y)e2πi 1

p (a(g(y))∗+bg(y)+νy)

∣∣∣∣∣∣ ,
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where the dash means that from the indicated range of summation over y the
points 0, p1 and p1 + 1 (which are poles of g(y)∗) are excluded. Since

4δ(y)γ(y) = 1−
(

4g(y) + 1
p

)
−
(

1− 3y2

p

)
+
(

(4g(y) + 1)(1− 3y2)
p

)
,

in view of the Weil estimate for hybrid character sums with rational arguments
(see, for example, [9]), we have∣∣∣∣∣∣

p−1∑
y=0

′
δ(y)γ(y)e2πi 1

p (a(g(y))∗+bg(y)+νy)

∣∣∣∣∣∣� p1/2.

Therefore,

S(a, b) � p1/2

p

p−1∑
ν=0

∣∣∣∣∣
p1−1∑
x=1

e2πi νx
p

∣∣∣∣∣� p1/2 log p.

Inserting this into (2.7), we get

R1 �
p1/2 log p

p2

(
p−1∑
a=0

∣∣∣∣∣
p1∑

r=1

e2πi a
p 2r

∣∣∣∣∣
)2

� p1/2 log3 p.

Similarly, R2 � p1/2 log p. Hence, by (2.6), we obtain that

I =
p

32
+ O(p1/2 log3 p).

Analogously,

J =
p

32
+ O(p1/2 log3 p).

Thus, in view of (2.5), we get

|E4| ≥
p

32
+ O(p1/2 log3 p), |E5| ≥

p

96
+ O(p1/2 log3 p),

which proves the required estimate (2.2).
The same argument applied to E2, E3 implies (2.3). Thus, we conclude that

|E| ≥
(

1
2

+
1
4

+
1
16

+
1
32

+
1
96

)
p + O(p1/2 log3 p) =

41
48

p + O(p1/2 log3 p).
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58089, Morelia, Michoacán
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ON THE DISTRIBUTION OF THE POWER GENERATOR MODULO
A PRIME POWER FOR PARTS OF THE PERIOD

EDWIN D. EL-MAHASSNI

Abstract. This paper studies the multidimensional distribution of the power
generator of pseudorandom numbers modulo a high power of a fixed prime
number for parts of the period. That is, we study a sequence of numbers
generated by the power generator when the number of terms in such sequence
is smaller than its period. These results compliment some recently obtained
distribution bounds of the power generator modulo a high power of fixed prime
for the entire period. The case of a prime power modulus, although it does not
have any immediate cryptography related applications, may still be of interest
for other settings which require quality pseudorandom numbers.

1. Introduction

Let e ≥ 2, m ≥ 1 and ϑ be integers such that gcd(ϑ, m) = 1. Then one can
define the sequence (un) by the recurrence relation

(1.1) un ≡ ue
n−1 (mod m), 0 ≤ un ≤ m − 1, n = 1, 2, . . . ,

with the initial value u0 = ϑ. This sequence is known as the power generator
of pseudorandom numbers. It is obvious that the sequence (1.1) eventually
becomes periodic with some period τ ≤ M . In this paper we shall assume that
gcd(e, ϕ(m)) = 1; and so it follows that the sequence (un) is purely periodic.
Apart from some results such as those in [1, 2, 4, 5, 9, 13, 15, 18, 22, 26, 32, 34]
and more specifically in [4, 13, 14] for prime power moduli, very little else
is known about the distribution of the sequence of numbers produced by the
power generator. And, despite [4, 13, 14] all using different methods, none of
them can be adequately applied to the case of multidimensional distributions.
Other results concerning the power generator have also been obtained in [3, 11].
Specifically, in [11], a distribution result has recently been established for the
sequence generated by (1.1) over the entire period. Often, methods which es-
timate the bounds for the whole period cannot be extended to subsets, see, for
example, [12, 23]. In fact, in some cases, obtaining a bound for subsets of a
sequence is a much more difficult problem than for the entire period, e.g. [33].
Furthermore, some publications explicitly set out to obtain results which only
deal with such subsets, e.g. [17, 30]. Studying the distribution results of parts
of the sequence when equivalent results are already known for the whole pe-
riod raises a few questions. For instance, do the desirable properties obtained
for the entire sequence also apply to subsets of the sequence? And if so, then
how small can these subsets be before they ‘lose’ their distribution bounds?

2000 Mathematics Subject Classification: Primary: 11L07, 11K38. Secondary: 11B50, 11K45.
Keywords and phrases: exponentials sums, pseudorandom number generators, discrepancy.
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The aim of this paper is to answer such questions. Here we show that the orig-
inal method of [27, 30], and more recently also used in [7, 8], combined with
bounds for exponential sums with sparse polynomials from [11, 31] allows us
to study the multidimensional distribution of the power generator of pseudo-
random numbers modulo a high power of a small prime number p over parts
of the period. Several other results about non-linear pseudorandom number
generators have been obtained in [7, 8, 16, 17, 30, 28, 29]. However, these
apply to generators of the form un ≡ f (un−1) (mod m) where f is a polynomial
or a rational function of small degree, while in this paper we do not impose
any restrictions on the size of the exponent e.

2. Preliminaries

For a sequence of N points

(2.1) Γ = (γ1,n, . . . , γs,n)N
n=1

in the half-open box [0, 1)s, denote by ∆Γ its discrepancy, that is,

∆Γ = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)
N

− |B|
∣∣∣∣ ,

where TΓ(B) is the number of points of the sequence Γ which hit the box

B = [α1, β1)× · · · × [αs, βs) ⊆ [0, 1)s

and the supremum is taken over all such boxes. For an integer vector a =
(a1, . . . , as) ∈ Zs we put

|a| = max
i=1,...,s

|ai|, h(a) =
s∏

i=1

max{|ai|, 1}.

This discrepancy of a sequence of points in the s-dimensional unit cube can
be estimated by the Erdös–Turán–Koksma inequality (see Theorem 1.21 of [6])
which we present in the following form.

Lemma (2.2). There exists a constant Cs > 0 depending only on the dimen-
sion s, such that for any integer L ≥ 1, for the discrepancy of a sequence of
points (2.1) the bound

∆Γ < Cs

(
1
L

+
1
N

∑
0<|a|≤L

1
h(a)

∣∣∣∣ N∑
n=1

exp
(

2πi
s∑

j=1

ajγj,n

)∣∣∣∣)
holds, where the sum is taken over all integer vectors

a = (a1, . . . , as) ∈ Zs

with 0 < |a| ≤ L.

Let p be a fixed prime number. For an integer vector a = (a1, . . . , as) ∈ Zs

we define the exponential sum

S(a, r) =
N−1∑
n=0

er

( s∑
i=1

aiun+i

)
,
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for 1 ≤ N ≤ τ, with τ being the period of the sequence (un) given by (1.1), and
where

er(z) = exp(2πiz/pr),

for some r ≥ 1. We obtain a non-trivial upper bound for the sums S(a, r) and
derive (see Theorem (3.1)) the uniformity of distribution modulo m = pr of the
elements un, n = 1, . . . , N < τ. For a t-element setR = {r1, . . . , rt} ⊆ Z denote
by ∆(R) the following determinant,

∆(R) = det
(

ri

j

)
i,j=1,...,t

,

where for integers m ≥ 0 and k we set(
k

m

)
=

k(k − 1) . . . (k −m + 1)
m!

.

Let ordp z denote the p-adic order of z ∈ Z. The arguments for the following
bound appear in [11], Lemma 2.1 and [31], Lemma 5.

Lemma (2.3). Let p be a prime and let α ≥ 1 be an integer. Then for
any set R = {r1, . . . , rt} ⊆ Z, any ε > 0, and any integers A1, . . . , At with
gcd(A1, . . . , At, p) = 1, the bound∣∣∣∣∣∣∣

pα∑
x=1

gcd(x,p)=1

eα(
∑

1≤j≤t

Ajx
rj )

∣∣∣∣∣∣∣ ≤ C(p, t, ε)pα(1−1/t+ε)+γ

holds, where γ = ordp ∆(R) and the constant C(p, t, ε) depends only on p, t
and ε.

We say that an integer g is regular modulo a prime p with gcd(p, g) = 1 if
gp−1 6≡ 1 (mod p2) for odd p and g ≡ 5 (mod 8) for p = 2. The following result
has also been proved in [11], [Lemma 2.3].

Lemma (2.4). Let s ≥ 1 and k ≥ s be integers and let

R =
{

1, . . . , es−1, ek, . . . , ek+s−1,
}

.

If e is regular modulo p, then

ordp ∆(R) ≤ 8s2 + s log k.

Now we are prepared to formulate our main estimate.

Theorem (2.5). Let e ≥ 2 and m = pr where p is a prime such that e is
regular modulo p. Assume that the sequence (un) given by (1.1) is periodic with
period τ, where 1 ≤ N ≤ τ. Then, for every integer s, any ε > 0, and every
vector a = (a0, . . . , as−1) ∈ Zs with gcd(a0, . . . , as−1, pr) = µ, we have

|S(a, r)| � N1/2m1/2 (
m/µ

)−1/4s(s+1)+ε

where the implied constant depends at most on p, s and ε.
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Proof. For any integer k ≥ 0 we have∣∣∣∣∣∣S(a, r)−
N−1∑
n=0

er

 s∑
j=1

ajun+k+j

∣∣∣∣∣∣ ≤ 2k .

Therefore, for any integer K ≥ 1,

K|S(a, r)| ≤ W + K2,

where

W =

∣∣∣∣∣∣
N−1∑
n=0

K−1∑
k=0

er(
s∑

j=1

ajun+k+j)

∣∣∣∣∣∣ ≤
N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

er(
s∑

j=1

ajun+k+j)

∣∣∣∣∣∣ .

Accordingly, applying the Cauchy inequality, we obtain

W 2 ≤ N
N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

er(
s∑

j=1

ajun+k+j)

∣∣∣∣∣∣
2

≤ N
τ∑

n=1

∣∣∣∣∣∣
K−1∑
k=0

er(
s∑

j=1

ajϑ
en+k+j

)

∣∣∣∣∣∣
2

≤ N
K−1∑
k=0

K−1∑
l=0

pr∑
x=0

gcd(x,p)=1

er(
s∑

j=1

aj(xek+j

− xel+j

))

≤ Npρ
K−1∑
k=0

K−1∑
l=0

pr−ρ∑
x=0

gcd(x,p)=1

er−ρ(
s∑

j=1

(aj/pρ)(xek−l+j

− xej

)) ,

where pρ = µ for some integer ρ, with 1 ≤ ρ ≤ r. If k = l, then the inner
sum is trivially equal to pr−ρ. There are K such sums. Otherwise, applying
Lemma (2.3) and Lemma (2.4), we obtain

W 2 � KNpρpr−ρ + Np(r−ρ)(1−1/2s+ε)
K−1∑
k=0

K−1∑
l=0

p8s2+s logp (k−l)

� KNpρpr−ρ + Npρp(r−ρ)(1−1/2s+ε)Ks+2

� KNm + Nm(1−1/2s+ε)µ1/2s−εKs+2.

Balancing the two terms above in the above estimate (up to
(
m/µ

)ε
) by select-

ing K = b
(
m/µ

)1/2s(s+1)c, we obtain the result claimed.

If for example µ = 1 then for any δ > 0 the bound of Theorem (2.5) is
nontrivial provided that r is sufficiently large in terms of p, s and δ.

3. Main Result

Let Ds denote the discrepancy of the points({
un

pr

}
, . . . ,

{
un+s−1

pr

})
, n = 1, . . . , N < τ .
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Theorem (3.1). Assume that the sequence (un) given by (1.1) with m = pr

where p is a prime such that e is regular modulo p, is periodic with period τ
and with 1 ≤ N ≤ τ. Then for every positive integer s, and any ε > 0, the bound

Ds � N−1/2m1/2−1/4s(s+1)+ε

holds, where the implied constant depends at most on p, s and ε.

Proof. From Theorem (2.5) and Lemma (2.2), applied with L = m we see

Ds �
1
m

+
1
N

r∑
ρ=0

∑
0<|a|≤pr

gcd(a0 ,...,as−1 ,pr )=pρ

1
h(a)

N1/2m1/2(m/pρ)−1/4s(s+1)+ε/2

� 1
m

+ N−1/2m1/2−1/4s(s+1)+ε/2
r∑

ρ=0

pρ(1/4s(s+1)−ε/2)
∑

0<|a|≤pr

gcd(a0 ,...,as−1 ,pr )=pρ

1
h(a)

� 1
m

+ N−1/2m1/2−1/4s(s+1)+ε/2
r∑

ρ=0

p−ρ(1+ε/2−1/4s(s+1))
∑

0<|a|≤pr−ρ

1
h(a)

� 1
m

+ N−1/2m1/2−1/4s(s+1)+ε/2
r∑

ρ=0

p−ρ(1+ε/2−1/4s(s+1))(log pr−ρ)s

and after simple calculations we derive the desired statement.

We remark that for any γ < δ/2, the bound of the theorem is O(m−γ) provided
that N > m1−1/2s(s+1)+δ and m and r are sufficiently large in terms of s and δ.

4. Remarks

Other characteristics of the power generator (1.1) with prime power moduli
m = pr are of interest as well. Also, one could try to find a non-trivial result
when N < m1−1/2s(s+1). There is no particular reason for choosing the base
p to be a prime number. Although this seems the most natural choice, the
methods here also work for moduli m which are products of high powers of
several fixed primes. In particular, we can apply [35], Problem 12.d, Chapter 3
to Lemma (2.3) so that we can reduce exponential sums with polynomials and
arbitrary denominators to exponential sums with prime power denominators.
Hence, the upper bound for Lemma (2.3) becomes C(p1, . . . , pn, t, ε)m(1−1/t+ε)+γ,
where the modulus m has n prime factors p1, . . . , pn. This should lead to vari-
ants of Theorems (2.5) and (3.1) for such moduli (there is not probably enough
interest to such a result to justify unavoidable technical and notational compi-
cations). However, neither the method of this work nor that in [10, 14] can be
extended to arbitrary composite moduli m. Also, quite clearly, since we should
have at least N > m1−1/2s(s+1)+δ, the results hold as long as τ > m1−1/2s(s+1)+δ.
On the other hand, a variant of the method of [13, 25] has led to nontrivial
upper bounds of the exponential sums involved in studying the uniformity of
distribution of the power generator modulo a composite and to a number of
other results. It would also be interesting to extend the results of this paper
to the case of the exponential generator

vn ≡ gvn−1 (mod m), 0 ≤ vn ≤ m − 1, n = 1, 2, . . . ,
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which also has numerous cryptographic applications [5, 22]. Lastly, one could
try to study the distribution not of consecutive s-tuples of the sequence but
rather s-tuples un+g(i), 1 ≤ i ≤ s, for a fixed function g taking integer values
distinct modulo τ. This will certainly work for certain simple functions g.

Acknowledgements

The author wishes to thank Igor Shparlinski for suggesting this problem
and for helpful comments, advice and the reading of this paper.

Received June 19, 2006

Final version received January 09, 2007

Department of Computing
Macquarie University
North Ryde, NSW, Australia, 2109
edwinelm@ics.mq.edu.au

References

[1] L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator,
SIAM J. Comput. 15 (1986), 364–383.

[2] J. J. Brennan and B. Geist, Analysis of iterated modular exponentiation: The orbit of
xα mod N , Designs, Codes and Cryptography 13 (1998), 229–245.

[3] W. S. Chou and I. E. Shparlinski, On the cycle structure of repeated exponentiation modulo
a prime, J. Number Theory 107 (2004),345–356.

[4] T. W. Cusick, Properties of the x2 mod N pseudorandom number generator, IEEE Trans.
Inform. Theory 41 (1995), 1155–1159.

[5] T. W. Cusick, C. Ding and A. Renvall, Stream Ciphers and Number Theory, Elsevier,
Amsterdam, 1998.

[6] M. Drmota and R.F. Tichy, Sequences, discrepancies and applications, Springer-Verlag,
Berlin, 1997.

[7] E. D. El-Mahassni, I. E. Shparlinski, and A. Winterhof, Distribution of nonlinear con-
gruential pseudorandom numbers modulo almost squarefree integers, Monatshefte fuer Math-
ematik 148 (2006), 297–307.

[8] E. D. El-Mahassni and A. Winterhof, On the distribution of nonlinear congruential pseu-
dorandom numbers in residue rings, IJNT 2 1 (2006), 163–168 .

[9] R. Fischlin and C. P. Schnorr, Stronger security proofs for RSA and Rabin bits, J. Cryp-
tology 13 (2000), 221–244.

[10] J. B. Friedlander, J. Hansen and I. E. Shparlinski, On character sums with exponential
functions, Mathematika 47 (2000), 75–85.

[11] J. B. Friedlander, J. Hansen and I. E. Shparlinski, On the distribution of the power
generator modulo a prime power, Proc. DIMACS workshop on unusual applications of number
theory 2000, Amer. Math. Soc., (2004), 71–79.

[12] J. B. Friedlander, S. V. Konyagin and I. E. Shparlinski, Some doubly exponential sums
over Zm, Acta Arith. 105 (2002), 349–370.

[13] J. B. Friedlander, D. Lieman and I. E. Shparlinski, On the distribution of the RSA gener-
ator, Proc. Intern. Conf. on Sequences and their Applications (SETA’98), Singapore, Springer-
Verlag, London, 1999, 205–212.

[14] J. B. Friedlander and I. E. Shparlinski, On the distribution of the power generator, Math.
Comp. 70 (2001), 1575–1589.

[15] F. Griffin and I. E. Shparlinski, On the linear complexity profile of the power generator,
IEEE Trans. Inform. Theory 46 (2000), 2159–2162.



DISTRIBUTION OF THE POWER GENERATOR MODULO A PRIME POWER 13

[16] F. Griffin, H. Niederreiter and I. E. Shparlinski, On the distribution of nonlinear re-
cursive congruential pseudorandom numbers of higher orders, Proc. the 13th Symp. on Appl.
Algebra, Algebraic Algorithms, and Error-Correcting Codes, Hawaii, 1999, Lect. Notes in
Comp. Sci., Springer-Verlag, Berlin, 1719 (1999), 87–93.

[17] J. Gutierrez, H. Niederreiter and I. E. Shparlinski, On the multidimensional distribu-
tion of nonlinear congruential pseudorandom numbers in parts of the period, Monatsh. Math.
129 (2000), 31–36.
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CONTINUOUS CONVERGENCE AND DUALITY OF LIMITS OF
TOPOLOGICAL ABELIAN GROUPS

S. ARDANZA-TREVIJANO, M. J. CHASCO

Abstract. We find conditions under which direct and inverse limits of arbi-
trary indexed systems of topological Abelian groups are related via the dual-
ity defined by the continuous convergence structure. This generalizes known
results by Kaplan about duality of direct and inverse sequences of locally
compact Abelian groups.

1. Introduction

Given a topological Abelian group G, its group of continuous characters ΓG
endowed with the compact open topology τco is another topological group, usu-
ally denoted byG∧ and called the dual ofG. The duality theorem of Pontryagin-
van Kampen states that a locally compact Abelian (LCA) group G is topologi-
cally isomorphic to its bidual group (G∧)∧ by means of the natural evaluation
mapping. This theorem lies at the core of abstract harmonic analysis on locally
compact Abelian groups and its extension to more general groups gives rise to
the notion of reflexive group.

The original results of Pontryagin-van Kampen can be generalized to more
general topological Abelian groups by means of two different duality theories.
That is, given a topological Abelian group G we may consider ΓG endowed
with either the compact open topology τco, obtaining G∧ the Pontryagin dual
(P -dual), or the continuous convergence structure Λc, obtaining a convergence
group denoted by ΓcG that we call the c-dual of G. The convergence structure
Λc has the advantage of making the evaluation mapping ω : ΓG × G → T
continuous although it is not usually topological. For a locally compact Abelian
group G there is no difference between τco and Λc in ΓG. Hence the theorem
of Pontryagin-van Kampen can be understood in the framework of the two
dualities. There are many extensions of this theorem obtained for P -duality.
We give as examples the ones by Kaplan [9], [10], Smith [15], Banaszczyk [2]
or Pestov [14] among others. The approach of c-duality has also been fruitfully
used in the works of Binz, Butzmann and others. The recent book of Beattie
and Butzmann [3] provides an excellent overview of convergent structures and
contains many relevant results in this direction.

A frequently used method to extend a property of a class of groups to a larger
class is to take direct or inverse limits. There are situations where this method
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can be used to extend the known members of the class of reflexive groups.
Kaplan proved that sequential direct and inverse limits of locally compact
Abelian groups are P -reflexive and also that the P -dual of a sequential direct
(inverse) limit is the inverse (direct) limit of the corresponding sequence of
P -duals [10]. However, there is an old example due to Leptin [11] of an inverse
limit of P -reflexive groups that is not P -reflexive.

The aim of the present article is to show that under some conditions, direct
and inverse limits are related via c-duality. Working in the c-duality setting
allows us to get rid of the requirement of countability of the index set that is
present in Kaplan’s results mentioned above. Countability is also needed in
[1] where the authors prove that certain direct and inverse limits of sequences
of P -reflexive Abelian groups that are metrizable or kω-spaces are P -reflexive
and dual of each other. These results have been recently extended by Glöckner
and Gramlich in [7].

We first study when the c-dual of a direct limit is the inverse limit of the
c-dual system. Here, a crucial fact is that in the category of continuous con-
vergence Abelian groups, the natural map η from a group to its c-bidual is
continuous.

We then proceed to study under which conditions the c-dual of the limit of
an inverse system is the direct limit of the c-dual system. This is a delicate
problem that cannot be solved by categorical arguments only. The usual con-
struction of the direct limit as a quotient group of the coproduct of the groups
in the system gives a hint of where the difficulties come from. In P -duality the
P -dual of the product is not always the coproduct.1 This difficulty disappears
in the framework of c-reflexivity [3]. However further work is needed to prove
c-duality between general inverse and direct limits.

2. Convergence groups and c-duality

We introduce in this section the category of convergence Abelian groups
denoted by CAG and the notion of c-duality. For an up to date introduction to
convergence Abelian groups we refer the reader to the monograph [3].

First recall some basic notions about convergence spaces.
A convergence structure on a set X consists of a map λ : X → 2F(X) where F

is the set of all filters on X, such that for all x ∈ X we have

i) The filter generated by x belongs to λ(x).
ii) For all filters F , G ∈ λ(x), the intersection F ∩ G belongs to λ(x).

iii) If F ∈ λ(x), then G ∈ λ(x) for all filters G on X finer than F .

A convergence space (X,Λ) is a set with a convergence structure. See ([3],
pp. 2ff), for a more detailed exposition.

The notion of convergence space generalizes that of topological space. A
topological space has a natural convergence structure, given by the convergent
filters in the topology, which makes it a convergence space. Note that there
are well known convergence structures, like the almost sure convergence in
measure theory, that do not come from a topology on the supporting set.

1Nickolas proved that the P -dual of a product of LCA groups coincides with the coproduct of
the P -duals if and only if the index set is countable [13].
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Many topological notions that can be stated in terms of convergence of filters
(such as continuity, open and closed sets, cluster point, compactness, etc) have
their corresponding definitions for convergence spaces.

A convergence group is a group endowed with a convergence structure com-
patible with the group structure. Clearly every topological group is a conver-
gence group and it can be treated in this way.

Let CAG be the category of convergence Abelian groups whose objects are
convergence Abelian groups and whose morphisms are continuous homomor-
phisms. For two objects G and H in CAG, the group of morphisms from G
to H will be denoted by CAG(G,H). The category TAG of topological Abelian
groups and continuous homomorphisms is a full subcategory of CAG.

Consider the multiplicative group T = {z ∈ C : |z| = 1} with the Euclidean
topology and denote by ΓG the group of morphisms CAG(G,T).

We now define a convergence structure that makes ΓG a convergence group
with nice properties. The continuous convergence structure Λc in ΓG is the
coarsest convergence structure for which the evaluation mappingω : ΓG×G→
T is continuous2 (ΓG ×G has the natural product convergence).

That is: A filterΦ of ΓG converges continuously toφ if and only ifω(Φ×F ) =
Φ(F ) converges to φ(x) in T, for every F → x in G. Here Φ × F denotes the
filter generated by the products Φ×F and ω(Φ×F ) = Φ(F ) denotes the filter
generated by the sets Φ(F ), with Φ ∈ Φ, F ∈ F .

For any objectG in CAG, we have that ΓG with the continuous convergence
structure Λc is a Hausdorff convergence group ([3], 8.1) named the convergence
dual group of G (c-dual for short) and denoted by ΓcG. By Hausdorff we mean
that any filter in ΓcG has at most one limit. From now on we will consider
all of our groups in the subcategory of Hausdorff convergence Abelian groups
HCAG.

For each f ∈ HCAG(G,H), we can define the adjoint homomorphism Γcf ∈
HCAG(ΓcH,ΓcG) by Γcf (χ) = χ ◦ f for χ ∈ ΓcH. Thus Γc(−) is a contravariant
functor from HCAG to HCAG (or a covariant functor from HCAGop to HCAG).
There is a natural transformation κ from the identity functor in HCAG to the
covariant functor ΓcΓc(−) := Γc(Γc(−)). This can be described by κG : G →
ΓcΓcG where

[
κG(x)

]
(χ) = χ(x) for any x ∈ G and χ ∈ ΓcG. Note that if the

starting group G is a topological group, then the continuous convergence in
its c-bidual ΓcΓcG is also topological (see [6]). A convergence Abelian group
G is said to be c-reflexive if κG is an isomorphism in HCAG. The continuity of
ω : ΓcG × G → T implies that κG is also continuous and hence a morphism in
HCAG(G,ΓcΓcG).

We now relate c-reflexivity to the classical Pontryagin reflexivity. Recall
that for a group G in HTAG, ΓG with the compact open topology τco is a topo-
logical group usually denoted byG

∧
. The groupG is called Pontryagin-reflexive

or P -reflexive, if the evaluation σG → G
∧∧

is a topological isomorphism. Note
that this evaluation may not even be a morphism in HTAG, since it may not
be continuous. The duality theorem of Pontryagin-van Kampen was originally
stated for groups in LCA. For a group G in this category, τco and Λc coincide in

2Note that in the Pontryagin setting the continuity of ω : G
∧ ×G→ T is a strong requirement

since it forces any reflexive group G to be locally compact [12].
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ΓG, hence in LCA there are no differences between P -duality and c-duality.3

Therefore the original results of Pontryagin-van Kampen can be generalized
in two directions. Given a group G, consider in ΓG either the compact open
topology to study P -reflexivity (as in Pontryagin duality theory), or the con-
tinuous convergence structure to study c-reflexivity. We will adopt the latter
point of view in the remaining sections.

3. Direct and inverse limits of convergence groups

A directed set A can be considered as a category where the objects are the
elements α ∈ A and the set of morphismsA(α, β) consists of only one element if
α ≤ β and is empty otherwise. A direct system in HCAG is a covariant functor
D from a directed set A to HCAG. We use the notation {Gα, f

β
α ,A} for a direct

system, where Gα = D(α) are the groups and fβα = D
(
A(α, β)

)
the linking

maps.
A direct limit or inductive limit for a direct system {Gα, f

β
α ,A} in HCAG is

a pair (lim−→Gα, {pα}α∈A), where lim−→Gα is an object in HCAG and the pα’s are
morphisms in HCAG(Gα, lim−→Gα) such that pα = pβ ◦ fβα for α ≤ β, satisfying
the following universal property: Given an object G′ in HCAG and morphisms
p′α in HCAG(Gα, G′) for all α ∈ A such that p′α = p′β ◦f

β
α whenever α ≤ β, there

is a unique morphism p in HCAG(lim−→Gα, G′) such that p′α = p ◦ pα.
Dually, an inverse system in HCAG is a contravariant functor I from A to

HCAG (or equivalently a covariant functor fromA to HCAGop, the opposite cat-
egory). We will denote a generic inverse system by {Gα, gαβ ,A} and an inverse
limit or projective limit by a pair (lim←−Gα, {πα}α∈A), where πα : lim←−Gα → Gα.

In order to describe the standard constructions of inverse and direct limits
in HCAG we first recall the notions of products and coproducts in this category.

Let {Gα}α∈A be a family in HCAG and let
∏
Gα be the (algebraic) product.

The product convergence structure on the group
∏
Gα is the initial convergence

structure with respect to the projections πα :
∏
Gα → Gα. This convergence

structure makes
∏
Gα an object in HCAG.

A filter F converges to an element x ∈
∏
Gα if and only if, for each α ∈ A,

πα(F ) converges to πα(x) in Gα. Observe that if all the convergence groups
of the family {Gα}α∈A are topological, then its convergence product is also
topological.

The inverse limit of an inverse system {Gα, gαβ ,A} in HCAG, can be con-
structed as the following subgroup of the product

∏
Gα,{

(xα)α∈A ∈
∏

Gα : gαβ (xβ) = xα
}
.

The algebraic coproduct of Abelian groups
⊕

α∈AGα is the group of all
x ∈

∏
Gα such that {α ∈ A : πα(x) 6= eGα

} is finite. The coproduct conver-
gence structure is defined as the finest group convergence structure making
the inclusions iα : Gα →

⊕
Gα continuous.

The group
⊕

Gα with the coproduct convergence structure is an object of
HCAG called the coproduct convergence group of the family {Gα}α∈A.

3A metrizable topological Abelian group isP -reflexive if and only if it is c-reflexive [5]. However
this equivalence is not true in general [6].
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Considering the coproduct convergence on
⊕

Gα, the standard construction
of the inductive limit in HCAG for a direct system {Gα, f

β
α ,A} is the following

lim−→Gα
∼= (

⊕
Gα)/H̄,

where H is the subgroup generated by {iβ ◦ fβα (gα)− iα(gα) : α ≤ β; gα ∈ Gα},
and H̄ is the intersection of all the closed subgroups of G containing H.

4. Duality properties of limits

There are many interesting results published in the literature about c-
duality of convergence groups. We will use two of them due to Beattie and
Butzmann as the starting point of our study. The first result establishes the
isomorphisms Γc

(∏
Gα

) ∼= ⊕
ΓcGα and Γc

(⊕
Gα

) ∼= ∏
ΓcGα where (Gα)α∈A,

is any family of convergence Abelian groups. Consequently if the convergence
groups (Gα) are all c-reflexive, both

⊕
Gα and

∏
Gα are also c-reflexive (pp.

214-215 of [3]).

Remark. Observe that if we work with arbitrary index sets we cannot trans-
late this statement completely to the Pontryagin setting. The product of an
arbitrary family of P -reflexive groups is P -reflexive, however the P -dual of the
product cannot always be described as the coproduct of the P -dual system, as
we noticed in the introduction.

The second result by Beattie and Butzmann (p. 229 of [3]) shows that the
limit of an inverse system of locally compact topological groups is c-reflexive.
We have further explored the duality relation between direct and inverse lim-
its. Our first result describes the c-dual of the direct limit and it follows directly
from categorical arguments.

Theorem (4.1). Let {Gα, f
β
α ,A} be a a direct system of convergence groups.

Then
Γc( lim−→Gα) ∼= lim←−ΓcGα

Proof. For each pair G and H of objects in HCAG and morphism f : G →
ΓcH, there is a unique morphism f ′ : H → ΓcG such that Γc(f ′)◦κG = f . In fact,
for h ∈ H and g ∈ G, f ′(h)(g) = f (g)(h) and the map A : HCAG(G,ΓcH) →
HCAG(H,ΓcG) which maps f to f ′ is continuous. Hence, the functor Γc(−) :
HCAGop → HCAG is right adjoint to Γc(−) : HCAG → HCAGop and conse-
quently, the contravariant functor Γc(−) : HCAG → HCAG transforms direct
into inverse limits whenever they exist ([8], p. 307). Hence

Γc( lim−→Gα) ∼= lim←−ΓcGα

The c-dual of the inverse limit cannot be obtained in such a natural way
and requires restrictions on the groups and morphisms, which we proceed to
describe.

Denote T+ = {z ∈ T |Re z ≥ 0}. For a convergence group G, the polar of a
subset A ⊂ G is the set AB = {χ ∈ ΓG : χ(A) ⊂ T+} and the inverse polar of a
subset B ⊂ ΓG is BC = {x ∈ G : χ(x) ⊂ T+ for all χ ∈ B}.

Let G be an object of HCAG. A subgroup H of G is called dually closed in
G if for every x ∈ G \H there exists a character χ ∈ ΓG with χ(H) = eT and
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χ(x) 6= eT. A subgroup H of G is called dually embedded if every character of
H extends to a character of G. Note that a subgroup H of G is dually closed
in G if and only if H = HBC.

Proposition (4.2). (1) Let {Gα, f
β
α ,A} be a direct system of convergence

groups and H = gp{iα(xα)− iβ ◦ fβα (xα) : α ≤ β; xα ∈ Gα}. Then

HB = lim←−ΓcGα.

(2) Let {Gα, gαβ ,A} be an inverse system of convergence groups where the limit
maps πα have dense images. Let L = gp{iα(ϕα) − iβ ◦ Γc(gαβ )(ϕα) : α ≤ β, ϕα ∈
ΓcGα}. Then

(lim←−Gα)� = L.

Proof. First part:

Given (ϕα)α∈A ∈
∏

ΓcGα and xα ∈ Gα, the following equalities hold:

(ϕα)(iα(xα)− iβ ◦ fβα (xα)) = ϕα(xα)− ϕβ(fβα (xα)) = ϕα(xα)− Γcf
β
α (ϕβ)(xα) .

From here it follows, on the one hand, that if (ϕα)α∈A ∈ lim←−ΓcGα, then
(ϕα)(iα(xα) − iβ ◦ fβα (xα)) = eT and on the other hand if (ϕα)α∈A ∈ HB, then
Γcf

β
α (ϕβ) = ϕα since (Γcf

β
α (ϕβ)− ϕα)(xα) = eT for all xα ∈ Gα.

Second part:

If (xα)α∈A ∈ lim←−Gα, we have that gαβ (xβ) = xα, hence

(iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα))(xα)α∈A = ϕα(xα)−
(
Γc(gαβ )(ϕα)

)
(xβ)

= ϕα(xα)− ϕα
(
gαβ (xβ)

)
= ϕα(xα)− ϕα(xα) = eT,

and we have proven that L ⊂ (lim←−Gα)�.
We are left to prove the opposite inclusion. Any element (ϕα)α∈A ∈ (lim←−Gα)B

can be represented as a finite sum

(ϕα)α∈A = iα1 (ϕα1 ) + · · ·+ iαk (ϕαk ) .

where αk ≥ α1, . . . , αk−1
Consider now an arbitrary element xαk ∈ παk (lim←−Gα) and let (xα)α∈A be an

element of the inverse limit with αk coordinate xαk . We know that gαβ (xβ) = xα,
α ≤ β and since (ϕα)α∈A is in the polar of lim←−Gα, we have

((Γc(gα1
αk

))(ϕα1 ) + · · ·+ (Γc(g
αk−1
αk ))(ϕαk−1 ) + ϕαk )(xαk )

= (ϕα1g
α1
αk

+ · · ·+ ϕαk−1g
αk−1
αk + ϕαk )(xαk )

= ϕα1 (xα1 ) + · · ·+ ϕαk (xαk )

= (ϕα)α∈A((xα)α∈A) = eT

and hence, since παk (lim←−Gα) is dense in Gαk ,(
(Γc(gα1

αk
))(ϕα1 ) + · · ·+ (Γc(g

αk−1
αk ))(ϕαk−1 ) + ϕαk

)
= eΓcGαk

.
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We can now subtract this term from the expression for (ϕα)α∈A which is enough
to obtain our result. More concretely,

(ϕα)α∈A = iα1 (ϕα1 ) + · · ·+ iαk (ϕαk )

= iα1 (ϕα1 ) + · · ·+ iαk (ϕαk )

− iαk
(

(Γc(gα1
αk

))(ϕα1 ) + · · ·+ (Γc(g
αk−1
αk ))(ϕαk−1 ) + ϕαk

)
= iα1 (ϕα1 )− iαk (Γc(gα1

αk
))(ϕα1 ) + . . .

+ iαk−1 (ϕαk−1 )− iαk (Γc(g
αk−1
αk ))(ϕαk−1 ) + iαk (ϕαk )− iαk (ϕαk ),

from which we conclude (lim←−Gα)B ⊂ L.

We describe the c-dual of the inverse limits in the class of Nuclear groups.
Roughly speaking a Hausdorff Abelian groupG is Nuclear if each neighborhood
of zero contains another neighborhood which is “sufficiently small”4. This class
of groups, introduced by Banaszczyk in [2], has good permanence properties
— subgroups, quotients and products of nuclear groups are nuclear groups.
Locally compact groups are nuclear and the groups underlying nuclear locally
convex topological vector spaces are also in the class of nuclear groups. Ba-
naszczyk succeeded in generalizing many properties of LCA groups to nuclear
groups.

Lemma (4.3). Every subgroup H of a nuclear group G is dually embedded
and Γci : ΓcG→ ΓcH is a quotient mapping with kernel HB.

Proof. See Corollary 8.3 in [2] and Corollary 8.4.10 in [3].

Our first description of the c-dual of an inverse limit also requires some
restriction on the limit maps.

Theorem (4.4). Let {Gα, gαβ ;A} be an inverse system of nuclear groups where
the limit maps πα have dense images. Then

Γc(lim←−Gα) ∼= lim−→ΓcGα

Proof. We have by (4.2) (2) that

(lim←−Gα)� = gp{iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα), : α ≤ β, ϕα ∈ ΓcGα}.

It follows that lim−→ΓcGα is the quotient convergence group (
⊕

ΓcGα)/(lim←−Gα)�.
But this is an object in HCAG isomorphic to Γc(

∏
Gα)/(lim←−Gα)�. We still need

to prove that Γc(lim←−Gα) is isomorphic to this object. In order to do that we use
Lemma (4.3) about subgroups of nuclear groups:

Since all groupsGα are nuclear groups the product
∏
Gα is nuclear, therefore

by Lemma (4.3), Γi : Γc(
∏
Gα)→ Γc(lim←−Gα) is a quotient mapping with kernel

(lim←−Gα)� which induces an isomorphism ψ : Γc(
∏
Gα)/(lim←−Gα)� → Γc(lim←−Gα)

in the category HCAG. Hence the assertion follows.

4A Hausdorff Abelian group is called Nuclear if it satisfies the following condition: Given an
arbitrary neighborhood U of eG, c > 0 and m = 1, 2, . . . , there exists a vector space E and two pre-
Hilbert seminorms p, q on E with dk(Bp , Bq) ≤ ck−m, where dk is the kth Kolmogorov diameter
and k = 1, 2, . . . , ([2] p. 72)
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We now give an alternative description of the c-dual of an inverse limit
without any condition on the limit maps. Let G be a convergence group. We
will say that G has enough characters if κG : G→ ΓcΓcG is injective, i.e., if for
all x ∈ G, x 6= eG there exists χ ∈ ΓcG such that χ(x) 6= eT. Given an arbitrary
convergence groupG, it is easy to check thatG/ker(κG) is a convergence group
with enough characters.

Denote by HCAGκ1:1
the category of convergence groups with enough charac-

ters, we can define a full functorF : HCAG → HCAGκ1:1
byF (G) = G/ker(κG).

The functor F is left adjoint to the inclusion functor HCAGκ1:1
→ HCAG and

hence it preserve direct limits, i.e., F (lim−→Gα) = lim−→(FGα).

Lemma (4.5). Let G be a Hausdorff convergence group and H a closed sub-
group of G, then F (G/H) ∼= G/HBC.

Proof. Since F (G/H) ∼= G/H
ker(κG/H ) , it is enough to see that ker(κG/H ) is pre-

cisely HBC/H. Now for x ∈ G, κG/H [x] = eΓcΓc(G/H) iff χ[x] = eT for all
χ ∈ Γc(G/H) which is the same as the statement: χ̃(x) = eT for all χ̃ ∈ ΓcG
such that χ̃(H) = eT and this occurs if and only if x ∈ HBC.

Theorem (4.6). Let {Gα, gαβ ,A} be an inverse system of complete nuclear
topological groups. Then

Γc(lim←−Gα) ∼= F (lim−→ΓcGα) .

Proof. Note that a nuclear group is complete if and only if it is c-reflexive
(see [4]). We know that lim←−Gα is a subgroup of

∏
Gα, which in turn is a nuclear

group. Hence by 8.4.5 in [3] Γc(i) : Γc(
∏
Gα) → Γc(lim←−Gα) is a quotient map

with kernel (lim←−Gα)B. This map induces an isomorphism Γc(
∏
Gα)/(lim←−Gα)B→

Γc(lim←−Gα) in HCAG.
Denote by L = gp{iα(ϕα)− iβ ◦ Γc(gαβ )(ϕα) : α ≤ β, ϕα ∈ ΓcGα}
Now by (4.2).1 we have that LB = lim←−(ΓcΓcGα) ∼= lim←−Gα. Hence LBB ∼=

(lim←−Gα)B. The c-reflexivity of
⊕

ΓcGα yields (lim←−Gα)B = LBC. Finally

Γc(lim←−Gα) ∼=
Γc(

∏
Gα)

(lim←−Gα)B
∼=

⊕
ΓcGα

(lim←−Gα)B

=
⊕

ΓcGα

LBC
= F

(⊕
ΓcGα

L

)
= F (lim−→ΓcGα).
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ON DERIVED TAME ALGEBRAS

This paper is dedicated to the memory of Professor Andrey Vladimirovich Roiter

RAYMUNDO BAUTISTA

Abstract. Let Λ be a finite-dimensional algebra over an algebraically closed
field k. We prove that the bounded derived category Db(Λ) has tame repre-
sentation type (Λ is called derived tame), if and only if the full subcategory of
Db(Λ) whose objects are perfect complexes is of tame representation type. We
see that if Λ is derived tame, then almost all isomorphism classes of indecom-
posable complexes X• ∈ Db(Λ) with fixed homology dimension are perfect
and have Auslander-Reiten triangles of the form X• → H• → X• → X•[1].

1. Introduction

Let Λ be a finite-dimensional algebra over an algebraically closed field k
and let Db(Λ) be its bounded derived category. We consider the category of left
Λ-modules Mod Λ. We denote by mod Λ, Proj Λ, proj Λ, Inj Λ and inj Λ the full
subcategories of Mod Λ consisting of the finitely generated, the projective, the
finitely generated projective, the injective and the finitely generated injective
Λ-modules, respectively. By Db(Mod Λ) we denote the bounded derived cat-
egory of Mod Λ; we recall that Db(Λ) is the bounded derived category of the
category mod Λ. If X = (Xi, diX)i∈Z is an object in Db(Λ) an invariant of it is
given by its homology dimension hdim = (hi)i∈Z with hi = dimkH

i(X).
A sequence of non negative integers h = (hi)i∈Z is called a homology dimen-

sion if for all but finitely many i, hi = 0. We recall that according with [20],
Db(Λ) is called discrete and Λ derived discrete if there are only finitely many
isoclasses of indecomposables X ∈ Db(Λ) with fixed homology dimension. As
for algebras, definitions of tame representation type and of wild representation
type have been given in [13] for the category Db(Λ). The algebra Λ is called
derived tame or derived wild if the category Db(Λ) is of tame representation
type or of wild representation type, respectively.

The Happel functor, introduced in [15], from the bounded derived category
of a finite-dimensional algebra into the stable category of the corresponding
repetitive algebra, has been an important tool in the study of the bounded
derived category of an algebra. However this functor is not an equivalence of
categories for algebras of infinite global dimension. The methods proposed in
this paper overcome this difficulty.

In [20] it has been proved that Λ is derived discrete if and only if Db(Λ)perf ,
the full subcategory of Db(Λ) whose objects are the perfect complexes, is dis-
crete. We prove that a similar fact is also true for the tame case: Λ is derived

2000 Mathematics Subject Classification: 16G70, 18E30, 18G35.
Keywords and phrases: derived tame, Auslander-Reiten triangle, bocs.
The author thanks the support of project “43374F” of Fondo Sectorial SEP-Conacyt.
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tame if and only if Db(Λ)perf is of tame representation type. In fact we prove
that almost all isomorphism classes of indecomposable objects inDb(Λ) of given
homology dimension are isomorphism classes of perfect complexes.

We also prove that if Λ is derived tame and h is a fixed homology dimension,
then for almost all isomorphism classes [Y ] with Y indecomposable perfect
complex and hdimY = h, there is an Auslander-Reiten triangle of the form

Y → H → Y → Y [−1].

In addition, if h = (hi) and n0 is the integer such that hn0 6= 0 and hi = 0 for
i < n0, then Y j = 0 for j < n0−1 and dn0−1

Y : Y n0−1 → Y n0 is a monomorphism.
This implies that for Λ derived tame for any fixed non-negative integer, almost
all isomorphism classes of indecomposable Λ-modules [M] with dimkM ≤ d,
the projective dimension of M is equal to one.

In order to prove the above results, we consider in section 2, Cm(proj Λ)
which is the category of complexesX of finitely generated projective Λ-modules
with Xi = 0 for i outside the interval [1, . . . ,m]. We denote by C1

m(proj Λ) the
full subcategory of Cm(proj Λ) whose objects are the complexes X such that
Imdi−1

X ⊂ radXi for all i ∈ Z.
In general if C is a k-category, a morphism f : M → N in C is called radical if

for any split monomorphism σ : X →M and any split epimorphismπ : M → Y ,
πfσ : X → Y is not an isomorphism. If P and Q are projective Λ-modules,
f : P → Q is a radical morphism if and only if Imf ⊂ radQ.

In section 6 we prove the following two results.

Theorem (1.1). For fixedm, either Cm(proj Λ) is of tame representation type
or of wild representation type.

The proof of this last result is in fact given in [6] and [11], using bocses with
relations. We present a different proof using just free triangular bocses. We
recall from [3] that we have an exact category (Cm(proj Λ), E) in the sense of
[19] or [12], where E is the class of sequences of morphisms (conflations)

X
u→ E

v→ Y

such that for all i ∈ Z the sequence

0 → Xi ui→ Ei vi→ Y i → 0,

is an split exact sequence. The exact category (Cm(proj Λ), E) has enough
projectives and injectives and it has almost split sequences (see (a) of Theorem
8.2 of [3]).

Definition (1.2). For a complex X ∈ Cm(proj Λ) its dimension is given by
dimkX =

∑
i dimkX

i.

Theorem (1.3). Suppose Cm(proj Λ) is of tame representation type. Then
for almost all isomorphism classes [X] of indecomposables in the category
Cm(proj Λ), with fixed dimension, there is an almost split E-sequence in
Cm(proj Λ) of the form X → E → X.

For this we use tbocses (introduced in [2]) in a similar way as in [6].
In section 7 we consider generic complexes in Db(Mod Λ) in the sense of

section 5 of [18]; observe that this definition differs from the one given in
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[13]. With our definition we obtain similar results to the ones given in [9]
for Λ-modules. In particular each generic complex is closely related to a one-
parameter family of objects in Db(Λ). In addition we prove that if X is a
generic complex for a derived tame algebra Λ, X is isomorphic in Db(Mod Λ)
to a bounded complex of projective Λ-modules.

2. Bounded derived categories

Here we see some consequences of Theorems (1.1) and (1.3) for the derived
category Db(Λ).

In the following a rational algebra is a k-algebra of the formR = k[x, h(x)−1],
with h(x) ∈ k[x]. The support of the rational algebra R is defined by S(R) =
{λ ∈ k|h(λ) 6= 0}. For λ ∈ S(R), the simple R-module k[x]/(x − λ) will be
denoted by Sλ.

Notation (2.1). For h a homology dimension we denote by V(h) the full
subcategory of Db(Λ) whose objects are indecomposables X ∈ Db(Λ) with
hdimX = h.

We recall the following definitions:
(1) Λ is called derived discrete if for each homology dimension h, the category

V(h) has only finitely many isomorphism classes.
(2) Λ is called derived tame if for each homology dimension h there is a finite

set of rational algebras Ru, u = 1, . . . , s and for each u a bounded complex
Mu of Λ-Ru-bimodules free of finite rank over Ru, such that for almost all
isomorphism classes [X] withX ∈ V(h) there is a λ ∈ S(Ru) withX ∼= Mu⊗Ru

Sλ
for some u ∈ {1, . . . , s}.

(3) Λ is called derived wild if there is a bounded complex W of Λ-k〈x, y〉-
bimodules free of finite rank over k〈x, y〉 such that the functor

W ⊗k〈x,y〉 − : mod k〈x, y〉 → Db(Λ)

preserves isoclasses and indecomposables.
Concerning the categories Cm(proj Λ) we recall the definitions of finite rep-

resentation type, tame representation type and wild representation type.
(4) Cm(proj Λ) is called of finite representation type if it has only a finite

number of isomorphism classes of indecomposables.
(5) Cm(proj Λ) is called of tame representation type if for any given positive

integer d there are rational algebras Ru, u = 1, . . . , s and for each u a complex
Mu = (M i

u, d
i
Mu

) withM i
u a Λ-Ru-bimodule free of finite rank overRu, projective

as Λ-module and M i
u = 0 for i outside the set {1, . . . ,m}, such that for almost

all isomorphism class [Y ] with Y indecomposable and dimkY ≤ d there is a
λ ∈ S(Ru) such that Mu ⊗Ru

Sλ ∼= Y .
(6) Cm(proj Λ) is called of wild representation type if there is a bounded

complex of Λ-k〈x, y〉-bimodules free of finite rank over k〈x, y〉, projectives as
Λ-modules, W = (W i, diW ) with W i = 0 for i outside the set {1, . . . ,m}, such
that the functor:

W ⊗Ru
− : mod k〈x, y〉 → Cm(proj Λ)

preserves isoclasses and indecomposables.
We need the following results (see Lemma 2.1 and Lemma 2.2 of [1]).
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Lemma (2.2). Suppose Y = (Y i, diY )i∈Z ∈ C1
m(proj Λ) is such that

dimkH
j(Y ) ≤ c

for all j and for some u ∈ [2, . . . ,m], dimkY
u ≤ du. Then

dimkY
u−1 ≤ (du + c)L,

with L = dimkΛ.

Lemma (2.3). Let Y = (Y i, diY )i∈Z ∈ C1
m(proj Λ) such that for some fixed c

and all j ∈ [1,m], we have dimkH
j(Y ) ≤ c. Then

dimkY ≤ c(mL+ (m− 1)L2 + (m− 2)L3 + · · ·+ 2Lm−1 + Lm) .

We denote by C≤m,b(Proj Λ) the category of complexes X = (Xi, diX) with
Xi ∈ Proj Λ and Xi = 0 for i > m, such that H i(X) = 0 for almost all i. By
K≤m,b(Proj Λ) we denote the corresponding homotopy category.

Following [3] we denote by Lm the full subcategory of K≤m,b(Proj Λ) whose
object are those X with H i(X) = 0 for i ≤ 1.

The functor F : K≤m,b(Proj Λ) → Cm(Proj Λ) which sends a complex

X : · · · → X−1 d−1

→ X0 d0

→ X1 d1

→ · · · → Xm → 0

to

F (X) : · · · 0 → 0 → X1 d1

→ · · · → Xm → 0,

induces an equivalence
F : Lm → Cm(Proj Λ),

where Cm(Proj Λ) is the category with the same objects as Cm(Proj Λ) and as
morphisms those in Cm(Proj Λ) modulo the ones which are factorized through
E-injective objects (see Corollary 5.7 of [3]).

Moreover we have an embedding

τ≥1 : Lm → Db(Mod Λ).

Observe that for P ∈ Lm, q : P → τ≥1P the natural morphism is a quasi-
isomorphism.

For a natural number d we denote by Fd the full subcategory of Cm(proj Λ)
whose objects are those indecomposables X with dimkX ≤ d. We denote by Ud
the full subcategory of Lm whose objects are those Y ∼= F (P ) with P ∈ Fd. By
Vd we denote the full subcategory of Db(Λ) whose objects are those isomorphic
to some τ≥1P with P ∈ Ud.

By Lemma (2.3), V(h) ⊂ Vd, if d = |h|(mL+ (m− 1)L2 + · · ·+ 2Lm−1 +Lm)
with |h| = max{hi}i∈Z, L = dimkΛ.

Theorem (2.4). (a) Λ is derived discrete if and only if for all m, Cm(proj Λ)
is of finite representation type;

(b) if Λ is derived wild it is not derived tame;
(c) if for some m, Cm(proj Λ) is of wild representation type then Λ is derived

wild;
(d) Λ is derived tame if and only if for all m, Cm(proj Λ), is of tame represen-

tation type;
(e) Λ is either derived tame or derived wild (see Bekkert-Drozd [6]).
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Proof. Suppose Λ is derived discrete; then by [20] Λ is derived hereditary
of Dynkin type or it is a gentle algebra.

For a Krull-Schmidt category C we denote by ind C the full subcategory of C
whose objects are the indecomposables of C.

If Λ is hereditary of Dynkin type, then C2(proj Λ) is of finite representation
type; for m > 2 we have:

ind Cm(proj Λ) ⊂ ind C2(proj Λ)∪ ind C2(proj Λ)[1]∪ · · · ∪ ind C2(proj Λ)[m− 1]

then ind Cm(proj Λ) has only finitely many isomorphism classes; thus it is of
finite representation type.

If Λ is derived equivalent to a hereditary algebra A of Dynkin type, there
is a bounded complex T over Λ-A-bimodules projective finitely generated over
both sides such that the functor

−⊗L T : Db(Λ) → Db(A)

is an equivalence. Then for m there is an n and an l such that we have a
functor

G(−) = −⊗Λ T [l] : Cm(proj Λ) → Cm+n(projA)
with the following property: if Y and X are indecomposables in Cm(proj Λ)
which are not E-injectives or E-projectives then their images under G are also
indecomposables and G(Y ) ∼= G(X) implies Y ∼= X. Here Cm+n(projA) is of
finite representation type; then also Cm(proj Λ) is of finite representation type.

Now suppose that Λ is a gentle algebra k(Q, I). Then from the description of
the objects in K−,b(proj Λ) in [7] one can see that if there are generalized strings
in Q of arbitrary size corresponding to complexes in Cm(proj Λ) for some fixed
m, then there are generalized bands, but this implies that Λ is not derived
discrete, therefore for any m, Cm(proj Λ) is of finite representation type.

Conversely assume Cm(proj Λ) is of finite representation type for all m.
Take h = (hi) a homology dimension; we may assume hi = 0 for i outside

the set {2, . . . ,m}. Take d = |h|(mL + (m − 1)L2 + · · · + 2Lm−1 + Lm), then
by Lemma (2.3), V(h) ⊂ Vd. The categories Vd, Ud and Fd are equivalent, by
assumption Fd has only a finite number of isoclasses, and the same is true for
V(h). Therefore Λ is derived discrete.

The part (b) is proved in Theorem 5.2 of [13].
(c) Suppose that Cm(proj Λ) is of wild representation type. Then there is a

bounded complex W of Λ-k〈x, y〉-bimodules free of finite rank over the right
side, projectives as Λ-modules, withW i = 0 for i outside the set {1, . . . ,m} and
Imdi−1

W ⊂ radΛW i, such that the functorW⊗k〈x,y〉− : mod k〈x, y〉 → Cm(proj Λ)
preserves iso-classes and indecomposables. The composition of this functor
with the composition Cm(proj Λ) → K−,b(proj Λ) → Db(Λ) also preserves iso-
classes and indecomposables, consequently Λ is derived wild.

(d) Suppose Λ is derived tame. Then if for some m, Cm(proj Λ) is of wild
representation type and then by (c), Λ is derived wild, which contradicts (b).
Therefore for all m, Cm(proj Λ) is not of wild representation type, but this
implies, by Theorem (1.1) that for all m, Cm(proj Λ) is of tame representation
type.

Conversely assume that for all m, Cm(proj Λ) is of tame representation
type. Let h be a fixed homology dimension; as before we may assume that
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if h = (hi), we have hi = 0 for i outside the set {1, . . . ,m}. Take d =
|h|(mL + (m − 1)L2 + · · · + 2Lm−1 + Lm), so V(h) ⊂ Vd. Therefore there
are rational algebras Ru, u = 1, . . . , s and for each u a bounded complex Mu

over the Λ-Ru-bimodules free of finite rank over the right side with M i
u = 0 for

i outside the set {1, . . . ,m} such that for almost all isomorphism class [X] in
Fd there is a u and λ ∈ S(Ru) with X ∼= Mu ⊗Ru

Sλ.
We may assume that for all u and i, Im di−1

Mu
and Ker diMu

are direct sum-
mands of M i

u as right Ru-modules. Then for each u, Wu = τ≥1Mu is a bounded
complex over the Λ-Ru-bimodules which are free of finite rank over the right
side.

Take Y ∈ V(h). Then there is a P ∈ Ud with a quasi-isomorphism q : P → Y ,
such that τ≥1P ∼= Y in Db(Λ).

Clearly τ≥1P = τ≥1F (P ), F (P ) ∈ Fd. Therefore F (P ) ∼= Mu ⊗Ru
Sλ for some

u and some λ ∈ S(Ru). Thus

Y ∼= τ≥1P = τ≥1F (P ) ∼= τ≥1(Mu ⊗Ru
Sλ) ∼= τ≥1(Mu)⊗Ru

Sλ = Wu ⊗Ru
Sλ,

consequently Λ is derived tame.
(e) Suppose Λ is not derived wild. Then by (c) for all m, Cm(proj Λ) is not of

wild representation type, so by Theorem (1.1), for all m, Cm(proj Λ) is of tame
representation type. Therefore by (d), Λ is derived tame.

Theorem (2.5). Let Λ be a derived tame algebra and h = (hi) be a fixed
homology dimension such that for n0, hn0 6= 0 and hi = 0 for i < n0. Then
for almost all isomorphism class of indecomposable complexes X ∈ Db(Λ) with
hdimX = h, X is a perfect complex and there is an Auslander-Reiten triangle
of the form

X → H → X → X[1].
Moreover Xi = 0 for i < n0 − 1 and dn0−1

X : Xn0−1 → Xn0 is a monomorphism.

Proof. After a shifting we may assume hi = 0 for i ≤ 1 and i > n,
h2 6= 0. By U (h) we denote the full subcategory of K≤n,b(proj Λ) whose
objects are quasi-isomorphic to complexes X ∈ V(h). The categories U (h) and
V(h) are equivalent. We shall see that for almost all isomorphism classes of
objects P in U (h), P is a finite complex. If P ∈ U (h) then hdimP = h, thus
dimkH

1(P ) = h1 = 0, therefore U (h) ⊂ Ln.
Recall that we have an equivalence F : Ln → Cn(proj Λ).
Denote by F (h) the full subcategory of Cn(proj Λ) whose objects are isomor-

phic to some F (P ) with P ∈ U (h). The categories U (h) and F (h) are equivalent
categories. By Lemma (2.3), F (h) ⊂ Fd for d = |h|(nL + (n − 1)L2 + · · · +
2Ln−1 + Ln).

For our purposes it is convenient consider F (h)[−1] as a full subcategory of
Cm(proj Λ) with m = n + 3. If Y ∈ F (h)[−1], then Y 1 = 0, Y n+2 = 0, Y n+3 = 0
and dimkY ≤ d.

By (d) of Theorem (2.4), Cm(proj Λ) is of tame representation type. Then
by Theorem (1.3), for almost all isomorphism classes [Y ] with Y ∈ Cm(proj Λ)
there is an almost split sequence

Y → E → Y

in Cm(proj Λ).
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Following the notation of [3] we recall that A(Y ) ∼= Y . In order to calculate
A(Y ) we take Z = ν(Y )[−1] and a quasi-isomorphism q : Q→ τ≤mZ, with Q ∈
C≤m,b(proj Λ). Then A(Y ) ∼= F (Q). Moreover by [16] there is an Auslander-
Reiten triangle in Db(Λ):

Z → G→ Y → Z[1].

We have Zm = Zn+3 = ν(Y n+2) = 0, therefore τ≤mZ = Z.
Here Z is indecomposable, then Q is an indecomposable complex in the

category K≤m,b(proj Λ), and we may choose Q an indecomposable object in the
category C≤m,b(proj Λ) with Qm = 0, here Zm = 0.

We have F (Q) ∼= A(Y ) ∼= Y in Cm(proj Λ), thus, Q1 ∼= Y 1 = 0. Here Q
is indecomposable, which implies that Qi = 0 for i ≤ 1. Moreover Z2 =
ν(Y 1) = 0, so H2(Q) ∼= H2(Z) = 0. Therefore the morphism d2

Q : Q2 → Q3 is a
monomorphism and Q ∼= Y , and Z ∼= Q ∼= Y in Db(Λ).

Thus we have an Auslander-Reiten triangle in Db(Λ):

(∗) Y → G→ Y → Y [1].

Now Y [1] ∈ F (h), so Y [1] ∼= F (P ) with P ∈ U (h). Therefore P 1 ∼= Y 2 ∼=
Q2, P 2 ∼= Y 3 ∼= Q3. The morphism d2

Q : Q2 → Q3 is isomorphic to the morphism
d1
P : P 1 → P 2, thus this last morphism is a monomorphism.

Here h1 = dimk(Kerd1
P/Imd0

P ) = 0, then Imd0
P = Kerd1

P = 0, consequently
d0
P = 0. But P is indecomposable, therefore P i = 0 for i ≤ 0. Consequently

P = F (P ) ∼= Y [−1]. Thus applying the equivalence [−1] to (∗) we obtain our
result.

Corollary (2.6). Suppose Λ is selfinjective. Then either it is derived discrete
or derived wild.

Proof. Suppose Λ is neither derived discrete nor derived wild. Then there
are infinitely many isomorphism classes in V(h) for some homology dimension
h. Therefore there is an indecomposable X in Db(Λ) with an Auslander-
triangle of the form X → H → X → X[1] with X an indecomposable object in
C1

m(proj Λ) and d1
X : X1 → X2 a radical morphism which is a monomorphism;

since X1 is injective, this is not possible.

Corollary (2.7). Let Λ be derived tame. Then for a fixed homology dimen-
sion h, for almost all isomorphism classes [X] withX ∈ Db(Λ) a perfect complex
and hdimkX = h, X is isomorphic to a finite complex of finitely generated in-
jective Λ-modules.

Remark. Observe that gentle algebras are Gorenstein and in this case all
finite complexes of finitely generated projective Λ modules are also isomorphic
to finite complexes of finitely generated injective Λ-modules (see [14]).

Corollary (2.8). Let Λ be a derived tame algebra. Suppose P is a bounded
complex of Λ-R-bimodules projective over Λ and free of finite rank over R,
a rational algebra, such that for all λ ∈ S(R), P ⊗R Sλ is indecomposable
in Db(Λ), and for λ 6= µ ∈ S(R), P ⊗R Sλ � P ⊗R Sµ in Db(Λ). Then if
hdimk(x)P ⊗R k(x) = h = (hi) is such that hn0 6= 0 and hj = 0 for j < n0,
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we obtain that the morphism dn0−1
P ⊗ 1: Pn0−1 ⊗R k(x) → Pn0 ⊗R k(x) is a

monomorphism.

Proof. We may assume that for all λ ∈ S(R), all Ker di are direct summands
of P i as rightR-modules. Thus hdimP⊗RSλ = h for all λ ∈ S(R). By Theorem
(2.5), we may also assume that for all λ ∈ S(R), P i ⊗ Sλ = 0 for i < n0 − 1 and
Ker(dn0−1⊗1: Pn0−1⊗Sλ → Pn0 ⊗Sλ) = 0. But this implies our assertion.

Corollary (2.9). Let Λ be a derived tame algebra. Then for any fixed non-
negative integer d, almost all isomorphism classes of indecomposable modules
[M] with dimkM = d have projective dimension one.

Proof. For M indecomposable with dimkM = d, take

· · · → P−3
M

d−3
M→ P−2

M

d−2
M→ P−1

M

d−1
M→ P 0

M
η→M → 0

a minimal projective resolution of M . Consider PM = (P j
M , d

j
M ) with P j

M = 0,
for j > 0 and djM = 0 for j ≥ 0. Then for hdimM = (hi), we have h0 = d, hj = 0
for j < 0. Therefore by Theorem (2.5) for almost all isomorphism classes [M],
P j
M = 0 for j < −1. This proves our claim.

3. Bocses

A tbocs is a triple A = (R,W, δ), where R is a k-algebra (k is a field), W is
an R-bimodule such that W = W0 ⊕W1 as R bimodules. The elements of Wi

are called homogeneous of degree i, i ∈ {0, 1}. For w ∈ Wi, we put deg(w) = i.
Take now the tensor algebra

TR(W ) = R ⊕W ⊕W⊗2
⊕ · · ·

with the graduation induced by that of W . The R-module generated by the set
of homogeneous elements in TR(W ) of degree i is denoted by TR(W )i. Then δ is
an R-bimodule endomorphism of TR(W ) such that

i) δ(TR(W )i) ⊂ TR(W )i+1;
ii) For a, b homogeneous elements of TR(W )

δ(ab) = δ(a)b + (−1)degaaδ(b) (Leibnitz rule);

iii) δ2 = 0.
The set of all elements of degree zero, TR(W )0 is a k-algebra, denoted by

A(A). This algebra is identified with TR(W0). The set of all elements of degree
one TR(W )1 is an A(A)-bimodule, which can be identified with A(A)⊗RW1 ⊗R

A(A), and denoted by V (A). Thus TR(W ) is a differential graded algebra with
differential δ. For v1, v2 in TR(W ) we denote its product by v1v2, in particular
if the above elements are in W , v1v2 = v1 ⊗ v2.

Let A = (R,W, δ) be a tbocs. The category of representations of A, RepA is
defined as follows:

The objects of Rep(A) are the left A(A)-modules.
Given twoA(A)-modulesM andN , a morphism f : M → N in RepA is given

by a pair f = (f 0, f 1), where

f 0 ∈ HomR(M,N), f 1 ∈ HomA(A),A(A)(V (A),Homk(M,N))
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such that for all a ∈ A(A),m ∈M ,

af 0(m) = f 0(am) + f 1(δ(a))(m).

Observe that the pair (f 0, 0) is a morphism in RepA iff f 0 is a morphism of
A(A)-modules.

Now if f = (f 0, f 1) : M → N and g = (g0, g1) : N → L are morphisms in
RepA, the pair given by (g0f 0, (gf )1)) with

(gf )1(v) = g1(v)f 0 + g0f 1(v) +
l∑

i=1

g1(v1
i )f

1(v2
i )

for δ(v) =
∑l

i=1 v
1
i v

2
i , v

1
i , v

2
i ∈ V (A), is again a morphism. The composition of f

and g is defined by gf = (g0f 0, (gf )1).
Using the properties of δ one can see that RepA is a category. The identity

morphism of M ∈ RepA is given by the pair idM = (idM , 0).
For a tbocs A = (R,W, δ) we have a functor

IA : ModA(A) → RepA

which is the identity on objects and for morphismsu : M → N ofA(A)-modules,
we have IA(u) = (u, 0).

Let R be a k-algebra and 1 =
∑n

i=1 ei a decomposition into central primitive
orthogonal idempotents. We consider the k-subalgebra of R, R0 =

∑n
i=1 eik.

The k-algebra R0 is a basic semisimple finite dimensional k-algebra.
Throughout this paper if A = (R,W, δ) is a tbocs we assume that W is a

finitely generated R-bimodule.

Definition (3.1). LetW be anR-bimodule. AnR0-subimodule W̃ ofW is said
to be anR0-free generator ofW if any morphism ofR0-bimodules u : W̃ → V , V
aS-bimodule, has a unique extension to a morphism ofR-bimodules v : W → V .
In this case we say that W is an R0-free R-bimodule.

It is easy to see that W̃ is a R0-free generator of W iff the morphism

ρ : R ⊗R0 W̃ ⊗R0 R → W given by ρ(s⊗ w⊗ s1) = sws1

is an isomorphism. On the other hand if σ : R ⊗R0 W̃ ⊗R0 R → W is an
isomorphism σ(W̃ ) is an R0-free generator of W .

Definition (3.2). A tbocs A = (R,W, δ) is called R0-free triangular if the
following conditions are satisfied:

T.1 There is a filtration of R-bimodules {0} = W 0
0 ⊂ · · · ⊂ W r

0 = W0 such
that for i ≥ 1 δ(W i

0) ⊂ AiW1Ai, where Ai is the R-subalgebra of A generated
by W i−1

0 .
T.2 There is a filtration of R0-bimodules W̃ 1

0 ⊂ · · · ⊂ W̃ r
0 = W̃0 such that W̃ j

0

is a R0-free generator of W j
0 .

T.3 There is a sequence of subbimodules {0} = W 0
1 ⊂ · · · ⊂ W s

1 = W1 such
that for i ≥ 1 δ(W i

1) ⊂ AW i−1
1 AW i−1

1 A.
T.4 W1 is R0-freely generated by W̃1.
If a tbocs A satisfies T.1, T.3 and T.4, we say that A is weakly triangular.
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Throughout the paper R0-free triangular tbocses are called triangular tboc-
ses. We recall that in the category RepA idempotents split; moreover for
f = (f 0, f 1) : M → N , f is an isomorphism if and only if f 0 is an isomorphism.

Definition (3.3). The k-algebra R is called minimal if there is a decom-
position 1 =

∑
i ei into central primitive orthogonal idempotents, such that

eiR = eik or eiR is a rational k-algebra.

Definition (3.4). The tbocs A = (R,W, δ) is called minimal if R is a minimal
k-algebra and W0 = 0.

If A = (R,W, δ) is a minimal tbocs then A(A) = R,V (A) = W , the space of
morphisms between two objects M,N ∈ RepA is given by all pairs f = (f 0, f 1)
with f 0 ∈ HomR(M,N), f 1 ∈ HomR−R(W,Homk(M,N)).

Lemma (3.5). Suppose A = (R,W, δ) is a triangular minimal tbocs, and
f : M →M a morphism in RepA of the form f = (0, f 1). Then f is nilpotent.

Proof. Take 0 = W 0 ⊂ W 1 ⊂ · · · ⊂ W s = W , the filtration of W = W1

given by condition T.3 of Definition (3.2). Then we have f 2 = (0, (f 2)1) and
(f 2)1(W 1) = 0. In general f r = (0, (f r)1) and (f r)1(W r−1) = 0, therefore f s+1 =
(0, (f s+1)1) and (f s+1)1(W s) = (f s+1)1(W ) = 0. Consequently f s+1 = 0.

Proposition (3.6). Suppose A = (R,W, δ) is a triangular minimal tbocs.
Then an object M ∈ RepA is indecomposable if and only if RM is indecompos-
able.

Proof. If M is indecomposable in RepA, clearly RM is indecomposable.
Suppose now that RM is indecomposable. Take f = (f 0, f 1) an idempotent
element in EndA(M). Then (f 0)2 = f 0, thus f 0 = 0 or f 0 = idM . In the
first case f = (0, f 1), thus f is nilpotent, then since f is also idempotent we
conclude that f = 0. In the second case f is an isomorphism; therefore there
is a g ∈ EndA(M) with fg = gf = idM . Then idM = fg = f 2g = f (fg) = f .
Therefore M is indecomposable in RepA. This proves our result.

For A = (R,W, δ) a minimal tbocs, take 1R =
∑n

i=1 ei a decomposition of 1R
as a sum of central primitive orthogonal idempotents.

Proposition (3.7). Suppose A = (R,W, δ) is a minimal triangular tbocs.
Then if M ∈ RepA is indecomposable there is an ei with eiM = M

Proof. Here R ∼= Re1 × · · · ×Ren, if M is an indecomposable R-module then
eiM = M for some ei. Our result follows from our previous proposition.

4. Reduction Functors

In this section we study full and faithful functors F : RepB → RepA which
have been considered in [2].

LetR be a k-algebra, we recall from [2] that a leftR-moduleX is calledR-RX

admissible ifRX is a k-subalgebra of EndR(X)op such that EndR(X)op = RX⊕R
as RX-bimodules with R an ideal of EndR(X)op, finitely generated projective
as a right RX-module, and X finitely generated projective as a right RX-
module. We have X∗ = HomRX

(XRX
, RX) which is a RX-R-bimodule and
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R∗ = HomRX
(RRX

, RX), a RX-bimodule. Take dual bases {pj , γj} for R and
{xi, ui} for X as right RX-modules.

We have morphisms

e : X → X ⊗RX
R∗, a : X∗ → R∗ ⊗RX

X∗

such that for u ∈ X∗, x ∈ X, we have

e(x) = −
∑
j

pj(x)⊗ γj , a(u) =
∑
i,j

u(pj(xi))γj ⊗ ui.

Let A = (R,W, δ) be a tbocs and X an R-RX admissible left R-module.
Consider the RX-bimodules (WX)0 = X∗ ⊗RX

W0 ⊗RX
X, (WX)1 = (X∗ ⊗RX

W1 ⊗RX
X)⊕R∗.

For u ∈ X∗ and v ∈ X we have k-linear maps

φ0
u,v : R → RX,

for n ≥ 1:
φnu,v : W⊗n

→ TRX
(WX)

given by φ0
u,v(r) = u(rv), φnu,v(w1 ⊗ w2 ⊗ · · · ⊗ wn) =∑

i1,i2,...,in−1
u⊗ w1 ⊗ xi1 ⊗ ui1 ⊗ w2 ⊗ xi2 ⊗ ui2 ⊗ · · · ⊗ xin−1 ⊗ uin−1 ⊗ wn ⊗ v.

These morphisms determine a k-linear map

φu,v : TR(W ) → TRX
(WX),

such that for λ1, λ2 ∈ TR(W ) we have φu,v(λ1λ2) =
∑

i φu,xi (λ1)φui,v(λ2). For
u ∈ X∗, v ∈ X we put for λ ∈ TR(W ), φa(u),v(λ) =

∑
i,j u(pj(xi))γjφui,v(λ) and

φu,e(v)(λ) = −
∑

j φu,pj (x)(λ)γj .
There is a differential δX in TRX

(WX) with δ2
X = 0, and such that for any t a

homogeneous element in TR(W )1 = W ⊕W⊗2 ⊕ · · · and u ∈ X∗, v ∈ X

(*) δX(φu,v(t)) = φa(u),v(t) + φu,v(δ(t)) + (−1)degtφu,e(v)(t) .

For r ∈ R, u ∈ X∗, v ∈ X, we have

φa(u),v(r) + φu,e(v)(r) =
∑
i,j

u(pj(xi))γjui(rv)−
∑
j

u(rpj(v))γj

=
∑
i,j

u(pj(xiui(rv)γj −
∑
j

u(pj(rv)γj = 0.

Thus the equality (∗) holds also for r ∈ R and consequently for any t ∈ A(A).
We have a tbocs AX = (RX,WX, δX) and a functor FX : RepAX → RepA,

such that for M ∈ RepAX, FX(M) = X ⊗RX
M as R-modules and for w ∈ W0,

w(x⊗m) =
∑

i xi ⊗ φui,x(w)m. For f = (f 0, f 1) : M → N a morphism in RepA,
FX(f ) is given for x ⊗m ∈ X ⊗RX

M,w ∈ W1 by

FX(f )0(x ⊗m) = x ⊗ f 0(m) +
∑
j

pj(x)⊗ f 1(γj)(m)(M.1)

FX(f )1(w)(x ⊗m) =
∑
i

f 1(ui ⊗ w⊗ x)(m).(M.2)
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Remark (4.1). We recall from Proposition 5.3 of [2] that an object L ∈ RepA
is isomorphic to some FX(M) iff RL ∼= X ⊗RX

L′ as R-modules for some RX-
module L′.

Observe that, in the above, if γ is an element of degree 0 in TR(W ) then we
have γx ⊗m =

∑
i xi ⊗ φui,x(γ)m.

On the other hand if (f, 0) : M → N is a morphism in RepAX, from (M.1)
and (M.2) we obtain FX((f, 0)) = (idX ⊗ f, 0). Consequently FX induces
a functor FX

0 : ModA(AX) → ModA(A) such that FXIAX
∼= IAFX

0 . Here
RF

X
0 (M) ∼= X ⊗RX

M , so FX
0 is a right exact functor which commutes with

arbitrary direct sums. Therefore we have FX
0
∼= Y ⊗A(AX) − with Y the A(A)-

A(AX)-bimodule FX
0 (A(AX)). Thus RY ∼= X ⊗RX

A(AX) which is a finitely
generated projective rightA(AX)-module. Thus Y is anA(A)-A(AX)-bimodule,
finitely generated projective on the right side.

Suppose now thatφ : R → R′ is an epimorphism in the category of rings. We
suppose that 1R =

∑n
i=1 ei is a decomposition into central primitive orthogonal

idempotents and that if {f1, . . . , ft} is the set of those φ(ei) 6= 0, then 1R′ =∑t
j=1 fj is a decomposition into central primitive orthogonal idempotents. Let

Z = ⊕l
i=1Zi be a finite direct sum of pairwise non isomorphic indecomposable

R-modules Zi having finite dimension over k. Moreover we suppose that for
any H in ModR′, HomR(Z,H) = 0 and HomR(H,Z) = 0.

We have EndR(Z)op = SZ ⊕ R, where R = radEndR(Z)op and SZ is the
k-subalgebra of EndR(Z)op generated by the idempotents e(Zi) given by the
composition of the projection of Z on Zi with the inclusion of Zi in Z.

Take the R-module X = Z ⊕R′, then

EndR(X)op = RX ⊕R
with RX

∼= SZ ×R′. Clearly X is an admissible R-RX-bimodule.
By Lemma 6.2, Lemma 6.3, Lemma 6.4 and Theorem 6.5 of [2] the functor

FX : RepAX → RepA is a full and faithful functor.

Proposition (4.2). SupposeA = (R,W, δ) is a weak triangular tbocs and X
as above, then AX = (RX,WX; δX) is a weak triangular tbocs.

Proof. We first consider condition T.4 of Definition (3.2). Then if we denote
by R0 the k-subalgebra of R generated by all the idempotents ei, we have

W1
∼= R ⊗R0 Ŵ1 ⊗R0 R

for some finitely generated R0-bimodules Ŵ1. We have for 1X the identity of
the k-algebraRX the following decomposition into central primitive orthogonal
idempotents:

1X =
∑
i

e(Zi) +
∑
j

fj .

We denote by (RX)0 the k-subalgebra of RX generated by all idempotents e(Zi)
and fj . We have (RX)0 = SZ × φ(R0). We have the R0-(RX)0-bimodule

UX = Z ⊕ φ(R0),

and the (RX)0-R0-bimodule

U ′
X = Z∗ ⊕ φ(R0).
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We obtain that

X∗ ⊗R W1 ⊗R X ∼= RX ⊗(RX)0 (U ′
X ⊗R0 Ŵ1 ⊗R0 UX)⊗(RX)0 RX.

Therefore we have

WX = X∗ ⊗R W1 ⊗R X ⊕R∗ ∼= RX ⊗(RX)0 ŴX ⊗(RX)0 RX,

with ŴX = U ′
X ⊗R0 Ŵ1 ⊗R0 UX ⊕R∗. Clearly ŴX is a finitely generated (RX)0-

bimodule, this proves that the tbocs AX holds property T.4.
For proving conditions T.1 and T.3 consider L the natural number such that

RL = 0, but RL−1 6= 0.
For 1 ≤ j ≤ L we put Xj = XRL−j , and (X∗)j = {h ∈ X∗|h(XL−j) = 0}.

Take W 0
0 ⊂ · · · ⊂ W r0

0 = W0 and (W1)0 ⊂ · · · ⊂ W r1
1 = W1 the corresponding

filtrations given by the triangularity of A.
We denote by Bs(i, v, j) the RX-subbimodule of X∗ ⊗R Ws ⊗R X, generated

by the elements of the form f ⊗ w⊗ x with f ∈ (X∗)i, w ∈ W v
s , x ∈ Xj .

We define

(WX)m0 =
∑

i+2lv+j≤m

B0(i, v, j),

(WX)m+l
1 =

∑
i+2lv+j≤m

B1(i, v, j)⊕R∗,

(WX)i1 = R∗
i for i ≤ l.

As in Theorem 8.8 of [2] one can see that AX = (RX,WX, δX) is a weak
triangular tbocs with filtrations

0 = (WX)0
0 ⊂ · · · ⊂ (WX)2l(1+r0)

0 = (WX)0

0 = (WX)0
1 ⊂ · · · ⊂ (WX)2l(1+r1)+l

1 = (WX)1.

In the rest of this section we describe a very useful reduction functor intro-
duced originally in [8]. For this, let A = (R,W, δ) be a tbocs with R a minimal
k-algebra. Suppose 1 =

∑n
i=1 ei is a decomposition into central primitive or-

thogonal idempotents, and eiR = k[x, fi(x)−1] for i = 1, . . . , t, ejR = ejk for
j = t + 1, . . . , n.

Now fix a natural number d and elements g1, . . . , gt ∈ k[x], with (gi, fi(x)) =
1 for i = 1, . . . , t.

For p a monic irreducible factor of gi, 1 ≤ i ≤ t we put Zi(p) = eiR/(p)
⊕ · · · ⊕ eiR/(pd). For 1 ≤ i ≤ t we put Zi = ⊕p∈I(gi)Zi(p), where I(gi) is the set
of monic irreducible factors of gi. For i = t + 1, . . . , n we put Zi = eiR = eik.

We consider R′ = (e1R)g1 × · · · × (etR)gt , with (eiR)gi = k[x, fi(x)−1, gi(x)−1].
Clearly we have an epimorphism in the category of rings R → R′ and
HomR(Z,H) = 0, HomR(H,Z) = 0 for any H ∈ ModR′. Take X = Z ⊕ R′,
with Z = ⊕n

i=1Zi, the decomposition of Z into the direct sum of indecompos-
able R-modules of the form (eiR)/(pu) with 1 ≤ i ≤ t and eiR with i > t, and
the decomposition of R′ into the direct sum of R-modules of the form (eiR)gi ,
with 1 ≤ i ≤ t, gives a decomposition of X into the direct sum of R-modules
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Xj . For each Xj we have the idempotent e(Xj) which is the composition of the
projection of X on Xj with the corresponding canonical inclusion in X.

For 1 ≤ i ≤ t and 1 ≤ u ≤ d we put eui (p) = e((eiR)/(pu)), for p monic
irreducible factor of gi, and e0

i = e((eiR)gi ). For t+1 ≤ i ≤ n we put ei = e(eiR).
We have for Z = ⊕n

i=1Zi, EndR(Z)op = SZ ⊕R where SZ is the k-subalgebra
of EndR(Z)op generated by the idempotents e(Zi), 1 ≤ i ≤ n and R =
radEndR(Z)op.

Then EndR(X)op = RX ⊕ R, where RX = SZ × R′. Clearly X is a R-RX

admissible R-module. Then we have a full and faithful functor

FX : RepAX → RepA,

with AX = (RX,WX, δX).
The identity 1X ofRX has the following decomposition into central primitive

orthogonal idempotents:

1X =
t∑

i=1

e0
i +

t∑
i=1

∑
p∈I(gi)

d∑
u=1

eui (p) +
t+n∑
i=t+1

ei.

We have e0
iRX = (eiR)gi for 1 ≤ i ≤ t; eui (p)RX = keui (p) for 1 ≤ i ≤ t;

eiRX = kei, for t + 1 ≤ i ≤ t + n. Therefore RX is a minimal k-algebra.
We recall that (WX)0 = X∗ ⊗R W0 ⊗R X. For 1 ≤ i, j ≤ t we have
(1) e0

i (WX)0e0
j = (eiR)gi ⊗R eiW0ej ⊗R (ejR)gj ;

(2) e0
i (WX)0euj (p) = (eiR)gi ⊗R eiWoej ⊗R (ejR)/(pu);

(3) eui (p)(WX)0e0
j = (eiR)/(pu))∗ ⊗R eiWoej ⊗R (ejR)gj ;

(4) eui (p)(WX)0evj(q) = (eiR)/(pu))∗ ⊗R eiWoej ⊗R (ejR)/(qv).
For 1 ≤ i ≤ t; t + 1 ≤ j ≤ t + n we have
(5) e0

i (WX)0ej
∼= (eiR)gi ⊗R eiW0ej ;

(6) ej(WX)0)e0
i
∼= ejW0ei ⊗R (eiR)gi ;

(7) eui (p)(WX)0)ej ∼= (eiR/(pu))∗ ⊗R eiW0ej ;
(8) ej(WX)0)eui (p) ∼= ejW0ei ⊗R (eiR/(pu).
Finally for t + 1 ≤ i, j ≤ n we obtain
(9) ei(WX)0ej

∼= eiW0ej .
The reduction functor FX : RepAX → RepA will be called a (d, g1, . . . , gt)-

unravelling.

Definition (4.3). For A = (R,W, δ) a tbocs, an object M ∈ RepA is an R-
E-bimodule with E = EndA(M)op and the right action of E on M given by
m.f = f 0(m) for m ∈ M, f = (f 0, f 1) ∈ E. Then M is called endofinite if the
length of M as right E-module is finite; we denote by endolM the length of M
as right E-module.

Suppose now that M is an endofinite object in RepA. Then if 1 =
∑

i ei
is a decomposition into central primitive orthogonal idempotents of R, each
eiM is a R-E-bimodule and M = ⊕ieiM as R-E-bimodules, thus endolM =∑

i lengthE(eiME).
Assume that eiR = Ri = k[x, h−1], then E ⊂ EndRi

(eiM) = Ei. Therefore,
lengthEi

(eiM) ≤ lengthE(eiM). Thus ifM is endofinite, eiM is an endofiniteRi-
module. Consequently eiMRi

∼=
∑

j∈J Lj withLj an indecomposableRi-module
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and in the set {Lj} there are only a finite number of isomorphism classes. The
only endofinite indecomposables Ri-modules are k(x) and k[x]/(x − λ)m with
λ ∈ S(Ri), here m ≤ endolM .

Lemma (4.4). IfFX : RepAX → RepA is a (d, g1, . . . , gt) unravelling, for each
endofinite objectN ∈ RepAwith endolN ≤ d, there is aM ∈ RepAX endofinite
with endolM ≤ endolN and F (M) ∼= N .

Proof. From the above considerations it follows that for N ∈ RepA with
endolN ≤ d, RN ∼= X ⊗RX

Z, for some RX-module Z, then there is an
M ∈ RepAX with F (M) ∼= N . We will assume that F (M) = N . Take
EM = EndAX (M)op and EN = EndA(N)op. There is an isomorphism of k-
algebras φ : EM → EN induced by the functor FX. Take R = radEndR(X)op

and an integer l with Rl = 0.
We have a filtration F of R-modules of X ⊗RX

M = N :

Nl−1 = Rl−1X ⊗RX
M ⊂ · · · ⊂ N1 = RX ⊗RX

M ⊂ N0 = X ⊗RX
M .

Clearly F is a filtration of R-modules. The ring EM also acts on N by (x ⊗
n)f = x ⊗ nf = x ⊗ f 0(n) for f = (f 0, f 1) ∈ EN . The filtration F is also
a filtration of R-EN -bimodules. Now observe that for n ∈ Nl−1, f ∈ EN , we
have nf = nφ(f ). The same happen for n ∈ Ni/Ni+1 for i = 0, . . . , l − 2.
Then the EN -length of N is equal to the length of N as EM -module. Now
we recall that there is a decomposition X = ⊕s

i=1Xi with the Xi pairwise
non isomorphic indecomposables. Take fi the composition of the projection
on the i-th summand followed of the corresponding injection. Then we have
1X =

∑s
i=1 fi a decomposition into central primitive orthogonal idempotents,

Xfi = Xi. Here we have that X is a finitely generated projective right RX-
module, so each Xi is a projective RX-module, then Xi

∼= nifiRX and ni 6= 0.
Therefore

endolN = lengthEM
N = lengthEM

X ⊗RX
M =

s∑
i=1

lengthEM
nifiM

≥
s∑
i=1

lengthEM
fiM = lengthEM

M = endolM.

This proves our claim.

Definition (4.5). Let R be a minimal k-algebra. Suppose 1 =
∑n

i=1 ei is
a decomposition into central primitive orthogonal idempotents, and eiR =
k[x, f−1

i ] for i = 1, .., t, ejR = k for j = t + 1, . . . , n, we say that U an R-
bimodule is thin if eiUej = 0 for i ≤ t and j ≤ t. A tbocs A = (R,W, δ) is called
thin if W0 is a thin R-bimodule.

Observe that taking into account the above relations 1-9, ifA is a thin tbocs,
and FX : RepAX → RepA is a (d, g1, . . . , gt)-unravelling, thenAX is also a thin
tbocs.

In the following if R is a minimal k-algebra and 1 =
∑n

i=1 ei is a de-
composition into central primitive orthogonal idempotents, we denote by S
the k-subalgebra of R generated by all the idempotents ei. Clearly S is a
semisimple k-algebra. We recall that U a R-bimodule is called S- free if
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there is a S-subbimodule Û of U such that the morphism of R-bimodules
µU : R ⊗S Û ⊗S R → U given by µU (r1 ⊗ u⊗ r2) = r1ur2 is an isomorphism.

Lemma (4.6). Suppose U is a thin finitely generated R-bimodule, then U is
S-free if for all 1 ≤ i ≤ t, Uei is free as a right eiR-module and eiU is free as a
left eiR-module.

Proof. Here U is thin. Setting f =
∑n

i=t+1 ei, we have

U = (⊕t
i=1fUei)⊕ (⊕t

i=1eiUf )⊕ fUf

a direct sum of R-bimodules.
We have fUf ∼= R ⊗S fUf ⊗S R as R-bimodules, so fUf is an S-free R-

bimodule.
Now we have fUei = ⊕n

j=t+1ejUei, a direct sum of R-bimodules. The
bimodule U is a quotient of a finite direct sum of copies of R ⊗k R, so for
j ≥ t + 1, ejUei is a quotient of a finite direct sum of copies of ejR ⊗k R. Here
ejR ∼= k, then ejUei is a finitely generated eiR-module, consequently it is a
free module of finite rank over Rei. Consequently ejUei ∼= V ⊗k Rei for some
k-vector space V .

For 1 ≤ u ≤ n consider the morphisms φu : S → keu → k. Then the
morphisms φj and φi induce an structure of S-bimodule on V . We have

ejUei ∼= R ⊗S V ⊗S R

asR-bimodules, consequently each ejUei is an S-freeR-bimodule. In a similar
way one can see that eiUej with 1 ≤ i ≤ t is an S-free R-bimodule. This proves
our claim.

Definition (4.7). Let U be an R-bimodule, a filtration U1 ⊂ · · · ⊂ Ur = U is
called an S-free filtration if for u = 1, . . . , r there are S-free generators Vu of
Uu such that V 1 ⊂ · · · ⊂ V r.

Lemma (4.8). Let U be a thin finitely generated R-bimodule. Suppose that
for 1 ≤ i ≤ t there are filtrations of R-bimodules U1

i ⊂ · · · ⊂ Ur
i = fUei,

iU
1 ⊂ · · · ⊂i U

r = eiUf , such that for 1 ≤ j ≤ n − 1, iU
j is free as a

left Rei-module and a direct summand of iU
j+1 and Uj

i is free as a right
Rei-module and a direct summand of Uj+1

i . Moreover, assume we have a
filtration of R-bimodules U1

0 ⊂ · · · ⊂ Ur
0 = fUf ; then if for 1 ≤ u ≤ r,

Uu =
∑

i≤t(U
u
i +i U

u) +Uu
0 ,

U1 ⊂ · · · ⊂ Ur = U

is an S-free filtration for U.

Proof. As in the proof of Lemma 4.6 we have for 1 ≤ l ≤ r an isomorphism

ψi,l : iU l → R ⊗S V
l ⊗S R.

For 1 ≤ l ≤ r − 1, iU l is a direct summand of iU
l+1; we may take V l a direct

summand of of V l+1 as S-bimodules. Then taking iÛ
l = (ψi,l)−1(1 ⊗ V l ⊗ 1),

and we have a filtration of S-bimodules

iÛ
l ⊂ · · · ⊂ iÛ

r
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with iÛ
l an S-free generator of iU l. Similarly we have a filtration

Û l
i ⊂ · · · ⊂ Ûr

i

with Û l
i an S-free generator of U l

i . Since fR is a semisimple k-algebra and k is
an algebraically closed field, then the filtration for fUf is an S-free filtration.
Therefore U1 ⊂ · · · ⊂ Ur = U is an S-free filtration.

Proposition (4.9). Let A = (R,W, δ) be a thin weak triangular tbocs. Then
given a natural number d, there is a (d, g1, . . . , gt)- unravelling

FX : RepAX → RepA
such that AX is a thin triangular tbocs.

Proof. Here AX is a thin tbocs. By Proposition (4.2), it is also a weak
triangular tbocs. In order to prove that AX is a triangular tbocs it is enough
to prove that it satisfies condition T.4.

Since A is weak triangular, we have a filtration

0 = W 0
0 ⊂ W 1

0 ⊂ · · · ⊂ W r
0 = W0

satisfying the condition T.1 of Definition (3.2). There are elements g1, . . . , gt
such that for 1 ≤ i ≤ t, 1 ≤ u ≤ r, (eiR)gi ⊗R Wu

0 and Wu
0 ⊗R (eiR)gi are

free left (eiR)gi -modules and free right (eiR)gi -modules respectively, and for
1 ≤ u ≤ r− 1, (eiR)gi ⊗R W

u−1
0 is a direct summand as a left (eiR)gi -module of

(eiR)gi⊗RW
u
0 andWu−1

0 ⊗R (eiR)gi is a direct summand as a right (eiR)gi -module
of Wu

0 ⊗R (eiR)gi . We put Ri = (eiR)gi .
Here W0⊗RRi = fW0ei⊗RRi is an S-Ri-bimodule with S semisimple. Then

as in Lemma (4.6) and Lemma (4.8) there are S-bimodules T̂i such that

W0 ⊗R Ri
∼= ⊕r

u=1T̂u ⊗S Ri

with Wu
0 ⊗R Ri

∼= T̂u ⊕Wu−1
0 ⊗R Ri.

Take the (d, g1, . . . , gt)-unravelling FX : RepAX → RepA with

AX = (RX,WX, δX) .

Here X∗⊗RWX⊗RX is a thin RX-RX-bimodule. We have for i ≤ t, e0
iRX = Ri,

eui (p)RX = eui k and for t + 1 ≤ j ≤ n, ejRX = ejk.
Observe that (X∗ ⊗R W0 ⊗R X)e0

i = X∗ ⊗R W0 ⊗R Ri.
Now X∗ ⊗R W0 ⊗R Ri = X∗f ⊗S fW0 ⊗R Ri. X∗f is an SX-S-bimodule with

both SX and S semisimple. Then

X∗f = ⊕r
u=1X̂

u

with X∗f ∩ (X∗)u = X̂u ⊕X∗f ∩ (X∗)u−1.

(WX)m0 ∼= ⊕u+L(2u+1)≤mX̂
u ⊗ T̂ l ⊗S Ri.

Therefore
X∗ ⊗R W0 ⊗R Ri

∼= ⊕u,lX̂
u ⊗ T̂ l ⊗S Ri.

Now it is clear that

(WX)m0 e
0
i = ⊕u+L(2l+1)≤m ⊕u,l X̂

u ⊗ T̂ l ⊗S Ri.

Thus (WX)m0 e
0
i is a right module of finite rank over RXe

0
i which is a direct

summand of (WX)m+1
0 e0

i . In a similar way one can prove that e0
i (WX)m0 is a free
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left module of finite rank over RXe
0
i which is a direct summand of e0

i (WX)m+1
0 .

Then from Lemma (4.8) we deduce that the filtration

0 = (WX)0
0 ⊂ · · · ⊂ (WX)2l(1+r)

0 = (WX)0

is an SX-free filtration, proving our result.

Proposition (4.10). Let A = (R,W, δ) be a thin free triangular tbocs which
is not of wild representation type. Then given a natural number d, there is a
finite set of full and faithful functors Fi : RepBi → RepA, i = 1, . . . , l, such that

(i) each Bi = (Ri,W
i, δi) is a minimal triangular tbocs;

(ii) forM ∈ RepAwith endolM ≤ d, there is an i ∈ {1, . . . , l} andN ∈ RepBi
with Fi(N) ∼= M ;

(iii) for each i ∈ {1, . . . , l} there is anA(A)-Ri-bimodule Yi, finitely generated
projective over the right side such that

FiIBi
∼= IA(Yi ⊗Ri

−).

Proof. By Proposition (4.9) there is a functorFX : RepAX → RepA, given by
a (d, g1, . . . , gt)-unravelling such that AX is a free triangular tbocs. Moreover
for M with endolM ≤ d there is a N ∈ RepAX with FX(N) ∼= M and
endol(N) ≤ endol(M). Since A is not of wild representation type AX is not
of wild representation type. Therefore by [9] or by Theorem 11.1 of [5] there
is a finite set of full and faithful functors Gi : RepBi → RepAX i ∈ {1, . . . , l}
satisfying conditions (i), (ii) and (iii). Then using Lemma (4.4) and the second
part of Remark 4.1 the full and faithful functors Fi = FXGi : RepBi → RepA,
i ∈ {1, . . . , l} satisfy (i), (ii) and (iii).

Remark (4.11). With the notation of Proposition (4.10) suppose 1R =
∑s

i=1 ei
is a decomposition into central primitive orthogonal idempotents. We consider
D(A) = Qs, for M ∈ repA we put dimM = (dimke1M, . . . ,dimkesM).

For i = 1, . . . , l, Ri is a minimal k-algebra; thus we have a decomposition
of 1Ri

=
∑s(j)

j fi,j with fi,j , j = 1, . . . , s(j) a set of central primitive orthogonal
idempotents.

The functor Fi : RepBi → RepA determines a k-linear map tFi : D(Bi) →
D(A) such that for M ∈ repBi we have dimFi(M) = tFi (dimM).

5. A category of morphisms

Let A = (R,W, δ) be a minimal triangular tbocs. Supose 1R =
∑n

j=1 ej is
a decomposition into central primitive orthogonal idempotents in R. Denote
by R0 the k-subalgebra of R generated by all the idempotents ei. Suppose
that for j = t + 1, . . . , n, ejR = kej , with t < n. Then if e =

∑n
j=t+1 ej ,

eR = Re = eRe = eR0e is a semisimple k-algebra.
From the triangularity condition T.3 of Definition (3.2) we have a filtration

0 ⊂ W 1 ⊂ · · · . ⊂ Wm = W .
From condition T.4 there exists Ŵ a R0-subbimodule of W , such that W ∼=

R ⊗R0 Ŵ ⊗R0 R, for a finitely generated R0-bimodule Ŵ .
We consider the following category of radical morphisms M in RepA.
The objects of M are the radical morphisms φ : X → Y with fX = 0, where

f =
∑t

j=1 ej . The space of morphisms between two objects φ : X → Y and
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φ′ : X′ → Y ′ ofM is given by the pairs of morphisms u = (u1, u2), u1 : X → X′,
u2 : Y → Y ′, morphisms in RepA such that u2φ = φ′u1.

If v = (v1, v2) is a morphism from φ′ : X′ → Y ′ to φ′′ : X′′ → Y ′′, then
vu = (v1u1, v2u2). Observe that if φ : X → Y is a morphism object of M, then
this morphism has the form φ = (0, φ1). In fact, here fX = 0, so we may
assume X = ⊕n

j=t+1mukeu; then if φ0 6= 0, there is an inclusion σu : keu → X

and a projection πu : X → keu with πuφ0σu : keu → keu not zero, so it is an
isomorphism. But this implies that (πu, 0)φ(σu, 0) is an isomorphism in RepA,
which is not the case because φ is a radical morphism.

Clearly M is a category. We shall see that this category is equivalent to the
category of representations of a weak triangular tbocs.

We first describe the morphisms in the category M.
Suppose u = (u1, u2) : φ→ φ′ is a morphism in M with φ = (0, φ1) : X → Y ,

φ′ = (0, (φ′)1) : X′ → Y ′. Here u1 = (u0
1, u

1
1), u2 = (u0

2, u
1
2), u2φ = φ′u1.

For w ∈ W1 = W with δ(w) =
∑

s w
1
s ⊗ w2

s we have:

(φ′)1(w)u0
1 +

∑
s

(φ′)1(w1
s )u

1
1(w2

s ) = u0
2φ

1(w) +
∑
s

u1
1(w1

s )φ
1(w2

s ).

For w ∈ W , x ∈ X,

φ1(wf )(x) = φ1(w)(fx) = 0, therefore φ1(w) = φ1(we).

In a similar way we have (φ′)1(w) = (φ′)1(we). Moreover

u1
1(fw)(x) = fu1

1(w)(x) = 0, u1
1(wf )(x) = u1

1(fx) = 0,

therefore u1
1(w) = u1

1(ewe).
Then for w ∈ W with δ(w) =

∑
s w

1
s ⊗ w2

s , we have

(1) (φ′)1(we)u0
1 − u0

2φ
1(we) =

∑
s

u1
1(w1

s )φ
1(w2

se)−
∑
s

(φ′)1(w1
se)u

1
1(ew2

se).

Now in order to describe the category M in terms of a tbocs we introduce
the following triangular tbocs, B = (S,WB, δB), with

S =
(
R 0
0 eRe

)
, (WB)0 =

(
0 We
0 0

)
, (WB)1 =

(
W 0
0 eWe

)
.

For w ∈ W with δ(w) =
∑

s w
1
s ⊗ w2

s we put

δB

(
0 we
0 0

)
=

∑
s

(
0 w1

s

0 0

)
⊗

(
0 w2

se
0 0

)
−

(
0 w1

se
0 0

)
⊗

(
0 0
0 ew2

se

)
=

∑
s

(
0 w1

s ⊗ w2
se − w1

se ⊗ ew2
se

0 0

)
.

δB

(
w 0
0 0

)
=

(
w1
s 0

0 0

)
⊗

(
w2
s 0

0 0

)
=

∑
s

(
w1
s ⊗ w2

s 0
0 0

)
,

δB

(
0 0
0 ewe

)
=

∑
s

(
0 0
0 ew1

se

)
⊗

(
0 0
0 ew2

se

)
=

∑
s

(
0 0
0 ew1

se ⊗ ew2
se

)
,
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using the Leibnitz rule one can extend δB to a differential δB : TR(W ) → TR(W ).
In order to see that δ2

B = 0, it is enough to prove that for w ∈ W we have

δ2
B

(
0 we
0 0

)
= 0, δ2

B

(
w 0
0 0

)
= 0, δ2

B

(
0 0
0 ewe

)
= 0.

Take w ∈ W with δ(w) =
∑

s w
1
s ⊗ w2

s and δ(w1
s ) =

∑
j w

1,1
s,j ⊗ w1,2

s,j , δ(w2
s ) =∑

j w
2,1
s,j ⊗ w2,2

s,j . From δ2 = 0 we obtain

(2)
∑
s,j

w1,1
s,j ⊗ w1,2

s,j ⊗ w2
s −

∑
s,j

w1
s ⊗ w2,1

s,j ⊗ w2,2
s,j = 0.

Taking δ2
B

(
0 we
0 0

)
=

(
0 u
0 0

)
, we have

u =
∑
s,j

w1,1
s,j ⊗ w1,2

s,j ⊗ w2
se −

∑
s,j

w1
s ⊗ w2,1

s,j ⊗ w2,2
s,j e +

∑
s,j

w1,1
s,j ⊗ w1,2

s,j e ⊗ ew2
se

−
∑
s,j

w1
s ⊗ w2,1

s,j e ⊗ ew2,2
s,j e +

∑
s,j

w1,1
s,j e ⊗ ew1,2

s,j e ⊗ ew2
se

−
∑
s,j

w1
se ⊗ ew2,1

s,j e ⊗ ew2,2
s,j e.

Now taking the projectionsW⊗RW⊗RW⊗RW → W⊗RW⊗RW⊗RWe, given by
w1⊗w2⊗w3 → w1⊗w2⊗w3e, W ⊗RW ⊗RW ⊗RW → W ⊗RW ⊗RWe⊗R eWe
given by w1 ⊗ w2 ⊗ w3 → w1 ⊗ w2e ⊗ ew3e and W ⊗R W ⊗R W ⊗R W →
We ⊗R eWe ⊗R eWe ⊗R eWe given by w1 ⊗ w2 ⊗ w3 → w1e ⊗ ew2e ⊗ ew3e of (2)
we obtain that u = 0.

In a similar way we obtain the second and third equalities.

Proposition (5.1). With the above notation, B = (S,WB, δB) is a thin weak
triangular tbocs.

Proof. We have in S the idempotents η =
(

1R 0
0 0

)
, σ =

(
0 0
0 e

)
, and

the following decomposition into central primitive orthogonal idempotents
of 1S =

∑n
i=1 eiη +

∑n
i=1 eiσ. The k-subalgebra of S generated by all the

idempotents appearing in the above decomposition is

S0 =
(
R0 0
0 eR0e

)
.

We have filtrations {0} ⊂ (WB)1
i ⊂ (WB)2

i ⊂ · · · ⊂ (WB)mi = (WB)i, for
i = 0, 1, with

(WB)i0 =
(

0 W ie
0 0

)
, (WB)i1 =

(
W i 0
0 eW ie

)
.

Then B satisfies conditions T.1 and T.3 of Definition (3.2). Now there is a
R0-subimodule Ŵ of W such that W ∼= R ⊗R0 Ŵ ⊗R0 R. Then we have the
isomorphism eWe ∼= eRe ⊗eR0e eŴe ⊗eR0e eRe, therefore

S ⊗S0

(
Ŵ 0
0 eŴe

)
⊗S0 S

∼=
(
W 0
0 eWe

)
.
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Thus we also have condition T.4 of Definition (3.2). This proves our result.

Theorem (5.2). There exists a functor F : RepB → M which is an equiva-
lence of categories.

Proof. We have A(B) = TS ((WB)0) =
(
R We
0 eRe

)
.

Take V ∈ RepB; here V is an A(B)-module so V = ηV ⊕ σV as k-modules.
Here V2 = ηV is an R-module and V1 = σV is an eRe-module. The action of
A(B) on V induces a morphism of R-modules h : We⊗eRe V1 → V2. Conversely
if V1 is an eRe-module, V2 is an R-module and h : We⊗eReV1 → V2 a morphism
of R-modules, the triple (V1, V2;h) determines an A(B)-module V .

We recall we have an isomorphism

ψ : HomR(We ⊗eRe V1, V2) → HomR-eRe(We,Homk(V1, V2)).

We are now going to define a functor F : RepB →M. Consider an object V
in RepB, given by the triple (V1, V2;h). We define F (V ) = φ = (0, φ1) : V1 → V2

with φ1 = ψ(h)τ ∈ HomR-R(W,Homk(V1, V2)), where τ is the projection of W on
We. Clearly φ is a morphism in A which is an object in M.

Take now a morphism z : V → V ′ in RepB, z = (z0, z1). Here z0 is a
morphism of S-modules from V to V ′, then z0 = (z0

2, z
0
1) with z0

1 : V1 → V ′
1

a morphism of eRe-modules and z0
2 : V2 → V ′

2 a morphism of R-modules. On
the other hand

z1 :
(
W 0
0 eWe

)
→ Homk(V,V ′)

is a morphism of S-bimodules, then z1 = (z1
2, z

1
1) with z1

1 : eWe→ Homk(V1, V ′
1)

a morphism of eRe-bimodules and z1
2 : W → Homk(V2, V ′

2) a morphism of R-
bimodules. Since z : V → V ′ is a morphism in RepB we have for all we ∈ We
with δ(w) =

∑
s w

1
s ⊗ w2

s and v1 ∈ V1, v2 ∈ V2(
0 we
0 0

)
z0

(
v2

v1

)
= z0

(
0 we
0 0

) (
v2

v1

)
+ z1δB

(
0 we
0 0

) (
v2

v1

)
.

Then we obtain:(
h′(w⊗ z0

1(v1))
0

)
= z0

(
h(w⊗ v1)

0

)
+

∑
s

z1
[(

w1
s 0

0 0

)
⊗

(
0 w2

se
0 0

)
−

(
0 w1

se
0 0

)
⊗

(
0 0
0 ew2

se

)](
v2

v1

)
,

from which we obtain the equality

(φ′)1(w)(z0
1(v1)) = z0

2(φ1(w)(v1)) +
∑
s

z1
1(w1

s )(φ
1(w2

s )(v1))

−
∑
s

(φ′)1(w1
se)(z

1
1(ew2

se)(v1)).
(3)

SinceA is a minimal tbocs, u1 = (z0
1, z

1
1ρ) is a morphism from V1 to V ′

1 in RepA,
with ρ : W → eWe the projection given by ρ(w) = ewe.

Moreover u2 = (z0
2, z

1
2) is a morphism from V2 to V ′

2. Then by (3) and (1)
we have that u = (u1, u2) is a morphism from φ = F (V ) to φ′ = F (V ′).
We put F (z) = u. Now it is clear that if F (z) = 0, then z = 0. Thus F is
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a faithful functor, in order to prove that F is also full, take any morphism
u = (u1, u2) : F (V ) = φ → F (V ′) = φ′, with V = (V1, V2, h), V ′ = (V ′

1, V
′
2, h

′),
φ = (0, φ1), φ′ = (0, (φ′)1), with φ1 = ψ(h)τ, (φ′)1 = ψ(h′)τ. We have

u1 = (u0
1, u

1
1) : V1 → V ′

1, u2 = (u0
2, u

1
2) : V2 → V ′

2.

Here u0
1 ∈ HomR(V1, V ′

1), u0
2 ∈ HomR(V2, V ′

2) and u1
1 : W → Homk(V1, V ′

1),
u1

2 : W → Homk(V2, V ′
2) are morphisms of S-bimodules.

We have u1
1(ewe) = u1

1(w), then u1
1 = u1

1ρ with u1
1 : eWe → Homk(V1, V ′

1) a
morphism of eRe-bimodules and ρ : W → eWe given by ρ(w) = ewe.

From φ′u1 = u2φ we deduce the relation (1) for (φ′)1, φ1, u0
1, u0

2 and u1
1.

Consider now the pair of morphisms (u0, u1), with

u0 =
(
u0

2 0
0 u0

1

)
: V = V1 ⊕ V2 → V ′ = V ′

1 ⊕ V ′
2,

u1 =
(
u1

2 0
0 u1

1

)
: W ⊕ eWe→ Homk(V,V ′).

Clearly both u0 and u1 are morphisms of S-bimodules. Here (1) implies (3)
and (3) implies that the pair z = (u0, u1) : V → V ′ is a morphism in RepB. We
have that F (z) = u, therefore F is a full and faithful functor.

Finally we prove that F is a dense functor. Then take φ : V1 → V2 an object
inM. We haveφ = (0, φ1),φ1 : W → Homk(V1, V2) a morphism ofS-bimodules.
We haveφ1(we) = φ1(w), thus there exists a morphismφ1 : We→ Homk(V1, V2)
such that φ1 = φ1τ with τ : W → We given by τ(w) = we.

Take ψ−1(φ1) = h : We ⊗eRe V1 → V2, then V = (V1, V2, h) ∈ RepB and
F (V ) = φ.

6. Main Results

This section is devoted to the proofs of Theorem (1.1) and Theorem (1.3).

Notation (6.1). In the following, for a projective Λ-module P we denote by
S(P ) the complex with S(P )1 = P and S(P )i = 0 for i 6= 1. For h : P → P ′

a morphism of Λ-modules we denote by S(h) : S(P ) → S(P ′) the morphism of
complexes given by S(h)1 = h, S(h)i = 0 for i 6= 1. For n ≥ 1, we consider
the following category Mn of morphisms in C1

n(Proj Λ). The objects of Mn are
radical morphisms f : S(P ) → X in C1

n(Proj Λ) with P an object in Proj Λ andX
any object in C1

n(Proj Λ). The morphisms from f : S(P ) → X to f ′ : S(P ′) → X′

are given by pairs of morphisms u = (u1, u2), u1 : P → P ′, u2 : X → X′

such that u2f = f ′S(u1). If u = (u1, u2) is a morphism from f : S(P ) → X
to f ′ : S(P ′) → X′ and v = (v1, v2) is a morphism from f ′ : S(P ′) → X′ to
f ′′ : S(P ′′) → X′′, then vu = (v1u1, v2u2). The identity morphism of the object
f : S(P ) → X is given by the pair (idP , idX).

Proposition (6.2). There is a functor G : Mn → C1
n+1(Proj Λ) which is an

equivalence of categories.

Proof. Take f : S(P ) → X an object inMn. We have the morphism f 1 : P →
X1, f is a radical morphism, thus Imf 1 ⊂ radX1; moreover f is a morphism
of complexes, so we have d1

Xf
1 = f 2d1

P = 0. Therefore we have the complex
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G(f ) in C1
n+1(Proj Λ) given by G(F )i = 0 for i outside the set {1, . . . , n + 1},

G(f )1 = P , G(f )i+1 = Xi for i = 1, . . . , n, d1
G(f ) = f 1, di+1

G(f ) = diX for i = 1, . . . , n.
Now if u = (u1, u2) is a morphism from f : S(P ) → X to f ′ : S(P ′) → X′, we

define G(u) in the following way: G(u)i = 0 for i outside the set {1, . . . , n+ 1},
G(u)1 = u1 : G(f )1 = P → G(f ′)1 = P ′, G(u)i+1 = ui2 : G(f )i+1 = Xi →
G(f ′)i+1 = (X′)i for i = 1, . . . , n.

We have d1
G(f )G(u)1 = (f ′)1u1 = (u2)1f ′ = G(u)2d1

G(f ). For i = 1, . . . , n we
have di+1

G(f ′)G(u)i+1 = diX′ui2 = ui+1
2 diX = G(u)i+2di+1

G(f ). From here we conclude
that G(u) : G(f ) → G(f ′) is a morphism of complexes, so G(idf ) = idG(f ). Now
if v is a morphism from f ′ : S(P ′) → X′ to f ′′ : S(P ′′) → X′′, G(v)G(u) = G(vu).
Clearly G is a full, faithful dense functor.

Definition (6.3). Take X ∈ Cn(Proj Λ). Then EX = EndCn(Proj Λ)(X) acts by
the left on each Xi. We say that X has finite endolength if each Xi has finite
length as EX-left module. We define endol(X) =

∑
i lengthEX

Xi.

Now suppose P1, . . . , Pm is a representative system of the isomorphism
classes of the indecomposable projective Λ-modules. For H a Λ-module we
put dimH = (dimkHom(P1,M), . . . ,dimkHom(Pm,M)).

For the category Cn(proj Λ) we consider c(Cn(proj Λ)) = Qnm. For X ∈
Cn(proj Λ), we put c(X) = (dim(X1/radX1); . . . ; dim(Xn/radXn)).

If a = (ai,j)1≤i≤n,1≤j≤m ∈ c(Cn(proj Λ)) we put |a| =
∑

1≤i≤n,1≤j≤m |ai,j |.

Definition (6.4). Let C be a k-category and E a k-algebra, a C-E-object is
an object M ∈ C endowed with a homomorphism of k-algebras αM : E →
EndC(M)op. If M and N are C-E-objects, a morphism of C-E-objects from M
to N is a morphism f : M → N in C such that for all r ∈ E, fαM (r) = αN (r)f .
If F : C → D is a functor and M is a C-E-object, then F (M) is a D-E-object,
taking αF (M) the composition E

αM→ EndC(M)op F→ EndD(F (M))op. Clearly if
f : M → N is a morphism of C-E-objects, F (f ) : F (M) → F (N) is a morphism
of D-E-objects.

Example 1.

A Cn(Proj Λ)-E-object is a complex X ∈ Cn(Proj Λ) such that each Xi is a
Λ-E-bimodule and for all i ∈ Z, diX is a morphism of Λ-E-bimodules. If X,Y
are Cn(Proj Λ)-E-objects, a morphism of complexes f : X → Y is a morphism
of Cn(Proj Λ)-E-objects if each f i : Xi → Y i is a morphism of Λ-E-bimodules.

Example 2.

Let B and C be full subcategories of a categoryD. Denote byM the category
of morphisms f : X → Y in D with X ∈ B, Y ∈ C. Then f : X → Y is a
M-E-object if f is a morphism of D-E-objects. Clearly u = (u1, u2) : (f : X →
Y ) → (f ′ : X′ → Y ′) is a morphism of M-E-objects if and only if u1 and u2 are
morphisms of D-E-objects.
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Example 3.

Let A = (R,W, δ) be a tbocs. We say that M is an A-E-bimodule if it is a
RepA-E-object. Then for x ∈ E we have αM (x) = (αM (x)0, αM (x)1). The A-E-
bimodule M is said to be proper if for all x ∈ E, αM (x)1 = 0. In this case M
is an R-E-bimodule with mx = αM (x)0(m). Moreover for a ∈ A(A),m ∈ M ,
(am)x = αM (x)0(am) = aαM (x)0(m) = a(mx), consequently M is an A(A)-
E-bimodule. Clearly if M is an A(A)-E-bimodule then M is a proper A-E-
bimodule.

If f = (f 0, f 1) : M → N is a morphism in RepA with M and N proper
A−E-bimodules, then f is a morphism of A-E-bimodules if and only if f 0 is a
morphism ofR-E-bimodules and for all v ∈ V (A), f 1(v) : M → N is a morphism
of right E-modules.

Theorem (6.5). Assume C1
n(proj Λ) is not of wild representation type. Then

given a natural number d, there is a finite set of full and faithful functors
Fi : RepBi → C1

n(Proj Λ), i = 1, . . . , l, such that
(i) for i = 1, . . . , l, Bi = (Ri,W

i, δi) is a minimal triangular tbocs;
(ii) for i = 1, . . . , l there are complexes Yi with Y j

i Λ-Ri bimodules projective
from both sides and finitely generated over the right side with Fi(N) ∼= Y ⊗Ri

N ;
(iii) for any X ∈ C1

n(Proj Λ) with endol(X) ≤ d, or |c(X)| ≤ d, there is an
i ∈ {1, . . . , l} and a N ∈ RepBi with Fi(N) ∼= X;

(iv) for each i ∈ {1, . . . , l} there is a linear transformation tFi : D(Ai) → Qmn

such that for all N ∈ repAi, c(Fi(N)) = tFi (dimN).

Proof. We prove our claim by induction on n. First we consider the case
n = 1. Clearly C1

1(Proj Λ) ∼= Proj Λ.
Take the tbocsU = (Λ, 0, 0), then RepU = Mod Λ. ConsiderX = P1⊕· · ·⊕Pn,

where P1, . . . , Pn is a representative system of the isomorphism classes of
the indecomposable projective Λ-module. Here EndΛ(X)op ∼= S ⊕ J , with
J = radEndΛ(X)op. We have the tbocs UX = (S,W, δ), where W0 = 0,
W1 = J∗ = HomS (JS , S) and δ is the extension to TS (W ), using Leibnitz
rule, of the comultiplication J∗ → J∗ ⊗S J

∗. There is a full and faithful
functor FX : RepUX → Mod Λ. For M ∈ RepUX, FX(M) = Λ ⊗S M . The
full and faithful functor FX induces an equivalence FX : RepUX → Proj Λ ∼=
C1

1(Proj Λ). Since k is an algebraically closed field, thenS ∼= k×· · ·×k, therefore
UX is a minimal tbocs, thus we have (i). Here X is a Λ-S-bimodule projective
finitely generated on both sides, thus we have (ii). Moreover FX : RepUX →
Proj Λ is an equivalence and then we have (iii).

Take now tFX : D(UX) = Qm → Qm given by the diagonal matrix with diago-
nal elements, dimk(P1/radP1),dimk(P2/radP2), . . . ,dimk(Pm/radPm), then we
have (iv).

Assume now our result proved for n; we will prove it for n + 1. We are as-
suming that C1

n+1(Proj Λ) is not of wild representation type, and this implies
that C1

n(Proj Λ) is not of wild representation type, so by the induction hypoth-
esis for i = 1, . . . , l there are full and faithful functors Fi : RepAi → C1

n(Proj Λ)
withAi = (Ri,W

i, δi) minimal tbocses and complexes Yi of A(Ai)-Ri-bimodules
finitely generated projectives over the right side such that Y j

i = 0 for j out-
side the set {1, . . . , n} and Fi(N) ∼= Yi ⊗Ri

N . Moreover if X ∈ Cn(Proj Λ) and
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endol(X) ≤ d′, or |c(X)| ≤ d, there is an N ∈ RepAi for some i ∈ {1, . . . , l}
with Fi(N) ∼= X.

By (iv) the functors Fi : RepAi → C1
n(Proj Λ) induce linear transformations

tFi : D(Ai) → Qmn, such that for N ∈ repAi, c(Fi(N)) = tFi (dimN).
Take P an indecomposable projective Λ-module and suppose Z(P, i)∈RepAi

is such that Fi(Z(P, i))∼= S(P ). Then tFi (dimZ(P, i)) = (dim(P/radP ); 0; . . . ; 0).
Take fi,j the only primitive central idempotent of Ri such that fi,jZ(P, i) 6= 0.
Then ifRifi,j is not k, there are infinitely many non-isomorphic indecomposable
objects Ts in RepAi such that dimTs = dimZ(P, i). But then applying Fi this
implies that there are infinitely many non-isomorphic indecomposable objects
Fi(Ts) in Cn(Proj Λ) with dimFi(Ts) = (dimP ; 0; . . . ; 0), which is not possible.
Therefore Rifi,j = k. Take now the sum fi of all possible fi,j as before. Then
Rifi is a semisimple k-algebra.

Now for i ∈ {1, . . . , l} takeNi the category of radical morphisms u : Z2 → Z1

in RepAi with fiZ2 = Z2. By Theorem (5.2) there is an equivalence of k-
categories Gi : RepBi → Ni, with Bi = (Si,WBi

, δBi
) a thin weak triangular

tbocs.
Now consider the categoryMn of Definition (6.4). The functor Fi : RepAi →

C1
n(Proj Λ) induces a full and faithful functor F̂i : Ni → Mn, F̂i(u : Z2 →

Z1) = Fi(u) : Fi(Z2) → Fi(Z1). Thus we have the full and faithful functor
GF̂i : Ni → C1

n+1(Proj Λ). Therefore Ni is not of wild representation type,
which implies that Bi is not of wild representation type for 1 ≤ i ≤ l. Then by
Proposition (4.10) there are full and faithful functors Fi,j : RepAi,j → RepBi for
j ∈ {1, . . . , l(i)}withAi,j = (Si,j ,Wi,j , δi,j) a minimal triangular tbocs such that
for all M ∈ RepBi with endol(M) ≤ d or |dimM| ≤ d there is a N ∈ RepAi,j

for some j ∈ {1, . . . , l(i)} with Fi,j(N) ∼= M .
We have the following full and faithful functors:

RepAi,j
Fi,j−→ RepBi

Gi−→ Ni
F̂i−→Mn

G−→ C1
n+1(Proj Λ).

We have the proper Ai,j-Si,j-bimodule Fi,j(Si,j) = Vi,j . Then Vi,j is an A(Ai,j)-
Si,j-bimodule. We recall that

A(Bi) =
(
Ri W ifi
0 fiRifi

)
,

Vi,j = (V 1
i,j , V

2
i,j ;hi,j) with V 1

i,j and V 2
i,j Ri-Si,j-bimodules finitely generated

projectives over the right side. The morphism hi,j : W ifi ⊗Ri
V 2
i,j → V 1

i,j is a
morphism of Ri-Si,j-bimodules. Then V 1

i,j and V 2
i,j are properAi-Si,j-bimodules

andφi,j = (0, φ1
i,j) : V 1

i,j → V 2
i,j withφ1

i,j(w)(x) = hi,j(wfi⊗x) forw ∈ W i, x ∈ V 2
i,j .

Since hi,j is a morphism ofRi-Si,j-bimodules, then φi,j is a morphism ofAi-Si,j-
bimodules.

By definition Gi(Vi,j) = φi,j : V 1
i,j → V 2

i,j , F̂i(Gi(Vi,j)) = Fi(φi,j)×Yi⊗Ri
V 1
i,j →

Yi ⊗Ri
V 2
i,j .

Now fiV
1
i,j = V 1

i,j , then (Yi ⊗Ri
V 1
i,j)

1 = Y 1
i ⊗Ri

V 1
i,j and (Yi ⊗Ri,j

V 1
i,j)

s = 0 for
s 6= 1, (Yi⊗Ri

V 2
i,j)

s = Y s
i ⊗Ri

V 2
i,j for s ∈ Z, Fi(hi,j)1 = ui,j , Fi(hi,j)s = 0 for s 6= 1.
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For Z = GF̂iGiFi,j(Ri,j) we have Zs = 0 for s outside the set {1, . . . , n + 1},
Z1 = Y 1

i ⊗Ri
V 1
i,j , Z2 = Y 1

i ⊗Ri
V 2
i,j , . . . , Zn+1 = Y n

i ⊗Ri
V 2
i,j ; and d1

Z =
ui,j , dsZ = ds−1

Yi
⊗ 1 for s ∈ {2, . . . , n + 1}.

For M ∈ RepAi,j we have GF̂iGiFi,j(M) ∼= Z ⊗Si,j M .
We shall see that the functors Hi,j = GF̂iGiFi,j : RepAi,j → C1

n+1(Proj Λ)
satisfy the conditions (i), (ii), (iii) and (iv). Here Ai,j is a minimal triangular
tbocs, thus we have (i). Now for Z we have that for s ∈ [1, n + 1], Zs is a
Λ-Si,j-bimodule projective on both sides and finitely generated over the right
side, and for M ∈ RepAi,j , Hi,j(M) ∼= Z ⊗Si,j M , thus we have (ii).

For proving (iii) take X ∈ C1
n+1(Proj Λ) with endol(X) ≤ d. Then by

Proposition (6.2), X ∼= G(X2
u→ X1) with X2 = S(P ), X1 ∈ C1

n(Proj Λ).
Consider E = EndCn(Proj Λ)(X)op, X1 and X2 are Cn(Proj Λ)-E-objects and
endol(X) = lengthEX1 + lengthEX2.

Moreover endol(X1) ≤ lengthEX1 and endol(X2) ≤ lengthEX2. Therefore
endol(X1 ⊕X2) ≤ endol(X1) + endol(X2) ≤ d. Then there is an i and N1,N2 ∈
RepAi such that Fi(N1) ∼= X1, Fi(N2) ∼= X2. Since Fi is a full functor, there
is a morphism v = (0, v1) : N1 → N2 such that Fi(v) is isomorphic to u. The
morphism v is an object of Ni. Clearly v is an Ni-E-bimodule with F̂i(v) ∼= u.
Since Gi is an equivalence there is a N ∈ Bi with Gi(N) ∼= v. We may
assumeN = (N1,N2;h), then endol(N) ≤ endol(N1)+endol(N2) = endol(X1)+
endol(X2) ≤ d. Then there is a j and an object M ∈ RepBi,j with Fi,j(M) ∼= N ,
thereforeHi,j(M) ∼= X. In case c(X) ≤ d one proceeds in a similar way, proving
(iii).

Finally for proving (iv), observe that

D(Bi) = D(Ai)⊕D(Ai) ;

denote by πs : D(Bi) → D(Ai) the corresponding projection for s = 1, 2. If V is
an object in repBi, given by the triple (V1, V2;h), then dimV = (dimV1,dimV2).
Then for N ∈ repAi,j , we have

c(Hi,j(N)) = (tFiπ1tFij (dimN); 0) + (0; tFiπ2tFij (dimN)) .

Consequently, there is a linear transformation tHi,j
: D(Ai,j) → Q(n+1)m such

that for all N ∈ repAi,j

c(Hi,j(N)) = tHi,j
(dimN).

The above proves (iv).

Proof of Theorem (1.1). Suppose Cm(proj Λ) is not of wild representation
type, so C1

m(proj Λ) is not of wild representation type. Given a natural number
d if for some X ∈ C1

m(proj Λ), dimkX ≤ d, then |c(X)| ≤ d. By Theorem (6.5),
given a non negative integer d, there is a finite set of full and faithful functors
Fi : RepBi → C1

n(Proj Λ), i = 1, . . . , l with conditions (i), (ii), (iii) and (iv).
Using the notation of Theorem (6.5), for i ∈ {1, . . . , l} we consider Ti the set of
central primitive idempotents fi,j in Ri with fi,jRi 6= kfi,j . For each fi,j ∈ Ti we
have Yfi,j ∈ C1

n(Proj Λ). Each Y ufi,j is a Λ-Rifi,j-bimodule finitely generated
projective as a right Rifi,j-module. Since Rifi,j is a rational k-algebra, Y ufi,j
is free of finite rank as Rifi,j-module. Thus for almost all isomorphism classes
[X] of indecomposable objects in Cm(proj Λ) with dimkX ≤ d, we may assume
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X ∈ C1
m(proj Λ). Therefore for almost all such [X] we haveX ∼= Yi⊗Rifi,jS(λ) for

some λ ∈ k and fi,j ∈ Ti. This proves that Cm(proj Λ) is of tame representation
type.

Now we recall that if Y → E → X is an almost split sequence in Cm(proj Λ),
then Y ∼= A(X). Here A(X) ∼= F (Q) with Q ∈ C≤m,b(proj Λ) quasi-isomorphic
to τ≤mν(X)[−1].

We need the following.

Lemma (6.6). There is a constant c(Λ) depending only on the algebra Λ such
that for any Y ∈ C1

m(proj Λ), dimkA(Y ) ≤ c(Λ)dimkY .

Proof. Take L = dimkΛ, and the Nakayama functor ν : proj Λ → inj Λ. We
recall that if 1 =

∑n
i=1 ei is a decomposition of the identity of Λ into primitive

orthogonal idempotents, then ν(Λei) = D(eiΛ). Therefore if P = ⊕iniΛei,
then ν(P ) = ⊕iniD(eiΛ). Thus dimkν(P ) =

∑
i nidimkD(eiΛ) ≤

∑
i niL ≤

L(
∑

i nidimkΛei) = LdimkP . IfW = (W i, diW ) is a complex of finitely generated
projective Λ- modules then ν(W ) = (ν(W i), ν(diW )). If in addition W is a finite
complex, dimkν(W ) =

∑
i dimkν(W i) ≤ LdimkW .

Now choose a quasi-isomorphism q : Z → τ≤m(ν(X)[−1]), with Z = (Zi, dZ)
such that ImdiZ ⊂ radZi+1.

We have dimkH
j(Z) = dimkH

j(τ≤mX[−1]) ≤ LdimkX. Now A(X) ∼= F (Z)
in C1

m(proj Λ), thus dimkA(X) ≤ c(Λ)dimkX with c(Λ) = L(mL + (m − 1)L2 +
· · ·+ 2Lm−1 + Lm). This proves our claim.

The following result implies Theorem (1.3).

Theorem (6.7). Assume that C1
m(proj Λ) is not of wild representation type.

Then given a natural number d, for almost all indecomposable object, X ∈
C1

m(proj Λ) with dimkX ≤ d there is an almost split E-sequence

X → E → X.

Proof. We may assume X is not E-projective so by Theorem 8.5 of [3], there
is an almost split E-sequence

A(X) → E → X

in C1
m(proj Λ).

Given a natural numberd, we taked′ = 2(1+c(Λ))d. By Theorem (6.5) there
is a finite number of full and faithful functors Fi : RepBi → C1

m(Proj Λ) with
Bi = (Ri,W

i, δi) minimal triangular tbocses such that for any Y ∈ C1
m(Proj Λ)

with dimkY ≤ d′ there is a W ∈ RepBi with Fi(W ) ∼= Y . Consider now the
family S of objects in C1

m(proj Λ) which are isomorphic to some Fi(fsRi) with
fs central primitive idempotent of Ri such that fsRi = k. In the above family
there is only a finite number of isomorphism classes.

Take now an indecomposable object X ∈ C1
m(proj Λ) which is not in S with

dimkX ≤ d. Suppose moreover that X is not E-projective. Then there is an
almost split E-sequence

(a) : Y → E → X,

here, dimk(X ⊕ E ⊕ Y ) ≤ d′, so there is a U ∈ RepBi with Fi(U) ∼= (X ⊕ E ⊕
Y ). Therefore there are objects N,M,W in RepBi with Fi(M) ∼= X,Fi(N) ∼=
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Y, Fi(W ) ∼= E. Since Fi is full and faithful, thus there is an almost split
sequence N → W → M whose image is isomorphic to (a). Here M is not
isomorphic to some fsRi with fs central primitive idempotent of Ri such that
fsRi = k thus N ∼= M which implies that X ∼= Y .

7. Generic Complexes

Here we consider generic complexes in the sense of section 5 of [18]. For
a derived tame algebra Λ we shall see the relations between one-parameter
families of objects in Db(Λ) and generic complexes in Db(Mod Λ).

Definition (7.1). A complex X ∈ Db(Mod Λ) is called endofinite if H i(X) has
finite length as E(X) = EndDb(Mod Λ)(X)-module for all i ∈ Z.

An endofinite complexX is called generic if it is indecomposable and it is not
isomorphic inDb(Mod Λ) to a bounded complex of finitely generated Λ-modules.

The homology endolength of an endofinite object X of Db(Mod Λ) is defined
as

hendolX = (lengthE(X)H
i(X))i∈Z.

Definition (7.2). An infinite family F of pairwise non-isomorphic indecom-
posable objects inDb(Λ), (respectively in Cn(mod Λ)) is a called one-parameter
family if there is a rational k-algebra R and a bounded complex X of Λ-
R-bimodules (respectively X a Cn(Proj Λ)-R-bimodule ) with each Xi free
of finite rank over R, such for any M ∈ F , there is a λ ∈ S(R) with
M ∼= X ⊗R k[x]/(x − λ), and for any λ ∈ S(R) there is a M ∈ F with
M ∼= X ⊗R k[x]/(x − λ). We say that F is parametrized by Y .

If F1 and F2 are two one-parameter families of complexes in Cn(mod Λ) the
set F1,2 of those X ∈ F1 such that there is a Y ∈ F2 with X ∼= Y is either finite
or cofinite in F1. The relation between the one-parameter families defined by
F1 ≈ F2 if the set F1,2 is infinite is an equivalence relation. We say that F1 is
equivalent to F2 if F1 ≈ F2.

Definition (7.3). IfX is a bounded complex of Λ-k(x)-bimodules, a realization
of X is a bounded complex of Λ-R-bimodules Y , with R a rational k-algebra
such that X ∼= Y ⊗R k(x) in the category Db(Mod Λ).

Theorem (7.4). Let Λ be a derived tame k-algebra, with k an algebraically
closed field. Suppose X is a generic complex in Db(Mod Λ). Then

(i) X is isomorphic to a bounded complex of finitely generated projective Λ-
k(x)-bimodules P ; moreover hendolX = (dimk(x)H

i(P ));
(ii) there is a rational k-algebra R and a complex Y of Λ-R-bimodules free of

finite rank overR such that Y⊗Rk(x) ∼= X inDb(Mod Λ) and Y⊗R− : modR →
Db(mod Λ) preserves indecomposables and isomorphism classes.

Moreover, if F is a one-parameter family of indecomposable objects in the
category Db(mod Λ), then there is a generic complex X ∈ Db(Mod Λ) and a
realization Y of X such that F is equivalent to the one-parameter family
{Y ⊗R R/((x − λ)n)λ∈S} for some n.

Proof. We may assume that for (hi) = hendolX• we have hi = 0 for i ≤ 2
and i > m, h2 6= 0. Take now P ∈ K≤m,b(Proj Λ) quasi-isomorphic to X. Then
H i(P ) = 0 for i ≤ 2. We have F (P ) is indecomposable in C1

m(Proj Λ), with F the
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functor given after Lemma (2.2). Now F (P ) = Q = (Qi, diQ) is a complex such
that eachQi has finite length as EndQ(Q)-module, soQ has endofinite length d.
Since we have an equivalence F : Lm → Cm(Mod Λ), Q is a generic object. By
Theorem (6.5) there is a full and faithful functor G : RepB → C1

n(Proj Λ) with
B = (S,W, δ) a minimal triangular tbocs and G(M) ∼= Q for some M ∈ RepB.
ThusM is a generic object in RepB, then there is a central primitive idempotent
f ∈ S such that M = k(x)f .

By (ii) of Theorem (6.5) there is a complexZ of Λ-S-bimodules projective from
both sides and finitely generated over the right side such that for allN ∈ RepB,
F (N) ∼= Z ⊗S N , thus Q ∼= Z ⊗S fk(x) ∼= Zf ⊗fSf k(x). Here R = fSf is a
rational k-algebra and Y = Zf is complex of projective right R-modules, so Y
is a complex of free finitely generated rightR-modules. Our complexY satisfies
the hypothesis of Corollary (2.8), therefore since Q ∼= Y ⊗R k(x), the morphism
d1
Q : Q1 → Q2 is a monomorphism. But d1

P : P 1 → P 2 = d1
Q : Q1 → Q2, so

d1
P is a monomorphism. But H1(P ) = 0, so d0

P = 0, but this implies that
P j = 0 for j ≤ 0, consequently P = Q. We have that the radical of EndB(M) is
nilpotent and EndB(M)/radEndB(M) ∼= k(x), thus for EP = EndCm(Proj Λ)(P ) we
have EP/radEP

∼= k(x). From this we obtain (i). Since G is a full and faithful
functor, we obtain (ii).

For the last statement of our theorem suppose that F is a one-parameter
family in Db(Λ). We may assume that there is a fixed h = (hi) such that for
all X ∈ F , hdimX = h. We may assume that F ⊂ C1

m(proj Λ) and there is a
fixed d such that dimkX ≤ d for all X ∈ F . By Theorem (6.5) there are full
and faithful functors Fi : RepBi → C1

m(proj Λ) with Bi = (Ri,Wi, δi) minimal
tbocses such that for all Z ∈ C1

m(proj Λ) with dimkZ ≤ d there is a N ∈ RepBi
with Fi(N) ∼= Z. Therefore almost all isomorphism classes of indecomposable
objects Z ∈ C1

m(proj Λ) with dimkZ ≤ d are in one-parameter families of the
form {Yifi,jRi ⊗Ri

Ri/((x − λ)n)}λ∈S(Ri). Thus F is equivalent to one of these
families, proving our result.
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NON-FINITESESS OF TWISTED NILS

RAFAEL RAMOS

Abstract. We prove that the twisted Nils NKα
1 (R) are infinitely generated,

when non-trivial, for any ring R and any ring automorphism α : R −→ R that
is of finite order.

Introduction

Let R be a ring with 1. Let G be a discrete group. Then the Isomorphism
Conjecture [3] states that theK theory of the ringRG should be computed from
the K theory of the family of virtually cyclic subgroups of G. A group Γ is called
virtually cyclic if Γ is either finite or Γ contains an infinite cyclic group of finite
index. It is known that the infinite virtually cyclic groups are of two types [8]

(1) Γ ∼= G o T

where G is a finite group and T ∼= Z or

(2) Γ ∼= G0 ∗H G1

where G0, G1 and H are finite groups and |G0 : H| = 2 = |G1 : H|.
If we consider the case (1), Γ ∼= G o T , we have that

RΓ ∼= RGα[T ].

So we must study K1(RGα[T ]).
On other hand, Farrell and Hsiang [2] proved that

Wh(G oα T ) ∼= X ⊕ NKα
1 (ZG) ⊕ NKα−1

1 (ZG)

where Wh denotes the Whitehead group. In general the groups NK1(ZG),
NKα

1 (ZG) are very difficult to calculate. We specialize in NKα
1 and we give a

characterization when G is a finite group.
Our main result, which was also independently proven by Grunewald [6],

is the following:

Theorem. Let R be any ring with 1. Let α : R −→ R be any ring automor-
phism of finite order. Then the twisted Nils NKα

1 (R) are infinitely generated,
when non-trivial.

As a corollary we get
Corollary. Let R = ZG where G is a finite group. Let α : G −→ G be any

group automorphism. IfNKα
1 (R) 6= 0 then the Nil groupsNKα

1 (R) are infinitely
generated.

2000 Mathematics Subject Classification: 19D35, 19B28.
Keywords and phrases: K-theory, twisted Nil groups.
Partially supported by CONACYT and PAPIIT-UNAM research grants.
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The case α = id was proved by Farrell [1] for any ring R with 1. Even
though we follow the ideas of Farrell in the twisted case (α 6= id) there are
some complications and we could not obtain a direct reproduction of the proof
for the nontwisted case (α = id) given by Farrell.

I thank the referees for helpful comments that improved the exposition of
this work.

1. Preliminaries

Throughout this paper we use the following definitions, notation and results.
Let R be a ring with 1 and G a group.
• RG denotes the group ring of G with R coefficients.
• Mn(R) denotes the set of n× n matrices over the ring R.
• M(m,n,R) denotes the set of m× n matrices over the ring R.

Definition (1.1). Let α : G −→ G be a group automorphism. In this paper α
also denotes the automorphism induced in RG defined by

α(
∑
g∈G

rgg) =
∑
g∈G

rgα(g) rg ∈ R, g ∈ G.

Definition (1.2). Let α : R −→ R be a ring automorphism. We define the ring
Rα[t] as follows: additively, Rα[t] = R[t] and multiplicatively by the condition

(rti)(stj) = rα−i(s)ti+j r, s ∈ R .

Observation (1.3). Note that we have a ring automorphism in Rα[t] induced
by a ring automorphism α : R −→ R; this automorphism is also denoted by α
and is defined by the condition

α(rti) = α(r)ti, where r ∈ R.

Note that we use α for three different automorphisms.

Definition (1.4). Let GLn(R) be the group of invertible matrices over R.
Consider the directed system of groups given by the monomorphism of groups

GLn(R) −→ GLn+1(R), A 7→
(
A 0
0 1

)
and define

GL(R) = colim
n→∞

GLn(R) .

This means that in definition (1.4) we embed GLn(R) in GLn+1(R) and then
we can think of GL(R) as an infinite union of the sets GLn(R) where each
matrix in GL(R) has finite size. Note that GL(R) is a group.

Definition (1.5). Let a ∈ R, i 6= j. We define the matrix eij(a) ∈ GLn(R) for
i 6= j, 1 ≤ i, j ≤ n as the matrix with only ones on the diagonal, the element
a in the (i, j)-slot, and zeros elsewhere. We call these matrices elementary
matrices.

Definition (1.6). We denote by En(R) the subgroup of GLn(R) generated by
the set of elementary matrices. We denote by E(R) as colim

n→∞
En(R). We call

E(R) the group of elementary matrices.
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Definition (1.7). Let R be a ring with 1. Define K1(R) as

GL(R)ab = GL(R)/E(R).

Definition (1.8). Let Rα[t] ε−→ R the augmentation defined by the condition
ε(t) = 0 and let α : R −→ R be a ring automorphism. We define

NKα
1 (R) = Kernel ( K1(Rα[t]) ε∗−→ K1(R) ).

Definition (1.9). LetP be a category with exact sequences and small skeleton
P0. We define K0(P) to be the free abelian group generated by the set Ob(P0)
modulo the following relations:

(i) [P ] = [P ′] if there is an isomorphism P
∼=−−→ P ′ in P .

(ii) [P ] = [P1] + [P2] if there is a short exact sequence

0 −→ P1 −→ P −→ P2 −→ 0

in P .

2. Non-finiteness of twisted NILS

Definition (2.1). Let α : R −→ R be a ring automorphism and M1, M2 be
right R−modules. An additive function f : M1 −→ M2 is called α-linear if
f (mr) = f (m)α(r) ∀m ∈M , ∀r ∈ R.

Let a ∈ M(m,n,R), and let V , V ′ be right free R-modules with ordered
bases e = (e1, . . . , en) and e′ = (e′1, . . . , e

′
m). Then the α-linear homomorphism

f : V −→ V ′ associated to a with respect to e and e′ is defined by the formula

f (
n∑
i=1

eiri) =
∑

1≤i≤n, 1≤j≤m

ejajiα(ri)

where ri ∈ R.
In terms of the canonical basis for V = V ′ = Rn:

ϕa(r1, . . . , rn) = a

α(r1)
...

α(rn)

 .

Let f ′ be a α′-linear homomorphism from V ′ to a third free R-module V ′′

corresponding to a′ ∈ M(k,m,R) with respect to e′ and to an ordered basis
e′′ = (e′′1 , . . . , e

′′
k ) for V ′′.

Lemma (2.2). f ′f is the α′α-linear homomorphism corresponding to a′α′(a)
with respect to e and e′′.

Proof. [2], lemma 1.

Note: The following lemma is a direct generalization of [7], lemma 3.2.21.

Lemma (2.3). Let B ∈ GL(Rα[t]). Then B can be reduced modulo GL(R) and
E(Rα[t]) to a matrix of the form I + At where A is a matrix with entries in R
such that the α−1-linear homomorphism associated to A, ϕA is nilpotent, i.e.,
∃r ∈ N such that ϕAr ≡ 0.
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Proof. Let B ∈ GL(Rα[t]). Then B = B0 + B1t + · · · + Bdt
d for some d and

Bi ∈ M(R) for all i. If we can reduce B to a matrix of degree zero, the lemma
is trivial. Using induction it is always possible to reduce B to a matrix in
GL(Rα[t]) of degree d ≤ 1. That means we can assume that B = I + At, so
B−1 is of the form B−1 = C0 + C1t + · · ·+ Crtr, Ci ∈M(R).

Now, using the following facts: I = (I + At)(C0 + C1t + · · · + Crtr) and
AtCi = Aα−1(Ci)t we conclude that

0 = Aα−1(A)α−2(A) · · ·α−r(A) = Aα−1( Aα−1( Aα−1( . . . Aα−1(A) ) ) )︸ ︷︷ ︸
r−times

This means that the α−1-linear homomorphism associated toA, ϕA : Rn −→
Rn is such that ϕAr = 0 by lemma 2.2.

The following result is well known ([5], theorem 2.1.c.)

Theorem (2.4). Let R be a ring with 1. Let Nilα(R) be the category whose
objects are pairs (Rn, ϕ) with n ∈ N∪{0}, and let ϕ : Rn −→ Rn be an α−1-linear
nilpotent endomorphism of right R-modules whose morphisms are defined as
follows:

Given two objects (Rn, ϕ1), (Rn, ϕ2) a morphism between them is an R-linear
homomorphism g : Rn −→ Rm of right R-modules such that the diagram

Rn ϕ1−−−−→ Rn

g

y g

y
Rm ϕ2−−−−→ Rm

commutes.
Note that Nilα(R) is a category with exact sequences and small skeleton. We

denote by K̃0(Nilα(R)) the reduced K-theory of K0(Nilα(R)).
Then
(a) K1(Rα[t]) ∼= K1(R)⊕NKα

1 (R)
(b) NKα

1 (R) ∼= K̃0(Nilα−1 (R)).

Observation (2.5). Let n ∈ N and p(t) ∈ Rα[t]. It is always possible to
complete p(t) with zeros and assume that it is of the form p(t) =

∑kn
i=0 ait

i for
some k ∈ N ∪ {0}. Furthermore p(t) can be written as the following sum:

p(t) = (
k−1∑
i=0

aint
in + aknt

kn) + (
k−1∑
i=0

ain+1t
in)t + · · ·+ (

k−1∑
i=0

ain+(n−1)t
in)tn−1. �

Using observation 2.5 we prove the following.

Lemma (2.6). Let n ∈ N. Then Rα[t] is a free left Rα[tn]-module with rank
n, i.e., we have an isomorphism of left Rα[tn]-modules

ϕ : Rα[t]
∼=−→ Rα[tn]⊕ · · · ⊕Rα[tn]︸ ︷︷ ︸

n−times

A basis in Rα[t] is given by 1, t, t2, . . . , tn−1.
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Let ιn : Rα[tn] −→ Rα[t] be the inclusion. Then we have the induced homo-
morphism (ιn)∗ : K1(Rα[tn]) −→ K1(Rα[t]). We now define a transfer homomor-
phism ι∗n : K1(Rα[t]) −→ K1(Rα[tn]). First we define a group homomorphism
ι∗nGLr(Rα[t]) −→ GLr(Rα[tn]) as follows:

Definition (2.7). Let B ∈ GLr(Rα[t]). Then we define ι∗n(B) = B̄ where B̄ is
the matrix associated to the following composition with respect to the canonical
basis

(Rα[tn]⊕ · · · ⊕Rα[tn])r
(ϕ−1)r−−−−→ (Rα[t])r ( )B−−→ (Rα[t])r

ϕr−→ (Rα[tn]⊕ · · · ⊕Rα[tn])r

where (ϕ−1)
r

= ϕ−1 × · · · × ϕ−1 r-times, ϕr = ϕ × · · · × ϕ r-times and ϕ is the
isomorphism of lemma (2.6).

Using definition (2.7) we get the following two lemmas:

Lemma (2.8). ι∗n : GLr(Rα[t]) −→ GLr(Rα[tn]) is a group homomorphism and
ι∗n : K1(Rα[t]) −→ K1(Rα[tn]) is well defined.

Lemma (2.9). Let B ∈ GLr(Rα[tn]). Then ι∗n ◦ (ιn)∗([B]) = [B⊕α−1(B)⊕· · ·⊕
α−(n−1)(B)].

Using lemma (2.3) we prove

Lemma (2.10). Let x ∈ NKα
1 (R) be fixed. Hence by lemma (2.3), x = [I +Nt]

with N ∈ Mr(R) for some r ∈ N and ϕnN = 0 for some n ∈ N. Then (a)
ι∗n([I +Nt]) = M where M is the following block matrix,

M =



1 N · · · 0 0

0 1 α−1(N) · · · 0

...
...

. . .
. . .

...

0 0 1 α−(n−2)(N)

α−(n−1)(N)tn 0 · · · 0 1


.

(b) Let A be the block matrix strictly lower-triangular (and therefore elemen-
tary) given by

A =



1 N · · · 0 0

0 1 α−1(N) · · · 0

...
...

. . .
. . .

...

0 0 1 α−(n−2)(N)

0 0 · · · 0 1


.

Then MA−1 is strictly lower-triangular and therefore elementary.
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Proof. (a) It follows from a direct calculation using definition (2.7).

(b) Let N̄ , B be the matrices of n blocks

N̄ =



0 N · · · 0 0

0 0 α−1(N) · · · 0

...
...

. . .
. . .

...

0 0 0 α−(n−2)(N)

0 0 · · · 0 0



B =



0 0 · · · 0 0

0 0 0 · · · 0

...
...

. . .
. . .

...

0 0 0 0

α−(n−1)(N)tn 0 · · · 0 0


Note that N̄n = 0, A = I + N̄ and M = I + N̄ + B. Since A = I + N̄ then
A−1 = I − N̄ + N̄2 + · · ·+ (−1)n−1N̄n−1. Hence we get

MA−1 = (I + N̄ + B)(I − N̄ + N̄2 + · · ·+ (−1)n−1N̄n−1)

= I + BI − BN̄ + BN̄2 + · · ·+ (−1)n−1BN̄n−1.

After some calculations we get

MA−1 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

a1 a2 a3 · · · an


where

a1 = α−(n−1)(N)tn

a2 = −α−(n−1)(N)tnN

a3 = α−(n−1)(N)tnNα−1(N)

an = 1 + (−1)n−1b

and where

b = α−(n−1)(N)tnNα−1(N) · · ·α−(n−2)(N).
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But

b = α−(n−1)(N)tn Nα−1(N) · · ·α−(n−2)(N)

= α−(n−1)(N)α−n(N)α−(n+1)(N) · · ·α−(n+(n−2))(N)tn

= α−(n−1)( Nα−1(N)α−2(N) · · ·α−(n−1)(N) ) = 0.

Therefore MA−1 is is strictly lower-triangular.

From lemma (2.10), it follows that ι∗n([I + Nt]) = [M] = [MA−1][A] = 0 for
N such that ϕnN = 0. Using this fact we prove the following.

Proposition (2.11). If NKα
1 (R) is finitely generated then there exists an in-

teger n0 such that ι∗n ≡ 0 in NKα
1 (R) ∀n ≥ n0.

Definition (2.12). Let R be a ring with 1. Let α : R −→ R be a ring auto-
morphism. Let M be a right R-module. Then we define α(M) as the right
R-module such that additively α(M) = M . Scalar multiplication is defined by
m ∗ r = mα(r) ∀m ∈M , ∀r ∈ R.

Lemma (2.13). We have a commutative diagram

α−1(Rn)
ϕA−−−−→ α−1(Rn)

α

y∼= ∼=
yα

Rn ϕα(A)−−−−→ Rn

Proof. Let ψ be the composition defined by the following diagram,

α−1(Rn)
ϕA−−−−→ α−1(Rn)

α

y∼= ∼=
yα

Rn ψ−−−−→ Rn

Note that α−1 : Rn
∼=−−−−→ α−1(Rn) withr1

...
rn

 7→

α−1(r1)
...

α−1(rn)


and α : α−1(Rn)

∼=−−−−→ Rn withr1
...
rn

 7→

α(r1)
...

α(rn)


are R-linear isomorphisms and ϕA : Rn −→ Rn is an α−1-linear homomor-
phism. (Note that ϕA thought of as ϕA : α−1(Rn) → α−1(Rn) is also an α−1-
linear homomorphism). Further, ϕA : α−1(Rn) −−→ α−1(Rn) is such thatr1

...
rn

 7→ Aα−1

r1
...
rn

 = A

α−1(r1)
...

α−1(rn)

 .
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Thus α ◦ ϕA ◦ α−1r1
...
rn

 = αϕA

α−1(r1)
...

α−1(rn)

= α

A
α−2(r1)

...
α−2(rn)




= α(A)α

α−2(r1)
...

α−2(rn)

= α(A)α−1

r1
...
rn

.

Therefore the matrix associated to the composition ψ = α ◦ ϕA ◦ α−1 is α(A),
which means ψ = ϕα(A).

Using lemma (2.13), theorem (2.4) (b), and proposition 10, page 202, [2], we
obtain the following result:

Lemma (2.14). Let R be a ring with 1. Then (NKα
1 (R))α∗ = NKα

1 (R).

Proof. The following diagram commutes,

K̃0(Nilα−1 (R))
∼=−−−−→ NKα

1 (R)

α−1
∗

y yα∗

K̃0(Nilα−1 (R))
∼=−−−−→ NKα

1 (R)

[(Rn, ϕA)]
∼=−−−−→ [I +At]

α−1
∗

y yα∗

[(α−1(Rn), ϕA)] = [(Rn, ϕα(A))] −−−−→ [I + α(A)t]
where the equality in the last diagram is given by lemma 2.13. Now by [2],
proposition 10, page 202 we have that

(K̃0(Nilα−1 (R)))α
−1
∗ = K̃0(Nilα−1 (R)).

Therefore α∗([I +At]) = [I +At] in NKα
1 (R).

Note: Farrell [1] proved that theorem (2.15) is true for any ring R with 1 in
the case α =Id.

Theorem (2.15). Let R any ring with 1. Let α : R −→ R be any ring auto-
morphism of finite order. Then the twisted NilsNKα

1 (R) are infinitely generated,
when non-trivial.

Proof. Assume that NKα
1 (R) 6= 0 and that NKα

1 (R) is finitely generated. By
proposition (2.11) there exists an integer n0 such that ι∗n ≡ 0 in NKα

1 (R) ∀n ≥
n0.

Since α : R −→ R is of finite order, ∃ m0 6= 0 such that αm0 =id ⇒ αkm0 =
id ∀ k ∈ N ∪ {0}. Then we have an isomorphism of rings

Rα[t] = Rαkm0+1 [t]
∼=−→ Rα[tkm0+1]∀ k ∈ N ∪ {0}.

Now we use the following theorem of Dirichlet ([9], theorem 4.5):
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Theorem. Let a, b ∈ Z such that (a, b) = 1. Then {a + kb}∞k=1 contains an
infinite number of primes.

Therefore {km0 + 1}∞k=1 contains a infinite number of primes.

Since we assumed that NKα
1 (R) 6= 0 and as an abelian group it is finitely

generated, given any prime p such that p does not appear in the decomposition
of NKα

1 (R) (this decomposition given by the Fundamental theorem of finitely
generated abelian groups [4], theorem 9.3, page 92.) we have that multiplica-
tion by p is injective in NKα

1 (R). (With exception of a finite number of primes,
all other primes have this property). Then there is a prime p with the following
properties:
• The multiplication by p, p( ) : NKα

1 (R) −→ NKα
1 (R) is injective.

• p = km0 + 1 for some k ∈ N.
• p > n0

Let [I+Nt] 6= 0 be in K1(Rα[t]). By lemma (2.14) α∗ is invariant in NKα
1 (R)

and by the comments above p( ) : NKα
1 (R) N−→ Kα

1 (R) is injective. Therefore

0 6= p([I +Nt]) = [(I +Nt)⊕ α−1(I +Nt)⊕ · · · ⊕ α−(p−1)(I +Nt)]

= [(I +Nt)⊕ I + α−1(N)t⊕ · · · ⊕ I + α−(p−1)(N)t]

=

I +


N 0

α−1(N)
. . .

0 α−(p−1)(N)

 t

 ∈ NKα
1 (R)

≤ K1(Rα[t])

∼=

I +


N 0

α−1(N)
. . .

0 α−(p−1)(N)

 tp

 ∈ K1(Rα[tp])

=


I +Ntp 0

α−1(I +Ntp)
. . .

0 α−(p−1)(I +Ntp)


= [(I +Ntp)⊕ α−1(I +Ntp)⊕ · · · ⊕ α−(p−1)(I +Ntp)]

= ι∗p ◦ (ιp)∗( [I +Ntp] )

by lemma (2.9).
Therefore ι∗p ◦ (ιp)∗( [I+Ntp] ) 6= 0 with p > n0. On the other hand note that

(ιp)∗( [I +Ntp] ) = [I +Ntp] ∈ NKα
1 (R) (since if ε∗ : K1(Rα[t]) −→ K1(R) is the

homomorphism induced by the augmentation ε(t) = 0 then ε∗([I +Ntp]) = [I]
for [I +Ntp] ∈ K1(Rα[t])). By proposition (2.11) this is a contradiction.

Now the following result is immediate:
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Corollary (2.16). Let R = ZG where G is a finite group. Let α : G −→ G
be any group automorphism. If NKα

1 (R) 6= 0 then the Nil groups NKα
1 (R) are

infinitely generated.

It may be worth noting that the proof of Theorem (2.15) holds also under
the following weaker assumption: Assume that NKα

1 (R) 6= 0. Furthermore,
assume that there is an infinite sequence of positive integers {nk} such that
the transfer map

ι∗nk : NKα
1 (R) −→ K1(Rα[tnk ])

is not the zero map. Under this weaker assumption the Theorem (2.15) is still
true.
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INNER AMENABILITY OF FOUNDATION SEMIGROUP ALGEBRAS

ALI GHAFFARI

Abstract. In this paper we shall introduce the inner amenability and topo-
logical inner amenability for foundation semigroup algebras and show various
necessary and sufficient conditions for foundation semigroup algebras to be
inner amenable.

1. Introduction

Let S be a locally compact Hausdorff topological semigroup. Let M(S) be
the space of all complex Borel measures on S. It is known that M(S) = C0(S)∗,
therefore M(S) is a Banach space and with convolution

µ ∗ ν(ψ) =
∫ ∫

ψ(xy)dµ(x)dν(y)

(µ, ν ∈ M(S), ψ ∈ C0(S)), M(S) is a Banach algebra. The subalgebra Ma(S) of
M(S) is defined byMa(S) = {µ ∈M(S); x 7→ δx∗|µ| and x 7→ |µ|∗δx from S into
M(S) are weakly continuous}. A semigroup S is called a foundation semigroup
if

⋃
{suppµ; µ ∈Ma(S)} is dense in S. A trivial example is a topological group

and in this case Ma(S) = L1(S). Note that Ma(S) is a closed two-sided L-ideal
of M(S) [5]. We also note that for µ ∈ Ma(S) both mappings x 7→ δx ∗ |µ| and
x 7→ |µ| ∗δx from S into M(S) are norm continuous [5]. When S is a foundation
semigroup with identity, it is known that Ma(S) has a bounded approximate
identity [5]. For more details on foundation semigroups, the reader is referred
to [1] and [8].

Let Ma(S)∗ and Ma(S)∗∗ be the first and second duals of Ma(S). With the
Arens product, Ma(S)∗∗ is a Banach algebra [6]. For µ ∈ Ma(S), ν ∈ M(S)
and f ∈ Ma(S)∗, we define 〈fν, µ〉 = 〈f, ν ∗ µ〉 and 〈ν, fµ〉 = 〈f, µ ∗ ν〉. In [6]
the author defined B = Ma(S)∗Ma(S) which is a Banach subspace of Ma(S)∗.
Clearly M(S) ⊆ B∗.

Let X be a linear subspace of Ma(S)∗ containing the constant functional 1,
where 〈1, µ〉 = µ(S), µ ∈ Ma(S). We say that X is right (respectively, left)
translation invariant if δxX ⊆ X (respectively, Xδx ⊆ X) for all x ∈ S. X is
translation invariant if it is both right and left translation invariant. X is said
to be topologically invariant if µf ∈ X and fµ ∈ X for all f ∈ X and µ ∈ P (S)
(P (S) is convex hull of probability measures in Ma(S), that is, all µ ∈ Ma(S)
for which 〈1, µ〉 = 1 and µ ≥ 0).

A linear functional M ∈ X∗ is called a mean if 〈M, f〉 ≥ 0 whenever
f ≥ 0 and 〈M, 1〉 = 1. M is topologically inner invariant (respectively, inner
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topologically inner invariant mean.
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invariant) if 〈M, fµ〉 = 〈M,µf〉 for any µ ∈ P (S) and f ∈ X∗ (respectively,
〈M, fδx〉 = 〈M,δxf〉 for any x ∈ S and f ∈ X∗).

The existence of topologically left invariant means and left invariant means
for groups is widely investigated (see [13],[14]). The notion of topological left
amenability of semigroup algebras was introduced by Wong in [17] and by Riazi
and Wong in [15]. For further details and complementary historical comments
see [7]. The study of inner amenability is initiated by Effros [4]. See also
[11], [18], and [19]. The inner amenability of groups is investigated by many
authors e.g., [4], [9], [10], [18] and [19]. The concept of strict inner amenability
was introduced and studied in [12] for an arbitrary Lau algebra.

The purpose of this paper is to introduce and to study a concept of
inner amenability and topological inner amenability for foundation semi-
group algebras. We obtain necessary and sufficient conditions for Ma(S)∗

to have an inner invariant mean. Also we study relations between inner
invariant means and topologically inner invariant means on a subspace of
Ma(S)∗Ma(S)

⋂
Ma(S)Ma(S)∗. It is known that the mapping T : LUC(S) →

Ma(S)∗Ma(S) given by 〈T (f ), µ〉 =
∫
f (x)dµ(x) is an isometric isomorphism of

LUC(S) onto Ma(S)∗Ma(S) [6].

2. Main results

We start this section by a series of lemmas. All over this section S is a
foundation, locally compact, Hausdorff, topological semigroup.

Lemma (2.1). The following conditions are equivalent.
(1) For every x ∈ S, there exists a mean M such that 〈M,δxf〉 = 〈M, fδx〉 for

any f ∈Ma(S)∗.
(2) sup{〈δxf − fδx, ν〉; ν ∈ P (S)} ≥ 0 for all x ∈ S and f ∈Ma(S)∗.

Proof. Clearly (1) implies (2).
Now, assume that (2) holds. For x in S, consider the subspace

X = δxMa(S)∗ −Ma(S)∗δx

of Ma(S)∗. Let ρ : Ma(S)∗ → R be defined by

ρ(f ) = sup{〈δxf − fδx, ν〉; ν ∈ P (S)}

and M1 be the zero functional on X. By assumption, M1 ≤ ρ on X. By the
Hahn-Banach theorem M1 extends to a linear functional M on Ma(S)∗ that
also satisfies M ≤ ρ. This together with linearity of M , implies that M is a
mean on Ma(S)∗. Moreover 〈M,δxf〉 = 〈M, fδx〉 for any x ∈ S.

Lemma (2.2). The following conditions are equivalent:
(1) For every f ∈Ma(S)∗, there exists a mean M such that 〈M,µf〉 = 〈M, fµ〉

for any µ ∈ P (S).
(2) For any f ∈ Ma(S)∗, the weak∗-closure of {µf − fµ; µ ∈ P (S)} contains

the zero functional.

Proof. Let f ∈Ma(S)∗ and let M be a mean on Ma(S)∗ such that 〈M, fµ〉 =
〈M,µf〉 for any µ ∈ P (S). Since P (S) is weak∗ dense in the set of means on
Ma(S)∗, there is a net (µα) in P (S) such that µα → M in the weak∗-topology.
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We will show that µαf −fµα → 0 in the weak∗-topology. Let µ ∈ P (S) be fixed.
We have

lim
α
〈µ,µαf − fµα〉 = lim

α
〈µαf − fµα, µ〉 = lim

α
(〈µαf, µ〉 − 〈fµα, µ〉)

= lim
α

(〈f, µ ∗ µα〉 − 〈fµα, µ〉) = lim
α
〈fµ− µf, µα〉

= lim
α
〈µα, fµ− µf〉 = 〈M, fµ− µf〉 = 0.

This shows that µαf − fµα → 0 in the weak∗-topology. Thus (1) implies (2).
Conversely, let f ∈Ma(S)∗ and let (µα) be a net inP (S) such thatµαf−fµα →

0 in the weak∗-topology. Passing to a subnet if necessary, we can assume
that (µα) converges weak∗ to some mean M in Ma(S)∗. Observe that for any
µ ∈ P (S),

〈M, fµ− µf〉 = lim
α
〈µα, fµ− µf〉 = lim

α
〈fµ− µf, µα〉

= lim
α
〈µαf − fµα, µ〉 = 0.

Hence 〈M,µf〉 = 〈M, fµ〉.

We establish a criterion that ensures the existence of topologically inner
invariant means using Hahn-Banach theorem, a definitely nonconstructive
procedure.

Theorem (2.3). If S has an identity, then the following conditions are
equivalent.

(1) Ma(S)∗ has a topologically inner invariant mean.
(2) If H consists of all functionals h ∈Ma(S)∗ having the form

n∑
i=1

µifi − fiµi

for some f1, ..., fn ∈Ma(S)∗ and µ1, ..., µn ∈ P (S), then H 6= Ma(S)∗.

Proof. IfM is a topologically inner invariant mean onMa(S)∗, then 〈M,h〉 =
0 for any h ∈ H. On the other hand 〈M, 1〉 = 1 and so H 6= Ma(S)∗.

To prove the converse, let (eα) be an approximate identity in P (S) (see [5]).
Let 1 =

∑n
i=1 µifi−fiµi for some f1, ..., fn ∈Ma(S)∗ and µ1, ..., µn ∈ P (S). Thus

1 = lim
α
〈1, eα〉 = lim

α
〈

n∑
i=1

µifi − fiµi, eα〉

= lim
α
〈

n∑
i=1

fi, eα ∗ µi − µi ∗ eα〉 = 0,

so it follows that 1 is not in H. By the Hahn-Banach extension theorem, there
is M in Ma(S)∗∗ such that 〈M, 1〉 = ‖M‖ = 1 and 〈M,h〉 = 0 for all h ∈ H.
Hence M is a topologically inner invariant mean on Ma(S)∗.

Now let S have an identity. Let E ∈Ma(S)∗∗ be the weak∗ limit of a net (eα)
which is a bounded approximate identity for Ma(S) with norm one [5]. Then E
is a right identity in Ma(S)∗∗. If a right identity E has norm one, the converse
holds: E is the weak∗ limit of a norm one approximate identity in Ma(S) (see
[3], proposition 7 on p.146 and its proof). Consequently, every right identity E
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with norm one is a topologically inner invariant on Ma(S)∗. Indeed, if E is the
weak∗ limit of a norm one approximate identity (eα) in Ma(S), then for every
f ∈Ma(S)∗ and µ ∈ P (S),

〈E, fµ〉 = lim
α
〈eα, fµ〉 = lim

α
〈f, µ ∗ eα〉

= 〈f, µ〉 = lim
α
〈f, eα ∗ µ〉

= lim
α
〈µf, eα〉 = 〈E,µf〉.

On the other hand,
‖E‖ = 1 = lim

α
〈eα, 1〉 = 〈E, 1〉.

This shows that E is a topologically inner invariant mean on Ma(S).

Theorem (2.4). Let S be a foundation locally compact Hausdorff topological
semigroup with identity. Let X be a translation invariant Banach subspace of
Ma(S)∗Ma(S)

⋂
Ma(S)Ma(S)∗ with 1 ∈ X. Let M be a mean on X. Then M is a

topologically inner invariant mean on X if and only if M is an inner invariant
mean on X.

Note that, X is topologically invariant. Indeed, if X is a Banach subspace of
Ma(S)∗Ma(S)

⋂
Ma(S)Ma(S)∗, then an argument similar to the proof of Lemma

2.3 in [6] shows that, X is translation invariant if and only if X is topologically
invariant.

Proof. Necessity. Let M be a topologically inner invariant mean on X. Let
(eα)α∈I be a bounded approximate identity for Ma(S) ( see [5]). Let f ∈ X and
x ∈ S. Then f = gµ = νh where g, h ∈Ma(S)∗ and µ, ν ∈Ma(S). We have

〈M,δxf〉 = 〈M,δx(νh)〉 = 〈M,δx ∗ νh〉 = lim
α
〈M,δx ∗ eα ∗ νh〉

= lim
α
〈M, (νh)δx ∗ eα〉 = lim

α
〈M, fδx ∗ eα〉

= lim
α
〈M, (gµ)δx ∗ eα〉 = lim

α
〈M,gµ ∗ δx ∗ eα〉

= 〈M,gµ ∗ δx〉 = 〈M, (gµ)δx〉 = 〈M, fδx〉.

Consequently, M is an inner invariant mean on X.
Sufficiency. Let M be an inner invariant mean on X. Let f ∈ X, µ ∈ P (S).

We may assume that K = suppµ is compact. Then ψ : K → X defined by
ψ(x) = δxf is continuous. So, by Theorem 3.20 and Theorem 3.27 in [16] and
Theorem A.1 in [2], we can write∫

K

ψ(x)dµ(x) =
∫
K

δxfdµ(x) ∈ X.

Now, let ν ∈Ma(S). By Lemma 2.2 in [6] we have

〈ν, µf〉 = 〈ν ∗ µ, f〉 =
∫
K

〈ν ∗ δx, f〉dµ(x)

=
∫
K

〈ν, δxf〉dµ(x).

It follows that
∫
K δxfdµ(x) = µf.
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It is easy to see that
∫
K fδxdµ(x) = fµ. On the other hand, by Remark 3.26

in [16], we have

〈M,µf〉 = 〈M,

∫
K

δxfdµ(x)〉 =
∫
K

〈M,δxf〉dµ(x)

=
∫
K

〈M, fδx〉dµ(x) = 〈M,

∫
K

fδxdµ(x)〉

= 〈M, fµ〉.

This completes the proof.

Let A be a left Banach S-module (for more on left Banach S-modules, the
reader is referred to [13] and [14]). For each F ∈ A∗∗, f ∈ A∗ and x ∈ S, we
define

〈f · x, a〉 = 〈f, x · a〉, and 〈x · F, f〉 = 〈F, f · x〉
whenever a ∈ A. Also if µ ∈M(S) and f ∈ A∗, we define

〈f · µ, a〉 =
∫
〈f, x · a〉dµ(x) and 〈µ · F, f〉 = 〈F, f · µ〉

for all a ∈ A and F ∈ A∗∗. For µ ∈ Ma(S), let Tµ ∈ B(A∗∗) be defined by
Tµ(F ) = µ ·F , F ∈ A∗∗. For x ∈ S, let Tx ∈ B(A∗∗) be defined by Tx(F ) = x ·F ,
F ∈ A∗∗. We also denote the closure of the set {Tµ; µ ∈ P (S)} in the weak∗

operator topology by PA∗∗ .

Theorem (2.5). Among the following seven properties, the implications

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and (v) ⇒ (vi) ⇒ (vii)

hold. If center Z(P (S)) of P (S) is nonempty, where

Z(P (S)) = {µ ∈ P (S); µ ∗ ν = ν ∗ µ for all ν ∈ P (S)},

then also (iv) ⇒ (v). If S has an identity, then also (vii) ⇒ (i), so that all seven
properties are equivalent.

(i) Ma(S)∗ has an inner invariant mean.
(ii) There exists a net (µα) in P (S) such that for all x ∈ S,

δx ∗ µα − µα ∗ δx → 0

in the weak∗ topology.
(iii) There exists a net (να) in P (S) such that for all x ∈ S,

δx ∗ να − να ∗ δx → 0

in the norm topology.
(iv) For each n ≥ 1, x1, . . . , xn ∈ S and ε > 0, there exists a µ ∈ P (S) such

that
‖δxi ∗ µ− µ ∗ δxi‖ < ε

for all i = 1, 2, ..., n.
(v) For any compact subset K of S and ε > 0, there exists a ν ∈ P (S) such

that
‖δx ∗ ν− ν ∗ δx‖ < ε

whenever x ∈ K.
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(vi) There exists a net (να) in P (S) such that

‖δx ∗ να − να ∗ δx‖ → 0

uniformly on compact subsets of S.
(vii) For each left Banach S-module A, there exists T ∈ PA∗∗ such that

TTx = TxT for all x ∈ S.

Proof. (i) ⇒ (ii). Let M be an inner invariant mean on Ma(S)∗ and let
(µα)α∈I be a net in P (S) such that µα →M in the weak∗ topology. It is easy to
see that

〈f, δx ∗ µα − µα ∗ δx〉 → 0
for every f ∈Ma(S)∗ and x ∈ S.

(ii) ⇒ (iii). Since the difference set P (S) \ P (S) is a convex subset of Ma(S),
and the weak∗ topology on Ma(S), as a subset of Ma(S)∗∗, is the weak topology,
the weak∗ closure of P (S) \ P (S) is the same as the norm closure. Thus, by
an standard argument, we obtain a net (νβ)β∈J in P (S) such that each νβ is a
convex combination of the elements of (µα)α∈I and

‖δx ∗ νβ − νβ ∗ δx‖ → 0

for all x ∈ S.
(iii) ⇒ (iv) Trivial.
(iv) ⇒ (v). Let K be a compact subset of S and let ε > 0. Consider a fixed

element η in Z(P (S)). Since both mapping x 7→ |η| ∗ δx and x 7→ δx ∗ |η| from S
into M(S) are norm continuous, so for any x ∈ K, there exist a neighborhood
Ux of x such that

‖δx ∗ η− δy ∗ η‖ < ε and ‖η ∗ δx − η ∗ δy‖ < ε,

whenever y ∈ Ux. We may determine a subset {x1, ..., xn} in K such that
K ⊆

⋃n
i=1 Uxi , and for all y ∈ Uxi ,

‖δy ∗ η− δxi ∗ η‖ < ε and ‖η ∗ δy − η ∗ δxi‖ < ε.

Consider µ ∈ P (S) such that, for any i = 1, ..., n, ‖δxi ∗ µ − µ ∗ δxi‖ < ε. Put
ν = η ∗ µ ∈ P (S). For any x ∈ K, there exist i ∈ {1, ..., n} such that x ∈ Uxi .
Then we have

‖δx ∗ ν− ν ∗ δx‖ = ‖δx ∗ η ∗ µ− η ∗ µ ∗ δx‖ ≤ ‖δx ∗ η ∗ µ− δxi ∗ η ∗ µ‖
+ ‖δxi ∗ η ∗ µ− η ∗ µ ∗ δxi‖+ ‖η ∗ µ ∗ δxi − η ∗ µ ∗ δx‖
≤ ‖δx ∗ η− δxi ∗ η‖+ ‖δxi ∗ µ ∗ η− µ ∗ δxi ∗ η‖
+ ‖µ ∗ η ∗ δxi − µ ∗ η ∗ δx‖ ≤ ‖δx ∗ η− δxi ∗ η‖
+ ‖δxi ∗ µ− µ ∗ δxi‖+ ‖η ∗ δxi − η ∗ δx‖ < 3ε.

(v) ⇒ (vi). By assumption, for each pair (K, ε), where K ⊆ S is compact and
ε > 0, there is a ν(K,ε) ∈ P (S) such that

‖δx ∗ ν(K,ε) − ν(K,ε) ∗ δx‖ < ε

whenever x ∈ K. Then we define the partial ordering on the index set as
α1 = (K1, ε1) ≥ α = (K, ε), if K ⊆ K1 and ε ≥ ε1. It is easy to see that

‖δx ∗ ν(K,ε) − ν(K,ε) ∗ δx‖
converges to 0 uniformly on compact subsets of S.
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(vi) ⇒ (vii). Let (να) be a net in P (S) such that ‖δx ∗ να − να ∗ δx‖ converges
to 0 uniformly on compact subsets of S. Hence we may find T ∈ B (A∗∗) with
‖T ‖ ≤ 1 and a subnet (νβ) of (να) such that Tνβ → T in the weak∗ operator
topology. For every x ∈ S and F ∈ A∗∗, we have

‖TxTνβ (F ) − TνβTx(F )‖ = ‖Tδx∗νβ (F ) − Tνβ∗δx (F )‖
≤ ‖δx ∗ νβ − νβ ∗ δx‖||F‖ → 0.

Consequently TxT = TTx.
(vii) ⇒ (i). Let A = Ma(S) and consider Ma(S) as a left S-module where

x.µ = δx ∗ µ, x ∈ S, µ ∈ Ma(S). For F ∈ Ma(S)∗∗, let TF ∈ B(Ma(S)∗∗) be
defined by TF (G) = FG, G ∈Ma(S)∗∗ (see [6]). As proved in [9],

PMa(S)∗∗ = {TF ; F ∈Ma(S)∗∗, F ≥ 0 and, ||F‖ = 1}.
By assumption, there exists TM ∈ PMa(S)∗∗ such that TxTM = TMTx for all
x ∈ S. If E is the weak∗-limit of a net (eα) which is a bounded approximate
identity for Ma(S), then Ef = f for all f ∈ Ma(S)∗. On the other hand, for
every x ∈ S and f ∈Ma(S)∗ we have Tx(E)f = δxf . Indeed,

〈Tx(E)f, µ〉 = 〈x · E, fµ〉 = 〈E, fµ ∗ δx〉 = 〈Ef, µ ∗ δx〉
= 〈f, µ ∗ δx〉 = 〈δxf, µ〉.

for any µ ∈ Ma(S), that is Tx(E)f = δxf . We will show that M is an inner
invariant mean on Ma(S)∗. If f ∈Ma(S)∗ and x ∈ S, then

〈M, fδx〉 = 〈M,E(fδx)〉 = 〈ME, fδx〉 = 〈TM (E), fδx〉
= 〈x · TM (E), f〉 = 〈TxTM (E), f〉 = 〈TMTx(E), f〉
= 〈M,Tx(E)f〉 = 〈M,δxf〉.

Consequently M is an inner invariant mean on Ma(S)∗.
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HÖLDER ESTIMATES FOR THE @-EQUATION ON SURFACES
WITH SINGULARITIES OF THE TYPE E6 AND E7

F. ACOSTA AND E. S. ZERON

Abstract. Let Σ ⊂ C3 be a 2-dimensional subvariety with an isolated simple
(rational double point) singularity at the origin of the cyclic An, dihedral Dn,
tetrahedral E6 or octahedral E7 type. The main objective of this paper is
to solve the @-equation in a neighbourhood of the origin in Σ, such that the
solution has a Hölder condition.

1. Introduction

Let Σ ⊂ C3 be a subvariety with an isolated singularity at the origin, and
λ be a @-closed (0, 1)-differential form defined on Σ \ {0}. An open problem in
complex variables is to produce a general and effective technique for calculating
a solution h to the @-differential equation @h = λ in Σ, including the singular
point. Gavosto, Fornæss and Ruppenthal have proposed a general technique
for solving the equation @h = λ such that h satisfies an extra Hölder condition
on an open neighbourhood of the singular point; see [3], [4] and [7]. Their basic
idea was to analyse Σ as a branched covering over C2, to solve the corresponding
@-equation on C2, and to lift the solution from C2 into Σ again.

In a previous paper [1], we proposed an effective technique for solving the
equation @g = λ on surfaces Σ with an isolated simple singularity of the regular
cyclic An−1 or dihedral Dn+2 type, for n ≥ 2, and such that h satisfies an extra
Hölder condition on a neighbourhood of the singular point. The main objective
of the present work is to extend the analysis done in [1], in order to solve the
@-equation on surfaces Σ with an isolated simple singularity of the exceptional
tetrahedral E6 or octahedral E7 type. The central idea is to consider C2 as a
branched covering over Σ, instead of analysing Σ as a branched covering over
C2. Moreover, we also improve the Hölder estimates that we presented in [1]
for the cyclic A2n type.

The authors recommend the works of Dimca [2] and Slodowy [8, 9] for a
deep analysis on isolated simple (rationally double point) singularities. In
particular, all surfaces Σ with an isolated simple singularity may be locally
characterised as the quotient space C2/G where G is a finite subgroup of
the special linear group SL2(C); and so we have a natural quotient mapping
(branched covering) π from C2 over the singular surface C2/G. We present
below all the non-trivial finite subgroups G of SL2(C), their cardinalities and
the polynomial relations which define, up to biholomorphisms, the singular

2000 Mathematics Subject Classification: 32F20, 32W05, 35N15.
Keywords and phrases: Hölder estimates, @-equation, branched covering.
Research supported by Cinvestav (Mexico) and Conacyt (Mexico).
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quotient surface Σ ∼= C2/G embedded in C3. For n ≥ 2,

(1.1)

Cyclic, |Zn| = n, x1x2 = xn
3 ;

Dihedral, |Dn+2| = 4n, x2
2 = x2

1x3 + xn+1
3 ;

Tetrahedral, |E6| = 24, x3
1 + x2

2 = x4
3;

Octahedral, |E7| = 48, x3
1x3 + x2

2 = x3
3;

Icosahedral, |E8| = 120, x2
1 = x3

2 + x5
3.

There is an abuse of notation in the previous table, because Dn+2 denotes
both the binary dihedral subgroup of SL2(C) with 4n elements and the dual
resolution graph (or Dynkin diagram) of the singular surface C2/G, for G ≡
Dn+2. The symbol E6 (respectively: E7 and E8) denotes as well the binary
tetrahedral (respectively: octahedral and icosahedral) subgroup of SL2(C) and
the corresponding dual resolution graph. We may now state the main result
of this work,

Theorem (1.2). Let π be the quotient mapping from C2 over the singular
surface Σ ∼= C2/G embedded in C3, where G < SL2(C) is the subgroup E6, E7,
Dn+2 or Zn, with n ≥ 2. Fix 0 < δ < 1/|G|, with the cardinality |G| presented
in (1.1). Given an open ball BR ⊂ C2 of radius R > 0 and centre in the origin,
we may find a finite positive constant C1(R, δ) such that: For every continuous
(0, 1)-differential form λ defined on the compact set π(BR) ⊂ Σ, and @-closed on
the regular part of π(BR), there exists a continuous function h on π(BR) which
satisfies both the equation @h = λ on the regular part of π(BR) and the Hölder
estimate:

(1.3) ‖h‖π(BR ) + sup
x,w∈π(BR )

|h(x)− h(w)|
‖x − w‖δ

≤ C1(R, δ)‖λ‖π(BR ).

This theorem is proved in the second section of this paper. We have al-
ready presented a partial version of Theorem (1.2) for the cyclic and dihedral
groups [1]. Notice that the regular part of π(BR) is obtained by removing the
isolated singularity of Σ. A differential form is said to be continuous if all its
coefficients are continuous functions, so the operator @ is computed in terms
of distributions. Moreover, the notation ‖h‖E stands for the supremum of |h|
on the set E; and ‖x − w‖ stands for the Euclidean distance between x and
w; this distance is well defined because the singular surface Σ is embedded in
C3. Thus, since ‖x−w‖ is less than or equal to the geodesic distance between
x and w measured along the surface Σ, we can assert that inequality (1.3) is
indeed a Hölder estimate on Σ itself.

On the other hand, given a finite subgroup G of SL2(C), Felix Klein has
proved that the algebra of holomorphic polynomials on C2 invariant under
the natural action of G has three generators xk(z) which satisfy the respective
polynomial relation given in (1.1), see Klein [6] and Slodowy [8, 9]. Whence,
the quotient mapping π from C2 onto the singular surface C2/G is equal to the
polynomial triplet (x1, x2, x3). In particular, the automorphisms z 7→ Hz allow
us to jump between the different branches of π, for H ∈ G. That is, given
w = π(z), the inverse image π−1(w) is equal to {Hz : H ∈ G}; and so π−1(w)
has the same cardinality as |G|whenever w 6= 0. Finally, we need to recall that
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the norm ‖Hz‖ = ‖z‖ is invariant under the action of each matrix H ∈ G. We
are going to prove this fact in the last four sections of this paper.

The proof of Theorem (1.2) requires an estimate of the distance ‖z− ζ‖ with
respect to the projections ‖π(z)− π(ζ)‖.

Theorem (1.4). Let π be the polynomial quotient mapping from C2 over the
singular surface Σ ∼= C2/G embedded in C3, where G < SL2(C) is the subgroup
E6, E7, Dn+2 or Zn, with n ≥ 2. Define β = 1/|G|, with the cardinality |G|
presented in (1.1). Given an open ball BR ⊂ C2 of radius R > 0 and centre at
the origin, there exists a finite positive constant C2(R) such that: For each pair
of points z and ζ in BR with ‖z − ζ‖ less than or equal to ‖z − Hζ‖ for every
matrix H in the group G, the following inequality holds,

(1.5) ‖π(z)− π(ζ)‖2β ≥ 2C2(R)‖z− ζ‖
(
‖z‖+ ‖ζ‖

)
.

Notice that Σ is embedded in C3, so the term ‖π(z) − π(ζ)‖ is well defined.
The last four sections of this paper are devoted to proving Theorem (1.4),
considering consecutively the cyclic Zn, binary dihedral Dn+2, tetrahedral E6

and octahedral E7 groups.
As we have already stated in [1], the proof of Theorem (1.2) is based on

two main steps: the explicit calculation of the polynomial quotient mapping
π from C2 over the singular surface Σ; and the calculation of the estimate
given in (1.5). In the case of the binary icosahedral subgroup E8 < SL2(C), the
polynomial quoting mapping π from C2 over C2/E8 is given by the following
equations:

x1(z) = z30
1 + z30

2 + 522(z25
1 z5

2 − z5
1z25

2 )− 10005(z20
1 z10

2 + z10
1 z20

2 ),

x2(z) = z20
1 − 228z15

1 z5
2 + 494z10

1 z10
2 + 228z5

1z15
2 + z20

2 ,

x3(z) = (1728)1/5(z11
1 z2 + 11z6

1z6
2 − z1z11

2 ).

It is easy to calculate that the polynomials xk(z) presented above satisfy the
relation x2

1 = x3
2 + x5

3, which defines up to biholomorphisms the surface C2/E8

with an isolated simple singularity of the type E8. We expect that the mapping
π given by the triplet (x1, x2, x3) satisfies the estimate (1.5) with β = 1/120.

The next section of this paper is devoted to the proof of Theorem (1.2); and
finally, Theorem (1.4) is shown in the last four sections of this work.

2. Proof of Theorem (1.2)

This proof of Theorem (1.2) partially follows the ideas presented in [1]. Let π
be the quotient mapping from C2 over the singular surface Σ ∼= C2/G embedded
in C3, where G < SL2(C) is the subgroup E6, E7, Dn+2 or Zn, with n ≥ 2.
We have that π is a polynomial mapping, because, as we have said in the
introduction, π is equal to the triplet (x1, x2, x3), with xk(z) the generators
of the algebra of polynomials on C2 invariant under the natural action of G.
Recall Klein’s work in [8, 9]. It easy to deduce that the origin in C2 is the
inverse image π−1(0) of the isolated singularity 0 ∈ Σ. Moreover, the mapping
π is locally a biholomorphism from C2 \{0} onto the regular part of Σ. We need
the following lemma on @-closed differential forms.
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Lemma (2.1). Let B any open ball in C2 with centre at the origin, and ℵ be
a continuous (0, 1)-differential form defined on B and @-closed inside B \ {0}.
The form ℵ is then @-closed everywhere in B.

Proof. The differential @ℵ is calculated in terms of distributions, so the given
hypotheses imply that

∫
B ℵ ∧ @σ vanishes for every smooth (2, 0)-differential

form σ with compact support in B \ {0}. And we must prove that the same
integral vanishes when the differential form σ has compact support on B.
Consider a real smooth function ξ(z)=ξ̂(‖z‖2) defined on C2 such that, for
k = 1, 2:

0 ≤ ξ(z) ≤ 1, ξ(z) =
{

0 if ‖z‖ ≤ 1,

1 if ‖z‖ ≥ 2,
and

∣∣∣∣@ξ(z)
@zk

∣∣∣∣ ≤ 25.

Notice that
∫

B ℵ∧@
[
ξ(rz)ρ

]
vanishes for all real numbers r > 0 and smooth

(2, 0)-differential forms ρ with compact support on B, because @ℵ vanishes in
B \ {0}. Differentiating by parts @

[
ξ(rz)ρ

]
yields that,∣∣∣∣∫

B

ξ(rz)ℵ ∧ @ρ

∣∣∣∣ =
∣∣∣∣∫

B

ℵ ∧ ρ ∧ @ξ(rz)
∣∣∣∣ ≤ 50

8π2

r3 ‖ℵ ∧ ρ‖B,

where @ξ(rz) vanishes for ‖z‖ > 2/r and the volume of the ball ‖z‖ ≤ 2/r in
C2 is equal to 8π2/r4. Moreover, the form ℵ ∧ ρ has finite norm because it is
continuous and has compact support on B. On the other hand, we also have
that, ∣∣∣∣∫

B

ℵ ∧ @ρ

∣∣∣∣ ≤ ∣∣∣∣∫
B

[
1− ξ(rz)

]
ℵ ∧ @ρ

∣∣∣∣ +
∣∣∣∣∫

B

ξ(rz)ℵ ∧ @ρ

∣∣∣∣
≤ 8π2

r4 ‖ℵ ∧ @ρ‖B + 50
8π2

r3 ‖ℵ ∧ ρ‖B < ∞.

Finally, when r > 0 converges to infinity, we obtain that
∫

B ℵ ∧ @ρ vanishes
for every (2, 0)-differential form ρ with compact support on B, and so the form
ℵ is @-closed everywhere in B.

We need as well the following Henkin estimates, deduced from Theo-
rems 2.1.5 and 2.2.2 of [5].

Theorem (2.2). Given an exponent 0 < d < 1 and an open ball BR ⊂ C2 of
radius R > 0 and centre in the origin, there exist two finite positive constants
C3(R) and C4(R, d) such that: For every continuous (0, 1)-differential form ℵ
defined on BR, and @-closed on the interior BR, the equation @g = ℵ has a
continuous solution g on BR which also satisfies the following Hölder estimates,

‖g‖BR
+ sup

z,ζ∈BR

|g(z)− g(ζ)|
‖z− ζ‖1/2 ≤ C3(R)‖ℵ‖BR

,(2.3)

and sup
z,ζ∈BR/2

|g(z)− g(ζ)|
‖z− ζ‖d

≤ C4(R, d)‖ℵ‖BR
.(2.4)

Proof. Theorem 2.2.2 of [5] automatically implies the existence of a continu-
ous function g on BR which satisfies both the equation @g = ℵ and the inequal-
ity (2.3). Further, analysing the proofs of Lemma 2.2.1 and Theorem 2.2.2, in
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[5], we have that inequality (2.4) holds whenever there exists a finite positive
constant C0(R) such that:

(2.5) sup
z,ζ∈BR/2

|E(z)− E(ζ)|
‖z− ζ‖

≤ C0(R)‖ℵ‖BR
,

for every function E(z) defined according to equation (2.2.7) of [5, p. 70]. Let Υ
be the closed interval which joins z and ζ inside the ball BR/2. Then,

|E(z)− E(ζ)| ≤
∫ 1

0

∣∣∣ d

dt
E(tζ + (1− t)z)

∣∣∣ dt(2.6)

≤ ‖z− ζ‖ sup
y∈Υ

2∑
k=1

∣∣∣∣ @E

@yk

∣∣∣∣ +
∣∣∣∣ @E

@yk

∣∣∣∣ .

By equation (2.2.9) in [5], we know there exists a finite constant C0(R) such
that all partial derivatives | @E

@yk
| and | @E

@yk
| are less than or equal to C0(R)

5 ‖ℵ‖BR
, for

every y ∈ BR/2 and each index k = 1, 2. Notice that D = BR in equations (2.2.7)
and (2.2.9), but y lies inside the smaller ball BR/2. Thus, equation (2.6)
automatically implies that inequalities (2.5) and (2.4) hold, as desired.

We are now in position to prove Theorem (1.2), recall Theorem (1.4) and (2.2).

Proof of Theorem (1.2). Let π be the quotient mapping from C2 over the
singular surface Σ ∼= C2/G embedded in C3, where G < SL2(C) is the subgroup
E6, E7, Dn+2 or Zn, with n ≥ 2. Consider an open ball BR ⊂ C2 of radius R > 0
and centre in the origin. We have already seen in the introduction that π
is a polynomial mapping, so the partial derivatives of π are all continuous
and bounded mappings on the compact closure BR. Thus, there exists a
finite positive constant C5(R) such that the following inequality holds for any
continuous (0, 1)-differential form λ defined on the compact set π(BR),

(2.7) ‖π∗λ‖BR
≤ C5(R)‖λ‖π(BR ).

On the other hand, suppose that λ is @-closed on the regular part of π(BR).
The pull-back π∗λ is then a continuous (0, 1)-differential form well defined on
BR, and @-closed in the open set BR \{0}, because π is locally a biholomorphism
from BR \{0} onto the regular part of π(BR). Whence, considering Lemma (2.1)
and Theorem (2.2), we automatically have that the equation @g = π∗λ has a
continuous solution g on BR which satisfies the pair of Hölder estimates stated
in (2.3) and (2.4) for 0 < d < 1 fixed. Define β = 1/|G|, with the cardinality
|G| given in (1.1). The finite sum β

∑
G H∗g, added over all matrices H ∈ G, is

constant on the fibres of π (it is invariant under every pull-back H∗). Hence,
there exists a continuous function h defined on π(BR) such that π∗h is equal
to β

∑
G H∗g. We assert that @h = λ on π(BR) \ {0}. This result follows

automatically because

π∗@h = β
∑

G @H∗g = β
∑

G H∗π∗λ = π∗λ.

Recall that the projection π(Hz) = π(z) and the norm ‖Hz‖ = ‖z‖ are both
invariant under the action of every matrix H in the finite group G. Moreover,

(2.8) ‖h‖π(BR ) = ‖β
∑

G H∗g‖BR
≤ ‖g‖BR

.
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Now, given x, w ∈ π(BR), choose the points z, ζ ∈ BR such that x = π(z) and
w = π(ζ). Since π(ζ) is equal to π(Hζ), we may even choose ζ ∈ BR so that the
norm ‖z− ζ‖ is less than or equal to ‖z−Hζ‖ for each matrix H ∈ G. A direct
application of equation (1.5) in Theorem (1.4) yields

(2.9)
‖x − w‖2β

2C2(R)
≥ ‖z− ζ‖

(
‖z‖+ ‖ζ‖

)
≥ ‖z− ζ‖2.

Suppose that the points z and ζ are both inside the ball BR/2. We may apply
equation (2.4) of Theorem (2.2), with ℵ = π∗λ, in order to deduce the following
inequality for 0 < d < 1 fixed,

(2.10)
|h(x)− h(w)|
‖x − w‖dβ

≤
β

∑
G |g(Hz)− g(Hζ)|

[2C2(R)]d/2‖z− ζ‖d
≤ C4(R, d)‖π∗λ‖BR

[2C2(R)]d/2 .

Notice that the norm ‖z− ζ‖ is equal to ‖Hz−Hζ‖ for each matrix H ∈ G.
Suppose now, without lost of generality, that ‖z‖ ≥ R/2. Inequality (2.9) then
implies that ‖x − w‖2β is greater than or equal to RC2(R)‖z − ζ‖. Therefore,
equation (2.3) of Theorem (2.2) automatically yields the following,

(2.11)
|h(x)− h(w)|
‖x − w‖β

≤
β

∑
G |g(Hz)− g(Hζ)|

(RC2(R)‖z− ζ‖)1/2 ≤ C3(R)‖π∗λ‖BR

[RC2(R)]1/2 .

Finally, considering Theorem (2.2) and equations (2.7) to (2.11), we can de-
duce the existence of a bounded positive constant C1(R, δ) such that equa-
tion (1.3) in Theorem (1.2) holds, with δ = dβ and 0 < d < 1 fixed.

We close this section with some observations about Theorem (1.2). First,
the procedure presented in this section yields a continuous solution h to the
equation @h = λ. Moreover, we are directly using the estimates given in [5],
but we may use any integration kernel which produces estimates similar to
those presented in equations (2.3) and (2.4) of Theorem (2.2).

3. Proof of theorem (1.4) for the cyclic group

The estimate (1.5) of Theorem (1.4) is one of the main pillars in the proof
of Theorem (1.2), as we have already seen in previous section. Nevertheless,
Theorem (1.4) is quite important on its own. Since the quotient mapping π
from C2 over Σ ∼= C2/G is smooth (polynomial), there exists a finite positive
constant C0(R) such that C0(R)‖z− ζ‖ is greater than or equal to ‖π(z)−π(ζ)‖
for all points z and ζ in the open ball BR ⊂ C2 of radius R > 0 and centre
in the origin. Thus, Theorem (1.4) yields the opposite inequalities with an
appropriate exponent.

On the other hand, a weaker version of Theorem (1.4) has already been pro-
ved in [1] for the cyclic subgroup Zn of SL2(C) with n elements. The inequality
(1.5) has been proved with the exponent 0 < δ′ < 1/Ev(n), where n = |Zn| and
Ev(n) is the smallest even integer greater than or equal to n. The central part
of this section is to improve these inequalities for a new exponent 0 < δ < 1/n.

Notice that the cyclic subgroup Zn of SL2(C) with n ≥ 2 elements is gener-
ated by the following matrix,

(3.1) H1 =
(

ρn, 0
0 , ρn

)
, with ρn = e2iπ/n.



HÖLDER ESTIMATES FOR THE @-EQUATION 79

We can easily verify that the norm ‖Hz‖ = ‖z‖ is preserved for every z ∈ C2

and each matrix H in Zn. Moreover, the polynomial quotient mapping π from
C2 over the singular surface ΣZ ∼= C2/Zn embedded in C3 is given by

(3.2) π(s, t) = (sn, tn, st), for ΣZ ∼= {x1x2 = xn
3}.

The mapping π is a natural branched n-covering from C2 over ΣZ, and it
is trivially invariant under the natural action of the cyclic group Zn. The
following lemma is the central part in the calculations for the new exponent
β = 1/n.

Lemma (3.3). Let n ≥ 2 be fixed. There exists a finite constant C6 > 0 such
that: Given two points z = (a, b) and ζ = (s, t) in C2 with ‖z − ζ‖ less than or
equal to ‖z−Hk

1 ζ‖ for every natural number k, the following inequality holds

(3.4)
max{|an − sn|, |bn − tn|, |ab − st|n/2}

‖z− ζ‖n/2(‖z‖+ ‖ζ‖)n/2 ≥ C6,

Proof. Let z = (a, b) and ζ = (s, t) be a pair of points in C2. Notice that the
left term of equation (3.4) does not change if we multiply both z and ζ by any
complex number λ 6= 0. Therefore, we only need to prove inequality (3.4) on
the compact set ‖z‖+‖ζ‖ = 13; and we may suppose without loss of generality
that |a−s| is greater than or equal to |b− t|. We consider three principal cases:

Case I. Suppose that 1/n ≥ |a − s| ≥ |b − t| and |b| ≥ 2|s|. We have that

(3.5) |ab − st| ≥ |b| · |a − s| − |s| · |b − t| ≥ |a − s| · |b|/2.

Notice that |a| and |t| are less than or equal to |s| + 1/n and |b| + 1/n,
respectively. Whence,

13 = ‖z‖+ ‖ζ‖ ≤ 2|b|+ 2|s|+ 2/n ≤ 3|b|+ 2/n,

and so |b| ≥ 4. Finally, the norm ‖z − ζ‖ is less than or equal to |a − s|
√

2,
because we have set z = (a, b) and ζ = (s, t), and the absolute value |b − t| is
less than or equal to |a− s|. Thus, equation (3.5) implies that inequality (3.4)
holds, for

|ab − st|n/2 ≥
(
‖z− ζ‖

√
2
)n/2

.

Case II. Suppose that 1/n ≥ |a − s| ≥ |b − t| and |b| ≤ 2|s|. Recall that |a|
and |t| are less than or equal to |s|+ 1/n and |b|+ 1/n, respectively. Thus

13 = ‖z‖+ ‖ζ‖ ≤ 2|b|+ 2|s|+ 2/n ≤ 6|s|+ 2/n,

and so |s| ≥ 2. Consider the n-root of unity ρn = e2πi/n and any natural number
1 ≤ k < n. We can easily deduce that

|s− ρk
ns| ≥ 2|s| sin(kπ/n) ≥ 8/n ≥ 8|a − s|.

Hence, the absolute value |a− ρk
ns| is greater than or equal to |a− s| for every

exponent k. It is easy to verify that the set Λ of all natural numbers 1 ≤ j ≤ n

such that |s − ρj
ns| is greater than or equal to |s| is composed of at least n/2

elements. Thus, recalling that 1/n ≥ |a − s|,

|a − ρj
ns| ≥ |s| − 1/n ≥ 3/2 for all j ∈ Λ.
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Finally, since 3/2 >
√

2, the cardinality satisfies |Λ| ≥ n/2 and the norm ‖z−ζ‖
is less than or equal to |a−s|

√
2, we automatically have that the inequality (3.4)

holds, because

|an − sn|2 =
n∏

k=1

∣∣∣a − ρk
ns

∣∣∣2
≥ (3/2)n|a − s|n > ‖z− ζ‖n.

Case III. Suppose that |a − s| ≥ 1/n or |b − t| ≥ 1/n, where z = (a, b) and
ζ = (s, t). We have that ‖z− ζ‖ is greater than or equal to 1/n as well. Define
the compact set K ⊂ C4 composed of the pairs (z, ζ) which satisfy the three
conditions: ‖z‖ + ‖ζ‖ = 13, the norm ‖z − Hk

1 ζ‖ is greater than or equal to
‖z− ζ‖ for every k, and ‖z− ζ‖ ≥ 1/n, where the matrix H1 is defined in (3.1).

It is easy to verify that the left term of (3.4) vanishes if and only if s = ρk
na

and t = ρn
kb for some natural number k; that is, if and only if ζ = Hk

1 z. Thus,
the left term of (3.4) is a continuous and non-vanishing function well defined for
every pair (z, ζ) in the compact set K ⊂ C4 described in the paragraph above.
Therefore, this function is bounded from below by a finite positive constant
C6 > 0. In other words, inequality (3.4) holds in this case.

We may now present the proof of Theorem (1.4) for the particular case of
the cyclic subgroup Zn of SL2(C) with n elements.

Proof of Theorem (1.4). for the cyclic group Zn. As we have stated at the be-
ginning of this section, the singular surface ΣZ ∼= C2/Zn embedded in C3 is de-
fined by the polynomial relation x1x2 = xn

3 . Further the polynomial quotient
mapping π from C2 over Σ is defined by π(z) equal to (zn

1 , zn
2 , z1z2). Given any

pair of points z = (a, b) and ζ = (s, t) in C2, we have that |an − sn| and |bn − tn|
are both less than or equal to ‖π(z)− π(ζ)‖. Moreover, if z and ζ lie inside the
ball BR of radius R > 0 and centre in the origin, we also have that

|ab − st|n/2 ≤ Rn−2|ab − st| ≤ Rn−2‖π(z)− π(ζ)‖.

Recall that 2|ab| ≤ |a|2+|b|2 < R2 and n ≥ 2. Finally, if ‖z−ζ‖ is less than or
equal to ‖z−Hζ‖ for every matrix H ∈ Zn, a direct application of Lemma (3.3)
yields the following version of equation (1.5) for the exponent β = 1/n, with n
the cardinality of the group Zn,

(3.6)
‖π(z)− π(ζ)‖

‖z− ζ‖n/2(‖z‖+ ‖ζ‖)n/2 ≥ C6 min{1, R2−n}.

4. Proof of theorem (1.4) for the dihedral group

Let Dd+2 be the binary dihedral subgroup of SL2(C) with 4d elements, for
d ≥ 2, which is generated by the cyclic group Z2d and the following matrix [8,
p. 73],

(4.1) H2 =
(

0 , 1
−1, 0

)
.

We have already seen in the previous section that the norm ‖Hz‖ = ‖z‖ is
preserved for every z ∈ C2 and each matrix H in Z2d; and so it is trivial to
deduce that the norm is also preserved for every matrix H in the group Dd+2.
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The quotient mapping π̇ from C2 over the singular surface ΣD
∼= C2/Dd+2 is

given by the composition η2 ◦ η1, with

(4.2) η1(s, t) =
(

s2d+t2d

2i , s2d−t2d

2i , st
)

and
η2(x1, x2, x3) =

(
x1, x3x2, x2

3

)
.

It is easy to see that η1 is a quotient mapping from C2 onto the singular
surface defined by x2

2−x2
1 = x2d

3 in C3. By fixing x̂2 = x2x3 and x̂3 = x2
3, we can

easily deduce that the mapping

(4.3) π̇(s, t) = η2 ◦ η1(s, t) =
(

s2d+t2d

2i , st s2d−t2d

2i , s2t2
)

is a natural branched 4d-covering from C2 over

ΣD
∼= {x̂2

2 − x2
1x̂3 = x̂d+1

3 } in C3.

We have already proved in [1] that Theorem (1.4) holds for the mapping π̇,
the finite group G ≡ Dd+2 and the exponent β = 1

4d . Nevertheless, we include
the proof for the sake of completeness. We shall use this proof as a model for
showing Theorem (1.4) for the binary tetrahedral and octahedral groups.

Proof of Theorem (1.4) for the binary dihedral group Dd+2. We begin by an-
alysing the mapping η1 given in (4.2). It is easy to deduce the existence of an
invertible [3 × 3] matrix Q such that Qη1 is equal to the mapping π defined
in (3.2), with n = 2d. Moreover, the norm ‖Qx‖ is less than or equal to 2‖x‖ for
every x ∈ C3. Given the open ball BR ⊂ C2 of radius R > 0 and centre in the
origin, let z and ζ be two points in BR such that ‖z− ζ‖ is less than or equal to
‖z−Hζ‖ for every matrix H in the group Dd+2 with 4d elements, with d ≥ 2.

We have that the binary dihedral group Dd+2 is generated by Z2d and the
matrix H2 in (4.1), so we fix ξ = Hk

2 ζ with the exponent k = 0, 1. Let J0 be the
matrix in Z2d such that ‖z − J0ξ‖ is less than or equal to ‖z − Jξ‖ for every
J in Z2d. Notice that ‖J0ξ‖ = ‖ζ‖, the mapping η1 is invariant under the
natural action of J0 and ‖z− ζ‖ is less than or equal to ‖z−J0ξ‖ because of the
given hypotheses. Moreover, recall that π = Qη1 and 2‖x‖ ≥ ‖Qx‖. A direct
application of equation (3.6) with n = 2d yields the following inequality, where
C7(R) is some finite positive constant independent of the arbitrary exponent
k = 0, 1,

‖η1(z)− η1(Hk
2 ζ)‖2 ≥ C7(R)‖z− J0ξ‖2d(‖z‖+ ‖J0ξ‖)2d

≥ C7(R)‖z− ζ‖2d(‖z‖+ ‖ζ‖)2d,
(4.4)

We only need to analyse the mapping η2 given in (4.2). Let w and x be a
pair of points in η1(BR) ⊂ C3, so that

(4.5) ‖η2(w)− η2(x)‖2 = |w1 − x1|2 + |w2w3 − x2x3|2 + |w2
3 − x2

3|2.

We have by the definition of η1 that |x3| ≤ R2, |x1| ≤ R2d and x2
1 + x2d

3 is
equal to x2

2; similar relations are satisfied by w. Hence, the following inequality
holds,

|w2
2 − x2

2| ≤ |w2
1 − x2

1| + |w2d
3 − x2d

3 |

≤ 2R2d|w1 − x1|+ dR2d−2|w2
3 − x2

3|

≤ R2d
(
2 + d/R2)‖η2(w)− η2(x)‖.
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Let C6 be the finite positive constant calculated in Lemma (3.3). Since 2R2d

is greater than or equal to |w1 − x1|, we can deduce the existence of a finite
positive constant C8(R) such that

(4.6)
‖η2(w)− η2(x)‖

2C8(R)
≥ max

{
C6|w1 − x1|2, |w2

2 − x2
2|,

|w2
3 − x2

3|, |w2w3 − x2x3|

}
.

The right term in the previous inequality can be analysed using equa-
tion (3.4) of Lemma (3.3). We just need to set n = 2, to recall that ‖z‖ + ‖ζ‖
is greater than or equal to ‖z − ζ‖ and to define the points ẑ=(w2, w3) and
ζ̂=(x2, x3). Thus, a direct application of Lemma (3.3) into equation (4.6) yields
that the following inequalities hold whenever ‖w − x‖ is less than or equal to
‖w− φ(x)‖, for the mapping φ(x) defined by (x1,−x2,−x3),

(4.7)
‖η2(w)− η2(x)‖

C8(R)C6
≥ 2 max {|w1 − x1|2, ‖ẑ− ζ̂‖2} ≥ ‖w− x‖2.

On the other hand, it is easy to verify that η1(H2ζ) is equal to φ(η1(ζ)) for
the matrix H2 in (4.1). Thus, given z and ζ in BR such that ‖z − ζ‖ is less
than or equal to ‖z − Hζ‖ for each H in Dd+2, we fix the point w = η1(z).
Now, if the distance ‖w−η1(ζ)‖ is less than or equal to ‖w−η1(H2ζ)‖, we may
set x = η1(ζ) and k = 0 into equations (4.4) and (4.7), in order to deduce the
following version of equation (1.5) for the exponent β = 1

4d and the quotient
mapping π̇ = η2 ◦ η1 defined in (4.3),

(4.8)
‖π̇(z)− π̇(ζ)‖

‖z− ζ‖2d(‖z‖+ ‖ζ‖)2d
≥ C8(R)C7(R)C6.

Finally, if ‖w−η1(H2ζ)‖ is less than or equal to ‖w−η1(ζ)‖, we may set the
point x = η1(H2ζ) and the exponent k = 1 in equations (4.4) and (4.7), in order
to deduce that equation (4.8) holds as well.

5. Proof of theorem (1.4) for the tetrahedral group

Let E6 be the binary tetrahedral subgroup of SL2(C) with 24 elements. This
group is generated by the following three matrices [8, p. 74]:

(5.1)
(

i, 0
0,−i

)
,

(
0 , 1
−1, 0

)
and H3 =

1
1 + i

(
1 , 1
−i, i

)
.

The first two matrices generate the binary dihedral group D4 with 8 ele-
ments. Further, the cube H3

3 is equal to minus the identity matrix. We have
already seen, in the previous section, that the norm ‖Hz‖ = ‖z‖ is preserved
for every z ∈ C2 and each matrix H in the group D4. Thus, we only need to
verify that ‖H3z‖ = ‖z‖, in order to deduce that the norm is preserved as well
for every matrix in the binary tetrahedral group E6. We can directly prove that
‖H3z‖ is equal to ‖z‖ by choosing the point z = (s, t) in C2 and calculating:

‖H3z‖2 =
(s + t)(s + t) + (t− s)(t− s)

2
= |s|2 + |t|2.
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On the other hand, the polynomial quotient mapping π̈ from C2 over the
singular surface Σ6

∼= C2/E6 is given by the composition η4 ◦η3, with θ = 2
√

3,

(5.2)
η3(s, t) =

(
s2t2 + s4+t4

iθ , s2t2 − s4+t4

iθ , st s4−t4

2i

)
and η4(x1, x2, x3) =

(
x2x1, [x3

1 − x3
2]/2, x3

)
.

It is easy to see that η3 is a quotient mapping from C2 onto the singular

surface defined by x3
1+x3

2
2 = x2

3 inside C3. By fixing x̂1 = x1x2 and x̂2 = x3
1−x3

2
2 ,

we can easily deduce that π̈ = η4 ◦ η3 is a natural branched 24-covering from
C2 over

(5.3) Σ6
∼=

{
x̂3

1 + x̂2
2 = x4

3

}
in C3.

Finally, we may verify that η3(Hζ) is equal to η3(ζ) for every ζ in C2 and
each matrix H in the group D4, for we only need to verify that η3 is invariant
under the natural action of the first two matrices presented in (5.1). Moreover,
considering the matrix H3 in (5.1), we may calculate that η3(H3ζ) is equal to
ϕ(η3(ζ)) as well, where ϕ(x) is defined by (τx1, τx2, x3) in C3 and τ = i

√
3−1
2 is the

cubic root of the unity. The proof of Theorem (1.4) for the binary tetrahedral
group E7 and the exponent β = 1

24 follows the same structure than the proof
for Dd+2.

Proof of Theorem (1.4) for the binary tetrahedral group E6. We begin by an-
alysing the mapping η3 given in (5.2). It is easy to deduce the existence of an
invertible [3 × 3] matrix Q̂ such that Q̂η3 is equal to the mapping π̇ defined
in (4.3), with d = 2. Moreover, the norm ‖Q̂x‖ is less than or equal to

√
3‖x‖

for every x ∈ C3. Given the open ball BR ⊂ C2 of radius R > 0 and centre at
the origin, let z and ζ be a pair of points in BR such that ‖z− ζ‖ is less than or
equal to ‖z−Hζ‖ for every matrix H in the group E6 with 24 elements.

We have that the binary tetrahedral group E6 is generated by D4 and the
matrix H3 in (5.1), so we fix ξ = Hk

3 ζ for a given exponent k. Let J0 be a
matrix in D4 such that ‖z − J0ξ‖ is less than or equal to ‖z − Jξ‖ for every
J in D4. Notice that ‖J0ξ‖ = ‖ζ‖, the mapping η3 is invariant under the
natural action of J0 and ‖z− ζ‖ is less than or equal to ‖z−J0ξ‖ because of the
given hypotheses. Moreover, recall that π̇ = Q̂η3 and

√
3‖x‖ ≥ ‖Q̂x‖. A direct

application of equation (4.8) with d = 2 yields the following inequality, where
C9(R) is some finite positive constant independent of the arbitrary exponent k,

(5.4)
‖η3(z)− η3(Hk

3 ζ)‖3 ≥ C9(R)‖z− J0ξ‖12(‖z‖+ ‖J0ξ‖)12

≥ C9(R)‖z− ζ‖12(‖z‖+ ‖ζ‖)12.

We only need to analyse the mapping η4 given in (5.2). Let w and x be a
pair of points in η3(BR) ⊂ C3, so that

‖η4(w)− η4(x)‖2 = |w1w2 − x1x2|2 + |w
2
1−w3

2−x3
1+x3

2
2 |2 + |w3 − x3|2.

We have by the definition of η3 that |x3| ≤ R6, |x1x2| ≤ 2R8 and x3
1+x3

2
2 is equal

to x2
3; similar relations are satisfied by w. Hence, the following inequality holds,
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∥∥∥∥w3
1 − x3

1

2
,
w3

2 − x3
2

2

∥∥∥∥ ≤ ∥∥∥∥w3
1 + w3

2 − x3
1 − x3

2

2
,
w3

1 − w3
2 − x3

1 + x3
2

2

∥∥∥∥
≤ |w2

3 − x2
3|+ ‖η4(w)− η4(x)‖

≤ (2R6 + 1)‖η4(w)− η4(x)‖.

Recall that |w3 ± x3| and |w1w2−x1x2|1/2 are less than or equal to 2R6

and 2R4, respectively. Let C6 be the finite positive constant calculated in
Lemma (3.3), we can deduce the existence of a finite positive constant C10(R)
such that,

(5.5)
‖η4(w)− η4(x)‖

23/2C11(R)
≥ max

{
C6|w3 − x3|3, |w3

1 − x3
1|,

|w3
2 − x3

2|, |w1w2 − x1x2|3/2

}
.

The right term in previous inequality can be analysed using equation (3.4) of
Lemma (3.3). We just need to set n = 3, to recall that ‖z‖+ ‖ζ‖ is greater than
or equal to ‖z− ζ‖ and to define the points ẑ=(w1, w2) and ζ̂ = (x1, x2). Thus, a
direct application of Lemma (3.3) into equation (5.5) yields that the following
inequalities hold whenever ‖w − x‖ is less than or equal to ‖w − ϕj(x)‖, for
every mapping ϕj(x) defined by (τjx1, τjx2, x3), where τ = i

√
3−1
2 is the cubic

root of the unity and j is any natural number,

(5.6)
‖η4(w)− η4(x)‖

C11(R)C6
≥ 23/2 max {‖ẑ− ζ̂‖3, |w3 − x3|3} ≥ ‖w− x‖3.

On the other hand, we have calculated that η3(Hj
3ζ) is equal to ϕj(η3(ζ))

for the matrix H3 in (5.1) and every exponent j. Thus, given z and ζ in BR

such that ‖z − ζ‖ is less than or equal to ‖z − Hζ‖ for each H in E6, we
fix the point w = η3(z) and choose an exponent k such that ‖w − η3(Hk

3 ζ)‖
is less than or equal to ‖w − η3(Hj

3ζ)‖ for every j. We may set the point
x = η3(Hk

3 ζ) into equations (5.4) and (5.6), in order to deduce the following
version of equation (1.5) for the exponent β = 1

24 and the quotient mapping
π̈ = η4 ◦ η3 defined in (5.2),

(5.7)
‖π̈(z)− π̈(ζ)‖

‖z− ζ‖12(‖z‖+ ‖ζ‖)12 ≥ C11(R)C9(R)C6.

6. Proof of theorem (1.4) for the octahedral group

Let E7 be the binary octahedral subgroup of SL2(C) with 48 elements, which
is generated by the binary tetrahedral group E6 and the following matrix [8,
p. 74],

(6.1) H4 =
(

ρ8, 0
0 , ρ8

)
, with ρ8 = (1 + i)/

√
2.

Recall that ρ8 is the eighth-root of the unity. We have already seen, in
previous section, that the norm ‖Hz‖ = ‖z‖ is preserved for every z ∈ C2 and
each matrix H in the group E6; and so it is trivial to deduce that the norm is
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also preserved for every matrix H in the group E7. The quotient mapping π̃
from C2 over the singular surface Σ7

∼= C2/E7 is given by

(6.2) π̃(z) = η2 ◦ π̈(z) = η2 ◦ η4 ◦ η3(z),

where each ηk has been defined in (4.2) or (5.2). We know that π̈ is a quotient
mapping from C2 onto the singular surface Σ6 define by x3

1 + x2
2 = x4

3 inside
C3. By fixing x̂2 = x2x3 and x̂3 = x2

3, we can easily deduce that the mapping π̃
in (6.2) is a natural branched 48-cover from C2 over

(6.3) Σ7
∼=

{
x3

1x̂3 + x̂2
2 = x̂3

3

}
in C3.

The proof of Theorem (1.4) for the binary octahedral group E7 and the
exponent β = 1

48 is essentially the same as the proofs for Dd+2 and E6, so
we only present a sketch. Given the open ball BR ⊂ C2 of radius R > 0 and
centre in the origin, let z and ζ be two points in BR such that ‖z − ζ‖ is less
than or equal to ‖z − Hζ‖ for every matrix H in the group E7. Considering
equation (5.7), and working as in the proofs of (4.4) and (5.4), we have that the
following inequality holds for the matrix H4 given in (6.1) and the exponent
k = 0, 1:

(6.4)
‖π̈(z)− π̈(Hk

4 ζ)‖2

‖z− ζ‖24(‖z‖+ ‖ζ‖)24 ≥ C2
11(R)C2

9(R)C2
6 .

Letting w and x be a pair of points in π̈(BR) ⊂ C3, we automatically have
that |x1| ≤ 2R8, |x3| ≤ R6 and x2

2 is equal to x4
3 − x3

1; similar relations are
satisfied by the vector w. Hence, the following inequality holds,

|w2
2 − x2

2| ≤ |w3
1 − x3

1|+ |w4
3 − x4

3|

≤ 12R16|w1 − x1|+ 2R12|w2
3 − x2

3|

≤ 2R12(6R4 + 1)‖η2(w)− η2(x)‖.

Recall equation (4.5) with η2(x) = (x1, x3x2, x2
3). Let C6 be the finite positive

constant calculated in Lemma (3.3). Since |w1−x1| is less than or equal to 4R8,
and working as in the proof of equations (4.6), we can deduce the existence of
a finite positive constant C12 with

(6.5)
‖η2(w)− η2(x)‖

2C12(R)
≥ max

{
C6|w1 − x1|2, |w2

2 − x2
2|,

|w2
3 − x2

3|, |w2w3 − x2x3|

}
.

Suppose that the norm ‖w − x‖ is less than or equal to ‖w − φ(x)‖, where
φ(x) is defined by (x1,−x2,−x3). Working as in the proof of (4.7), we have that:

(6.6) ‖η2(w)− η2(x)‖ ≥ C12(R)C6‖w− x‖2.

Finally, it is easy to verify that π̈(H4ζ) is equal to φ(π̈(ζ)) for the matrix H4

in (6.1) and the mapping π̈ = η4 ◦ η3 defined in (5.2). Thus, given z and ζ in
BR such that ‖z − ζ‖ is less than or equal to ‖z − Hζ‖ for H in Dd+2, we fix
the point w = π̈(z). Working as in the proof of (4.8) and (5.7), we may set the
point x = π̈(Hk

4 ζ) into equation (6.4) and (6.6), with an appropriate k, in order
to deduce the following version of equation (1.5) for the exponent β = 1

48 and
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the quotient mapping π̃ = η2 ◦ π̈ defined in (6.2),

(6.7)
‖π̃(z)− π̃(ζ)‖

‖z− ζ‖24(‖z‖+ ‖ζ‖)24 ≥ C12(R)C2
11(R)C2

9(R)C3
6 .
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CINVESTAV
Apartado Postal 14-740
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ON THE COMPLEMENT OF SETS WITH A SYSTEM OF STEIN
NEIGHBOURHOODS

E. S. ZERON

Abstract. Let M be a holomorphic (complex) manifold, and K be a compact
subset of M which has a system of Stein open neighbourhoods. The main
objective of this paper is to show that the complement of K in M is η-connected,
where η ≥ 0 is completely defined by the topological properties of M .

1. Introduction

The general class of compact subsets which have a system of Stein open
neighbourhoods plays an extremely important role in complex analysis and
approximation theory. This class contains the polynomially and rationally
convex subsets of Cm, for example, as well as the totally real submanifolds of
Cm. We refer the reader to Stolzenberg [15] and Alexander and Wermer [2]
for a general review on the subject. Nevertheless, it is usually a very difficult
problem to decide whether a given compact subset has a system of Stein open
neighbourhoods. Therefore, results which provide topological obstructions are
of special interest to complex analysis.

Recently, Forstnerič [7] proved via Morse theory that the complement of
a polynomially convex set in Cn is (n−1)-connected for n ≥ 2. Let M be a
holomorphic (complex) manifold, and K be a compact subset of M which has
a system of Stein open neighbourhoods. The main objective of this paper is to
show that the complement of K in M is η-connected, where η ≥ 0 is completely
defined by the topological properties of M . We strongly recommend the works
of May [11] and Aguilar, Gitler and Prieto [1] for references on homotopy theory.

Theorem (1.1). Let M be a holomorphic q-connected manifold of complex
dimension m ≥ 2, where q ≥ 0. Define η to be the minimum of q and m−2.
Then, the complement of any compact set K in M with a system of Stein open
neighbourhoods is η-connected.

We must note that previous theorem is a modification of the fairly classical
results of Andreotti and Frankel [3] and Bott [5]. The space Cn is the perfect
example of a manifold which satisfies the hypotheses of Theorem (1.1), for it
is contractible. Recall, for the sake of completeness, that the manifold M is
q-connected whenever the homotopy groups πk(M) vanish for every 0 ≤ k ≤ q.
Besides, a compact subset K has a system of Stein open neighbourhoods if for
every open neighbourhood V of K there exists a Stein open subset Ω such that
K ⊂ Ω ⊂ V .

2000 Mathematics Subject Classification: 32Q55, 32E20 or 55E05.
Keywords and phrases: Stein sets, Simply connected, Homotopy.
Research supported by Cinvestav and Conacyt (Mexico), and Université de Montréal (Canada).
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One of the main applications of Theorem (1.1) is to produce examples of
compact Stein sets which have no system of Stein open neighbourhoods; see
Corollary (3.2). Recall that a compact set K is said to be Stein whenever the
Theorem B of Cartan and Serre is valid on K [8, p. 100]. It was thought for some
time that any compact Stein set has a system of Stein open neighbourhoods, but
an counterexample due to Björk [4] has shown that this is not the case. More
counterexamples (using topological arcs) have been constructed by Henkin [9].

We close this chapter expressing our deepest gratitude to Professor Samuel
Gitler and to one of the referees, who suggested to us the final version of
Theorem (1.1) and a simplified proof.

The next section of this paper is completely devoted to the proof of Theo-
rem (1.1). Several applications and counterexamples are presented in the final
chapter of this work.

2. Proof of Main Theorem (1.1)

We begin by presenting the following lemma which collects several known
results about Stein manifolds. Recall that the reduced H̃k(·) and singular Hk(·)
homology groups coincide for k ≥ 1.

Lemma (2.1). Let W be a holomorphic manifold of complex dimension m ≥ 2.
Suppose there exist a commutative group G and an index q ≥ 0 such that the
reduced homology groups H̃k(W, G) vanish for 0≤k≤q. Given a compact set
K in W which has a system of Stein open neighbourhoods, the following two
statements hold:

Ȟj(K; G) = 0 for j ≥ m + 1;(2.2)

H̃k(W \K; G) = 0 for 0 ≤ k ≤ min{q, m−2}.(2.3)

Proof. The Čech cohomology groups Ȟj(Ω; G) vanish for any m-complex
Stein manifold Ω and j > m, because Ω has the homotopy type of a CW-complex
of real dimension less than or equal to m; see [3], [5] or [12]. Thus equation (2.2)
holds, for K has a system of Stein open neighbourhoods partially ordered by
inclusions and Ȟj(·) is invariant under direct limits; see for example [6, p. 348]
or [8]. On the other hand, suppose that k ≤ m−2. A direct application of the
Duality Theorem for general manifolds, [6, p. 351] or [14], and the long exact
sequence for reduced homology, [6, p. 185] or [14], yields that

0 = H̃k+1(W, W\K; G) → H̃k(W\K; G) → H̃k(W ; G) → .

Thus, equation (2.3) automatically holds because of the hypotheses and the
above sequence.

We may now present the proof of Theorem (1.1). Let M be a holomorphic q-
connected manifold of complex dimension m ≥ 2, where q ≥ 0, and K be a com-
pact subset of M which has a system of open Stein neighbourhood. Lemma (2.1)
automatically implies that the complement of K in M is arcwise connected, for
a space is 0-connected if and only if its reduced homology group H̃0(·) vanishes.

Proof of Theorem (1.1). We only need to show that the compact set K in
M has a system of Stein open neighbourhoods whose complements are all η-
connected, where η is the minimum of q and m−2. Let U ⊂ M be any open
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neighbourhood of K. We may suppose that U is a Stein manifold with a finite
number of connected components, for the compact set K ⊂ M has a system of
Stein open neighbourhoods.

There is then a biholomorphism h defined from U onto a closed m-complex
submanifold Ũ of C2m+1; see [8, p. 126] or [10, p. 128]. Choose Bρ an open
ball in C2m+1 with centre at some fixed point x ∈ C2m+1 and radius ρ > 0 large
enough such that: h(K) is contained in Ũ∩Bρ and the boundary δBρ intersects
Ũ transversely. Hence, the set Ũ ∩ Bρ is a Stein open manifold bounded by
the compact smooth manifold Ũ ∩ δBρ. The works of Andreotti and Frankel
[3] and Bott [5] automatically imply that

(2.4)
(
Ũ ∩ Bρ, Ũ ∩ δBρ

)
is (m−1)-connected.

We may also prove (2.4) via Milnor’s work [12]. Let x be a fixed point in
C2m+1 such that the square-distance function Lx : Ũ → R has no degenerate
critical points [12, p. 41]. The index of Lx is then less than or equal to m at
each one of its critical points, for Ũ has real dimension 2m. On the other hand,
since Lx(z) is defined by the norm ‖z−x‖2, the compact sets Ũ∩Bρ and Ũ∩δBρ

are respectively equal to L−1
x ([0, ρ2]) and L−1

x (ρ2). A direct application of Morse
Theory [12, §3] yields that Ũ ∩Bρ is obtained from Ũ ∩δBρ by attaching k-cells
of dimension k ≥ m, for the index of −Lx is greater than or equal to m at each
one of its critical points [12, p. 41]; and so statement (2.4) holds.

Define Ω ⊂ M to be the inverse image h−1(Ũ∩Bρ), where h is the biholo-
morphism from U onto Ũ. We easily have that Ω is a Stein open set, K ⊂ Ω,
and the boundary δΩ is a smooth compact manifold. Moreover, the compact
closure Ω ⊂ U has a system of Stein open neighbourhoods given by the inverse
images h−1(Ũ∩Bτ), for the radii τ > ρ. We can deduce that the sets M \Ω and
M \Ω are both arcwise connected because δΩ is smooth and Lemma (2.1). The
previous facts and (2.4) also implies that

(2.5) πk

(
Ω, δΩ

)
vanishes for every 0 ≤ k ≤ m−1;

(M\Ω, E) is 0-connected for any E ⊂ M \Ω.

Since the boundary δΩ is smooth and compact, we may choose an open set
V in M such that Ω ⊂ V and the groups πk(V, V\Ω) vanish as well for every
k ≤ m−1. We may fix V to be an ε-neighbourhood of Ω with ε > 0 small enough.
Notice that M is equal to the union of V and the interior of M \Ω. Hence, we
may use the excisive triad (M ; V, M\Ω), the second statement of (2.5), and the
Homotopy Excision Theorem [11, p. 81], in order to deduce the following result
for m ≥ 2,

(2.6) πk(M, M \Ω) vanishes for 0 ≤ k ≤ m−1.

We may also prove (2.6) by using the Blakers and Massey’s Theorem pre-
sented in [1, p. 193]. The inclusions of δΩ into Ω and M\Ω are both cofibrations
because δΩ is a compact smooth manifold [1, p. 94]. Therefore, we may use
the triad (M ; Ω, M\Ω), both statements of (2.5), and Blakers and Massey’s
Theorem [1, p. 193], in order to deduce (2.6) for m ≥ 2.

Finally, we demand in the hypotheses that M is q-connected, with q ≥ 0.
Therefore, the group πk(M\Ω) vanishes as well for every k ≤ η, with η equal
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to the minimum of q and m−2, because statement (2.6) and the following long
exact sequence [1, p. 87] or [11, p. 63],

0 = πk+1(M, M \Ω) → πk(M \Ω) → πk(M) = 0.

We may conclude that the complement of K in M is η-connected, because for
every open neighbourhood U of K, we may find a Stein open set Ω in M such
that K⊂Ω⊂U and πk(M\Ω) vanishes for 0≤k≤η. That is, let f be a continuous
mapping defined from the k-dimensional sphere Sk into the complement M\K.
We may find a Stein open set Ω in M such that K ⊂ Ω, the image f (Sk) does not
meet Ω, the complement of Ω is 0-connected, and the group πk(M\Ω) vanishes.
The mapping f is then homotopically trivial in M\Ω and in the larger set M\K.
We need specify no base point in M \Ω, for it is 0-connected.

3. Applications and Counterexamples

We want to finish this paper by presenting several applications and coun-
terexamples. As we have said in the introduction, the space Cn is the perfect
example of a manifold which satisfies the hypotheses of Theorem (1.1), for it
is contractible. Thus, we have the following result.

Corollary (3.1). Let K ⊂ Cn be a compact set with a system of Stein open
neighbourhoods, for n ≥ 2. The set Cn \K is then (n−2)-connected.

One of the main applications of Theorem (1.1) is the construction of compact
Stein sets which have no system of Stein open neighbourhoods. Recall that a
compact set K is said to be Stein whenever Theorem B of Cartan and Serre
is valid on K, that is, if and only if all the Čech cohomology groups Ȟq(K,L)
vanish for every q ≥ 1 and each coherent analytic sheaf L; see [8, p. 100]. In
particular, we may fix L equal to the sheaf of germs of holomorphic p-forms
defined on K.

Thus, whenever K is a compact Stein set in Cn, the Dolbeault theorem yields
that the Dolbeault cohomology groups Hp,q

@
(K) vanish for p ≥ 0 and q ≥ 1.

That is, given a @-closed (p, q)-form λ defined on an open neighbourhood V of K,
there exists a second (p, q−1)-form g defined on a smaller neighbourhood W of
K such that @g = λ inside W . Recall that all previous cohomology groups are
calculated as direct limits over systems of neighbourhoods of K. The simplest
example of a compact Stein set is a zero-dimensional one, such as a copy of the
Cantor set.

Corollary (3.2). Let M be a holomorphic q-connected manifold of complex
dimension m ≥ 3, where q ≥ 1, and K be a (topological) zero-dimensional
compact subset of M whose complement is not simply connected. The set K is
then Stein, but it has no system of Stein open neighbourhoods in M .

We must point out that there always exist zero-dimensional compact sub-
sets in M whose complement is not simply connected. Rushing [13] produces
several examples of Cantor sets in Cn such that the first homotopy group of
the complement is non-abelian and infinite.
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Proof. The set K is Stein because all cohomology groups Ȟq(K,L) vanish
whenever q ≥ 1 and K is a zero-dimensional set. Theorem (1.1) easily implies
then that K has no system of Stein open neighbourhoods.

It is interesting to compare Corollary (3.2) with the original Björk [4] and
Henkin’s [9] examples of compact Stein sets which have no system of Stein
open neighbourhoods. On the other hand, we may also use Theorem (1.1) for
estimating how large is the intersection of all Stein open neighbourhoods of a
given compact set. We need the following lemma on Stein manifolds.

Lemma (3.3). Let K be a compact subset of a Stein manifold. The intersection
of all Stein open neighbourhoods of K is a compact set.

Proof. Notice that K has at least one Stein open neighbourhood Ω, because
the given hypotheses. Define K̂Ω to be the holomorphically convex hull of K
in its neighbourhood Ω, that is,

K̂Ω = {z ∈ Ω ; |h(z)| ≤ ‖h‖K , ∀h ∈ O(Ω)}.

Further, let K̃ be the intersection of all Stein open neighbourhoods of K.
We easily have that K̃ contains the intersection

⋂
Ω K̂Ω, where Ω runs over

all Stein open neighbourhoods of K. We assert that the reverse containment
holds. Suppose there exists a point y ∈ K̃ and a Stein open neighbourhood U

of K such that y /∈ K̂U . We have that y ∈ U and that there is a holomorphic
function h ∈ O(U) such that |h(y)| is strictly greater than ‖h‖K . Thus, the
Stein open set {z∈U; h(z) 6=h(y)} contains K, but it does not contain y. This is
a contradiction of the fact that y ∈ K̃.

The set K̃ and the intersection
⋂

Ω K̂Ω are then equal, where Ω runs over
all Stein open neighbourhoods of K. Moreover, every hull K̂Ω is compact, for
Ω is Stein [8] or [10, p. 109], and so K̃ is compact.

We may deduce that the previous lemma holds as well when K is a compact
subset of any complex manifold, and K has at least one Stein open neigh-
bourhood. Recall that a continuous mapping f defined from the k-dimensional
sphere Sk into an open manifold W is homotopically trivial if and only if f has
a continuous extension to the (k+1)-dimensional compact ball bounded by Sk.

Corollary (3.4). Let M be a holomorphic q-connected manifold of complex
dimension m ≥ 2, where q ≥ 0. Besides, let K be a compact set in M which has
at least one Stein open neighbourhood, and f be a continuous non-homotopi-
cally trivial function defined from the k-dimensional sphere Sk into M \ K. If
the dimension k is less than or equal to both q and m−2, then, the image f (Sk)
meets every Stein open neighbourhoods of K.

Proof. Define the set K̃ to be the intersection of all Stein open neighbour-
hoods of K. This intersection is well defined because there is at least one Stein
open set Ω containing K. Lemma (3.3) implies that K̃ is compact. It is easy
to deduce that K̃ has a system of Stein open neighbourhoods in M , for the
intersection of Stein open subsets in Ω is again Stein. Thus, given any open
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set V ⊂ M which contains K̃, we just need to pick up enough Stein open neigh-
bourhoods of K̃ (or K) in Ω so that the intersection of all of them is contained
inside V .

We assert that the image f (Sk) meets K̃, and so, it meets every Stein open
neighbourhood of K. If the set f (Sk) does not meets K̃, then, f is homotopically
trivial in the complement of K̃, after Theorem (1.1). Hence, the function f is
also homotopically trivial in the larger set M \ K, which is a contradiction of
the given hypotheses.

Finally, we close this paper by giving a pair of counterexamples which show
that the hypotheses of Theorem (1.1) are sharp. Let E be the closed set de-
fined by z1 = 0 in Cn. It is easy to see that E has a system of Stein open
neighbourhoods, but its complement is not simply connected. Therefore, we
cannot relax the hypothesis that K is a compact subset of a complex manifold
in Theorem (1.1).

Moreover, let T 2 be the compact torus defined by |x|=|y|=1 in C2. We have
that T 2 is rationally convex, so it has a system of Stein open neighbourhoods,
but its complement is not simply connected. The fundamental group of Cn \T 2

is indeed isomorphic to the integers. Thus, we cannot relax the hypothesis
that η ≤ m−2 in Theorem (1.1); and it is trivial to see that we cannot relax
the hypothesis that η ≤ q either.
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CINVESTAV
Apdo. Postal 14-740
07000 México D.F.
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EXISTENCIA DE SOLUCIONES POSITIVAS PARA PROBLEMAS
NO LINEALES CON DISCONTINUIDADES INDEFINIDAS

MARCO CALAHORRANO

Resumen. En este artı́culo presentamos algunos resultados sobre la existen-
cia de soluciones positivas para ecuaciones diferenciales de segundo orden
(1-dimensional) con t⁄¢rmino no-lineal de la forma λm(x)f (u), donde m es dis-
continua y cambia de signo.
Abstract In this paper we present some results about the existence of positive
solutions for second order differential equations (1-dimensional) with nonlin-
ear term of the form λm(x)f (u), where m is discontinuous and sign changing.

A Joaquı́n Bustoz, entrañable amigo. In memoriam.

1. Introducción

Problemas con no linealidades indefinidas han sido estudiados por S. Alama,
M. del Pino, G. Tarantello [1], [2], [3], H. Berestycki, I. Capuzzo-Dolcetta, L.
Nirenberg [10], D. Papini, F. Zanolin [22], [23], [24], K. Chang y M. Jiang [18].
El caso de valores propios para pesos indefinidos fue estudiado por Anane,
Chakrone y Moussa [8], M. Cuesta [19]. Cuando las no linealidades son in-
definidas y discontinuas han contribuido también M. C. y S. González [11].
El caso de ecuaciones semilineales elı́pticas con no linealidades discontinuas
ha sido estudiado extensamente por A. Ambrosetti, C. Stuart, M. Badiale, M.
Struwe, D. Arcoya, etc, mirar por ejemplo [4], [25], [7], [6], [9] para una bib-
liografı́a más extensa. Para los casos donde las no linealidades aparecen con
peso observar [12], [20].

Ahora estudiamos la existencia de soluciones positivas para problemas con
valores al borde de la forma:

(1.1)

{
−u′′ = λm(x)f (u) , 0 < x < 1 ,

u(0) = u(1) = 0,

donde λ > 0, m ∈ PC([0, 1])1, m cambia signo y f es una función no lineal con
condiciones de crecimiento en cero y en el infinito.

Por facilidad vamos a suponer:

(1.2) m : (0, 1) 7→ R

2000 Mathematics Subject Classification: 34B15, 34B18, 34B09.
Keywords and phrases: indefinite discontinuous nonlinearities, positive solutions, boundary

value problems; no linealidades discontinuas, soluciones positivas, problemas de valores en la
frontera.

1PC([0,1]) es el conjunto de las funciones reales continuas por tramos definidas en el intervalo
[0,1].
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tal que

m(x) =

{
1 si 0 < x < α,

−1 si α < x < 1

con α ∈]0, 1[. Consideraremos las siguientes hipótesis sobre f ∈ C2

(A) f es tal que:

(1.3) f ′′(s) > 0 para s ≥ 0,

(1.4) f (0) = 0,

(1.5) f (s)− sf ′(s) < 0 para s > 0 .

(B) f verifica las siguientes hipótesis:

(1.6) f (0) = 0 ,

(1.7) existe s0 > 0 tal que f ′′(s) > 0 para s ∈ [0, s0) y

(1.8) f ′′(s) ≥ 0 para s ∈ [s0, +∞) ,

(1.9) f (s)− sf ′(s) > 0 para s > 0 .

Observación (1.10). Para la obtención de nuestros resultados hemos seguido
las ideas desarrolladas por A. Castro, R. Shivaji y A. Kurepa en [13], [16], [17]
y [14] donde estudian la existencia de soluciones no negativas para problemas
de tipo semipositone. Es importante considerar los trabajos de D. Papini y
F. Zanolin [22], [23], [24] donde se estudian ecuaciones (1-dimensional) no
lineales con peso indefinido; dichos autores, sin embargo, consideran pesos al
menos continuos. Tomen en cuenta [23] para un estudio histórico, problemas
relacionados, bibliografı́a más extensa y aplicaciones a la ecuación de Hill.

2. El resultado principal

Antes de enunciar el teorema fundamental del trabajo introduzcamos una
definición de solución para (1.1).

Definición (2.1). Diremos que u ∈ C([0, 1]) es una solución de (1.1) si u ∈
C2(]0, α[∪ ]α, 1[) y verifica (1.1) salvo el punto de discontinuidad.

Observación (2.2). En general, las soluciones definidas como en (2.1) pueden
ser llamadas soluciones del problema a “k más dos puntos” si k son los puntos de
discontinuidad de m; en el caso particular que nos ocupa podrı́amos llamarla
solución del problema de “tres puntos”, u(0) = u(1) = 0 y limt→α− u(t) =
limt→α+ u(t).

Teorema (2.3). Sea f ′(s) > 0 para s ≥ 0,
(a) Si las hipótesis [A] se verifican y lims→∞

f (s)
s = +∞ entonces existe λ∗ > 0

tal que (1.1), tiene al menos una solución positiva para λ ∈ (0, λ∗).
(b) Si las hipótesis [B] se verifican y lims→∞

f (s)
s = C, (C una constante) y

4f ′(0) > C, entonces existen constantes 0 < λ < λ tales que (1.1) tiene al menos
una solución positiva para λ ∈ (λ, λ) = Λ.
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Observación (2.4). Las soluciones obtenidas en el teorema anterior, general-
mente, no son soluciones en el sentido de las distribuciones aunque lo son en
el sentido casi todo punto.

3. Demostración del Teorema

Para la demostración del teorema (2.3) nosotros transformamos el problema
(1.1) en:

(3.1)

{
−u′′ = λf (u) , 0 < x < α ,

u(0) = 0, u(α) = ρ ;

(3.2)

{
u′′ = λf (u) , α < x < 1 ,

u(α) = ρ, u(1) = 0

con ρ > 0.

Observación (3.3). Si permitimos que ρ ≥ 0, entonces las soluciones serán
no-negativas y si ρ es simplemente un real la solución podrá cambiar signo.

Lema (3.4). Si las ecuaciones con condiciones al borde (3.1) y (3.2) tienen
solución entonces (1.1) también lo tendrá (en el sentido de la definición 2.1).

Estudiaremos ahora las soluciones de los problemas (3.1) y (3.2), para lo
cual primero analizaremos la ecuación de (3.1).

Si multiplicamos por u′ y luego integramos la ecuación de (3.1) obtendremos:

(3.5) −u′2

2
= λF (u) + k,

donde

(3.6) F (u) =
∫ u

0
f (s)ds.

Como f (s) > 0 para s > 0, u es cóncava y por lo tanto buscaré soluciones
positivas de (3.1) tal que u(α) = ρ y u′(α−) = 0.

Proposición (3.7). Si las hipótesis de la parte a) del teorema se verifican
entonces existe λ∗ > 0 tal que (3.1) tiene al menos una solución positiva, u,
para todo λ ∈]0, λ∗[. Además la solución u cumple: u(0) = 0, u(α) = ρ (ρ =
supx∈(0,α) u(x)) y u′(α−) = 0.

Demostración. De (3.5) y u′(α−) = 0

(3.8) u′2 = 2λ[F (ρ)− F (u)].

De la positividad y concavidad de u en ]0, α[ tenemos que:

(3.9) u′(x) =
√

2λ[F (ρ)− F (u)],

(3.10)
du√

F (ρ)− F (u)
=
√

2λdx,

que integrando nos produce:

(3.11)
√

λ =
1√
2α

∫ ρ

0

du√
F (ρ)− F (u)

.
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Definamos la función G como sigue:

(3.12) G(ρ) =
1√
2α

∫ ρ

0

du√
F (ρ)− F (u)

.

Si en la fórmula anterior se hace el cambio de variables u = ρv la función G
viene transformada en:

(3.13) G(ρ) =
ρ√
2α

∫ 1

0

dv√
F (ρ)− F (ρv)

.

De la hipótesis (1.5), f (s)− sf ′(s) < 0, se puede probar fácilmente que: dG
dρ < 0

para ρ > 0.
Por otro lado podemos demostrar que:

(3.14) G(ρ) ≤ ρ

α
√

2F (ρ)

∫ 1

0

dv√
1− v

,

y por lo tanto

(3.15) G(ρ) ≤ ρ
√

2

α
√

F (ρ)
,

Y como hemos supuesto lims→+∞
f (s)

s = +∞ de la fórmula (3.15) nosotros ob-
tendremos que:

(3.16) G(ρ) → 0, cuando ρ → +∞.

De esto es claro que la proposición (3.7) viene inmediatamente.

Observación (3.17). La fórmula definida en (3.12) está relacionada con una
dada por los autores Manásevich y Zanolin denominada Time-mapping, mirar
[21].

Proposición (3.18). Bajo las hipótesis de la parte a) del teorema, es decir
las mismas de la proposición (3.7), el problema (3.2) tiene al menos una solución
positiva para todo λ ∈]0, λ∗[.

Antes de demostrar la proposición notemos lo siguiente:

Observación (3.19). Buscamos soluciones del problema (1.1) al menos conti-
nuas en [0, 1]; por tanto ρ = supx∈]α,1[ u(x) y entonces la solución de (1.1) no es
diferenciable en α pues debe verificar la ecuación de (3.2). Del razo-namiento
anterior deducimos que cualquier solución de (1.1) en el sentido de la definición
2.1 debe verificar (3.2) con u′(α+) < 0.

Demostración. Demostremos la proposición (3.18). Si tomamos en cuenta
la observación (3.19) nosotros debemos suponer que existe al menos un α̂ ∈ R−
tal que:

(3.20) u(α+) = α̂ρ.

De la ecuación (3.2) y siguiendo el procedimiento de la demostración de la
proposición (3.7) se tiene que:

(3.21)
∫ ρ

0

du√
(α̂ρ)2 − 2λ(F (ρ)− F (u))

= 1− α.
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Para que la proposición (3.18) quede demostrada nos basta probar que efec-
tivamente existe un tal α̂ ∈ R− tal que para todo λ ∈]0, λ∗[ la integral de la
fórmula (3.21) alcance el valor 1−α, con α ∈]0, 1[ . Definamos la función Ĝλ(ρ)
de la forma siguiente:

(3.22) Ĝλ(ρ) =
∫ ρ

0

du√
(α̂ρ)2 − 2λ(F (ρ)− F (u))

que con el cambio de variables u = ρv se transforma en:

(3.23) Ĝλ(ρ) = ρ

∫ 1

0

dv√
(α̂ρ)2 − 2λ(F (ρ)− F (ρv))

.

De la prueba de la proposición (3.7) se puede deducir que:

(3.24)
√

λ ≤ ρ
√

2

α
√

F (ρ)
.

En efecto, mirar la desigualdad (3.15) para una prueba.
Tomando en cuenta (3.24) y luego de algunos cálculos podemos llegar a:

(3.25)
1
|α̂|

≤ Ĝλ(ρ) ≤ 1√
α̂2 − 4

α2

.

Por lo tanto para que se verifique la proposición (3.18) se debe cumplir:

(3.26)
1
|α̂|

≤ 1− α ≤ 1√
α̂2 − 4

α2

para α ∈]0, 1[.
Y ası́ α̂ deberá cumplir con las desigualdades:

(3.27) |α̂| ≤
√

1
(1− α)2 +

4
α2 ,

(3.28) |α̂| ≥ 1
(1− α)

,

y

(3.29) |α̂| >
2
α

,

que se verifican fácilmente.

Proposición (3.30). Supuestas las hipótesis de la parte b) del teorema (2.3),
entonces existen constantes 0 < λ < λ tales que (3.1) tiene al menos una solución
positiva para λ ∈ (λ, λ) = Λ.

Demostración. Se sigue el razonamiento de la demostración de la propo-
sición (3.7) hasta llegar a:

(3.31) G(ρ) =
ρ√
2α

∫ 1

0

dv√
F (ρ)− F (ρv)

.
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De la hipótesis f (s) − sf ′(s) > 0 (1.9) se tiene que dG
dρ > 0, es decir, G es

creciente y por tanto:

(3.32)
1

α2f ′(0)
≤ λ ≤ 4

α2C
.

Y puesto que 4f ′(0) > C entonces existen constantes 0 < λ < λ tales que para
todo λ ∈ (λ, λ) el problema (3.1) tiene al menos una solución positiva.

Proposición (3.33). Bajo las hipótesis de la proposición (3.30) el problema
(3.2) tiene al menos una solución positiva para λ ∈ (λ, λ).

Demostración. Se aplica el razonamiento de la demostración de la propo-
sición (3.18).

Ahora estamos en capacidad de probar el teorema ya enunciado:

Teorema (3.34). Sea f ′(s) > 0 para s ≥ 0,]
(a) Si las hipótesis [A] se verifican y lims→∞

f (s)
s = +∞ entonces existe λ∗ > 0

tal que (1.1), tiene al menos una solución positiva para λ ∈ (0, λ∗).
(b) Si las hipótesis [B] se verifican y lims→∞

f (s)
s = C, (C una constante) y

4f ′(0) > C, entonces existen constantes 0 < λ < λ tales que (1.1) tiene al menos
una solución positiva para λ ∈ (λ, λ) = Λ.

Demostración. La parte a) sigue de las proposiciones (3.7) y (3.18), y la b)
viene de las proposiciones (3.30) y (3.33).

Observación (3.35). Podrán hacerse extensiones del problema al caso del op-
erador p-Laplaciano en una dimensión y seguramente se obtendrán resultados
similares.
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A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF POSITIVE PERIODIC SOLUTIONS OF A

NICHOLSON’S BLOWFLIES MODEL

JING-WEN LI, SUI SUN CHENG, ZHI-YUAN JIANG

Abstract. In this paper, we derive a sufficient condition as well as a nec-
essary condition for existence of positive periodic solutions of the Nicholson’s
blowflies model with periodic coefficients

ẋ(t) = −δ(t)x(t) + P (t)x(t− τ(t))e−a(t)x(t−τ(t)) , t ≥ 0,

where δ, P, a ∈ C(R+, (0,∞)) and τ ∈ C(R+, R+) are T -periodic functions.
When P (t) = γδ(t) with γ > 0, a sufficient and necessary condition for the
existence of a positive T -periodic solution follows.

1. Introduction

Nicholson’s blowflies models have been studied by many authors. In partic-
ular, the delay differential equation

(1.1) ẋ(t) = −δx(t) + Px(t− τ)e−ax(t−τ), t ∈ R+ = [0,∞),

where δ, P, a, τ > 0, is used by Gurney et al. in [3] to describe the dynamics
of Nicholson’s blowflies. For related works, we refer to [1], [3]–[12] and the
references cited therein. In particular, it is known that (1.1) has a unique pos-
itive equilibrium x = 1

a ln
(

P
δ

)
if, and only if, P > δ, and in [7]–[9], [12], global

attractivity of the positive equilibrium x̄ of Eq.(1.1) has been investigated. In
[10], the existence of positive T -periodic solutions of (1.1) is considered, and
the following result is obtained: If

(1.2) 1− e−δT < PT ≤ e(1− e−δT ),

then (1.1) has at least one positive T -periodic solution.
In this paper, we will derive a necessary and sufficient condition for the

existence of positive T -periodic solutions of (1.1). We will approach our neces-
sary and sufficient condition in a slightly more general setting by studying the
equation

(1.3) ẋ(t) = −δ(t)x(t) + P (t)x(t− τ(t))e−a(t)x(t−τ(t)), t ≥ 0,

under the initial condition

(1.4) x(s) = φ(s), φ ∈ C([−τM , 0], R+) and φ 6≡ 0,

where δ, P, a ∈ C(R+, (0,∞)) and τ ∈ C(R+, R+) are T -periodic functions, and

τM = max
t∈[0,T ]

τ(t) ≥ 0.

2000 Mathematics Subject Classification: 34D45, 34C25, 92D25.
Keywords and phrases: Nicholson’s blowflies, positive periodic solution, existence, coincidence

degree, positive equilibrium.

103



104 JING-WEN LI, SUI SUN CHENG, ZHI-YUAN JIANG

It is known that the initial problem (1.3)-(1.4) has a unique nonnegative
solution x(t) on [0,∞) and that x(t) > 0 for t ≥ τM . See e.g. [4]. In the
following, by a solution of (1.4) we will mean a solution of (1.3)-(1.4). Note that
when δ(t), P (t), a(t) and τ(t) are all constants, (1.3) reduces to (1.1).

By means of coincidence degree theory, we first establish a sufficient condi-
tion and a necessary condition so that (1.3) has a positive T —periodic solu-
tion. Then in the special case when δ(t), P (t), a(t) and τ(t) are constant func-
tions, we obtain our desired necessary and sufficient condition for (1.1). As
a bonus, we may also obtain a necessary and sufficient condition in the case
when P (t) = γδ(t) and γ > 0.

Throughout this paper, we always let

am = min
t∈[0,T ]

a(t), aM = max
t∈[0,T ]

a(t),

and

δ̄ =
1
T

∫ T

0
δ(s)ds, P̄ =

1
T

∫ T

0
P (s)ds.

2. Sufficient Condition

Let
X = Z = {x(t) ∈ C(R, R) : x(t + T ) = x(t)}

be the Banach space endowed with the usual linear structure as well as the
norm ‖x‖ = supt∈[0,T ] |x(t)|. Let

Lx = ẋ, Px = Qx =
1
T

∫ T

0
x(t)dt,

and
Nx = −δ(t)x(t) + P (t)x(t− τ(t))e−a(t)x(t−τ(t)).

Obviously,

Dom L = {x ∈ X : x ∈ C1(R, R)}, Ker L = R,

Im L =

{
z ∈ Z :

∫ T

0
z(t)dt = 0

}
,

and
dim Ker L = codim Im L

since Im L is closed in Z and L : Dom L ⊂ X → X is a Fredholm mapping of
index zero. It is easy to show that P and Q are continuous projectors such that

Im P = Ker L, Ker Q = Im L = Im(I −Q).

In the proof of our existence theorem below, we will use the continuation
theorem from Gaines and Mawhin [2].

Lemma (2.1) (Continuation Theorem). Let L be a Fredholm mapping of in-
dex zero, and Ω be bounded open subset in X such that N is L-compact on Ω̄.
Assume further that

(a) For each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ @Ω;
(b) QNx 6= 0 for each x ∈ @Ω ∩Ker L and

deg{QN, Ω ∩Ker L, 0} 6= 0.
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Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω̄.

Theorem (2.2). Assume that

(2.3) P (t) > δ(t), for t ∈ [0, T ] .

Then the initial problem (1.3)-(1.4) has at least one positive T -periodic solution.

Proof. Note that P (t), δ(t) are T -periodic functions and P (t) > δ(t) > 0. Then
we can choose γ > 1 such that

(2.4) P (t) > γδ(t), for t ∈ R .

To use Lemma (2.1), we consider the operator equation Lx = λNx for λ ∈ (0, 1),
that is,

(2.5) ẋ(t) = −λδ(t)x(t) + λP (t)x(t− τ(t))e−a(t)x(t−τ(t)), t ≥ 0.

Assume that x(t) is a positive T -periodic solution of (2.5), choose t∗ ∈ [0, T ] and
t∗ ∈ [t∗, t∗ + T ] such that

x(t∗) = max
t∈[0,T ]

x(t), x(t∗) = min
t∈[0,T ]

x(t).

From (2.5), we have

(2.6)
(

x(t)eλ
∫ t

0
δ(s)ds

)′
= λP (t)eλ

∫ t

0
δ(s)ds

x(t− τ(t))e−a(t)x(t−τ(t)).

Integrating (2.6) from t∗ − T to t∗,

(2.7) x(t∗)eλ
∫ t∗

0
δ(s)ds − x(t∗ − T )eλ

∫ t∗−T

0
δ(s)ds

= λ

∫ t∗

t∗−T

P (t)eλ
∫ t

0
δ(s)ds

x(t− τ(t))e−a(t)x(t−τ(t))dt,

and so,

x(t∗)
(

1− e
−λ
∫ t∗

t∗−T
δ(s)ds

)
= λ

∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

x(t− τ(t))e−a(t)x(t−τ(t))dt

≤ λ

∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

x(t− τ(t))e−amx(t−τ(t))dt

≤ λ

eam

∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

dt.

It follows that

x(t∗) ≤
λ
∫ t∗

t∗−T P (t)e−λ
∫ t∗

t
δ(s)ds

dt

eam

(
1− e

−λ
∫ T

0
δ(s)ds

) ≤
λ
∫ T

0 P (t)dt

eam

(
1− e

−λ
∫ T

0
δ(s)ds

)
<

∫ T

0 P (t)dt

eam

(
1− e

−
∫ T

0
δ(s)ds

) =
PT

eam

(
1− e−δT

) := B,(2.8)
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where the third inequality follows from the monotonicity of the numerator as
a function of λ. Similarly, we have

x(t∗)
(

1− e
−λ
∫ t∗

t∗−T δ(s)ds

)
= λ

∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

x(t− τ(t))e−a(t)x(t−τ(t))dt

≥ λ

∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

x(t− τ(t))e−aM x(t−τ(t))dt

≥ λ min
{

x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)
}∫ t∗

t∗−T

P (t)e−λ
∫ t∗

t
δ(s)ds

dt

> γ min
{

x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)
}∫ t∗

t∗−T

λδ(t)e−λ
∫ t∗

t
δ(s)ds

dt

= γ min
{

x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)
}(

1− e
−λ
∫ T

0
δ(s)ds

)
.

Thus we have

(2.9) x(t∗) > γ min
{

x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)
}

.

Note that the function xe−aM x is increasing on [0, a−1
M ] and decreasing on

[a−1
M ,∞). Therefore, if min

{
x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)

}
= x(t∗)e−aM x(t∗), then

x(t∗) ≤ a−1
M < x(t∗) < B, or a−1

M ≤ x(t∗) < x(t∗) < B, and so
x(t∗)e−aM x(t∗) > Be−aM B. It follows from (2.9) that

(2.10) x(t∗) > γBe−aM B := A1 > 0.

If
min

{
x(t∗)e−aM x(t∗), x(t∗)e−aM x(t∗)

}
= x(t∗)e−aM x(t∗),

then (2.9) yields that
x(t∗) > γx(t∗)e−aM x(t∗).

It follows that

(2.11) x(t∗) >
ln γ

aM
:= A2 > 0.

Set A = min{A1, A2}. Then

(2.12) A < x(t) < B.

Let Ω = {x ∈ X : A < x(t) < B, t ∈ R}. Then Ω satisfies the requirement (a)
in Lemma (2.1). In the sequel, we will prove that N is L-compact in Ω̄. In fact,
the generalized inverse (to L) KP : Im L → Ker P ∩Dom L is given by

KP x =
∫ t

0
x(s)ds− 1

T

∫ T

0

∫ t

0
x(s)dsdt.

Clearly,

QNx =
1
T

∫ T

0

[
−δ(s)x(s) + P (s)x(s− τ(s)e−a(s)x(s−τ(s))

]
ds.
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And

KP (I −Q)Nx =
∫ t

0
[−δ(s)x(s) + P (s)x(s− τ(s))e−a(s)x(s−τ(s))]ds

− 1
T

∫ T

0

∫ t

0

[
−δ(s)x(s) + P (s)x(s− τ(s))e−a(s)x(s−τ(s))

]
ds dt

−
(

t

T
− 1

2

)∫ T

0

[
−δ(s)x(s) + P (s)x(s− τ(s))e−a(s)x(s−τ(s))

]
ds.

Obviously, QN, KP (I−Q)N are both continuous and QN(Ω̄) is bounded. Using
the Arzela-Ascoli theorem, it is not difficult to show that KP (I−Q)N is compact.
Hence N is L-compact on Ω̄. Note that Ker L ∩ @Ω = {A, B}, and that

QN(A) =
1
T

∫ T

0

[
−δ(t)A + P (t)Ae−a(t)A

]
dt

≥ −δ̄A + P̄Ae−aM A ≥ δA

(
P̄

δ̄
e−aM A2 − 1

)

= δ̄A

(
P̄

δ̄
e− ln γ − 1

)
= δ̄A

(
P̄

δ̄γ
− 1

)
> 0,

and

QN(B) =
1
T

∫ T

0

[
−δ(t)B + P (t)Be−a(t)B

]
dt

≤ −δ̄B + P̄Be−amB ≤ − δ̄

eam
· P̄T

1− e−δ̄T
+

P̄

eam

≤ P̄

eam

(
1− δT

1− e−δT

)
< 0.

Therefore,
deg{QN, Ω ∩Ker L, 0} 6= 0.

Therefore, Ω = {x ∈ X : A < x(t) < B, t ∈ R} also satisfies the requirement
(b) in Lemma (2.1). Now that we have shown conditions (a) and (b) in Lemma
(2.1), the equation Lx = Nx has at least one solution on Ω̄. Thus the definitions
of L and N at the beginning of this section show that Eq.(1.3) has at least one
positive T -periodic solution. The proof is complete.

3. Necessary Condition

In this section, we first give the condition which guarantees that every pos-
itive solution of Eq.(1.3) tends to zero as t → ∞, and then derive a necessary
condition for the existence of positive periodic solutions of Eq.(1.3).

Theorem (3.1). Assume that

(3.2) P (t) ≤ δ(t), for t ∈ [0, T ] .

Then every positive solution of Eq.(1.3) tends to zero as t →∞.
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Proof. Let x(t) be any positive solution of Eq.(1.3). Then x(t) > 0, t ≥ 0.
From (1.3), we have[

x(t) exp
(∫ t

0
δ(s)ds

)]′
= exp

(∫ t

0
δ(s)ds

)
P (t)x(t− τ(t))e−a(t)x(t−τ(t)), t ≥ 0.

Integrating the above from t0 > 0 to t > t0, we obtain
(3.3)

x(t) = x(t0) exp
(
−
∫ t

t0

δ(s) ds

)
+
∫ t

t0

exp
(
−
∫ t

s

δ(ξ) dξ

)
P (s)x(s−τ(s))e−a(s)x(s−τ(s))ds.

It follows from (3.2) and (3.3) that

x(t) ≤ x(t0) exp
(
−
∫ t

t0

δ(s)ds

)
+

1
eam

[
1− exp

(
−
∫ t

t0

δ(s)ds

)]
.

Set v = lim supt→∞ x(t). Then 0 ≤ v < ∞. To complete the proof, we only need
to show that v = 0. In what follows, we shall prove that v = 0 in three possible
cases.

Case 1. ẋ(t) > 0 eventually. Choose t0 > 0 sufficiently large that ẋ(t) > 0
for t ≥ t0. Then 0 < x(t− τ(t)) < x(t) for t ≥ t0 + τM . Hence, by (1.3)

0 < −δ(t)x(t) + P (t)x(t− τ(t))e−a(t)x(t−τ(t)) < [P (t)− δ(t)]x(t) ≤ 0, t ≥ t0 + τM .

This contradiction shows that Case 1 is impossible.
Case 2. ẋ(t) is oscillatory. In this case, there exists {tn} with tn ↑ ∞ such

that
ẋ(tn) = 0, n = 1, 2, . . . , lim

n→∞
x(tn) = v.

Then by (1.3) and (3.2), we have

x(tn) =
P (tn)
δ(tn)

x(tn − τ(tn))e−a(tn)x(tn−τ(tn))

≤ x(tn − τ(tn))e−a(tn)x(tn−τ(tn))

≤ x(tn − τ(tn))e−amx(tn−τ(tn)).

Set w = lim supn→∞ x(tn − τ(tn)). Then w ≤ v and from the above, we obtain
v ≤ we−amw, which implies that v = 0.

Case 3. ẋ(t) < 0 eventually. Choose t0 > 0 enough large such that ẋ(t) < 0
for t ≥ t0 − τM . Then v < x(t − τ(t)) ≤ x(t0 − τ(t0)) for t ≥ t0, hence, from (3.2)
and (3.3), we have

x(t) ≤ x(t0) exp
(
−
∫ t

t0

δ(s)ds

)
+ x(t0 − τ(t0))e−amv

[
1− exp

(
−
∫ t

t0

δ(s)ds

)]
.

Let t →∞ in the above, we obtain

v ≤ x(t0 − τ(t0))e−amv.

Again, let t0 → ∞ in the above, we have v ≤ ve−amv, which yields v = 0. The
proof is complete.

From Theorem (3.1), we have the following necessary condition immediately.

Corollay (3.4). If (3.2) holds, then Eq.(1.1) has no positive T -periodic so-
lutions.
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4. Necessary and Sufficient Conditions

Combining Theorem (2.2) and Corollary (3.4), we have the following results
immediately.

Theorem (4.1). Assume that P (t) = γδ(t) with γ > 0, then Eq.(1.3) has at
least one positive T -periodic solution if and only if γ > 1.

Theorem (4.2). Eq.(1.1) has at least one positive T -periodic solution if and
only if P > δ.

We now return to condition (1.2). First note that 1 − e−δT < δT. When
1− e−δT < PT ≤ δT , every positive solution of Eq.(1.1) tends to zero as t →∞
by Theorem (3.1), and so Eq.(1.1) has no positive T -periodic solutions. When 1−
e−δT < δT < PT , Eq.(1.1) has a positive T -periodic solution, but the condition
PT ≤ e(1 − e−δT ) can be removed by Theorem (2.2). The above discussions
show that (1.2) cannot be a sufficient condition for the existence of positive
T -periodic solution of (1.1).

In view of our result, we may see that the condition (1.2) is false. The error
can be traced to the incorrect equality (5.3) in [10]:

(4.3) max
t∈[0,T ]

∫ t+T

t

eδ(s−t)

eδT − 1
Px(s− τ)e−ax(s−τ)ds =

eδT

eδT − 1
PTr0e−ar0 ,

where maxt∈[0,T ] x(t) = r0 ∈ (0, 1
a ]. In fact, we can only assert that∫ t+T

t

eδ(s−t)

eδT − 1
Px(s− τ)e−ax(s−τ)ds ≤ Pr0e−ar0

∫ t+T

t

eδ(s−t)

eδT − 1
ds

=
P

δ
r0e−ar0 <

eδT

eδT − 1
PTr0e−ar0 .

Finally, we remark that the existence of positive periodic solutions has been
discussed in [1], [10], [11]. In [11], the following differential equation

(4.4) ẋ(t) = −δ(t)x(t) + P (t)x(t)e−ax(t), t ≥ 0,

is considered, where a is a positive constant, and δ and P are positive T -periodic
functions. However, the condition of the existence of positive T -periodic solu-
tions of Eq.(4.4) obtained in [11], i.e., Pm > δM , is much stronger than our
condition (2.3). Our results also improve those in [1].
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APPROXIMATE DOUBLE CENTRALIZERS ARE EXACT DOUBLE
CENTRALIZERS

MOHAMMAD SAL MOSLEHIAN, FREYDOON RAHBARNIA AND PRASANNA K. SAHOO

Abstract. We establish the generalized stability of double centralizers as-
sociated with the Cauchy, Jensen, and Trif functional equations in the frame-
work of Banach algebras. We also investigate the superstability of double
centralizers of Banach algebras strongly without order.

1. Introduction and preliminaries

LetA be an algebra. Recall that Al(A) := {a ∈ A : aA = {0}} is the left an-
nihilator ideal and Ar(A) := {a ∈ A : Aa = {0}} is the right annihilator ideal
ofA. Annihilator ideals are {0} ifA is semiprime and a fortiori ifA is semisim-
ple. Obviously, these ideals vanish if A is unital or approximately unital. We
say a Banach algebra A is strongly without order if Al(A) = Ar(A) = {0}.

A left centralizer ofA is a linear mappingL : A → A such thatL(ab) = L(a)b
for all a, b ∈ A. Similarly, a right centralizer of A is a linear mapping R : A →
A such that R(ab) = aR(b) for all a, b ∈ A. A double centralizer of A is a pair
(L,R) where L is a left centralizer, R is a right centralizer and aL(b) = R(a)b
for all a, b ∈ A. For example, (Lc, Rc) is a double centralizer where Lc(a) := ca
and Rc(a) := ac. The set D(A) of all double centralizers equipped with the
multiplication (L1, R1) · (L2, R2) = (L1L2, R2R1) is an algebra. The notion of
double centralizer was introduced by Hochschild [9] and (also, independently)
by Johnson [12]. It is not hard to see that D(C0(X )) = Cb(X ), D(K(H)) =
B(H), D(L1(G)) = M(G), whereX ,H, G are a locally compact Hausdorff space,
a Hilbert space, and a locally compact group. The importance of the study of
double centralizers is that it is unital and contains a copy of A as an ideal,
if the annihilator ideal Ann(A) = Al(A) ∩ Ar(A) is {0}. Johnson [12] proved
that if A is an algebra satisfying Al(A) = Ar(A) = {0}, and L and R are (not
necessarily linear) maps on A fulfilling aL(b) = R(a)b, (a, b ∈ A), then (L,R)
is a double centralizer. In addition, if A is a Banach algebra then L and R are
automatically continuous.

It is easy to see that if A2 = A or Ann(A) = {0}, then L = R if and only if
L and R are both left and right centralizers, or equivalently (L,R) belongs to
the center of D(A).

An operatorT : A → A is said to be a multiplier (see [17]) ifaT (b) = T (a)b for
all a, b ∈ A. Clearly, if Al(A) = {0} (Ar(A) = {0}, respectively) then T is a left
(right, respectively) centralizer. Multipliers were first studied by Helgeson [8]
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Keywords and phrases: Stability, superstability, double centralizer, ψ-approximate double cen-
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and then investigated on Banach algebras by Wang [28]. One may be referred
to [21] for more information on double centralizers and multipliers.

We say a functional equation is stable if any function satisfying that func-
tional equation “approximately” is near to a true solution of that functional
equation. The functional equation is called superstable if every approximate
solution is an exact solution of it (see [4] for another notion of superstability
which may be called superstability modulo the bounded functions; cf. [11]).

In 1940, Ulam [27] posed the first stability problem concerning the stability
of group homomorphisms. In the next year, Hyers [10] gave a partial affir-
mative answer to the question of Ulam in the context of Banach spaces. In
1950, Aoki [2] generalized Hyers’ theorem for approximate additive mappins.
In 1978, the generalized Hyers’ theorem was independently rediscovered by
Th.M. Rassias [23] by obtaining a unique linear mapping under certain conti-
nuity assumption; see also [20].

Theorem (1.1) (Rassias’ Theorem). Suppose thatE1 andE2 are real normed
spaces with E2 complete and f : E1 → E2 is a mapping such that for each fixed
x ∈ E1 the mapping t 7→ f (tx) is continuous on R. Let there exist ε ≥ 0 and
p ∈ [0, 1) such that

‖f (x + y)− f (x)− f (y)‖ ≤ ε
(
‖x‖p + ‖y‖p

)
for all x, y ∈ E1. Then there exists a unique linear mapping T : E1 → E2 such
that

‖f (x)− T (x)‖ ≤ 2ε
|2− 2p|

‖x‖p

for all x ∈ E1.

This result is still valid in the case where p < 0 if we assume that ‖0‖p =
∞. In 1990, Th. M Rassias during the 27th International Symposium on
Functional Equations asked the question whether the above theorem can be
proved for p ≥ 1. In 1991, Gajda [6] provided an affirmative solution to this
question for p > 1. It is known that there is no analogue of above result for
p = 1 (see [6, 25]). In 1994, further generalization was obtained by Găvruta
[7]. During the last decades several stability problems of functional equations
have been investigated by many mathematicians; cf. [5, 11, 14, 24].

In [18], the stability of multipliers was investigated. In this paper, using
some ideas from [3, 13, 18], we establish the generalized stability of double
centralizers associated with the Cauchy, Jensen, and Trif functional equations.
We introduce the notion of ψ-approximate double centralizer and prove the
superstability of double centralizers of Banach algebras strongly without order.

Among others, we generalize the results of [18] in several directions. First,
we use a general control function. Second, we investigate double centralizers
as a generalization of multipliers, and finally we prove the additivity of our
mappings without any additional condition such as approximate additivity.

2. Stability of double centralizers associated to the Cauchy equation

Throughout this section, A denotes a Banach algebra. Our aim is to estab-
lish the generalized stability of double centralizers associated to the additive
Cauchy functional equation f (a + b) = f (a) + f (b).
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Theorem (2.1). Suppose f : A → A is a mapping with f (0) = 0 for which
there exist a mapping g : A → A with g(0) = 0 and functions ϕj : A×A×A×
A → [0,∞) (1 ≤ j ≤ 2) and ψ : A×A → [0,∞) such that

(2.2) ϕ̃j(a, b, c, d) :=
1
2

∞∑
n=0

2−nϕj(2na, 2nb, 2nc, 2nd) <∞ (1 ≤ j ≤ 2),

lim
n→∞

2−nψ(2na, 2nb) = 0,

‖f (λa + b + cd)− λf (a)− f (b)− f (c)d‖ ≤ ϕ1(a, b, c, d),(2.3)

‖g(λa + b + cd)− λg(a)− g(b)− cg(d)‖ ≤ ϕ2(a, b, c, d),

‖af (b)− g(a)b‖ ≤ ψ(a, b)(2.4)

for all λ ∈ T := {λ ∈ C : |λ| = 1} and a, b, c, d ∈ A. Then there exists a unique
double centralizer (L,R) of A satisfying

‖f (a)− L(a)‖ ≤ ϕ̃1(a, a, 0, 0),(2.5)

‖g(a)−R(a)‖ ≤ ϕ̃2(a, a, 0, 0)

for all a ∈ A.

Proof. Setting a = b, c = d = 0 and λ = 1 in (2.3), we have

‖f (2a)− 2f (a)‖ ≤ ϕ1(a, a, 0, 0)

for all a ∈ A. One can use induction to show that

(2.6)
∥∥∥∥f (2na)

2n
− f (2ma)

2m

∥∥∥∥ ≤ 1
2

n−1∑
k=m

2−kϕ1(2ka, 2ka, 0, 0)

for all n > m ≥ 0 and a ∈ A. It follows from (2.6) and (2.2) that the sequence{
f (2na)

2n

}
is Cauchy. Due to the completeness of the Banach algebra A, this

sequence is convergent. Define

(2.7) L(a) := lim
n→∞

f (2na)
2n

.

Putting c = d = 0 and replacing a and b by 2na and 2nb, respectively, in (2.3),
we get ‖2−nf (2n(λa + b)) − λ2−nf (2na) − 2−nf (2nb)‖ ≤ 2−nϕ1(2na, 2nb, 0, 0).
Taking the limit as n→∞, we obtain

(2.8) L(λa + b) = λL(a) + L(b)

for all a, b ∈ A and λ ∈ T.
In a similar manner, from (2.3), we deduce that L(ab) = L(a)b.
Next, let γ = θ1 + iθ2 ∈ C where θ1, θ2 ∈ R. Let γ1 = θ1 − [θ1] and

γ2 = θ2 − [θ2], where [θ] denotes the integer part of θ. Then 0 ≤ γi < 1
(1 ≤ i ≤ 2). One can represent γi as γi = λi,1+λi,2

2 such that λi,j ∈ T (1 ≤ i, j ≤ 2).
Since L satisfies (2.8) we infer that
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L(γx) = L(θ1 x) + iL(θ2 x)

=
(

[θ1]L(x) + L(γ1 x)
)

+ i
(

[θ2]L(x) + L(γ2 x)
)

=
(

[θ1]L(x) +
1
2
L(λ1,1 x + λ1,2 x)

)
+ i
(

[θ2]L(x) +
1
2
L(λ2,1 x + λ2,2 x)

)
=
(

[θ1]L(x)+
1
2
λ1,1L(x)+

1
2
λ1,2L(x)

)
+ i
(

[θ2]L(x)+
1
2
λ2,1L(x)+

1
2
λ2,2L(x)

)
= θ1 L(x) + i θ2 L(x)

= γL(x)

for all x ∈ A. Hence L is C-linear and so it is a left centralizer of A. Moreover,
it follows from (2.6) with m = 0 and (2.7) that ‖L(a) − f (a)‖ ≤ ϕ̃1(a, a, 0, 0)
for all a ∈ A. It is well known that the additive mapping L satisfying (2.5) is
unique (see [3] or [19]).

A similar argument gives us a unique right centralizer R defined by

R(a) := lim
n→∞

g(2na)
2n

with the required property.
Replacing a and b by 2na and 2nb, respectively, in (2.4) and dividing the

both sides of the obtained inequality by 4n we get∥∥a 2−n f (2n b)− 2−n g(2n a) b
∥∥ ≤ 4−n ψ(2na, 2nb).

Passing to the limit as n → ∞, we conclude that aL(b) = R(a)b for all a,
b ∈ A.

Using the same method as in the proof of Theorem (2.1) one can prove the
following theorem.

Theorem (2.9). Suppose f : A → A is a mapping with f (0) = 0 for which
there exist a mapping g : A → A with g(0) = 0 and functions ϕj : A×A×A×
A → [0,∞) (1 ≤ j ≤ 2) and ψ : A×A → [0,∞) such that

ϕ̃j(a, b, c, d) :=
1
2

∞∑
n=1

2n ϕj(2−na, 2−nb, 2−nc, 2−nd) <∞ (1 ≤ j ≤ 2),

lim
n→∞

2n ψ(2−na, 2−nb) = 0,

‖f (λa + b + cd)− λf (a)− f (b)− f (c)d‖ ≤ ϕ1(a, b, c, d),

‖g(λa + b + cd)− λg(a)− g(b)− cg(d)‖ ≤ ϕ2(a, b, c, d),

‖af (b)− g(a)b‖ ≤ ψ(a, b)

for all λ ∈ T and a, b, c, d ∈ A. Then there exists a unique double centralizer
(L,R) of A satisfying

‖f (a)− L(a)‖ ≤ ϕ̃1(a, a, 0, 0),

‖g(a)−R(a)‖ ≤ ϕ̃2(a, a, 0, 0)

for all a ∈ A.
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Corollary (2.10). Suppose f : A → A is a mapping for which there exist a
mapping g : A → A and constants ε > 0, and 0 ≤ p 6= 1

‖f (λa + b + cd)− λf (a)− f (b)− f (c)d‖ ≤ ε(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p),

‖g(λa + b + cd)− λg(a)− g(b)− cg(d)‖ ≤ ε(‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p),

‖af (b)− g(a)b‖ ≤ ε (‖a‖p + ‖b‖p)

for all λ ∈ T and a, b, c, d ∈ A. Then there exists a unique double centralizer
(L,R) of A satisfying

‖f (a)− L(a)‖ ≤ ε‖a‖p

|1− 2p−1|
,

‖g(a)−R(a)‖ ≤ ε‖a‖p

|1− 2p−1|
for all a ∈ A.

Proof. For j = 1, 2, put ϕj(a, b, c, d) = ε (‖a‖p + ‖b‖p + ‖c‖p + ‖d‖p) and
ψ(a, b) = ε (‖a‖p + ‖b‖p) in Theorems (2.1) and (2.9).

3. Stability of double centralizers associated to the Jensen equation

Stability of the Jensen equation 2f
(
a+b

2

)
= f (a) + f (b) has been studied

first by Kominek [16] and then by several other mathematicians; see [13, 15]
and references therein. In this section, we study the generalized stability of
double centralizers associated to the Jensen equation on the punched spaceA.

Theorem (3.1). Suppose A is a Banach algebra, f : A → A is a mapping
with f (0) = 0 for which there exist a mapping g : A → A with g(0) = 0 and
functions ϕj : (A−{0})×(A−{0}) → [0,∞) (1 ≤ j ≤ 2) and ψj : A×A → [0,∞)
(1 ≤ j ≤ 3) such that

(3.2) ϕ̃j(a, b) :=
∞∑
n=0

3−nϕj(3na, 3nb) <∞ (1 ≤ j ≤ 2),

lim
n→∞

3−nψj(3na, 3nb) = 0 (1 ≤ j ≤ 3),∥∥∥∥2f
(
λa + λb

2

)
− λf (a)− λf (b)

∥∥∥∥ ≤ ϕ1(a, b) (λ ∈ T, a, b ∈ A− {0}),(3.3) ∥∥∥∥2g
(
λa + λb

2

)
− λg(a)− λg(b)

∥∥∥∥ ≤ ϕ2(a, b) (λ ∈ T, a, b ∈ A− {0}),

‖af (b)− g(a)b‖ ≤ ψ1(a, b) (a, b ∈ A),

‖f (ab)− f (a)b‖ ≤ ψ2(a, b) (a, b ∈ A),

‖g(ab)− ag(b)‖ ≤ ψ3(a, b) (a, b ∈ A).

Then there exists a unique double centralizer (L,R) of A satisfying

‖f (a)− L(a)‖ ≤ 1
3

(ϕ̃1(a,−a) + ϕ̃1(−a, 3a)),(3.4)

‖g(a)−R(a)‖ ≤ 1
3

(ϕ̃2(a,−a) + ϕ̃1(−a, 3a))
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for all a ∈ A.

Proof. Letting λ = 1 and b = −a in (3.3), we get

‖ − f (a)− f (−a)‖ ≤ ϕ1(a,−a)

for all a ∈ A. Letting λ = 1 and replacing b by 3a and a by −a in (3.3), we get

‖2f (a)− f (−a)− f (3a)‖ ≤ ϕ1(−a, 3a)

for all a ∈ A. Thus∥∥∥∥f (a)− 1
3
f (3a)

∥∥∥∥ ≤ 1
3

( ‖f (a) + f (−a)‖+ ‖2f (a)− f (−a)− f (3a)‖)

≤ 1
3

(ϕ1(a,−a) + ϕ1(−a, 3a))

for all a ∈ A. So
(3.5)∥∥∥∥ 1

3n
f (3na)− 1

3m
f (3ma)

∥∥∥∥ ≤ n−1∑
j=m

∥∥∥∥ 1
3j
f (3ja)− 1

3j+1 f (3j+1a)
∥∥∥∥

≤ 1
3

n−1∑
j=m

3−j(ϕ1(3ja, 3j(−a)) + ϕ1(3j(−a), 3j(3a))

for all nonnegative integers m,n with n > m and all a ∈ A. It follows from
(3.2) and (3.5) that the sequence

{ 1
3n f (3na)

}
is a Cauchy sequence for all a ∈ A.

Since A is complete, the sequence
{ 1

3n f (3na)
}

is convergent. So one can define
the mapping L : A → A by

L(a) := lim
n→∞

1
3n
f (3na)

for all a ∈ A. By (3.3), we have∥∥∥∥2L
(
a + b

2

)
− L(a)− L(b)

∥∥∥∥ = lim
n→∞

1
3n

∥∥∥∥2f
(

3n
a + b

2

)
− f (3na)− f (3nb)

∥∥∥∥
≤ lim

n→∞
3−n ϕ1(3na, 3nb)

= 0

for all a, b ∈ A. Thus

2L
(
a + b

2

)
= L(a) + L(b)

for all a, b ∈ A. Since f (0) = 0, we have L(0) = 0. Hence 2L(a2 ) = L(a) for
each a ∈ A and therefore L(a) + L(b) = 2L

(
a+b

2

)
= L(a + b) for all a, b ∈ A.

Moreover, letting m = 0 and passing the limit n→∞ in (3.5), we get (3.4).
Let λ ∈ T, and replacing both a and b in (3.3) by 3na and dividing the both

sides of the obtained inequality by 3−n, we get

‖3−n f (λ3na)− λ 3−n f (3na)‖ ≤ 3−n

2
ϕ1(3na, 3na).

Passing to the limit as n tends to infinity, we get L(λa) = λL(a). Similarly,
one can find a right centralizer R. Now the same argument as in the proof of
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Theorem (2.1) yields that (L,R) is a double centralizer of the Banach algebra
A. The uniqueness can be proved in a standard fashion.

Remark (3.6). There is a result similar to Theorem (3.1) in which the con-

trol functions ϕj and ψj satisfy
∞∑
n=0

3nϕj(3−na, 3−nb) < ∞ (1 ≤ j ≤ 2) and

lim
n→∞

3nψj(3−na, 3−nb) = 0 (1 ≤ j ≤ 3) (see, e.g. [13]).

Corollary (3.7). Suppose A is a Banach algebra, f : A → A is a mapping
for which there exist a mapping g : A → A, nonnegative constants δ, γ, p, q
with p < 1 and q < 1

2 such that∥∥∥∥2f
(
λa + λb

2

)
− λf (a)− λf (b)

∥∥∥∥ ≤ δ ‖a‖q ‖b‖q (λ ∈ T, a, b ∈ A− {0}),∥∥∥∥2g
(
λa + λb

2

)
− λg(a)− λ g(b)

∥∥∥∥ ≤ δ‖a‖q ‖b‖q (λ ∈ T, a, b ∈ A− {0}),

‖af (b)− g(a)b‖ ≤ γ(‖a‖p + ‖b‖p),

‖f (ab)− af (b)‖ ≤ γ(‖a‖p + ‖b‖p),

‖g(ab)− g(a)b‖ ≤ γ(‖a‖p + ‖b‖p)

for λ = 1, i and for all a, b ∈ A. Assume that for every fixed a ∈ A, there is a
positive number ra such that the real functions t 7→ ‖f (ta)‖ and t 7→ ‖g(ta)‖ are
bounded on the interval [0, ra]. Then there exists a unique double centralizer
(L,R) of A satisfying

‖f (a)− L(a)‖ ≤ (1 + 3q)δ‖a‖2q

3− 32q ,

‖g(a)−R(a)‖ ≤ (1 + 3q)δ‖a‖2q

3− 32q

for all a ∈ A.

Proof. One may use the same argument as in the proof of Theorem (3.1).
The only thing one needs to prove is the homogeneous property of the additive
mappings L and R, namely L(ia) = iL(a) and R(ia) = iR(a).

First fix a ∈ A and F in the dual A∗ of A and define the additive function
Γ : R → R by Γ(t) = F (L(ta)). Then the function Γ is bounded on [0, ra] since

|Γ(t)| ≤ ‖F‖ ‖L(ta)‖
≤ ‖F‖

(
‖L(ta)− f (ta)‖+ ‖f (ta)‖

)
≤ ‖F‖

(
(1 + 3q)δ‖ta‖2

|3− 32q|
+ sup{‖f (ta)‖ : t ∈ [0, ra]}

)
≤ ‖F‖

(
(1 + 3q)r2q

a δ‖a‖2q

|3− 32q|
+ sup{‖f (ta)‖ : t ∈ [0, ra]}

)
.

It follows from Corollary 2.5 of [1] that Γ(t) = Γ(1)t for all real numbers t.
Hence F (L(ta)) = F (tL(a)) for all t ∈ R and F ∈ A∗. Therefore L(ta) = tL(a).
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Now, for each complex number λ = u + iv and each a ∈ A, we have

L(λa) = L(ua + iva) = L(ua) + L(iva) = uL(a) + ivL(a) = λL(a).

Similarly, one can prove that R is homogeneous.

4. Stability of double centralizers associated to the Trif equation

T. Trif [26] proved the generalized stability for the so-called Trif functional
equation

sCl−2
s−2f

(
a1 + · · ·+ as

s

)
+ Cl−1

s−2

s∑
j=1

f (aj) =
∑

1≤j1<···<jl≤s

l f

(
aj1 + · · ·+ ajl

l

)
where Ck

r denotes r!
k!(r−k)! . This functional equation was derived by Trif [26]

from an inequality of Popoviciu [22] for convex functions. In this section, we
study generalized stability of double centralizers associated to the Trif equa-
tion. Let q = l(s−1)

s−l and r = − l
s−l for positive integers l, s with 2 ≤ l ≤ s− 1.

Theorem (4.1). Let A be a Banach algebra, f : A → A be a mapping
with f (0) = 0 for which there exist a mapping g : A → A and functions
ϕj : As+2 → [0,∞) (1 ≤ j ≤ 2) and A×A → [0,∞) such that

ϕ̃j(a1, · · · , as, c, d) :=
∞∑
j=0

q−jϕj(qja1, · · · , qjas, qjc, qjd) <∞ (1 ≤ j ≤ 2),

lim
n→∞

2−nψ(2na, 2nb) = 0,

∥∥∥∥sCl−2
s−2f

(
λa1 + · · ·+ λas

s
+

cd

s · Cl−2
s−2

)
+ Cl−1

s−2

s∑
j=1

λf (aj)(4.2)

− l
∑

1≤j1<···<jl≤s

λf

(
aj1 + · · ·+ ajl

l

)
− f (c)d

∥∥∥∥ ≤ ϕj(a1, · · · , as, c, d),

∥∥∥∥sCl−2
s−2g

(
λa1 + · · ·+ λas

d
+

cd

s · Cl−2
s−2

)
+ Cl−1

s−2

s∑
j=1

λg(aj)

− l
∑

1≤j1<···<jl≤s

λg

(
aj1 + · · ·+ ajl

l

)
− cg(d)

∥∥∥∥ ≤ ϕj(a1, · · · , as, c, d),

and
‖af (b)− g(a)b‖ ≤ ψ(a, b)

for all λ ∈ T and a1, · · · , as, a, b, c, d ∈ A. Then there exists a unique double
centralizer (L,R) of A satisfying

‖f (a)− L(a)‖ ≤ 1

l Cl−1
s−1

ϕ̃(qa, ra, · · · , ra, 0, 0),(4.3)

‖g(a)−R(a)‖ ≤ 1

l Cl−1
s−1

ϕ̃(qa, ra, · · · , ra, 0, 0)

for all a ∈ A.
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Proof. Set c = d = 0 and λ = 1 in (4.2). It follows from Trif ’s Theorem [26]

there exists a unique additive mapping L defined by L(a) := lim
n→∞

1
qn
f (qna)

such that (4.3) holds for all a ∈ A.
Let λ ∈ T. Put a1 = · · · = as = a and c = d = 0 in (4.2) to obtain

‖sCl−2
s−2(f (λa)− λf (a))‖ ≤ ϕ(a, · · · , a, 0, 0)

for all a ∈ A. Therefore

q−n‖s Cl−2
s−2(f (λqna)− λf (qna))‖ ≤ q−nϕ(qna, · · · , qna, 0, 0)

for all a ∈ A. Since the right hand side tends to zero as n→∞, we have∥∥q−nf (λqna)− λq−nf (qna)
∥∥→ 0

as n→∞ for all λ ∈ T and a ∈ A. Hence

L(λa) = lim
n→∞

f (qnλa)
qn

= lim
n→∞

λf (qna)
qn

= λL(a)

for all λ ∈ T and a ∈ A. Obviously, L(0a) = 0 = 0L(a).
Using the same argument as in the proof of Theorem (2.1), one can conclude

that L is homogeneous.
Putting λ = 1 and a1 = · · · = as = 0, and replacing c, d by qnc, qnd, respec-

tively, in (4.2), we get

1
q2n

∥∥∥∥∥s Cl−2
s−2f

(
q2n

s · Cl−2
s−2

cd

)
− f (qnc)qnd

∥∥∥∥∥ ≤ 1
q2nϕ(0, · · · , 0, qnc, qnd)

for all c, d ∈ A. Then

L(cd) = s Cl−2
s−2L

(
1

s Cl−2
s−2

c d

)

= lim
n→∞

s Cl−2
s−2

q2n f

(
q2n

s Cl−2
s−2

c d

)

= lim
n→∞

f (qn c)
qn

d

= L(c)d,

for all c, d ∈ A. Therefore L is a left centralizer. Similarly, one can find a right
centralizer R. By the same reasoning as the above, one can show that (L,R)
is the required unique double centralizer.

Remark (4.4). There is a result similar to Theorem (4.1) in which the role
of qn and q−n are switched (see, e.g., [26]).

5. Superstability of double centralizers

In this section, we prove the superstability of double centralizers of Banach
algebras which are strongly without order. More precisely, we introduce the
concept of ψ-approximate double centralizer and show that any ψ-approximate
double centralizer is an exact double centralizer. Thus we generalize the result
of Johnson [12] (see the introduction) and extend the results of [18].
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Definition (5.1). Suppose A is a normed algebra and L,R : A → A are
mappings for which there exist a positive number r and a function ψ : A ×A
satisfying either

(5.2) lim
n→∞

r−n ψ(rna, b) = lim
n→∞

r−n ψ(a, rnb) = 0 (a, b ∈ A)

or

(5.3) lim
n→∞

rn ψ(r−na, b) = lim
n→∞

rn ψ(a, r−nb) = 0 (a, b ∈ A)

such that
‖aL(b)−R(a) b‖ ≤ ψ(a, b)

for all a, b ∈ A. Then (L,R) is called a ψ-approximate double centralizer of A.

Theorem (5.4). Let A be a Banach algebra strongly without order. Then
any ψ-approximate double centralizer (L,R) ofA is an exact double centralizer.

Proof. We assume that (5.2) holds. The proof in the case where (5.3) holds
is similar. Let a, b ∈ A and λ ∈ C. We have

‖b(L(λa)− λL(a))‖ ≤ r−n ‖rnbL(λa)− λrnbL(a))‖
≤ r−n‖rnbL(λa)−R(rnb)λa‖+ r−n‖λR(rnb)a − λrnbL(a)‖
≤ r−nψ(rnb, λa) + r−n|λ|ψ(rnb, a).

By (5.2), the right hand side of the last inequality tends to zero as n → ∞,
so b(L(λa) − λL(a)) = 0. Since A is strongly without order we conclude that
L(λa) = λL(a). The additivity of L follows from

‖c(L(a + b)− L(a)− L(b) )‖ ≤ r−n ‖rncL(a + b)−R(rnc)(a + b)‖
+ r−n ‖rncL(a)−R(rnc)a‖
+ r−n ‖rncL(b)−R(rnc)b‖

≤ r−nψ(rnc, a + b) + r−nψ(rnc, a) + r−nψ(rnc, b).

Finally

‖c(L(ab)− L(a)b)‖ ≤ r−n ‖rncL(ab)−R(rnc)ab‖+ r−n‖(rncL(a)−R(rnc)a)b‖
≤ r−n ψ(rnc, ab) + r−n ‖b‖ψ(rnc, a)

yields that L(ab) = L(a)b for all a, b ∈ A. Thus L is a left centralizer. One
can similarly prove that R is a right centralizer. Since L is homogeneous,
r−nL(rna) = L(a) for all a ∈ A and n ∈ N, therefore

‖aL(b)−R(a)b‖ = r−n‖aL(rnb)−R(a)rnb‖ ≤ r−nψ(a, rnb)

and hence, by (5.2), we infer that aL(b) = R(a)b for all a, b ∈ A. Thus (L,R)
is a double centralizer.

Corollary (5.5). Suppose A is a Banach algebra strongly without order,
L,R : A → A are mappings for which there exist nonnegative numbers ε, δ and
real numbers p1, p2, q1, q2 either all of which are greater than 1 or all of which
are less than 1, such that

‖aL(b)−R(a)b‖ ≤ ε (‖a‖p1 + ‖b‖p2 ) + δ‖a‖q1 ‖b‖q2

for all a, b ∈ A. Then (L,R) is a double centralizer of A.
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Proof. Use Theorem (5.4) with ψ(a, b) = ε (‖a‖p1 +‖b‖p2 ) +δ ‖a‖q1 ‖b‖q2 .
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AN ERGODIC PROPERTY OF AMENABLE HYPERGROUPS

LILIANA PAVEL

Abstract. Let K be a hypergroup with Haar measure. It is known that sim-
ilarly to the group case, the left (topological) amenability is equivalent to the
right (topological) stationarity. Based on this fact we give a characterization
of the amenability of hypergroups by an ergodic property which is a variant
of Reiter-Glicksberg properties from the group case.

1. Introduction

Hypergroups are locally compact spaces whose bounded Radon measures
form an algebra which has properties similar to the convolution measure alge-
bra of a locally compact group. A hypergroup can be viewed as a probabilistic
group in the sense that for each pair x, y ∈ K there exists a probability mea-
sure δx ∗ δy on K with compact support, such that (x, y) 7→ supp δx ∗ δy is a
continuous mapping from K ×K into the space of compact subsets of K. Un-
like the groups, δx ∗ δy is not in general a point measure. The substantial
development of the theory of hypergroups with the works of Dunkl [2], Spector
[14] and Jewett [7] put hypergroups in the right setting for harmonic analysis.
In our approach the hypergroup possesses a Haar measure. We notice that it is
still unknown if an arbitrary hypergroup admits a Haar measure, but all the
known examples, such as commutative hypergroups, compact hypergroups,
discrete hypergroups, central hypergroups do. As hypergroups generalize lo-
cally compact groups, many basic notions from harmonic analysis on groups
carry over to hypergroups. In [13], Skantharajah translating literally the no-
tion of amenabilty from groups to hypergroups, has developed a systematic
study of amenable hypergroups, following the main directions from the group
case.

In this paper we will give a characterization of the amenability of hy-
pergroups by an ergodic property which can be seen as a variant of Reiter-
Glicksberg properties from the locally compact groups case. Our approach is
based on the equivalence between hypergroup amenability and hypergroup
stationarity dicussed in [10] and avoids translating from the group case the
usual techniques connected to this sort of characterizations of the amenabil-
ity (see various approaches of ergodic properties of amenable locally compact
groups for example in [12], [5], [11]).

2. Preliminaries

K always stands for a hypergroup with a fixed left Haar measure m with
modular function ∆, symbols like

∫
. . . dx will always denote the integration

2000 Mathematics Subject Classification: Primary 43A62; Secondary 43A07.
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with respect to m. The notation generally agrees with [7]. However the
following notations are different from [7]: x 7→ x∨denotes the involution on
K and δx the Dirac measure concentrated at x. We recall that M(K) is the
algebra of all bounded regular (complex valued) Borel measures on K. In
addition we use the notation E(K) for the set of Dirac measures on K. For A
a subset in a linear space of functions or measures on K, coA will denote the
convex hull of A.

If f is a Borel function on K and x, y ∈ K the left translate fx and the right
translate f y are defined by

fx(y) = f y(x) =
∫
fdδx ∗ δy = f (x ∗ y)

if the integral exists. The function f∨ is given by f∨(x) = f (x∨). If µ ∈ M(K),
and f is a Borel function, then the convolutions µ ∗ f and f ∗ µ are defined on
K by

(µ ∗ f )(x) =
∫
f (y∨ ∗ x)dµ(y) and (f ∗ µ)(x) =

∫
f (x ∗ y∨)dµ(y).

It is immediate that δx∨ ∗ f = fx and f ∗ δx = f x.
Convolution of two functions f and g on K is given by

(f ∗ g)(x) =
∫
f (x ∗ y)g(y∨)dy.

The spaces (Lp(K), ‖ · ‖p), p ∈ [1,∞] are defined in the usual way with
respect to the Haar measure of K (see for example [3], Ch. 6). If f ∈ Lp(K),
1 ≤ p ≤ ∞, x ∈ K, we denote f � δx = f x

∨
∆(x∨). If µ ∈ coE(K), we naturally

extend, by linearity, the previous notation,

f � µ =
n∑
i=1

αif � δxi where µ =
n∑
i=1

αiδxi .

It is known that δx∨ ∗ f and f � δx ∈ Lp(K) and that ‖δx∨ ∗ f‖p ≤ ‖f‖p and
‖f � δx‖p ≤ ‖f‖p (or, more ‖f � µ‖p ≤ ‖f‖p, if µ ∈ coE(K)). As it was noticed
in [7], 3.3, these are in general not isometries. However, as each f ∈ Lp(K)
takes only complex values (so is finite) by [7], (3.3F), it follows that∫

fx(y)dy =
∫
f x

∨
∆(x∨)dy =

∫
f (y)dy.

In our approach we will be interested only in the spaces (L1(K), ‖ · ‖1) and
(L∞(K), ‖ · ‖∞). Identifying L∞(K) to L∗1(K) (whenever this is possible, for
example, asking to m to be σ-finite [3], Theorem 6.15) we will consider also
the weak∗-topology, ω∗ (ω∗ = σ(L∞(K), L1(K))) on L∞(K) = L∗1(K). We
will denote by P (K) = {ϕ ∈ L1(K)|ϕ ≥ 0, ‖ϕ‖1 = 1}. It is known (see
for example [10], Proposition 3.3) that for f ∈ L∞(K), the ω∗-closure of the
sets co{f x|x ∈ K} and co{fx|x ∈ K} coincides with the ω∗-closure of the sets
{f ∗ ϕ∨|ϕ ∈ P (K)} and {ϕ ∗ f |ϕ ∈ P (K)} respectively.

Lemma (2.1). For any f ∈ L1(K), ϕ ∈ P (K)∫
K

(f ∗ ϕ)(x)dx =
∫
K

f (x)dx.
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Proof. It is enough to prove the equality only for f ∈ L1(K), f ≥ 0. Since f ,
ϕ ∈ L1(K), using ([7], (5.5K) and (6.1E)) we have∫
K

(f ∗ ϕ)(x)dx = [(f ∗ ϕ)m](K) = (fm ∗ ϕm)(K)

= (fm)(K) · (ϕm)(K) =
(∫

K

f (x)dx
)(∫

K

ϕ(x)dx
)

=
∫
K

f (x)dx.

With the definitions of the operations “∗” and “�” and of the modular function
the next result is clear:

Lemma (2.2). Let θ ∈ L∞(K), f , g ∈ L1(K), x ∈ K. Then∫
K

θ(x)(f ∗ g)(x)dx =
∫
K

(θ ∗ g∨)(x)f (x)dx

and ∫
K

θ(y)(f � δx)(y)dy =
∫
K

θx(y)f (y)dy.

Let us recapitulate the basic notions and facts regarding the amenability
and stationarity of hypergroups. A hypergroup K is called (left) amenable
if there exists a left invariant mean M on L∞(K). It is known that K
is (left) amenable if and only if K is topologically (left) amenable (that is
M(ϕ ∗ f ) = M(f ), ∀ϕ ∈ P (K)). The hypergroup K is (right) stationary if
for each f ∈ L∞(K) there exists α ∈ R such that α1 is in the ω∗-closure (in
L∞(K)) of the set co{f x|x ∈ K} (and topologically (right) stationary if α1 is
in the ω∗-closure of the set {f ∗ ϕ∨|ϕ ∈ P (K)}). We denote by 1 the real
function on K, 1(x) = 1, ∀ x ∈ K. It is known ([10], Theorem 4.4) that just
as in the semigroup and group case (see [9] and [15] respectively) the (left)
(topological) amenability is equivalent to the (right) (topological) stationarity.
It is also proved (see [13], Theorem 4.1) that the amenabilty for hypergroups
is characterized by Reiter’s condition (P1), which can be formulated as follows:
there exists a net (ϕι)ι ⊆ P (K) such that ‖ϕ∗ϕι−ϕι‖1 −→ 0 for each ϕ ∈ P (K).

3. Results

Theorem (3.1). Let K be a right stationary hypergroup. Then, for each
f ∈ L1(K),

|
∫
K

f (x)dx| = inf{‖f ∗ ϕ‖1|ϕ ∈ P (K)}.

Proof. Take f ∈ L1(K). We may suppose that ‖f‖1 6= 0, otherwise, the
equalities are obvious. Let ϕ be arbitrary in P (K). Using Lemma (2.1),

‖f ∗ ϕ‖1 =
∫
K

|(f ∗ ϕ)(x)|dx ≥ |
∫
K

(f ∗ ϕ)(x)dx| = |
∫
K

f (x)dx|.

Let us denote by a = inf{‖f ∗ ϕ‖1|ϕ ∈ P (K)}, so as ‖f‖1 6= 0 it follows that
a 6= 0. We have just obtained that

a ≥ |
∫
K

f (x)dx|.
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Further, our arguments are based on the Hahn-Banach Separation Theorem:
we adapt to our approach techniques which are familiar in the semigroup case
while investigating various kinds of ergodic properties ([4] and [16]). Consider
the norm closure in L1(K) of the convex set Af = {f ∗ ϕ|ϕ ∈ P (K)}. By
the Hahn-Banach Separation Theorem ([1], V. 2.8) it results that there exists
F ∈ L1(K)∗ such that ‖F‖ = 1 and |F (g)| ≥ a, ∀g ∈ Af . As L1(K)∗ = L∞(K),
we infer that there exists θ ∈ L∞(K), ‖θ‖∞ = 1 such that

|
∫
K

θ(x)(f ∗ ϕ)(x)dx| ≥ a, ∀ϕ ∈ P (K).

Applying Lemma (2.2),∫
K

θ(x)(f ∗ ϕ)(x)dx =
∫
K

(θ ∗ ϕ∨)(x)f (x)dx ,∀ϕ ∈ P (K),

consequently,

|
∫
K

(θ ∗ ϕ∨)(x)f (x)dx| ≥ a , ∀ϕ ∈ P (K).

Since K is right stationary, K is also topologically right stationary [10],
Proposition 3.3, so there exists α ∈ R, such that

α1 ∈ {θ ∗ ϕ∨|ϕ ∈ P (K)}
ω∗

.

It follows that

|
∫
K

α1(x)f (x)dx| ≥ a.

Since ‖θ‖∞ = 1, clearly, |α| ≤ 1.
On the other hand, for any g = f ∗ ϕ ∈ Af ,∫

K

α1(x)g(x)dx =
∫
K

α1(x)(f ∗ ϕ)(x)dx = α

∫
K

(f ∗ ϕ)(x)dx

= α

∫
K

f (x)dx =
∫
K

α1(x)f (x)dx.

It results that

a ≤ |
∫
K

α1(x)f (x)dx| = |
∫
K

α1(x)(f ∗ ϕ)(x)dx| ≤ |α|‖f ∗ ϕ‖1, ∀ϕ ∈ P (K),

thus a ≤ |α| · inf{‖f ∗ ϕ‖1|ϕ ∈ P (K)} = |α| · a and, consequently, |α| ≥ 1. We
infer that |α| = 1, so

a ≤ |
∫
K

f (x)dx|.

The theorem is proven.

Remark. With almost the same proof one can show also that

|
∫
K

f (x)dx| = inf{‖f � µ‖1|µ ∈ coE(K)}.

Indeed, we first notice that for µ ∈ coE(K), µ =
n∑
i=1

αiδxi and f ∈ L1(K),

‖f � µ‖1 =
∫
K

|(f � µ)(x)|dx ≥ |
∫
K

(f � µ)(x)dx|
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= |
n∑
i=1

αi

∫
K

(f � δxi )(x)| = |

(
n∑
i=1

αi

)∫
K

f (x)dx| = |
∫
K

f (x)dx|,

and, consequently, inf{‖f � µ‖1|µ ∈ coE(K)} ≥ |
∫
K f (x)dx|. Further, making

the same type of judgement as in the proof of the above theorem for the convex
set {f � µ|µ ∈ coE(K)} instead of the set Af , we infer that there exists
θ ∈ L∞(K), ‖θ‖∞ = 1 such that

|
∫
K

θ(x)(f � µ)(x)dx| ≥ a ,∀µ ∈ coE(K).

Here a denotes inf{‖f � µ‖1|µ ∈ coE(K)}. Applying the second formula from
Lemma (2.2) it follows that∫

K

θ(x)(f � µ)(x)dx =
∫
K

(
n∑
i=1

αiθ
xi (x)

)
f (x)dx,

where µ arbitrary in coE(K), µ =
n∑
i=1

αiδxi . Consequently we have that

|
∫
K

(
n∑
i=1

αiθ
xi (x)

)
f (x)dx| ≥ a.

Since K is right stationary, there exists α ∈ R, such that α1 ∈ co{θx|x ∈ K}
ω∗

.
From this point everything follows identically as in the proof of the Theorem
(3.1).

Theorem (3.2). Let K be a hypergroup such that

|
∫
K

f (x)dx| = inf{‖f ∗ ϕ‖1|ϕ ∈ P (K)}, ∀ f ∈ L1(K).

Then, there exists a net (ϕι)ι ⊆ P (K) such that ‖ϕ ∗ ϕι − ϕι‖1 −→ 0, for each
ϕ ∈ P (K).

Proof. The proof follows the same idea as in the locally compact group
case [5], Theorem 3.7.3, working with functions in P (K) instead of convex
combinations of Dirac measures. The main tool which makes it possible is the
fact that if f ∈ L1(K) and ∫

K

f (x)dx = 0,

then, as it follows from Lemma (2.1),∫
K

f ∗ ϕ(x)dx = 0 , ∀ϕ ∈ P (K) .

For the sake of completeness, we give here the complete proof. Let ϕ ∈ P (K)
be arbitary fixed. Consider the family Λ = {λ} where λ = (ϕ1 , ϕ2 , . . . , ϕn; ε),
where ϕk ∈ P (K), n ∈ N and ε > 0 partially ordered by λ � λ′ if and only
if {ϕ1 , ϕ2 , . . . , ϕn} ⊆ {ϕ′

1
, ϕ′

2
, . . . , ϕ′n′} and ε ≤ ε′. By Lemma (2.1) for each

λ = (ϕ1 , ϕ2 , ..., ϕn; ε) we have that∫
K

((ϕk ∗ ϕ)(x)− ϕ(x))dx = 0 , ∀ k = 1, 2, . . . , n.
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Using the hypothesis for f = ϕ1 ∗ ϕ − ϕ we infer that there exists γ1 ∈ P (K)
such that ‖(ϕ1 ∗ ϕ − ϕ) ∗ γ1‖1 < ε. One can continue in the same way for
f = (ϕ2 ∗ϕ−ϕ)∗γ1 , so there exists γ2 ∈ P (K) such that ‖(ϕ2 ∗ϕ−ϕ)∗γ1 ∗γ2‖1 < ε.
Proceeding inductively, there exists γk ∈ P (K) such that

‖(ϕk ∗ ϕ − ϕ) ∗ γ1 ∗ γ2 ∗ · · · ∗ γk‖1 < ε, with k = 1, 2, . . . , n.

Put γλ = γ1 ∗ γ2 ∗ · · · ∗ γn and define ϕλ = ϕ ∗ γλ. As we have that

‖(ϕk ∗ ϕ − ϕ) ∗ γλ‖1 = ‖(ϕk ∗ ϕ − ϕ) ∗ γ1 ∗ γ2 ∗ · · · ∗ γn‖1

≤ ‖(ϕk ∗ ϕ − ϕ) ∗ γ1 ∗ γ2 ∗ · · · ∗ γk‖1‖γk+1 ∗ γ2 ∗ · · · ∗ γn‖1 < ε,

∀ k = 1, 2, . . . , n, it follows that for each ψ ∈ P (K), ‖ψ ∗ ϕλ − ϕλ‖1 −→ 0.

Combining the two above results with the characterization of the amenabil-
ity by stationarity and by Reiter’s condition (P1) we have the next theorem:

Theorem (3.3). K is (left) amenable if and only if for each f ∈ L1(K),

|
∫
K

f (x)dx| = inf{‖f ∗ ϕ‖1|ϕ ∈ P (K)}.

Remark. In [13] various classes of amenable hypergroups were exhibited.
For example all commutative hypergroups, compact hypergroups, central
hypergroups are proven to be amenable. Consequently, all our results hold
for any hypergroup of this kind.
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AN ANALYTIC RADON-NIKODYM PROPERTY RELATED TO
SYSTEMS OF VECTOR-VALUED CONJUGATE HARMONIC

FUNCTIONS AND CLIFFORD ANALYSIS

EMILIO MARMOLEJO-OLEA AND SALVADOR PÉREZ-ESTEVA

Abstract. The purpose of this paper is to study the existence of boundary
limits of systems of conjugate harmonic functions defined in the unit ball in
Rn and with values in a real Banach space E. We approach this problem using
the language of Clifford Analysis and consider Hardy spaces in the unit ball of
Rn of monogenic functions with values in a Banach Clifford module. In terms
of the so called Monogenic Measures on the sphere, we define a Monogenic
Radon-Nikodym property which is linked with the existence of radial limits
of vector-valued monogenic functions as in the holomorphic case. For Banach
lattices we adapt the proof by A.V. Bukhvalov and A.A. Danilevich to show
that for any real Banach lattice E, the Clifford module X = An ⊗ E has the
Monogenic Radon-Nikodym property (An is the Clifford algebra) if and only
c0 is not a subspace of E, which is equivalent to the Analytic Radon-Nikodym
property of EC.

1. Introduction

An analytic measure with values in a complex Banach space X is an X-
valued Borel measure µ of bounded variation in the unit circle with Fourier
coefficients µ̂(n) =

∫
S1 e−inθdµ(θ) = 0 for every n < 0. The theorem of F. Riesz

and M. Riesz asserts that every analytic measure is absolutely continuous with
respect to the Lebesgue measure in S1. The space X has the Analytic Radon-
Nikodym Property (X ∈ (RN)a) if every analytic measure has a density in the
Bochner space L1

X(S1).
There is a strong relation between the Analytic Radon-Nikodym Property

of X and the existence of boundary limits of X-valued holomorphic functions
belonging to Hardy spaces Hp

X(D) in the disk. These issues have been exten-
sively studied by several authors (see for example [2], [3], [6], [11]). The main
result is that X ∈ (RN)a if and only if every function in Hp

X(D) has radial (non
tangential) limits almost everywhere in S1 for every p ∈ [1,∞] and this is
equivalent to the same statement for a single value of p.

Z. Chen and C. Ouyang extended this result in [7], to X-valued Hardy spaces
on several complex variables in the unit ball of Cn.

A natural substitute for holomorphy in harmonic analysis is to consider
Stein-Weiss systems of conjugate harmonic functions. The motivation of this
paper is to explore the boundary limits of these systems of harmonic functions

2000 Mathematics Subject Classification: Primary 46E15, 46E22; Secondary 42B30, 46B42.
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defined in the unit ball of Rn and with values in a real Banach space E. We
will approach this problem using the language of Clifford Analysis. We will
extend the theory of monogenic Hardy spaces in the unit ball of Rn (see [12],
[15]) to consider monogenic functions with values in a Banach Clifford module.
This includes the conjugate systems as a particular case. We will state and
prove a version of the theorem of F. Riesz and M. Riesz in this setting. Then
we will define a Monogenic Radon-Nikodym property (RN)m and we will link
this property with the existence of radial limits of vector-valued monogenic
functions as in the holomorphic case. We present examples of spaces with
and without (RN)m. In Section 4 we study the relation between (RN)a and
(RN)m for Banach lattices. We will adapt the proof by A.V. Bukhvalov and
A.A. Danilevich to show that for a Banach lattice E, the module X = An ⊗ E
∈ (RN)m if and only c0 is not a subspace of E, which is equivalent to E + iE ∈
(RN)a as proved in [6]. In particular we have for Banach lattices that (RN)m

is independent of the dimension of Rn.

2. Preliminaries

Throughout this paper B and Sn will denote respectively the unit ball and
the sphere of radius one in Rn+1. The normalized Lebesgue measure in the
sphere Sn will be denoted by σ. For a real or complex Banach space X, MX(Sn)
will be the space of all the Borel measures on Sn of bounded variation with
values in X . For p > 0, we will denote by Lp

X(Sn) the space of Bochner
measurable X-valued functions f in Sn such that

∫
Sn ‖f (η)‖p dσ(η) < ∞. If

p ≥ 1 then
∫

Sn f (η)dσ(η) will denote the Bochner integral of f (see [10] for
details of vector-valued measures and integration). By c0 we will denote the
standard space of real vanishing sequences.

Next we mention basic facts of Clifford Analysis used in this paper. For
detailed expositions, the reader is refereed to [1], [9], [12], [15].

We consider the real 2n dimensional Clifford algebra An which is defined
as the minimal enlargement of Rn to a unitary algebra not generated by any
proper subspace of Rn with the property that x2 = −|x|2, for any x ∈ Rn. In
particular if e1, . . . , en is any orthonormal basis for Rn. Then An is defined
by the anti-commutation relationship eiej = −ejei, i 6= j and e2

i = −1, i =
1, 2, . . . n.

The elements of the algebra An have a unique representation of the form

a =
∑

α

eαaα,

where aα ∈ R and where we identify eα with ej1 · · · ejr
for α = {j1, . . . , jr} ⊂

{1, 2, . . . , n}, (ji < ji+1) and e∅ with e0 = 1. The scalar part of a is defined by
Re(a) = a0. We give the natural Euclidean metric to An as

|a| = (
∑

α

a2
α)1/2.

The Clifford conjugation on An is defined as the unique real lineal involution
with eαeα = eαeα = 1 for all α. Thus for a ∈ An as above

a =
∑

α

eαaα,
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with eα = (−1)|α|(|α|+1)/2eα and where the length of α is given by |α| =
∑

i ji.
We can also embed Rn+1 into An by identifying (x0, x) ∈ R ⊕ Rn = Rn+1,

x = (x1, . . . , xn) with x0 + x =
∑n

i=0 xiei ∈ An. It follows that every nonzero
x ∈ Rn+1 is invertible with inverse x−1 = x

|x|2 . Observe that A1 = C, and
A2 = H, the quaternionic division algebra.

Note that for x ∈ Rn+1 and a, b ∈ An we have |x|2 = xx and |xa| = |x||a|,
but in general |a|2 6= aa and |ab| 6= |a||b|; however |ab| ≤ 2n|a||b|.

Recall the Dirac operator as the differential operator

D =
n∑

i=0

ei
@

@xi
.

acting on An-valued functions F with differentiable components defined in a
domain in Rn+1.

Definition (2.1). We say that F =
∑

α eαFα is left monogenic or simply mono-
genic on a region V of Rn+1 if

DF =
n∑

i=0

ei
@F

@xi
=

n∑
i=0

∑
α

eieα
@Fα

@xi
= 0.

An important property of the Dirac operator is that the Laplacian in Rn+1

can be factored as DD = 4, hence, each component of a left monogenic function
is a harmonic function. Let us also recall the Cauchy transform C defined for
the boundary of a fixed smooth domain Ω by

Cf (x) =
∫

@Ω
G(y − x)n(y)f (y)dσ(y), x ∈ Rn+1 \ {@Ω},

where
G(x) =

x

|x|n+1

is the Cauchy kernel and f is a Clifford valued function. Here dσ(y) denotes
the Lebesgue measure on @Ω, n(y) stand for the outward unit normal and the
integrands are interpreted in the sense of Clifford algebra multiplication.

We say that X is a left Banach An-module if X is a left An module and X is
also a real Banach space such that for any a ∈ An and x ∈ X

(2.2) ‖ax‖X ≤ κ|a|‖x‖X,

for some κ > 0. Similarly one can define a right Banach An-module.
An important example of a left Banach An-module can be constructed as

follows: if (E, ‖ ‖E) is a real Banach space, then

X = An ⊗ E = {
∑

α

eαxα : xα ∈ E}

is a left Banach An-module with norm

‖
∑

α

eαxα ‖2
X =

∑
α

‖xα‖2
E

and with the natural left product

ax =
∑
α,β

eαeβaαxβ,



134 E. MARMOLEJO-OLEA AND S. PÉREZ-ESTEVA

for all a =
∑

α eαaα ∈ An and x =
∑

β eβxβ ∈ X. Clearly we could define with
the obvious modifications a right Banach An-module X = E ⊗An.

X∗
l will denote the space of all bounded left An linear functionals. A function

` : X → An belongs to X∗
l if it is R−linear and `(ax) = a`(x) for all a ∈ An and

x ∈ X. Notice that X∗
l is a right Banach An-module when provided with norm

of L(X, An), namely ‖`‖ = sup‖x‖≤1|`(x)|.
It will be convenient to consider the X∗

l −dual norm in X. We have this
useful and simple result.

Lemma (2.3). Let X be a left Banach An−module. Consider the dual norm
of x ∈ X

‖x‖d = sup{|`(x)| : ` ∈ X∗
l , ‖`‖ ≤ 1}.

Then ‖·‖d is equivalent to ‖·‖ .

Proof. We clearly have that ‖x‖d ≤ ‖x‖ . Let x be a nonzero vector in X and
let `0 be in the R-dual space X∗ of X with norm one such that `0(x) = ‖x‖ . If
we let

`(y) =
1

κ2n

∑
α

eα`0(eαy), y ∈ X,

then ` ∈ X∗
l and ‖`‖ ≤ 1 by (2.2). Moreover |`(x)| ≥ |Re `(x)| = (κ2n)−1 ‖x‖ . It

follows that ‖x‖d ≥ (κ2n)−1 ‖x‖ .

If X is a left Banach An-module, we can extend the Definition (2.1) to include
monogenic functions F : V ⊂ Rn+1 → X.

In the case X = An ⊗ E, important examples of monogenic functions come
from Stein-Weiss systems of conjugate harmonic functions:

Let V be an open region in Rn+1. For i = 0, . . . , n, let ui : V → E. We say that
{ui}i=0..n is a system of conjugate harmonic functions if

@ui

@xj
=

@uj

@xi
, i 6= j,

n∑
i=0

@ui

@xi
= 0.

A family {ui}i=0,...,n is a system of conjugate harmonic functions in V if and
only if F = −u0 +

∑n
i=1 eiui is a monogenic function in V.

Lemma (2.4). A function F : V ⊂ Rn+1 → X is monogenic if and only if ` ◦F
is a monogenic function for every ` ∈ X∗

l .

Proof. If F is monogenic in V then ` ◦ F is clearly a monogenic function for
every ` ∈ X∗

l . Conversely, suppose that this last condition holds. Let `0 ∈ X∗

and ` ∈ X∗
l defined by `(y) = 1

κ2n

∑
α eα`0(eαy), y ∈ X. Then the fact that ` ◦ F

is monogenic implies that `0 ◦ F ∈ C∞(V ) for every `0 ∈ X∗. Then F ∈ C∞(V )
(see [18] for example). Proceeding as in the proof of Lemma (2.3) we see that
X∗

l separates points from X. Then since 0 = D(`◦F ) = `(DF ) for every ` ∈ X∗
l ,

it follows that DF = 0.
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With obvious changes we may carry over the theory for right modules and
right monogenic functions. We remark that classical results such as Cauchy
theorems remain valid in the context of X-valued monogenic functions (see
[15] for example).

(2.1) Spaces of surface spherical harmonicsHk,M+
k ,M−

k . Hk will denote
the space of surface spherical harmonics in Sn of degree k with values in An.
We can decompose (see [1])Hk = M+

k ⊕M
−
k−1, where the spacesM+

k andM−
k ,

called respectively inner and outer spherical monogenics of order k are defined
as follows: M+

k consists of the restrictions to Sn of all the monogenic homoge-
neous polynomials of degree k, andM−

k is defined as the space of restrictions to
Sn of all the homogeneous monogenic functions of order −(k + n) in Rn+1 \ {0}.
The spaces are orthogonal in the standard inner product in L2(Sn, An), namely,

(f, g) =
∫

Sn

f (ξ)ḡ(ξ)dσ(ξ).

We have orthogonal projections

Πk : L2(Sn, An) → Hk,

Pk : L2(Sn, An) →M+
k ,

Qk : L2(Sn, An) →M−
k ,

and

Πk = Pk + Qk−1.

Let Zk(ξ, η), C+
k (ξ, η), C−

k (ξ, η) be the kernels of the integral operators Πk, Pk,

Qk respectively. The Poisson kernel in B can be written as

P (x, ξ) =
∑

k

Zk(x, ξ) =
∑

k

rkZk(η, ξ) =
1− |x|2

|x − ξ|n+1

Here and throughout this paper we will write x = |x|η = rη and y = |y|ξ = sξ
for x, y ∈ Rn+1 and η, ξ ∈ Sn.

The functions C±
k (ξ, η) can be written in terms of Geggenbauer polynomials

and we have the estimates (see [1], 11.12)

(2.5)
∣∣C±

k (ξ, η)
∣∣ ≤ Ckn.

The spacesM+
k andM−

k have canonical basis {Vα} and {Wα} (see [9], Ch. 2.1)
where the multi indices α ∈Nn have length |α| = k and N are the nonnegative
integers. The following orthogonality relations are valid for α, β ∈ Nn:∫

Sn

Wβ(ξ)ξVα(ξ)dσ(ξ) =
∫

Sn

Vα(ξ)ξWβ(ξ)dσ(ξ) = δαβ,∫
Sn

Vβ(ξ)ξVα(ξ)dσ(ξ) =
∫

Sn

Wβ(ξ)ξWα(ξ)dσ(ξ) = 0,
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from which we obtain representations

C+
k (ξ, η)η =

∑
|α|=k

Vα(ξ)Wα(η),(2.6)

C−
k (ξ, η)η =

∑
|α|=k

Wα(ξ)Vα(η).(2.7)

Let X be a left Banach An-module. We can extend the domain of Πk, Pk and
Qk to MX(Sn). For instance,

Pkµ(ξ) =
∫

Sn

C+
k (ξ, η)dµ(η).

We have that on MX(Sn), the projections Πk, Pk and Qk take values on the
X−valued version of Hk,M+

k and M−
k respectively. Moreover, for any ϕ ∈

C∞(Sn) and any nonnegative integer N∫
Sn

ϕ(ξ)Pkµ(ξ)dσ(ξ) =
1

λN
k

∫
Sn

ϕ(ξ)∆N
ξ Pkµ(ξ)dσ(ξ)

=
1

λN
k

∫
Sn

∆N
ξ ϕ(ξ)Pkµ(ξ)dσ(ξ),

where λk ∼ k2 is the k − th eigenvalue of the Laplacian on the sphere. Hence
by (2.5) we have∥∥∥∥∫

Sn

ϕ(ξ)Pkµ(ξ)dσ(ξ)
∥∥∥∥

X

≤ CNkn−(2N+1) ‖µ‖MX(Sn)

∥∥∥∆Nϕ
∥∥∥
∞

.

We have the same estimate for Πkµ and Qkµ. This implies that the series∑∞
k=0 Pkµ and

∑∞
k=1 Qkµ are convergent in the sense of X-valued distributions,

and µ =
∑

Πkµ as X-valued distributions.

3. The monogenic Hardy space H1
X(B)

Definition (3.1). Let X be a left Banach An−-module and p > 0. We denote
by Hp

X(B) the space of all left monogenic functions F in the ball with values in
X such that

sup
0≤r<1

∫
Sn

‖F (rη)‖p
X dσ(η) < ∞.

Remark (3.2). a) Let F : B → X be a left monogenic function. If p >
n−1

n , then F ∈ Hp
X(B) if and only if the radial maximal function F∗(ξ) =

sup{‖F (rξ)‖X : 0 ≤ r < 1} belongs to Lp(Sn). In fact, since ` ◦ F is monogenic
for every ` ∈X∗

l then |` ◦ F (x)|ε is subharmonic in B provided n−1
n < ε < 1 (see

[12] p.106, noticing that the model of Clifford Analysis used in this reference
is slightly different to ours, however the proof of this statement applies in this
case). It follows from Lemma (2.3) that ‖F (x)‖ε

d is also subharmonic in B and
the remark can be proved following the proof of the scalar case.

b) If u : B → X is a harmonic function such that

sup
0≤r<1

∫
Sn

‖u(rη)‖X dσ(η) < ∞,
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we may represent

(3.3) u(x) =
∫

Sn

P (x, ξ)dµ(ξ)

for some measure µ ∈ MX(Sn). This follows by the standard argument using
Banach-Alouglou theorem and the duality

CX(Sn)∗ = MX∗ (Sn)

valid for every Banach space X, (see [19]).
c) If we take f ∈ L1

X(Sn) and we let F (x) =
∫

Sn P (x, η)f (η)dσ(η), then the
harmonic function F has radial (even nontangential) limits a.e. in Sn, since
almost every point of Sn is a Lebesgue point of f (see [10], Th. 2.9).

Definition (3.4). Let X be a left Banach An−-module and µ ∈ MX(Sn). We
will say that µ is a monogenic measure if∫

Sn

P (η)ηdµ = 0

for every P ∈M+
k with k > 0.

Theorem (3.5). Let X be a left Banach An-module. A measure µ ∈ MX(Sn)
is monogenic if and only if the Poisson transform F of µ

F (x) =
∫

Sn

P (x, ξ)dµ(ξ)

belongs to H1
X(B).

Proof. Let µ ∈ MX(Sn) be monogenic. Then by (2.7) we have that Qkµ = 0
for all k, since the spaces M−

k are self conjugate. We may represent

µ =
∞∑

k=0

Πkµ =
∞∑

k=0

Pkµ +
∞∑

k=1

Qkµ =
∞∑

k=0

Pkµ.

Since Zk(ξ, η) = C+
k (ξ, η) + C−

k−1(ξ, η), it follows that∫
Sn

P (x, ξ)dµ(ξ) =
∞∑

k=0

rkΠkµ(η) =
∞∑

k=0

rkPkµ(η)

with uniform convergence on compact subsets of B. Hence F is monogenic and
by Fubini’s theorem,∫

Sn

‖F (rη)‖dσ(η) ≤ ‖µ‖MX(Sn) , r ∈ [0, 1).

To prove the converse suppose that F above is monogenic. Then for each
P ∈M+

k and r ∈ [0, 1) ∫
Sn

P (ξ)ξF (rξ)dσ(ξ) = 0,

by the Cauchy Theorem [1].
Since F (rξ)dσ(ξ) converges to µ as vector-valued distributions conclude that∫

Sn

P (ξ)ξdµ(ξ) = lim
r→1

∫
Sn

P (ξ)ξF (rξ)dσ(ξ) = 0.
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Corollary (3.6). Let X be a left Banach An-module. A measure µ ∈ MX(Sn)
is monogenic if and only if the Cauchy transform C of µ in the ball

(3.7) Cµ(x) =
∫

Sn

G(x − ξ)ξdµ(ξ)

belongs to H1
X(B) and Cµ(x) = 0 for |x| > 1.

Proof. For x ∈ B and ξ ∈ Sn we have ([9] p. 182 (1.9))

G(ξ − x) =
∞∑

k=0

|x|kC+
k (η, ξ)ξ̄

Then if µ ∈ MX(Sn) is monogenic Cµ(x) = Pµ(x). Moreover if |x| > 1 and
ξ ∈ Sn. we have ([9] p. 180 (1.7))

G(ξ − x) =
∞∑

k=0

C−
k (ξ, η)η̄
|x|k

it follows that Cµ(x) = 0 for |x| > 1.
To prove the converse suppose that Cµ(x) = 0 for |x| > 1. then from the above

decomposition of G it follows that Qkµ = 0 for all k, hence µ is monogenic.

Corollary (3.8). Let X be a left Banach An-module. A function F : B → X
belongs to H1

X(B) if and only if there exists a monogenic measure µ ∈ MX(Sn)
such that F has the representation (3.3) or (3.7).

Theorem (3.9) (F. Riesz and M. Riesz). Every monogenic measure µ ∈
MX(Sn) is absolutely continuous with respect to σ.

Proof. Suppose that X = An. If µ is monogenic and we let

F (x) =
∫

Sn

P (x, η)dµ(η),

then F ∈ H1(B). But we know in this case (see [15] p. 68) that for almost all
ξ ∈ Sn, F has nontangential limit F (ξ) and

F (x) =
∫

Sn

P (x, η)F (η)dσ(η).

Thus F (ξ) is a density for µ.
In the general case, let µ ∈ MX(Sn) be a monogenic measure and G a Borel

set of Sn with Lebesgue measure zero. Take ` ∈ X∗
l . Since ` ◦ µ is monogenic

we have that ` ◦ µ(G) = 0 by the first part of the proof and this implies that
µ(G) = 0 since X∗

l separates points from X.

Definition (3.10). We say that a Banach An-module X has the monogenic
Radon-Nikodym property (X∈ (RN)m) if every monogenic measure µ∈MX(Sn)
has a density in L1

X(Sn).

Remark (3.11). Theorem (3.9) implies that X ∈ (RN)m if X has the Radon-
Nikodym property ([10]).

Theorem (3.12). Let X by a Banach An-module. Then X ∈ (RN)m if and
only if every function F ∈ H1

X(B) has radial boundary limits almost everywhere.

Proof. The proof is a consequence of Remark (3.2)c and Theorem (3.5).
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Theorem (3.13). There exists a function F ∈ H∞
An⊗c0

(B) without radial
boundary limits on a set of positive measure. In particular An ⊗ c0 6∈ (RN)m.

Proof. We start our construction in the upper half space

Rn+1
+ = {(x0, x1, .., xn) ∈ Rn+1 : xn > 0}

and then we pull it to the unit ball through a Möbius transform.
There exists a bounded monogenic function G : Rn+1

+ → An ⊗ c0 such that
1. limxn→0 G(x) 6∈ An ⊗ c0 for every x on a set of positive Lebesgue measure

in Rn,
2. |G(x)| ≤ C

(1+|x|)n for all x ∈ Rn+1
+ .

To see this, first consider an atom in Rn as follows: let a : Rn → R be a
C1 function with support in a cube Q in Rn such that

∫
Rn a(x)dx = 0 and

‖a‖∞ ≤ 1
|Q| . Then observe that the Hilbert transform of a

Ha(x) = p.v.

∫
Rn

G(x − y)ena(y)dy

= p.v.

∫
Q

x − y

|x − y|n+1 ena(y)dy, x ∈ Rn

has zero real part and Ha ∈ L∞(Rn). In fact, with elementary estimates we
see that |Ha(x)| ≤ C

|x|n , for large values of |x| , while |Ha(x)| ≤ C‖∇a‖∞for |x|
small. Hence

(3.14) |Ha(x)| ≤ C

(1 + |x|)n
,

where C depends on ‖∇a‖∞ and on the size and position of the cube Q.
Consider the Cauchy transform of a,

A(x) = Ca(x) =
∫

Rn

G(x − y)ena(y)dy.

Then A is a monogenic function on Rn+1
+ and since A is the Poisson integral of

(a + Ha)/2 we obtain the estimate

(3.15) |A(x)| ≤ C

(1 + |x|)n
x ∈ Rn+1

+ ,

with the same dependence of the constant C on a and Q as in (3.14). The
function A has boundary values limxn→0 A(x) = 1

2 (a +Ha)(x) and in particular
the real part of the boundary function is (1/2)a(x).

Now we proceed to construct G. We can easily find an atom a as before
with Q = [−1/2, 1/2]n and such a = 1 in an open rectangle I ⊂ (−1/2, 0) ×
(−1/2, 1/2)n−1. For any positive integer k, define ak(x) = a(kx) and let Ak =
Cak. Since the Hilbert transform H is dilation invariant (it is a combination
of the Riesz transforms) then the sequence (Ak) is bounded in L∞(Rn+1

+ ). Also
supp ak ⊂ 1

k Q and ‖ak‖1 → 0. Then we see Ak satisfies the estimate (3.15)
uniformly in k since Ak(x) = A(kx) and Ak(x) → 0 pointwise in Rn+1

+ .
Finally, translating the atoms ak we can construct an increasing function

ϕ : N → N and a sequence (gm) of atoms and with the following properties
a) supp gk ⊂ [−2, 2]n, for all k ∈ N,
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b) For each k and every m ∈ {ϕ(k)+1, .., ϕ(k+1)} the atom gm is a translate
of ak,

c) The translates of the rectangle 1
k I used to define gm, for m ∈ {ϕ(k) +

1, . . . , ϕ(k + 1)} are a covering for [−1/2, 1/2]n.

Observe that given any x ∈ [−1/2, 1/2]n and for any k ∈ N there exists
m ∈ {ϕ(k) + 1, .., ϕ(k + 1)} such that gm(x) = 1.

Define on Rn+1
+ , G(x) = (Gm(x))m, where Gm = C(gm). Then G maps Rn+1

+
into c0 and it is monogenic by Lemma (2.4). G satisfies (1) and (2) due to the
point (c) in the construction.

To move from Rn+1
+ to B let us recall that composition of a monogenic func-

tion with a Möbius transform is not monogenic unless it is multiplied by the
covariance factor of the Möbius transform (see [16] for details). Consider
the Calvin transform φ(x) = (1 − enx)(x − en)−1 , x ∈ Rn+1

+ with covariance
J (φ, x) = x−en

|x−en|n+1 . Notice that φ is a bijection of ball B onto Rn+1
+ . Define

F (x) = J (φ, x)G(φ(x)), x ∈ B. Then F is monogenic in B. The estimate (3.15)
for G implies that |G(φ(x))| ≤ C |x − en|n for x close to en. It follows that F is
bounded on B and does not have radial boundary limits on a set of positive
measure in the sphere.

Corollary (3.16). If X = An⊗E ∈ (RN)m then E does not have a subspace
isomorphic to c0.

4. The monogenic Radon-Nikodym for Banach lattices

Let (Ω, Σ, µ) be a measure space. We denote be L0 the space of all measurable
functions, finite almost everywhere modulo µ. We will say that a Banach space
(E, ‖·‖) is a Banach function space on (Ω, Σ, µ), BFS for short, if

1. E is a linear subspace of L0,
2. x ∈ L0 and y ∈ E, with |x| ≤ |y| implies that x ∈ E (E is an ideal space),
3. |x| ≤ |y| implies that ‖x‖ ≤ ‖y‖ , for every x, y ∈ E (‖·‖ is monotone).
Three possible properties for a BFS that will be relevant in this section are

(see [6, 13])
(A) If (xn)n is a sequence in E such that xn ↓ 0 then ‖xn‖ → 0.
(B) If (xn)n is an increasing sequence of functions on E such that sup ‖xn‖ <

∞ then there exists x ∈ E such that xn ↑ x.
(C) If xn ↑ x, with xn, x ∈ E then ‖xn‖ → ‖x‖ .

(Here the convergence means convergence almost everywhere).

Definition (4.1). [13]. Let X and Y be BFS on (Ω1, Σ1, µ1) and (Ω2, Σ2, µ2)
such that Y satisfies the condition (C) above. Denote by X[Y ] the space of all
measurable functions f (s, t) on the product space Ω1 × Ω2 provided with the
product measure such that

1) the function s → f (t, s) belongs to Y for almost all t ∈ Ω1 [µ1] ,
2) the function wf (t) = ‖f (t, ·)‖Y belongs to X.

We provide X[Y ] with the norm ‖f‖X[Y ] =
∥∥wf

∥∥
X

. With this norm X[Y ]
becomes a BFS (see [4], [13] for properties of this space). We will refer to the
standard terminology of Banach lattices (see [13], [17], [14]). We will say that



AN ANALYTIC RADON-NIKODYM PROPERTY 141

a Banach lattice E is a KB-space if for every for every sequence 0 ≤ xn ↑ in E
such that sup ‖xn‖ < ∞, there exists x ∈ E such that xn → x in norm.

Theorem (4.2). ([13], Th. X.4.9) The following statements are equivalent for
a Banach lattice E

a) E is a KB-space
b) E does not have a copy of c0.

Remark (4.3). Every KB-space has order continuous norm (see [14], Sect.
2.2). If we assume that E is a separable KB-space, then there exists a prob-
ability measure space (Ω, Σ, µ) such that we may represent E as a BFS such
that L∞(µ) ⊂ E ⊂ L1(µ) (see [14], Th. 2.7.8 and [17], Prop. 2.6.2). Keeping in
mind the description of KB-spaces in [13], Chapter X, 4.4, we see that E has
properties (A), (B), (C) above.

Theorem (4.4). Let E be a real Banach lattice, EC its complexification and
X = An ⊗ E. Then the following statements are equivalent

1. EC ∈ (RN)a.
2. E does not has a copy of c0.
3. Every F ∈ Hp

X(B) has radial boundary limits for all 1 ≤ p ≤ ∞ and every
n ∈ N.

4. Every F ∈ Hp
X(B) has radial boundary limits for some 1 ≤ p ≤ ∞ and

some n ∈ N.
5. For every n ∈ N, X ∈ (RN)m.

Proof. The equivalence of (1) and (2) was proved in [6]. Suppose that (2)
holds. To prove (3) will let F ∈ H1

X(B) and show that it can be represented as
a Poisson integral of a function in L1

X(B). Since the image of F is separable
we can assume by Remark (4.3) that X is a BFS on a finite measure space
(Ω, Σ, µ).

As a first step we prove that we can find a measurable function f on Ω× B
such that F (x) = f (·, x) and f (t, ·) is monogenic for almost all t ∈ Ω:

Represent F as a Taylor series and as a spherical harmonic expansion

F (x) =
∞∑

k=1

(
∑
|α|=k

Vα(x)xα) =
∑
k,j

Y k
j (x)xk,j ,

where xα, xk,j ∈ X. We have

(4.5)
∑
k,j

Rk
∥∥xk,j

∥∥
X

< ∞

for 0 ≤ R < 1. Then for each k we have∑
|α|=k

Vα(x)xα =
dk∑

j=1

Y k
j (x)xk,j .

We can choose a set A1 ∈ Σ with complete measure such that

(4.6)
∑
|α|=k

Vα(x)xα(t) =
dk∑

j=1

Y k
j (x)xk,j(t)
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for every t ∈ A1, x ∈ B and k ≥ 0. To see this we find A1 such that (4.6) holds for
x in a countable dense subset of B, then extend this by continuity in B. Fix any
0 < R < 1. Since X is a KB-space then (4.5) implies that

∑
k,j Rk

∣∣xk,j

∣∣ ∈ X.
Hence for almost all t, say t ∈ A2,∑

k,j

Rk
∣∣xk,j(t)

∣∣ < ∞

and
∑∞

k=1

∑dk

j=1 Y k
j xk,j(t) defines a harmonic function on 0 ≤ r < R. Then

if t ∈ A = A1 ∩ A2 it follows that
∑∞

k=1

∑
|α|=k Vα(·)xα(t) is monogenic on

0 ≤ r < R < 1. The number R ∈ [0, 1) is arbitrary, so it is clear that for almost
all t ∈ Ω the function above is monogenic on B. Also the function

f (t, x) =
∞∑

k=1

(
∑
|α|=k

Vα(x)xα(t)).

is measurable on the product Ω × B and F (x) = f (·, x). Remark (3.2) implies
the existence of a set G ⊂ Sn of complete Lebesgue measure such that

(4.7) ‖f (·, rξ)‖X ≤ F∗(ξ) < ∞,

for all r ∈ [0, 1) and ξ ∈ G. Observe that for fixed r, the function

t →
∫

Sn

|f (t, rξ)|dσ(ξ)

belongs to X. In fact,∫
Sn

|f (·, rξ)|dσ(ξ) ≤
∑
k,j

rkdk

∣∣xk,j

∣∣ (t) ≤ Crkkn−2
∣∣xk,j

∣∣ (t).

Then by (4.5)
∫

Sn |f (·, rξ)|dσ(ξ) ∈ X and we can estimate its norm using the
Banach function dual E′ of E:∥∥∥∥∫

Sn

|f (·, rξ)|dσ(ξ)
∥∥∥∥

X

≤ sup
x′∈E′

+

‖x′‖≤1

∫
Ω

∫
Sn

|f (t, rξ)|dσ(ξ)x′(t)dµ(t)(4.8)

≤ sup
x′∈E′

+

‖x′‖≤1

∫
Ω

∫
Sn

|f (t, rξ)| x′(t)dµ(t)dσ(ξ)(4.9)

≤
∫

Sn

F∗(ξ)dσ(ξ) < ∞,(4.10)

where E′
+ consists of all measurable functions x′ ≥ 0 such that

sup
‖x‖E≤1.

∫
Ω

x(t)x′(t)dµ(t) < ∞.

Consider the function

x0(t) = sup
0≤r<1

∫
Sn

|f (·, rξ)|dσ(ξ).

For t ∈ A as above, x0(t) = limn→∞
∫

Sn |f (·, rnξ)|dσ(ξ), being rn any sequence
rn ↑ 1. Then the fact the X is a KB-space and (4.10) implies that x0 ∈ X. It
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follows that x0(t) < ∞ for almost all t, then for almost all t, the function f (t, ·)
belongs to the Clifford H1(B). By the scalar theory, we know that for almost
all t ∈ Ω there exists the limit

f̃ (t, ξ) = lim
r→1

f (t, rξ)

for almost all ξ ∈ Sn and in the L1 norm.
Note that ∫

Sn

|f (·, rξ)− f (·, r′ξ)|dσ(ξ) ≤ 2x0.

Then ∥∥∥∥∫
Sn

|f (·, rξ)− f (·, r′ξ)|dσ(ξ)
∥∥∥∥

X

→ 0

as r, r′ → 1−, that is, the family {f (·, r·)}r is a Cauchy net on X[L1(Sn)] as
r → 1. In fact, assume that∥∥∥∥∫

Sn

|f (·, rnξ)− f (·, snξ)|dσ(ξ)
∥∥∥∥

X

≥ ε > 0,

with rn, sn → 1. Let gn =
∫

Sn |f (·, rnξ)− f (·, snξ)|dσ(ξ). We have gn ≤ 2x0 and
gn(t) → 0 for almost all t. Then (see [13], Ch X.1.4) gn

o→ 0, that is, there exist
a sequence ϕn ↓ 0 in E such that gn ≤ ϕn. We have that gn → 0 in norm ([13],
Ch X.4.1), since E satisfies (A), and this is impossible.

The space X[L1(Sn)] is a Banach space, then the limit f = limr→1− f (·, r·)
exists in X[L1(Sn)]. To conclude the proof we will show that for almost all
ξ ∈ Sn, F0(ξ) = f (·, ξ) = limr→1− F (rξ) on X.

By a variation of the argument used in the case of the classical Lebesgue
spaces we can prove that since f = limr→1− f (·, r·) in X[L1(Sn)], there exists a
sequence {f (t, rnξ)} converging a.e. [µ×σ] to f (t, ξ). Note that for almost all t ∈
Ω, f (t, ξ) = f̃ (t, ξ) for almost all ξ. Also for almost all ξ ∈ Sn, f (t, rnξ) → f (t, ξ)
a.e. [µ] and by the estimate (4.7) and the Lemma X.3.5 of [13] we conclude
that f (·, ξ) ∈ X a.e. [σ] and w(ξ) = ‖f (·, ξ)‖X belongs to L1(Sn), that is, f ∈
L1(Sn)[X]. By Lemma XI.1.2 of [13] we can easily see that f (·, ξ) is Bochner
a measurable function of ξ, hence F0 above belongs to L1

X(Sn). To prove (3) it
is enough to prove that F is the Poisson integral of F0. Let A ∈ Σ such that
f (t, ·) ∈ H1(B) for every t ∈ A. Then if t ∈ A

f (t, x) =
∫

Sn

P (x, η)f̃ (t, η)dσ(η) =
∫

Sn

P (x, η)f (t, η)dσ(η).

But (see [4], Lemma 2.1) for almost all t ∈ A we have∫
Sn

P (x, η)f (t, η)dσ(η) = (
∫

Sn

P (x, η)f (·, η)dσ(η))(t).

This completes the part (2) =⇒ (3).
By Theorem (3.12) and Theorem (3.13) we have (4) =⇒ (2) and this com-

pletes the proof.

Corollary (4.11). An ⊗ L1[0, 1] ∈ (RN)m for all n.
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COINCIDENCE AND FIXED POINTS OF NONLINEAR HYBRID
MAPPINGS

YISHENG LAI

Abstract. The concepts of harmonic for single-valued and multi-valued map-
pings are defined. Some common fixed and coincidence point theorems for
single-valued and multi-valued mappings satisfying a class of conditions are
obtained by an iteration scheme. The conditions are not assumed to be a
contractive type.

1. Introduction

In recent years there have appeared various papers concerning common
fixed and coincidence point theory for single-valued and multi-valued map-
pings, see, for example, [1-8]. Some authors (see, [1-8]) carried their work out
in a framework in which the underlying metric space is a complete , and the
single-valued and multi-valued mappings satisfy a contractive type condition.
In this case, fixed and coincidence points can be found by a technique from
Nadler [9] [also cf. [5, 6, 7, 8]]. However, the method can’t be employed if the
mappings are not assumed to be a contractive type, and such case also has
been seldom discussed.

In this paper, the notion of harmonic for single-valued and multi-valued
mappings is given and the concept of compatibility is extended [1, 2]. An it-
eration scheme for finding coincidence and common fixed point of the hybrid
mappings satisfying a Φ-type condition is established. Using the technique, we
get several coincidence and common fixed point theorems for a class of hybrid
mappings without assuming to be a contractive type. In our theorems, replac-
ing the completeness of the space by a set of weaker conditions, we also drop
the compatibility requirement and the assumptions of continuity of mappings
in Theorem (3.20).

2. Preliminaries

Let (X,d) be a metric space andR+ the set of nonnegative real numbers. Let
(CB(X),H) and (CL(X),H) denote respectively the hyperspaces of nonempty
closed bounded subsets of X, and nonempty closed subsets of X, where H is
the Hausdorff-Pompei metric induced by d, i.e.,

H(A,B) = max {sup
x∈A

d(x,B), sup
x∈B

d(x,A)}

2000 Mathematics Subject Classification: 47H10, 54H25, 54C60.
Keywords and phrases: Hausdorff-Pompei metric; fixed and coincidence point; compatible and

harmonic mappings.
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for all A,B ∈ CB(X) (or CL(X)), where d(x,A) = inf y∈A d(x, y). A set-valued
mapping f : X → CB(X) (or CL(X)) is called Hausdorff-Pompei continuous at
x0 if limx→x0 H(fx, fx0) = 0.

It is well known that (CB(X),H) and (CL(X),H) are complete metric spaces,
whenever (X,d) is complete. Of course, (CB(X),H) and (CL(X),H) are metric
spaces.

Definition (2.1). The mappings f : X → X and T : X → CL(X) are said
to be compatible if d(fyn, Tfxn) → 0 whenever {xn}, {yn} are sequences in X
such that Txn → M ∈ CL(X) and limn→∞ fxn = limn→∞ yn = t ∈ M , where
yn ∈ Txn for n = 1, 2, . . ..

Definition (2.1) slightly extends Kaneko’s and Cho’s definitions [1, 2].

Definition (2.2). Let ψ : R+ → R+ be a function. The mappings f : X → X
and T : X → CL(X) are said to be ψ-harmonic if the following conditions are
satisfied:
(a) ft ∈ M whenever there exists some sequence {xn} in X such that Txn →

M ∈ CL(X) and fxn → t ∈M ;
(b) for t and M above, H(M,Tt) > ψ(d(ft, t)) if ft 6= t.

Example (2.3). Let X = {x : 0 ≤ x ≤ 1, x ∈ Q} ∪ {2} be endowed with the
usual metric. Define

ψy = 3y + sin y, y ∈ [0,+∞),

fx =


1
10 , x = 0
1− x, x 6= 0, 2, x ∈ X

0, x = 2.
; Tx =

{
{0, 1

2}, x 6= 0, x ∈ X

{ 9
10} , x = 0

We will show that f and T are ψ-harmonic.
(a) If {xn} is a sequence in X such that Txn → M ∈ CL(X) and fxn → t ∈ M ,

then xn → 1 or 1
2 by definitions of mappings f and T . Obviously, ft ∈ M

when xn → 1 or 1
2 .

(b) Assume that xn → 1, then t = 0,M = {0, 1
2}. Since d(ft, t) = 1

10 ,
H(M,Tt) = 2

5 , we have H(M,Tt) > ψ(d(ft, t)). If xn → 1
2 , then t = 1

2 ,M =
{0, 1

2} and so ft = t = 1
2 .

H(Tx, Ty) =

{
0, x, y 6= 0 or x = y = 0, x, y ∈ X
2
5 , x = 0, y 6= 0 or x 6= 0, y = 0

Proposition (2.4). Suppose that the function Φ(t1, t2, t3, t4, t5) : (R+)5 → R+

satisfies the following conditions φ1 and φ2:
φ1: Φ(t1, t2, t3, t4, t5) is a nondecreasing continuous function in each coordi-

nate variable;
φ2: Let ψ(t) = Φ(t, t, t, at, bt), where a, b ∈ {0, 2} with a + b = 2. The

series
∑+∞

n=1 ψ
n(t) converges for each t ∈ R+, where ψn(t) is the nth iterate of our

original value t.
Then
(a) ψ(t) is an increasing function;
(b) ψ(t) < t for all t ∈ R+ and ψ(0) = 0.
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Proof. It is easy to see from condition (φ1) that ψ(t) is an increasing function.
If ψ(t) ≥ t for some t ∈ (0,+∞), then ψn(t) ≥ ψn−1(t) ≥ . . . ≥ ψ(t) ≥ t. This
contradicts condition (φ2), hence ψ(t) < t for all t ∈ (0,+∞). Similarly, we have
ψ(0) = 0. This completes the proof.

Definition (2.5). φ1 and φ2 in Proposition (2.4) are called a Φ-type condition.

Example (2.6). Let

(2.7) Φ(t1, t2, t3, t4, t5) = h[aL(t1, t2, t3, t4, t5) + (1− a)N(t1, t2, t3, t4, t5)]

where 0 ≤ h < 1, 0 ≤ a ≤ 1,

L(t1, t2, t3, t4, t5) = max {t1, t2, t3,
1
2

(t4 + t5)},

N(t1, t2, t3, t4, t5) = max {t21, t2t3, t4t5,
1
2
t2t5,

1
2
t3t4}]

1
2 .

We show that the Φ(t1, t2, t3, t4, t5) satisfies a Φ-type condition.
φ1: Obviously.
φ2: ψ(t) = Φ(t, t, t, at, bt) = ht and so ψn(t) = hnt. This implies that the

series
∑+∞

n=1 ψ
n(t) converges for each t ∈ R+.

The following implicit relations are due to V. Popa [3].
Let Ç6 be the set of all real continuous functions F (t1, t2, . . . , t6) : (R+)6 → R

satisfying the following conditions G1 and G2:
G1: F is non-increasing in the variable t2, . . . , t6 and non-decreasing in vari-

able t1;
G2: There exists h ∈ (0, 1) and k > 1 with hk < 1 such that u ≤ kt and

F (t, v, v, u, u + v, 0) ≤ 0 implies t ≤ hv.

Remark (2.8). The Φ-type condition is different from the implicit relations
above. In fact, let Γ(t1, t2, . . . , t6) := t1−Φ(t2, t3, t4, t5, t6), where Φ satisfies a Φ-
type condition, but Γ ∈ Ç6 is not assured. For instance, let Φ(t2, t3, t4, t5, t6) =
t2t3

1+t2t3
+ t4t5t6. It is easy to see that the Φ satisfies a Φ-type condition, but Γ

does not satisfy condition G2.

Proposition (2.9). LetA,B ∈ CL(X) and β > 0. Then for each a ∈ A, there
exists an element b ∈ B such that d(a, b) ≤ H(A,B) + β+, where

(2.10) β+ =

{
0, for H(A,B) > d(a,B) or H(A,B) = 0
β, for H(A,B) = d(a,B) > 0 .

.

Proof. By the definition of Hausdorff-Pompei metric, it is clear thatd(a,B) ≤
sup
x∈A

d(x,B) ≤ H(A;B). If H(A,B) = 0, then A = B, and so d(a, b) = H(A;B)

by taking b = a. If H(A,B) 6= 0, since there exists b′ ∈ B such that d(a, b′) <
d(a,B) + ε for any given ε > 0, there exists b ∈ B such that d(a, b) < H(A;B)
if H(A,B) > d(a,B) and d(a, b) < H(A;B) + β if H(A,B) = d(a,B). This
completes the proof.
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3. Coincidence Theorems

In this section we give some coincidence point theorems for nonlinear hybrid
mappings satisfying a Φ-type condition by an iteration scheme.

Theorem (3.1). Let (X,d) be a metric space, f, g : X → X be continuous
mappings and S, T : X → CL(X) be H-continuous mappings such that T (X) ⊂
f (X), S(X) ⊂ g(X). Suppose that there exists a function Φ satisfying Φ-type
condition such that for all x, y ∈ X,

(3.2) H(Sx, Ty) ≤ Φ(d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx)).

If one of S(X), T (X), f (X) and g(X) is a complete subspace of X and the pair
(f, S) and (g, T ) are compatible. Then there exists a sequence {xn} in X, such
that

(a) for every n, fx2n−1 ∈ Tx2n−2, gx2n ∈ Sx2n−1;
(b) limn→∞ gx2n = limn→∞ fx2n−1 = z for some z ∈ X;
(c) fz ∈ Sz, gz ∈ Tz.

Proof. Let x0 be an arbitrary point of X. Since T (X) ⊆ f (X), there exists
x1 ∈ X such that fx1 ∈ Tx0, and so there exists a point u1 ∈ Sx1 such that

d(u1, fx1) ≤ H(Sx1, Tx0) + β+
1 ,

where β1 = 1 and β+
1 has the same meaning as (2.10), which is possible by

Proposition (2.9).
Moreover, since S(X) ⊆ g(X), there exists a point x2 inX such that u1 = gx2

and
d(gx2, fx1) ≤ H(Sx1, Tx0) + β+

1 .

Proceeding in this way, we can obtain a sequence {xn} in X such that for each
n ≥ 1,

(3.3) bn = d(gx2n, fx2n−1) ≤ H(Sx2n−1, Tx2n−2) + β+
2n−1

and

(3.4) an = d(fx2n+1, gx2n) ≤ H(Tx2n, Sx2n−1) + β+
2n,

where

(3.5) gx2n ∈ Sx2n−1, fx2n−1 ∈ Tx2n−2,

(3.6)

β+
2n−1 =


0 for H(Sx2n−1, Tx2n−2) > d(Sx2n−1, fx2n−1) or

H(Sx2n−1, Tx2n−2) = 0
β2n−1 for H(Sx2n−1, Tx2n−2) = d(Sx2n−1, fx2n−1) > 0, n ≥ 2,

(3.7) β2n−1 =

{
min{η2n−1,

1
2n−1 , |ψ(an−1)− ψ(bn−1)|} for an−1 6= bn−1

min{η2n−1,
1

2n−1} for an−1 = bn−1 ,

(3.8)

η2n−1 =
1
2

min {t− ψ(t) : t ∈ [H(Sx2n−1, Tx2n−2),H(Sx2n−1, Tx2n−2) + 1]}



COINCIDENCE AND FIXED POINTS OF NONLINEAR HYBRID MAPPINGS 149

and
(3.9)

β+
2n =

{
0 for H(Tx2n, Sx2n−1) > d(Tx2n, gx2n) or H(Tx2n, Sx2n−1) = 0
β2n for H(Tx2n, Sx2n−1) = d(Tx2n, gx2n) > 0 ,

(3.10) β2n =

{
min{η2n,

1
2n , |ψ(bn)− ψ(an−1)|} for bn 6= an−1

min{η2n,
1

2n} for bn = an−1 ,

(3.11) η2n =
1
2

min {t− ψ(t) : t ∈ [H(Tx2n, Sx2n−1),H(Tx2n, Sx2n−1) + 1]} .

β2n−1 and β2n above are positive by proposition (2.4). It follows from (3.2) and
(3.4) that

an = d(fx2n+1, gx2n) ≤ H(Tx2n, Sx2n−1) + β+
2n

≤ Φ(d(gx2n, fx2n−1), d(fx2n−1, Sx2n−1), d(gx2n, Tx2n), d(fx2n−1, Tx2n),

d(gx2n, Sx2n−1)) + β+
2n

≤ Φ(d(gx2n, fx2n−1), d(fx2n−1, gx2n), d(fx2n+1, gx2n), d(fx2n+1, gx2n)

+ d(fx2n−1, gx2n), 0) + β+
2n.

That is,

(3.12) an ≤ H(Tx2n, Sx2n−1) + β+
2n ≤ Φ(bn, bn, an, an + bn, 0) + β+

2n.

Applying the same argument as above, we have

(3.13) bn ≤ H(Sx2n−1, Tx2n−2)+β+
2n−1 ≤ Φ(an−1, bn, an−1, 0, an−1+bn)+β+

2n−1

by (3.2) and (3.3).
We shall verify that

(3.14) an ≤ bn ≤ an−1, n ≥ 2

where an = bn(resp. bn = an−1) if and only if an = bn = 0(resp. bn = an−1 = 0).
In fact, if there exists some n such that an > bn, then it is easily seen from

(3.12) and conditions φ1 and φ2 that

(3.15) an ≤ Φ(an, an, an, 2an, 0) + β+
2n = ψ(an) + β+

2n,

which along with Proposition (2.4) implies that β+
2n = β2n > 0. Hence, from

(3.4)-(3.5) and (3.9)-(3.11), we have

0 < H(Tx2n, Sx2n−1) = d(Tx2n, gx2n) ≤ an ≤ H(Tx2n, Sx2n−1) + β+
2n

≤ H(Tx2n, Sx2n−1) + 1

and so η2n ≤ 1
2 (an − ψ(an)) by (3.11). This together with again (3.9)-(3.10),

(3.15) and Proposition (2.4) yields that

(3.16)
an ≤ ψ(an) + β+

2n = ψ(an) + β2n ≤ ψ(an) + η2n

≤ ψ(an) +
1
2

(an − ψ(an)) ≤ 1
2

(an + ψ(an)) < an,

which is a contradiction. Therefore, an ≤ bn. If an = bn > 0, then it is not
difficult to see from an argument as above that (3.16) still holds, that is, an = bn
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if and only if an = bn = 0. Applying the same argument as above, we have
bn ≤ an−1, and bn = an−1 if and only if bn = an−1 = 0. Hence (3.14) is proven.

We now show that the series
∑∞

n=1 an and
∑∞

n=0 bn are convergent. Obvi-
ously, the conclusion is true by (3.14) if there exists an integer n ≥ 2 such
that an−1 = 0 or bn = 0. Now assume that an−1, bn 6= 0 for all n ≥ 2. Then
an−1 > bn by (3.14), and so β2n ≤ ψ(an−1) − ψ(bn) by (3.10), which together
with (3.9)–(3.10), (3.12) and (3.14) implies that
(3.17)
bn+1 ≤ an ≤ ψ(bn) + β+

2n ≤ ψ(bn) + β2n ≤ ψ(bn) + ψ(an−1)− ψ(bn) = ψ(an−1).

It follows that

(3.18) bn+1 ≤ an ≤ ψ(an−1) ≤ ψ(ψ(an−2)) = ψ2(an−2) ≤ · · · ≤ ψn−1(a1).

The series
∑+∞

n=1 ψ
n(a1) converges by conditionφ2, Therefore, the series

∑+∞
n=1 an

and
∑+∞

n=1 bn also converge, that is, the series
∑∞

n=1 d(gx2n, fx2n−1) and

∞∑
n=0

d(gx2n, fx2n+1)

are convergent.
It is easily obtained from (3.12)-(3.13) that

(3.19) H(Sx2n−1, Tx2n−2) ≤ ψ(an−1),H(Tx2n, Sx2n−1) ≤ ψ(bn).

This implies that the series
∑∞

n=1 H(Sx2n−1, Tx2n−2) and
∑∞

n=1 H(Tx2n, Sx2n−1)
are also convergent. We thus see that {fx2n−1} and {gx2n} are two Cauchy se-
quences in f (X) and g(X) respectively, and the sequences {Sx2n−1} and {Tx2n}
also are in S(X) and T (X) respectively.

Suppose that f (X) is a complete subspace of X, then {fx2n−1} has a limit in
f (X), call it z, and it is easily seen by the convergent series

∑∞
n=1 d(gx2n, fx2n−1)

that z = limn→∞ fx2n−1 = limn→∞ gx2n. Since T (X) ⊂ f (X), this must imply
that {Tx2n} →M for someM ∈ CL(X) and so {Sx2n−1} →M by the convergent
series

∑∞
n=1 H(Tx2n, Sx2n−1). Thus

d(z,M) ≤ d(z, fx2n−1) + d(fx2n−1,M)

≤ d(z, fx2n−1) +H(Tx2n−2,M) → 0 as n→∞.

Since M is closed, z ∈ M and the compatibility of f and S implies that
d(fgx2n, Sfx2n−1) → 0 as n → ∞. This along with the continuity of f and
the H-continuity of S yields that

d(fz, Sz) ≤ d(fz, fgx2n) + d(fgx2n, Sz)

≤ d(fz, fgx2n) + d(fgx2n, Sfx2n−1) +H(Sfx2n−1, Sz) → 0

as n → ∞, that is, fz ∈ Sz since Sz is closed. Similarly, we can show that
gz ∈ Tz.

When one of T (X), S(X) and g(X) is a complete subspace ofX, by noting the
fact that T (X) ⊂ f (X) and S(X) ⊂ g(X), this case essentially pertains to the
previous case. This completes the proof.
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Theorem (3.20). Let Y be an arbitrary non-empty set, (X,d) a metric space.
Let mappings f : Y → X and T : Y → CL(X) be such that T (Y ) ⊆ f (Y ) and
there exists a function Φ satisfying Φ-type condition such that for all x, y ∈ X,

(3.21) H(Tx, Ty) ≤ Φ(d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty), d(fy, Tx)).

If either T (Y ) or f (Y ) is a complete subspace ofX, then there exists a point t ∈ Y
such that ft ∈ Tt.

Proof. Assuming that f = g and S = T on Y as in Theorem (3.1). By
a similar argument to that in the proof of Theorem (3.1), we can obtain a
sequence {xn} in Y such that fxn+1 ∈ Txn for integers n = 1, 2, · · · , and {fxn}
is a Cauchy sequence in f (Y ).

If f (Y ) is a complete subspace of X, then {fxn} has a limit in f (Y ). Call it
µ. Let t ∈ f−1µ, then ft = µ. By (3.21), fxn+1 ∈ Txn yields that

d(fxn+1, Tt) ≤ H(Txn, Tt)

≤ Φ(d(fxn, ft), d(fxn, Txn), d(ft, Tt), d(fxn, Tt), d(ft, Txn))

≤ Φ(d(fxn, ft), d(fxn, fxn+1), d(ft, Tt), d(fxn, Tt), d(ft, fxn+1))

Passing to the limits as n → +∞, it then follows from conditions φ1 and φ2

that
d(ft, Tt) ≤ Φ(0, 0, d(ft, Tt), d(ft, Tt), 0) ≤ ψ(d(ft, Tt)),

which together with Proposition (2.4) implies that d(ft, Tt) = 0, that is, ft ∈ Tt.
When T (Y ) is a complete subspace of X, by noting the fact that T (Y ) ⊂

f (Y ), this case essentially pertains to the previous case. This completes the
proof.

Remark (3.22). Assuming that the function Φ(t1, t2, t3, t4, t5) in Theorem
(3.20) is the same as the function Φ in Example (2.6), then we get the main
result of Pathak, Kang and Cho in [7] by Theorem (3.20) and Example (2.6).

Remark (3.23). Theorem (3.20) is different from the main results in the
literature [3, 4]. First, in [3, 4] (X,d) is assumed to be a complete metric
space. Secondly Φ-type condition is also dissimilar from implicit relations in
[3, 4] by Remark (2.8).

Theorem (3.24). Let (X,d) be a metric space, f, g : X → X be continuous
mappings and S, T : X → CL(X) be H-continuous mappings such that T (X) ⊂
f (X), S(X) ⊂ g(X). Suppose that there exist functions αi : X ×X → [0, 1) with∑3

i=1 αi(x, y) ≤ 1, Φi satisfying Φ-type condition for i = 1, 2, 3, and Γ: R+ ×
R+ → R+ with Γ(u, v) = 0 whenever uv = 0 such that for all x, y ∈ X,
(3.25)

Hp(Sx, Ty) ≤
3∑
i=1

αi(x, y)Φp
i (d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx))

+ Γ(d(fx, Ty), d(gy, Sx)),

where p ≥ 1. If one of S(X), T (X), f (X) and g(X) is a complete subspace of
X and the pair (f, S) and (g, T ) are compatible, then there exists a point z ∈ X
such that fz ∈ Sz, gz ∈ Tz.
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The proof of Theorem (3.24) is similar to that of Theorem (3.1). We omit it
here.

Remark (3.26). Theorem (3.24) generalizes many fixed and coincidence point
theorems (cf. [1, 2, 8]).

Example (3.27). Let X = [1,∞) be with the Euclidean metric and define
fx = 2x4 − 1, gx = 2x6 − 1 and Sx = [1, x2], Tx = [x, x2] for all x ≤ 1.

Obviously, f and g (resp. S and T ) are continuous (resp. H-continuous)
mappings and f (X) = g(X) = S(X) = T (X) = X. We claim that f and S
are compatible. In fact, If {xn} and {yn} are sequences in X such that Sxn =
[1, x2

n] → M ∈ CL(X) and limn→∞ fxn = limn→∞(2x4
n − 1) = limn→∞ yn = t ∈

M , where yn ∈ [1, x2
n] for n = 1, 2, . . ., then xn → 1.

On the other hand, we can show that H(fSxn, Sfxn) = 2(x4
n− 1)2 → 0 if and

only if xn → 1 as n→∞ and so, since d(fyn, Sfxn) ≤ H(fSxn, Sfxn), we have

lim
n→∞

d(fyn, Sfxn) = 0.

Therefore, f and S are compatible. By a similar argument as above, we have
that g and T are also compatible.

By the definitions of mappings f , g, S and T , we have

H(Sx, Ty) = max{|y − 1|, |x2 − y2|};

d(fx, gy) = 2|y6 − x2| ≥ 4|y3 − x2| ≥ 4(y2 − x2) as y ≥ x;

d(fx, Sx) = (2x2 + 1)(x2 − 1) ≥ 3(x2 − 1) ≥ 3(x2 − y2) as y < x;

d(gy, Ty) = 2y6 − y2 − 1 ≥ 10(y − 1).

Set

Φ(t1, t2, t3, t4, t5) :=
1
2

max {t1, t2, t3,
1
2

(t4 + t5)}.

It is easily to see that H(Sx, Ty) ≤ Φ(t1, t2, t3, t4, t5). Then it follows Theorem
(3.1) that there exists z ∈ X such that fz ∈ Sz, gz ∈ Tz.

Example (3.28). Let Y = X = {x : 0 ≤ x ≤ 1, x ∈ Q} be endowed with
the usual metric. Let fx = 1 − x, Tx = {0, 1}, x ∈ X, and the function
Φ(t1, t2, t3, t4, t5) the same as the function Φ in Example (2.6). It is easy to
see that all the hypotheses of Theorem (3.20) are satisfied and ft ∈ Tt, t = 0, 1.

4. Fixed point theorems

In this section, using Theorems (3.1) and Theorem (3.20), we prove sev-
eral fixed point theorems for nonlinear hybrid mappings satisfying a Φ-type
condition.

Theorem (4.1). Let (X,d) be a metric space and let f : X → X be continuous
mapping and T : X → CL(X) be H-continuous mapping such that T (X) ⊂ f (X)
and there exists a function Φ satisfying a Φ-type condition such that for all
x, y ∈ X, (3.21) is satisfied. Assume that the following conditions are satisfied:

(i) T (X) or f (X) is a complete subspace ofX and the pair (f, T ) is compatible;
(ii) for each x ∈ X, fx ∈ Tx implies that fnx→ z for some z ∈ X.
Then f and T have a common fixed point in X.
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Proof. By Theorem (3.20), ft ∈ Tt for some t ∈ X and so fnt → z for some
z ∈ X by condition (ii). We now verify that f 2t = fft ∈ Tft. In fact, set for each
integer n ≥ 1, xn = t and yn = ft; it then follows that

lim
n→∞

fxn = lim
n→∞

yn = ft ∈ Tt, Txn → Tt, yn ∈ Txn

which along with the compatibility of f and T implies that d(fyn, Tfxn) = 0
and so f 2t ∈ Tft. Repeating this argument, we obtain fnt ∈ Tfn−1t for each n
and the continuity of T yields that

d(z, Tz) ≤ d(z, fnt) + d(fnt, Tz) ≤ d(z, fnt) +H(Tfn−1t, Tz) → 0,

that is, z ∈ Tz since Tz is closed. It is clear that fz = z by the continuity of f .
Hence z is a common fixed point of f and T . This completes the proof.

Theorem (4.2). Let (X,d) be a metric space, f : X → X and T : X → CL(X)
be ψ-harmonic mappings such that T (X) ⊂ f (X) and there exists a function Φ
satisfying Φ-type condition such that for all x, y ∈ X, (3.21) is satisfied, where
the function ψ(t) has the same meanings as in proposition (2.4). If either T (X)
or f (X) is a complete subspaces of X, then f and T have a common fixed point
in X.

Proof. By a similar argument to that in the proof of Theorem (3.1), we can
obtain a sequence {xn} in X such that Txn → M ∈ CL(X), fxn → t ∈ M and
d(fxn, fxn+1) ≤ H(Txn, Txn−1) + εn for each n ≥ 1, where εn → 0 with εn ≥ 0
and εn = 0 if H(Txn, Txn−1) = 0. ft ∈ M because f and T are ψ-harmonic
mappings. It then follows the definition of the Hausdorff-Pompei metric that

(4.3) d(ft, Tt) ≤ H(M,Tt), d(t, Tt) ≤ H(M,Tt).

Using (3.21), we have that

H(Txn, Tt) ≤ Φ(d(fxn, ft), d(fxn, Txn), d(ft, Tt), d(fxn, Tt), d(ft, Txn)).

Passing the limits as n→ +∞ we get

(4.4) H(M,Tt) ≤ Φ(d(t, ft), d(t,M), d(ft, Tt), d(t, Tt), d(ft,M)),

which together with ft ∈M , t ∈M and (4.3) implies that

(4.5) H(M,Tt) ≤ Φ(d(t, ft), 0,H(M,Tt),H(M,Tt), 0).

We now show that

(4.6) H(M,Tt) ≥ d(t, ft)

In fact, if H(M,Tt) < d(t, ft), then ft 6= t and it follows from (4.5) that

(4.7) H(M,Tt) ≤ Φ(d(t, ft), 0, d(t, ft), d(t, ft), 0) ≤ ψ(d(t, ft)).

On the other hand, since f and T are ψ-harmonic mappings, ft 6= t yields that
H(M,Tt) > ψ(d(t, ft)). This contradicts (4.7). Hence (4.6) is proven.

It follows from (4.5) and (4.6) that

(4.8) H(M,Tt) ≤ Φ(H(M,Tt), 0,H(M,Tt),H(M,Tt), 0) ≤ ψ(H(M,Tt)),

which together with the Proposition (2.4) implies that H(M,Tt) = 0, that is,
M = Tt. Now by (4.6) and noting that t ∈M , we get ft = t ∈ Tt. Therefore t is
a common fixed point of f and T in X. This completes the proof.
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Theorem (4.9). Let (X,d) be a metric space and let f, g, S and T : X → X
be continuous mappings such that T (X) ⊂ f (X), S(X) ⊂ g(X) and there exists
a function Φ satisfying Φ-type condition such that for all x, y ∈ X,

(4.10) d(Sx, Ty) ≤ Φ(d(fx, gy), d(fx, Sx), d(gy, Ty), d(fx, Ty), d(gy, Sx)).

If one of S(X), T (X), f (X) and g(X) is a complete subspaces of X and the
pair (f, S) and (g, T ) are compatible. Assume also that for any given t > 0,
Φ(t, 0, 0, t, t) < t. Then f, g, S and T have a common fixed point z inX. Further,
z is the unique common fixed point of f, S and of g, T .

Proof. The existence of a point t with ft = St and gt = Tt follows from
Theorem (3.1). By the condition (4.10), we have

d(ft, gt) = d(St, Tt) ≤ Φ(d(ft, gt), d(ft, St), d(gt, Tt), d(ft, Tt), d(gt, St))

= Φ(d(ft, gt), 0, 0, d(ft, gt), d(ft, gt)),

which together with Φ(t, 0, 0, t, t) < t whenever t > 0 yields that d(ft, gt) = 0
and so ft = St = gt = Tt. By [2], since f and S are compatible mappings and
ft = St, we deduce that

(4.11) Sft = SSt = fSt = fft,

which along with condition (4.10) implies that

(4.12) d(SSt, Tt) ≤ Φ(d(SSt, Tt), 0, 0, d(SSt, Tt), d(SSt, Tt)).

It yields d(SSt, Tt) = 0, i.e., SSt = Tt. We thus have

(4.13) Sft = SSt = Tt == gt = ft

and so ft = z is a fixed point of S. Further, (4.11) and (4.13) imply that

Sz = SSt = fz = z.

Similarly, we conclude from the compatibility of g and T that Tz = gz = z.
Therefore the point z is a common fixed point of f, g, S and T .

We now show the uniqueness of the common fixed point z. Let z′ be another
common fixed point of f and S. It follows from condition (4.10) that

d(z′, z) = d(Sz′, Tz) ≤ Φ(d(fz′, gz), d(fz′, Sz′), d(gz, Tz), d(fz′, Tz), d(gz, Sz′)

= Φ(d(z′, z), 0, 0, d(z′, z), d(z′, z)),

which together with the condition Φ(t, 0, 0, t, t) < twhenever t > 0 implies that
d(z′, z) = 0 and so z = z′. This completes the proof.

Corollary (4.14). Let (X,d) be a metric space and let mappings S, T : X →
X be such that one of S(X), T (X) is a complete subspace of X. Suppose that
there exists a function Φ satisfying Φ-type condition such that for all x, y ∈ X,

(4.15) d(Sx, Ty) ≤ Φ(d(x, y), d(x, Sx), d(y, Ty), d(x, Ty), d(y, Sx))

Assume that for any given t > 0, Φ(t, 0, 0, t, t) < t. ThenS and T have a common
fixed point z in X. Further, z is the unique common fixed point of S and of T .
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Proof. Let fx = gx = x in Theorem (3.1), then it follows from Theorem (3.1)
that there exists a sequence {xn} in X such that x2n−1 = Tx2n−2, x2n = Sx2n−1

for every n and limn→∞ x2n = limn→∞ x2n−1 = z for some z ∈ X. We show that
z is a common fixed point of S and T .

Since

d(Sz, Tx2n) ≤ Φ(d(z, x2n), d(z, Sz), d(x2n, Tx2n), d(z, Tx2n), d(x2n, Sz)),

taking the limit as n → ∞, we obtain d(Sz, z) ≤ Φ(0, d(z, Sz), 0, 0, d(z, Sz)) <
d(Sz, z), a contradiction, unless z = Sz. A similar argument applied to
d(Sx2n−1, Tz) yields z = Tz.

As in the proof of Theorem (4.9), we have the uniqueness. This completes
the proof.

Remark (4.16). It is easy to see from the proofs of Theorem (3.1) and Corol-
lary (4.14) and the proof of Theorem 1 in [10] that in Corollary (4.14) Φ-type
condition is replaced by Φ(t, t, t, at, bt) < t for any t > 0, where a, b ∈ {0, 1, 2}
with a+b = 2, the Corollary (4.14) is also true. Thus we improve a main result
of Husain and Sehgal [10] by replacing the completeness of the space X by one
of S(X), T (X) being a complete subspace of X.

Example (4.17). Let Y = X = {x : 0 ≤ x ≤ 1, x ∈ Q} ∪ {2} be endowed
with the usual metric, and let the mappings f and T be the same as f and T
in Example (2.3), respectively. Define

Φ(t1, t2, t3, t4, t5) =
9
10

max{t1, t2, t3}+ 3t4t5.

Then ψ(t) = 9
10 t. By a similar argument as in Examples (2.6) and (3.27),

we have that f and T are ψ-harmonic and Φ(t1, t2, t3, t4, t5) satisfies a Φ-type
condition.

On the other hand, since d(fx, Tx) = 4
5 when x = 0 and

H(Tx, Ty) =

{
0, x, y 6= 0 or x = y = 0, x, y ∈ X
2
5 , x = 0, y 6= 0 or x 6= 0, y = 0 ,

it is easy to see that the inequality (3.21) is satisfied. Note that T (X) =
{0, 1

2 ,
9
10} is complete. Thus all the hypothesis of Theorems (4.2) and (3.20)

are satisfied, and ft = t ∈ Tt, t = 1
2 , fz ∈ Tz, z = 1.

Remark (4.18). The continuity of mappings in Theorems (3.20) and (4.2) is
not assumed, and one can replace the completeness of the space by a set of
weaker conditions. For instance, see Example (4.17) above.
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REAL HESSIAN CURVES

ADRIANA ORTIZ-RODRÍGUEZ AND FRANK SOTTILE

Abstract. We give some real polynomials in two variables of degrees 4, 5,
and 6 whose hessian curves have more connected components than had been
known previously. In particular, we give a quartic polynomial whose hessian
curve has 4 compact connected components (ovals), a quintic whose hessian
curve has 8 ovals, and a sextic whose hessian curve has 11 ovals.

1. Introduction

The parabolic curve on a generic smooth surface S embedded in three-dimen-
sional Euclidean space consists of the points where S has zero Gaussian curva-
ture. It separates elliptic points (where the curvature is positive) from hyper-
bolic points (where the curvature is negative). These notions are well-defined
for surfaces embedded in affine or even projective space, as the sign of Gaussian
curvature is invariant under affine transformations.

If the surface S is expressed locally as the graph z = f (x, y) of a smooth
function f , then the sign of its hessian determinant

Hess(f ) :=
∣∣∣∣fxx fxy

fyx fyy

∣∣∣∣ = fxxfyy − f 2
xy,

equals the sign of its curvature at the corresponding point. Thus the parabolic
curve is the image under f of its hessian curve, which is defined by Hess(f ) =
0. When the surface S is the graph of a polynomial f ∈ R[x, y], this local
description is global, and so questions about the disposition of the parabolic
curve on S are equivalent to the same questions about the hessian curve in R2.

Suppose that d is even. Harnack proved [3] that a smooth plane curve of
degree d has at most 1 +

(
d−1

2

)
connected components in RP2. This is also

the bound for the number of components of a compact curve in R2 of degree
d. A non-compact curve in R2 of degree d can have at most

(
d−1

2

)
bounded

components (ovals) and d unbounded components. These unbounded compo-
nents come from the intersection of the corresponding curve in RP2 with the
line at infinity. Harnack constructed a curve in RP2 of degree d with 1 +

(
d−1

2

)
components which has one component meeting the line at infinity in d points.
This Harnack curve shows that the bound for non-compact curves in R2 is
attained, and choosing a different line at infinity shows that the bound for
compact curves in R2 is also attained.

2000 Mathematics Subject Classification: 51N10, 53A15.
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We are interested in the possible number and disposition of the components
of the hessian curve in R2 of a polynomial f ∈ R[x, y] of degree n. This is
problem 2001-1 in the list of Arnold’s problems [1], attributed to A. Ortiz-
Rodrı́guez. See also the discussion of related problems 2000-1, 2000-2, 2001-
1, and 2002-1. The hessian of f has degree at most 2n − 4. By Harnack’s
Theorem, a compact hessian curve has at most (2n−5)(n−3)+1 ovals and a non-
compact hessian curve has at most (2n−5)(n−3) ovals and 2n−4 unbounded
components.

While we know of no additional restrictions on hessian curves, we are not
assured that all possible configurations are acheived by hessians. When n is
at least 4, simple parameter counting shows that not all polynomials of degree
2n − 4 arise as hessians of polynomials of degree n. The placement of the set
of hessian curves among all curves of degree 2n − 4 may restrict the possible
configurations of hessian curves in R2. For example, a simple calculation shows
that

Hess(f ) =
(

fxx + fyy

2

)2

−
(

fxx − fyy

2

)2

− f 2
xy.

Thus the hessian of a polynomial is a linear combination of 3 squares, which
shows that the hessians lie in the second secant variety to the veronese em-
bedding of polynomials of degree n − 2 in polynomials of degree 2n − 4 (the
veronese consists of the perfect squares).

We also know of no general techniques for constructing hessian curves with
a prescribed configuration. One of us (Ortiz-Rodrı́guez) investigated this ques-
tion [4, 5] and constructed polynomials f ∈ R[x, y] of degree n whose hessians
had

(
n−1

2

)
ovals in R2. When n is 4, 5, and 6, these numbers are 3, 6, and 10,

respectively. We do not know if it is possible for a hessian curve to achieve
the Harnack bound, or more generally, which configurations are possible for
hessian curves.

Here, we present a quartic polynomial f whose hessian achieves the Har-
nack bound of 4 ovals, a quintic whose hessian has 8 ovals, a sextic whose
hessian has 11 ovals, as well as examples of non-compact hessian curves of
quartics, quintics, and sextics. These examples show that hessian curves can
have more ovals than was previously known. They were found in a computer
search, using the software Maple.

Our method was to generate a random polynomial, compute its hessian,
and then compute an upper bound on its number of ovals in RP2, sometimes
also screening for the number of unbounded components in R2. This upper
bound was one-half the minimum number of real critical points of a projection
to one of the axes, as each oval in RP2 contributes at least two critical points
to the projection. We separately investigated compact hessian curves of sex-
tics. Polynomials whose upper bound for ovals was at least 4, 8, and 11 (for
quartics, quintics, and sextics, respectively) were saved for further study. The
further investigation largely involved viewing pictures in R2 of these poten-
tially interesting hessians. In all, only a few hundred polynomials warranted
such further scrutiny.

We examined the hessians of 150 million quartics, 40 million each of quintics
and sextics, and over 200 million sextics with compact hessians (the different
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protocol of pre-screening for compactness allowed a greater number to be ex-
amined). This required 628 days of CPU time on several computers, most of
which were running Linux on Intel Pentium processors with speeds between
1.8 and 3 gigaHertz. We did not find a quartic whose hessian had 3 ovals and 4
unbounded components, nor a quintic whose hessian had more than 8 ovals in
RP2, nor a sextic whose hessian had more than 11 ovals in RP2. (The examples
we give at the end with 12 ovals in RP2 are pertubations of a curve we found
with 11 ovals.) This suggests that it may not be possible for hessian curves in
R2 to achieve the Harnack bounds. Further pictures and computer code are at
the web page1.

Tables 1 and 2 summarize this discussion concerning the number of compo-
nents of hessian curves. The pairs (o, u) in Table 2 refer to ovals and unbounded
components, respectively.

Degree of f n 3 4 5 6 7
Degree of hessian 2n−4 2 4 6 8 10
Harnack bound for hessian (2n−5)(n−3) + 1 1 4 11 22 37
Ortiz hessians [4, 5] (n−1)(n−2)/2 1 3 6 10 15
New examples 4 8 11 —

Table 1. Ovals of compact hessian curves.

Degree of f n 3 4 5 6
Degree of hessian 2n−4 2 4 6 8
Harnack bound ((2n−5)(n−3), 2n−4) (0,2) (3,4) (10,6) (21,8)

New examples
(2,4) (6,4) (10,4)
(3,2) (7,2) (11,2)

Table 2. Configurations of non-compact hessians.

2. Hessian curves with many ovals

We begin with the following observation about hessian polynomials.

Proposition (2.1). A polynomial h(x, y) is a hessian of some polynomial f
if and only if there exist polynomials p, q, r such that py = qx, qy = rx, and
h = pr− q2.

Proof. If h is the hessian of f , then h = fxxfyy − f 2
xy, and fxx, fxy, and fyy

satisfy these conditions. Conversely, if p, q, and r satisfy the conditions, then
elementary integral calculus gives polynomials s and t such that sx = p, sy = q,
tx = q, and ty = r. Since sy = tx, there is a polynomial f with fx = s and fy = t,
and thus h is the hessian of f .

Theorem (2.2). There exists a real polynomial of degree 4 in two variables
whose hessian curve is smooth, compact, and consists of exactly four ovals.

1www.math.tamu.edu/~sottile/stories/Hessian/index.html.
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Proof. Let f be the polynomial

−2y2+2xy+12x2 + 10y3+3xy2−10x2y−13x3 − 11y4+6xy3+9x2y2−2x3y−x4.

If we divide its hessian by −4, we obtain the polynomial

h := 25− 134x − 374y + 91x2 + 948xy + 1137y2 + 429x3 + 612x2y

− 2313xy2 − 876y3 + 63x4 + 54x3y − 99x2y2 − 234xy3 + 675y4.

We claim that the hessian curve, h(x, y) = 0, is a compact smooth curve in
R2 with exactly 4 connected components. We provide a picture of the hessian
curve in Figure 1. This was drawn by Maple using its implicitplot function

x

y

−4 3

−2

2
`1

`2 `3

Figure 1. Quartic hessian curve with 4 compact components

with 200×200 grid. We give ad hoc arguments that verify our claim about the
hessian curve.

We compute the values of the hessian at the four points inside each oval of
Figure 1,

h(−2, 0)=−7068, h(0, 1
5 )=− 5124

125 , h(2, 2)=−8508, and h(2,−1)=−6828 .

Next, we shall prove that h is positive on three lines of Figure 1,

`1 : y =
3
4
− x

2
, `2 : y =

x

2
− 1

4
, and `3 : x = −2

5
,

and that it is positive on a neighborhood N of infinity.
The complement of the lines `1, `2, and `3 divide R2 into 7 components.

Since h is positive on these lines and on N but is negative at the four points
(−2, 0), (0, 1

5 ), (2, 2), and (2,−1), which lie in different regions, the hessian
curve h = 0 is compact and has at least one 1-dimensional component in each
region surrounding one of the four points. Since 4 is the maximum number
of one-dimensional connected components of a quartic, and such quartics are
smooth, we deduce that the hessian curve is smooth, compact, and consists of
exactly four ovals.

Note that h contains the monomial term 63x4, and so it is positive near
infinity along the x-axis. We show that h does not vanish on any of the three
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lines and that its homogenization does not vanish on the line `∞ at infinity in
RP2, which implies our claims about the positivity of h. For this, we invoke
a classical characterization of when a univariate quartic has no real zeroes.
References may be found, for example in [2, §71].

Given a univariate quartic polynomial of the form

z4 + 4αz3 + βz2 + γz + δ ,

linear substitution of (z− α) for z gives the reduced quartic

z4 + az2 + bz + c ,

where a = β − 6α2, b = γ − 2αβ + 8α3, and d = δ − αγ + α2β − 3α4. The
discriminant of this reduced quartic is

∆ := −4a3b2 − 27b4 + 16a4c − 128a2c2 + 144ab2c + 256c3 .

This criterion also uses the polynomial

L := 2a(a2 − 4c) + 9b2 .

Then the quartic has no real zeroes if and only if

(2.3) ∆ > 0 and either a ≥ 0 or L ≥ 0 .

Homogenizing h, restricting it to the line at infinity, substituting y = 1, and
dividing by 9 gives the quartic

q∞ := 7x4 + 6x3 − 11x2 − 26x + 75 .

(This is just the top-degree homogeneous piece of h.)
Restricting h to the lines `1, `2, and `3 and clearing denominators gives

q1 := 21168x4 − 157632x3 + 592264x2 − 337648x + 58387 ,

q2 := 20016x4 + 4608x3 + 377320x2 − 278112x + 52707 , and

q3 := 421875y4 − 489000y3 + 1278975y2 − 411710y + 42073 .

These satisfy the criterion (2.3) to have no real zeroes, as may be seen from
Table 3, where we give the values of ∆, L, and a, for each of these polynomials.

Polynomial ∆ L a

q∞
5025022208

16807
564896
2401

−181
98

q1
105415059013155058653376

198607342807439307
3692894126604316

340405734249
931453
129654

q2
34807374069358185363904

141964610099247963
4123100447100116

272136458889
6549023
347778

q3
10042565821320692218681168
855261504650115966796875

1376823939540422
40045166015625

1066423
421875

Table 3. Values of ∆, L, and a.

Each of the remaining curves we discuss is smooth, each oval has exactly
two vertical and two horizontal tangents, and each unbounded component has
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exactly one vertical and one horizontal tangent. These claims are best verified
symbolically. For each, we give the polynomial f and display a picture of the
hessian curve, drawn with the implicitplot function of Maple. These were
rendered, at least locally, with a grid size sufficiently small to separate the
tangents, and therefore provide a faithful picture of the hessian curves as
curves in R2.

Figure 2(a) displays the hessian curve of the quartic

22x2 + 36xy + 24y2 − 80x3 − 10x2y + 71xy2 + 39y3 + 15x4 + 4x3y − 3x2y2−

21xy3 − 17y4 ,

which has 3 ovals and 2 unbounded components. Figure 2(b) displays the
hessian curve of the quartic

− 70x2 − 35xy − 2y2 − 93x3 − 14x2y + 41xy2 − 70y3 + 31x4 + 7x3y − 30x2y2

+ 37xy3 + 91y4 ,

which has 2 ovals and 4 unbounded components. While we have generated and

(a) (b)

Figure 2. Hessians of quartics

checked 150 million quartics, we did not find one whose hessian curve achieves
the Harnack bound of 3 ovals and 4 unbounded components.

Figure 3(a) displays the hessian curve of the quintic

4y2 + xy − 6x2 − 25y3 + 24xy2 + 15x2y − 33x3 + y4 − 3xy3 + 15x2y2

− 19x3y − 26x4 + 33y5 − 2xy4 − 23x2y3 − 30x3y2 − 26x4y + 31x5,

which is compact with 8 ovals.
Figure 3(b) displays the hessian curve of the quintic

− 54y2 − 103xy − 26x2 − 88y3 + 45xy2 + 91x2y − 96x3 − 12y4 + 43xy3

+ 6x2y2 + 11x3y + 49x4 + 22y5 − 20xy4 − 38x2y3 − 14x3y2 + 45x4y + 76x5 ,

which has 7 ovals and 2 unbounded components.
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(a) (b)

Figure 3. Hessians of quintics

Figure 4 displays the hessian curve of the quintic

60y2 + 21xy + 76x2 + 95y3 − 18xy2 − 79x2y + 88x3 − 25y4 − 22xy3

+ 50x2y2 − 9x3y − 5x4 − 57y5 − 50xy4 + 21x2y3 + 87x3y2 + 35x4y − 56x5,

which has 6 ovals and 4 unbounded components. The boxed region on the left
has been expanded in the picture on the right.

Figure 4. Hessian of a quintic with 6 ovals and 4 unbounded components

These quintics all have 8 ovals in RP2. While we have generated and checked
40 million quintics, we did not find any with more ovals.
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Figure 5 displays the hessian curve of the sextic

45y2 − 47xy − 30x2 + 96y3 − xy2 + 8x2y + 54x3

− 96y4 − 64xy3 − 50x2y2 − 33x3y + 91x4

− 100y5 + 84xy4 − 43x3y2 + 66x4y − 58x5

+ 70y6 + 90xy5 − 28x2y4 − 53x3y3 + 43x4y2 + 36x5y − 38x6 ,

which has 11 ovals. The boxed region on the left has been expanded in the
picture on the right.

Figure 5. Hessian of a sextic with 11 ovals.

Figure 6(a) displays the hessian curve of the sextic

− 53y2 − 31xy + 59x2 − 79y3 + 82xy2 − 52x2y + 22x3

+ 75y4 − 27xy3 + 63x2y2 − 85x3y − 89x4

+ 80y5 + 27xy4 − 69x2y3 + 17x3y2 − 7x4y − 43x5

− 25y6 + 17xy5 + 27x2y4 − 55x3y3 − 37x4y2 + 59x5y + 45x6 ,

which has 11 ovals and 2 unbounded components.
Figure 6(b) displays the hessian curve of the sextic

− 80y2 − 46xy + 89x2 − 118y3 + 123xy2 − 78x2y + 33x3

+ 113y4 − 40xy3 + 94x2y2 − 128x3y − 133x4

+ 120y5 + 40xy4 − 104x2y3 + 25x3y2 − 10x4y − 64x5

− 37y6 + 25xy5 + 40x2y4 − 82x3y3 − 56x4y2 + 89x5y + 67x6 ,

which has 10 ovals and 4 unbounded components. Both hessian curves have
12 ovals in RP2.

Despite examining over 240 million sextics, we did not find any sextics whose
hessian curves had more than 11 ovals in RP2. These last two examples, which
have 12 ovals in RP2, are perturbations of a sextic found in the search whose
hessian curve had 11 ovals in RP2.
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(a) (b)

Figure 6. Hessians of sextics
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Reznick, and E. Rosales-González for their suggestions and comments. Sot-
tile thanks Universidad Nacional Autónoma de México for its hospitality, and
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ON Lp-BRUNN-MINKOWSKI TYPE INEQUALITIES OF CONVEX
BODIES

FENGHONG LU AND GANGSONG LENG

Abstract. In this paper Lp-Brunn-Minkowski type inequalities for Lp-pro-
jection bodies, Lp-centroid bodies, Lp-curvature images and Lp-polar projec-
tion bodies are established.

1. Introduction and main results

The classical Brunn-Minkowski inequality (see [4], [17]) states that if K, L
are convex bodies in Rn, then

(1.1) V (K + L)1/n ≥ V (K)1/n + V (L)1/n ,

with equality if and only if K and L are homothetic.
In [10], [11] Lutwak showed how Firey Lp-combination (see [3]) leads to

the Lp-Brunn-Minkowski theory for p ≥ 1. Lutwak established the exten-
sion of the classical Brunn-Minkowski inequality —the Lp-Brunn-Minkowski
inequality— in [10], [11], which states that if K, L are convex bodies containing
the origin in their interiors in Rn, and p > 1, then

(1.2) V (K +p L)p/n ≥ V (K)p/n + V (L)p/n ,

with equality if and only if K and L are dilates.
The Brunn-Minkowski inequality and its generalizations have in recent

decades dramatically extended their influence in many areas of mathematics.
Various applications have surfaced, for example, to probability and multivari-
ate statistics, shapes of crystals, geometric tomography, elliptic partial differ-
ential equations, and combinatorics, see [1], [2], [4], [5], [17]. An excellent
survey on this inequality is provided by Gardner [6].

In recent years, many authors devoted their attention to the Lp-Brunn-
Minkowski theory, as a central part of convexity. For a detailed list of ref-
erences on this subject, see, for instance, [14]. There are natural extensions
of centroid bodies, projection bodies, curvatures, and John ellipsoids in the
Lp-Brunn-Minkowski theory, see [11]-[15]. The purpose of this paper is to
establish some new generalizations of the Brunn-Minkowski inequality to Lp-
projection bodies [13], Lp-centroid bodies [12], [13], Lp-curvature images [11],
and Lp-polar projection bodies [15], [16]. Our main results are the following
theorems.
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Keywords and phrases: Lp-Brunn-Minkowski inequality, Lp-projection body, Lp-centroid body,

Lp-curvature image, Lp-polar projection body, polar.
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Theorem (1.3). If K, L ∈ Kn
s and n 6= p ≥ 1, then

V (Πp(K+̄pL))p/n ≥ V (ΠpK)p/n + V (ΠpL)p/n,(1.4)

V (Π∗p(K+̄pL))−p/n ≥ V (Π∗pK)−p/n + V (Π∗pL)−p/n,(1.5)

with equality in (1.4) and (1.5) if and only if ΠpK and ΠpL are dilates.

Remark (1.6). If p = 1, K+̄1L is just the Blaschke linear combination of K
and L [8].

Theorem (1.7). If K, L ∈ Sn
o and p ≥ 1, then

V (Γp(K+̌pL))p/n ≥ V (ΓpK)p/n + V (ΓpL)p/n,(1.8)

V (Γ∗p(K+̌pL))−p/n ≥ V (Γ∗pK)−p/n + V (Γ∗pL)−p/n ,(1.9)

with equality in (1.8) and (1.9) if and only if ΓpK and ΓpL are dilates.

Remark (1.10). If p = 1, K+̌1L is just the harmonic Blaschke linear combi-
nation of K and L [8].

Theorem (1.11). If K, L ∈ Kn
s and n 6= p ≥ 1, then

V (Γ−p(K+̄pL))−p/n ≥ V (K)
V (K+̄pL)

V (Γ−pK)−p/n +
V (L)

V (K+̄pL)
V (Γ−pL)−p/n ,

(1.12)

V (Γ∗−p(K+̄pL))p/n ≥ V (K)
V (K+̄pL)

V (Γ∗−pK)p/n +
V (L)

V (K+̄pL)
V (Γ∗−pL)p/n,

(1.13)

with equality in (1.12) and (1.13) if and only if Γ−pK and Γ−pL are dilates.

Theorem (1.14). If K, L ∈ Fn
s and n 6= p ≥ 1, then

(1.15) V (Λp(K+̄pL))p/n ≥ V (ΛpK)p/n + V (ΛpL)p/n ,

with equality if and only if ΛpK and ΛpL are dilates.

In Section 2, we give the necessary notation, definitions and background
material. For reference see Gardner [4] and

Schneider [17]. We shall prove Theorems (1.3), (1.7), (1.11), and (1.14) in
Section 3.

2. Notation and preliminaries

Let Kn denote the set of convex bodies (compact, convex subsets with non-
empty interiors) in Euclidean space Rn, for the set of convex bodies containing
the origin in their interiors in Rn, write Kn

o . The subset of Kn
o consisting of the

centered convex bodies will be denoted by Kn
s . Let Sn−1 denote the unit sphere

in Rn.
If K ∈ Kn, then its support function, hK = h(K, ·) : Rn −→ R, is defined by

(2.1) h(K, x) = max{x · y : y ∈ K}, x ∈ Rn,

where x · y denotes the standard inner product of x and y. The Hausdorff
distance, δ(K, L), between K, L ∈ Kn, can be defined by δ(K, L) = |hK − hL|∞,
where | · |∞ is the sup-norm on the space of continuous functions, C(Sn−1).
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Associated with a compact subset K of Rn which is star-shaped (about the
origin), is its radial function, ρK = ρ(K, ·) : Rn \ {0} −→ R, defined by

(2.2) ρ(K, x) = max{λ ≥ 0: λx ∈ K} , x ∈ Rn \ {0} .

If ρK is positive and continuous, K will be called a star body (about the origin).
Let Sn

o denote the set of star bodies (about the origin) in Rn. Two star bodies K
and L are said to be dilations (of each other) if ρ(K, u)/ρ(L, u) is independent
of all u ∈ Sn−1.

If K ∈ Kn
o , the polar body of K, K∗, is defined by

(2.3) K∗ = {x ∈ Rn : x · y ≤ 1, x ∈ K} .

It is easy to verify that (K∗)∗ = K. If K ∈ Kn
o , then the support and radial

function of K∗ satisfy

(2.4) hK∗ =
1

ρK
and ρK∗ =

1
hK

.

Lp-mixed volume. For p ≥ 1, K, L ∈ Kn
o and ε > 0, the Firey Lp-combination

K +p ε · L is defined as the convex body whose support function is given by

(2.5) h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p.

Firey combinations of convex bodies were defined and studied by Firey [3] (who
called them p-means of convex bodies).

For p ≥ 1, the Lp-mixed volume, Vp(K, L), of K, L ∈ Kn
o can be defined by

n

p
Vp(K, L) = lim

ε→0+

V (K +p ε · L) − V (K)
ε

.

That this limit exists was demonstrated in [10].
It was shown in [10] that, corresponding to each convex body K in Kn

o , there
is a positive Borel measure, Sp(K, ·), for p ≥ 1, on Sn−1 such that

(2.6) Vp(K, Q) =
1
n

∫
Sn−1

h(Q, u)pdSp(K, u),

for all Q ∈ Kn
o . The measure S1(K, ·) is just the classical surface area measure

of K and usually denoted by S(K, ·) or SK .
For p ≥ 1, a convex body K ∈ Kn

o is said to have a p-curvature function,
fp(K, ·) : Sn−1 −→ R, if Sp(K, ·) is absolutely continuous with respect to spher-
ical Lebesgue measure, S, and

(2.7) dSp(K, ·)/dS = fp(K, ·) .

Let Fn
o denote set of all convex bodies in Kn

o that have a positive continuous
p-curvature function, for p ≥ 1. The subset of Fn

o consisting of the centered
convex bodies will be denoted by Fn

s .
From the definition of the Lp−mixed volume, it follows immediately that

for each K ∈ Kn
o ,

(2.8) Vp(K, K) = V (K) .

We shall require a basic inequality for the Lp-mixed volume. The Lp-Min-
kowski inequality states that for K, L ∈ Kn

o and p ≥ 1 (see [10, 11])

(2.9) Vp(K, L) ≥ V (K)(n−p)/nV (L)p/n ,
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with equality if and only if K and L are dilates.
In [10], a solution to the even Lp-Minkowski Problem in Rn was given for all

p ≥ 1 and p 6= n. From this, the Lp-Blaschke addition was defined by Lutwak
in [10]. For n 6= p ≥ 1 and K, L ∈ Kn

s , the Lp-Blaschke addition K+̄pL ∈ Kn
s

was defined in [10] by

(2.10) Sp(K+̄pL, ·) = Sp(K, ·) + Sp(L, ·),
From definition (2.7) and (2.10), if n 6= p ≥ 1, K, L ∈ Fn

s , we have

(2.11) fp(K+̄pL, ·) = fp(K, ·) + fp(L, ·) ,

Lp-dual mixed volume. For star bodies K, L and p ≥ 1, ε > 0, the Lp-
harmonic radial combination K+−pε � L is defined as the star body whose
radial function is given (see [11]) by

(2.12) ρ(K+−pε � L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

For p ≥ 1, the Lp-dual mixed volume V−p(K, L) of the star bodies K, L is
defined (see [11]) by

(2.13)
n

−p
V−p(K, L) = lim

ε→0+

V (K +−p ε � L) − V (K)
ε

.

The definition above and the polar coordinate formula for volume give the
following integral representation of the Lp-dual mixed volume V−p(K, L) of
the star bodies K, L (see [11])

(2.14) V−p(K, L) =
1
n

∫
Sn−1

ρn+p
K (v)ρ−p

L (v)dS(v),

where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the definition of the Lp-dual mixed volumes, it follows immediately

that for each K ∈ Sn
o ,

(2.15) V−p(K, K) = V (K) .

We shall also require a basic inequality for the Lp-dual mixed volume. The
Lp-Minkowski inequality for the Lp-dual mixed volumes states that for K,
L ∈ Sn

o and p ≥ 1 (see [11])

(2.16) V−p(K, L) ≥ V (K)(n+p)/nV (L)−p/n ,

with equality if and only if K and L are dilates.
Suppose K, L ∈ Sn

o , we introduce the Lp-harmonic Blaschke addition of K
and L, K+̌pL. First define ξ > 0 by

(2.17) ξ1/(n+p) =
1
n

∫
Sn−1

[V (K)−1ρ(K, u)n+p + V (L)−1ρ(L, u)n+p]n/(n+p)dS(u) .

The body K+̌pL ∈ Sn
o is defined as the body whose radial function is given by

(2.18) ξ−1ρ(K+̌pL, ·)n+p = V (K)−1ρ(K, ·)n+p + V (L)−1ρ(L, ·)n+p .

By equalities (2.17), (2.18) and the polar coordinate formula for volume, we
can get ξ = V (K+̌pL). Hence from equality (2.18), we obtain

(2.19) ρ(K+̌pL, ·)n+p =
V (K+̌pL)

V (K)
ρ(K, ·)n+p +

V (K+̌pL)
V (L)

ρ(L, ·)n+p .
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Lp-geometric bodies. Let K ∈ Kn
o , for p ≥ 1, the Lp-projection body of K,

ΠpK, is the origin-symmetric convex body whose support function, for u ∈
Sn−1, is defined (see [13]) by

(2.20) h(ΠpK, u)p =
1

(n + p)cn,pωn

∫
Sn−1

|u · v|pdSp(K, v) ,

where
cn,p =

ωn+p

ω2ωnωp−1
,

and ωn denotes the n-dimensional volume of the unit ball B in Rn, namely

ωn = π
n
2 /Γ(1 +

n

2
).

If K ∈ Sn
o , and p ≥ 1, then the Lp-centroid body ΓpK of K is the origin-

symmetric convex body whose support function, for u ∈ Sn−1, is given (see
[12], [13]) by

(2.21) h(ΓpK, u)p =
1

cn,pV (K)

∫
K

| u · x |p dx ,

where the integration is with respect to Lebesgue measure.
If K ∈ Kn

o and p > 0, then the Lp-polar projection body Γ−pK is an origin-
symmetric star body whose radial function, for u ∈ Sn−1, is given (see [15],
[16]) by

(2.22) ρ(Γ−pK, u)−p =
1

V (K)

∫
Sn−1

|u · v|pdSp(K, v) .

For p ≥ 1 the body Γ−pK is a convex body [15].
For p ≥ 1, K ∈ Fn

o , Lutwak [11] defined the Lp-curvature image, ΛpK ∈ Sn
o ,

of K, by

(2.23) ρ(ΛpK, ·)n+p =
V (ΛpK)

ωn
fp(K, ·).

It should be noted that for p = 1, this definition of curvature image differs
from the definition used by Lutwak in ([7, 8, 9]).

3. Proof of the results

In order to prove these theorems we need the following lemmas.

Lemma (3.1). If K, L ∈ Kn
s and p ≥ 1, then

(3.2) Πp(K+̄pL) = ΠpK +p ΠpL .

Proof. From definition (2.20), definition (2.10) and definition (2.20) again,
definition (2.5), it follows that

h(Πp(K+̄pL), u)p =
1

(n + p)cn,pωn

∫
Sn−1

|u · v|pdSp(K+̄pL, v)

=
1

(n + p)cn,pωn

∫
Sn−1

|u · v|p(dSp(K, v) + dSp(L, v))

= h(ΠpK, u)p + h(ΠpL, u)p = h(ΠpK +p ΠpL, u)p.
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Lemma (3.3). If K, L ∈ Sn
o and p ≥ 1, then

(3.4) Γp(K+̌pL) = ΓpK +p ΓpL .

Proof. From definition (2.21), definition (2.19) and definition (2.21) again,
definition (2.5), it follows that

h(Γp(K+̌pL), u)p =
1

cn,pV (K+̌pL)

∫
K+̌pL

|u · x|pdx

=
1

(n + p)cn,pV (K+̌pL)

∫
Sn−1

|u · v|pρ(K+̌pL, v)n+pdS(v)

=
1

(n + p)cn,p

∫
Sn−1

|u · v|p(
ρ(K, v)n+p

V (K)
+

ρ(L, v)n+p

V (L)
)dS(v)

= h(ΓpK, u)p + h(ΓpL, u)p = h(ΓpK +p ΓpL, u)p.

Lemma (3.5). If K, L ∈ Kn
s and p ≥ 1, then

(3.6) Γ−p(K+̄pL) =
V (K)

V (K+̄pL)
� Γ−pK+−p

V (L)
V (K+̄pL)

� Γ−pL .

Proof. From definition (2.22), definition (2.10) and definition (2.22) again,
definition (2.12), it follows that

ρ(Γ−p(K+̄pL), u)−p =
1

V (K+̄pL)

∫
Sn−1

|u · v|pdSp(K+̄pL, v)

=
1

V (K+̄pL)

∫
Sn−1

|u · v|p(dSp(K, v) + dSp(L, v))

=
V (K)

V (K+̄pL)
ρ(Γ−pK, u)−p +

V (L)
V (K+̄pL)

ρ(Γ−pL, u)−p

= ρ(
V (K)

V (K+̄pL)
� Γ−pK+−p

V (L)
V (K+̄pL)

� Γ−pL, u)−p.

Lemma (3.7). If K, L ∈ Fn
s and p ≥ 1, then

(3.8) Λp(K+̄pL) =
(

V (Λp(K+̄pL))
V (ΛpK+̌pΛpL)

)1/(n+p)

(ΛpK+̌pΛpL) .

Proof. From definition (2.23), equality (2.11), and definition (2.23) again,
definition (2.19), it follows that

ρ(Λp(K+̄pL), u)n+p =
V (Λp(K+̄pL))

ωn
fp(K+̄pL, u)

=
V (Λp(K+̄pL))

ωn
(fp(K, u) + fp(L, u))

=
V (Λp(K+̄pL))

V (ΛpK)
ρ(ΛpK, u)n+p +

V (Λp(K+̄pL))
V (ΛpL)

ρ(ΛpL, u)n+p

=
V (Λp(K+̄pL))
V (ΛpK+̌pΛpL)

ρ(ΛpK+̌pΛpL, u)n+p.
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Proof of Theorem (1.3). Let K, L ∈ Kn
s and n 6= p ≥ 1. From definition (2.6),

Lemma (3.1) and the Lp-Minkowski inequality (2.9), for any M ∈ Kn
o , it follows

that

Vp(M, Πp(K+̄pL)) = Vp(M, ΠpK +p ΠpL)

= Vp(M, ΠpK) + Vp(M, ΠpL)

≥ V (M)(n−p)/n(V (ΠpK)p/n + V (ΠpL)p/n),

with equality if and only if M , ΠpK and ΠpL are dilates.
Let M = Πp(K+̄pL), we get

V (Πp(K+̄pL))p/n ≥ V (ΠpK)p/n + V (ΠpL)p/n,

with equality if and only if ΠpK and ΠpL are dilates.
Therefore we have proved inequality (1.4).
Let K, L ∈ Kn

s and n 6= p ≥ 1. From the polar coordinate formula for
volume, Lemma (3.1) and the Minkowski integral inequality (see [4], [17]), it
follows that

V (Π∗p(K+̄pL))−p/n =
(

1
n

∫
Sn−1

(h(Πp(K+̄pL), u)p)−n/pdS(u)
)−p/n

= np/n‖h(ΠpK, u)p + h(ΠpL, u)p‖−n/p

≥ np/n‖h(ΠpK, u)p‖−n/p + np/n‖h(ΠpL, u)p‖−n/p

= V (Π∗pK)−p/n + V (Π∗pL)−p/n,

with equality if and only if ΠpK and ΠpL are dilates.
Therefore we have proved inequality (1.5).

Proof of Theorem (1.7). Let K, L ∈ Sn
o and p ≥ 1. From definition (2.6),

Lemma (3.3) and the Lp-Minkowski inequality (2.9), for any M ∈ Kn
o , it follows

that

Vp(M, Γp(K+̌pL)) = Vp(M, ΓpK +p ΓpL)

= Vp(M, ΓpK) + Vp(M, ΓpL)

≥ V (M)(n−p)/n(V (ΓpK)p/n + V (ΓpL)p/n),

with equality if and only if M , ΓpK and ΓpL are dilates.
Let M = Γp(K+̌pL), we get

V (Γp(K+̌pL))p/n ≥ V (ΓpK)p/n + V (ΓpL)p/n,

with equality if and only if ΓpK and ΓpL are dilates.
Therefore we have proved inequality (1.8).
Let K, L ∈ Sn

o and p ≥ 1. From the polar coordinate formula for volume,
Lemma (3.3) and the Minkowski integral inequality (see [4], [17]), it follows
that
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V (Γ∗p(K+̌pL))−p/n =
(

1
n

∫
Sn−1

(h(Γp(K+̌pL), u)p)−n/pdS(u)
)−p/n

= np/n‖h(ΓpK, u)p + h(ΓpL, u)p‖−n/p

≥ np/n‖h(ΓpK, u)p‖−n/p + np/n‖h(ΓpL, u)p‖−n/p

= V (Γ∗pK)−p/n + V (Γ∗pL)−p/n,

with equality if and only if ΓpK and ΓpL are dilates.
Therefore we have proved inequality (1.9).

Proof of Theorem (1.11). Let K, L ∈ Kn
s and n 6= p ≥ 1. From definition

(2.14), Lemma (3.5) and the Lp-Minkowski inequality (2.16), for any M ∈ Sn
o

it follows that

V−p(M, Γ−p(K+̄pL)) = V−p(M,
V (K)

V (K+̄pL)
� Γ−pK+−p

V (L)
V (K+̄pL)

� Γ−pL)

=
V (K)

V (K+̄pL)
V−p(M, Γ−pK) +

V (L)
V (K+̄pL)

V−p(M, Γ−pL)

≥ V (M)(n+p)/n

(
V (K)

V (K+̄pL)
V (Γ−pK)−p/n +

V (L)
V (K+̄pL)

V (Γ−pL)−p/n

)
,

with equality if and only if M , Γ−pK and Γ−pL are dilates.
Let M = Γ−p(K+̄pL), we get

V (Γ−p(K+̄pL))−p/n ≥ V (K)
V (K+̄pL)

V (Γ−pK)−p/n +
V (L)

V (K+̄pL)
V (Γ−pL)−p/n,

with equality if and only if Γ−pK and Γ−pL are dilates.
Therefore we have proved inequality (1.12).
Let K, L ∈ Kn

s and n 6= p ≥ 1. From definition (2.6), Lemma (3.5) and the
Lp-Minkowski inequality (2.9), for any M ∈ Kn

o , it follows that

Vp(M, Γ∗−p(K+̄pL)) =
1
n

∫
Sn−1

h(Γ∗−p(K+̄pL), u)pdSp(M, u)

=
1
n

∫
Sn−1

ρ(Γ−p(K+̄pL), u)−pdSp(M, u)

=
1
n

∫
Sn−1

(
V (K)ρ(Γ−pK, u)−p

V (K+̄pL)
+

V (L)ρ(Γ−pL, u)−p

V (K+̄pL)

)
dSp(M, u)

=
V (K)

V (K+̄pL)
Vp(M, Γ∗−pK) +

V (L)
V (K+̄pL)

Vp(M, Γ∗−pL)

≥ V (M)(n−p)/n

(
V (K)

V (K+̄pL)
V (Γ∗−pK)p/n+

V (L)
V (K+̄pL)

V (Γ∗−pL)p/n

)
,

with equality if and only if M , Γ∗−pK and Γ∗−pL are dilates.
Let M = Γ∗−p(K+̄pL), we get

V (Γ∗−p(K+̄pL))p/n ≥ V (K)
V (K+̄pL)

V (Γ∗−pK)p/n +
V (L)

V (K+̄pL)
V (Γ∗−pL)p/n,

with equality if and only if Γ−pK and Γ−pL are dilates.
Therefore we have proved inequality (1.13).
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Proof of Theorem (1.14). For K, L ∈ Fn
s and n 6= p ≥ 1. From Lemma (3.7),

definition (2.14), definition (2.19) and the Lp-Minkowski inequality (2.16), for
any M ∈ Sn

o , it follows that

V−p(Λp(K+̄pL), M) = V−p(
(

V (Λp(K+̄pL))
V (ΛpK+̌pΛpL)

)1/(n+p)

(ΛpK+̌pΛpL), M)

=
V (Λp(K+̄pL))

V (ΛpK)
V−p(ΛpK, M)

+
V (Λp(K+̄pL))

V (ΛpL)
V−p(ΛpL, M)

≥
(

V (Λp(K+̄pL))
V (ΛpK)

V (ΛpK)(n+p)/n

+
V (Λp(K+̄pL))

V (ΛpL)
V (ΛpL)(n+p)/n

)
V (M)−p/n,

with equality if and only if M , ΛpK and ΛpL are dilates.
Let M = Λp(K+̄pL), we get

V (Λp(K+̄pL))p/n ≥ V (ΛpK)p/n + V (ΛpL)p/n,

with equality if and only if ΛpK and ΛpL are dilates.
Therefore we have proved inequality (1.15).
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CURVES WITH CONSTANT CURVATURE RATIOS

J. MONTERDE

Abstract. Curves in Rn for which the ratios between two consecutive curva-
tures are constant are characterized by the fact that their tangent indicatrix
is a geodesic in a flat torus. For n = 3, 4, spherical curves of this kind are also
studied and compared with intrinsic helices in the sphere.

1. Introduction

The notion of a generalized helix in R3, a curve making a constant angle
with a fixed direction, can be generalized to higher dimensions in many ways.
In [7] the same definition is proposed but in Rn. In [4] the definition is more
restrictive: the fixed direction makes a constant angle with all the vectors of
the Frenet frame. It is easy to check that this definition only works in the odd
dimensional case. Moreover, in the same reference, it is proven that the defini-
tion is equivalent to the fact that the ratios k2

k1
, k4

k3
, . . . , ki being the curvatures,

are constant. This statement is related with the Lancret Theorem for gen-
eralized helices in R3 (the ratio of torsion to curvature is constant). Finally,
in [1] the author proposes a definition of a general helix in a 3-dimensional
real-space-form substituting the fixed direction in the usual definition of gen-
eralized helix by a Killing vector field along the curve.

In this paper we study the curves in Rn for which all the ratios k2
k1

, k3
k2

, k4
k3

, . . .

are constant. We call them curves with constant curvature ratios or ccr-curves.
The main result is that, in the even dimensional case, a curve has constant
curvature ratios if and only if its tangent indicatrix is a geodesic in the flat
torus. In the odd case, a constant must be added as the new coordinate function.

In the last section we show that a ccr-curve in S3 is a general helix in the
sense of [1] if and only if it has constant curvatures. To achieve this result,
we have obtained the characterization of spherical curves in R4 in terms of
the curvatures. Moreover, we have also found explicit examples of spherical
ccr-curves with non-constant curvatures.

2. Frenet’s elements for a curve in Rn

Let us recall from [5] the definition of the Frenet frame and curvatures.
For Cn−1 curves, α, which have linearly independent derivatives up to order

n − 1, the moving Frenet frame is constructed as if it were in usual space
using the Gram-Schmidt process. Orthonormal vectors {−→e1,−→e2, . . . ,−−→en−1} are
obtained and the last vector is added as the unit vector in Rn such that {−→e1,
−→e2, . . . ,−→en} is an orthonormal basis with positive orientation.

2000 Mathematics Subject Classification: Primary 53A04; Secondary 53C40, 53A05.
Keywords and phrases: spherical curves, generalized helices, theorem of Lancret.
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The ith curvature is defined as

ki =
〈−̇→ei ,

−−→ei+1〉
||α′||

,

for i = 1, . . . , n− 1.
Frenet’s formulae in n-space can be written as

(2.1)



−̇→e1(s)
−̇→e2(s)
−̇→e3(s)

...
˙−−→en−1(s)
−̇→en(s)


=



0 k1 0 0 . . . 0 0
−k1 0 k2 0 . . . 0 0

0 −k2 0 k3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 kn−1

0 0 0 0 . . . −kn−1 0





−→e1(s)
−→e2(s)
−→e3(s)

...
−−→en−1(s)
−→en(s)


.

In accordance with [7] we will say that a curve is twisted if its last curvature
kn−1 is not zero. Sometimes we will also say that the curve is not regular.

3. ccr-curves

Instead of looking for curves making a constant angle with a fixed direction
as in [4] or [7], we will study another way of generalizing the notion of helix.

Definition (3.1). A curve α : I → Rn is said to have constant curvature ratios
(that is to say, it is a ccr-curve) if all the quotients ki+1

ki
are constant.

As is well known, generalized helices in R3 are characterized by the fact
that the quotient τ

κ is constant (Lancret’s theorem). It is in this sense that
ccr-curves are a generalization to Rn of generalized helices in R3.

In [4] the author defines a generalized helix in the n-dimensional space (n
odd) as a curve satisfying that the ratios k2

k1
, k4

k3
, . . . are constant. It is also

proven that a curve is a generalized helix if and only if there exists a fixed
direction which makes constant angles with all the vectors of the Frenet frame.
Obviously, ccr-curves are a subset of generalized helices in the sense of [4].

(3.2) Examples.

3.2.1. Example with constant curvatures. The subset of R2n parametrized by
−→x (u1, u2, . . . , un)

= (r1 cos(u1), r1 sin(u1), r2 cos(u2), r2 sin(u2), . . . , rn cos(un), rn sin(un))

where ui ∈ R is called a flat torus in R2n.
By analogy, the subset of R2n+1 parametrized by
−→x (u1, u2, . . . , un)

= (r1 cos(u1), r1 sin(u1), r2 cos(u2), r2 sin(u2), . . . , rn cos(un), rn sin(un), a)

where ui ∈ R and a is a real constant, will be called a flat torus in R2n+1.
It is just a matter of computation to show that any curve in a flat torus of

the kind
α(t) = −→x (m1t, m2t, . . . , mnt)
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has all its curvatures constant (see [6]).
These curves are the geodesics of the flat tori, and it is proven in the cited

paper that they are twisted curves if and only if the constants mi 6= mj for all
i 6= j.

3.2.2. Example with non-constant curvatures. Now, let k(s) be a positive func-
tion. Let us define g(s) =

∫ s

0 k(u)du. If α is a curve parametrized by its arc-
length and with constant curvatures, a1, a2, . . . , an−1, then the curve β(s) =∫ s

0
−→e1

α(g(u))du is a curve whose curvatures are ki(s) = aik(s).
Note that β̇(s) = −→e1

α(g(s)). This implies that −→e1
β(s) = −→e1

α(g(s)). Taking
derivatives kβ

1 (s)−→e2
β(s) = kα

1 (g(s))−→e2
α(g(s))k(s). Therefore,

−→e2
β(s) = −→e2

α(g(s)), and kβ
1 (s) = a1k(s).

By similar arguments it is possible to show that kβ
i (s) = aik(s) for any

i = 1, . . . , n− 1. Therefore, β is a ccr-curve with non-constant curvatures.
In the next section we will show that every ccr-curve is of this kind.

4. Solving the natural equations for ccr-curves

The Frenet formulae can be explicitly integrated only for some particular
cases. Ccr-curves are one of these. In fact, Frenet’s formulae are

−̇→e1(s)
−̇→e2(s)
−̇→e3(s)

...
˙−−→en−1(s)
−̇→en(s)


= k1(s)



0 1 0 0 . . . 0 0
−1 0 c2 0 . . . 0 0
0 −c2 0 c3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 cn−1

0 0 0 0 . . . −cn−1 0





−→e1(s)
−→e2(s)
−→e3(s)

...
−−→en−1(s)
−→en(s)


,

for some constants c2, . . . , cn−1.
Reparametrization of the curve allows that system to be reduced to an easier

one. The reparametrization is given by the inverse function of

g(s) =
∫ s

0
k1(u)du.

Note that t = g(s) is a reparametrization because k1 is a positive function. The
reparametrization we need is the inverse function s = g−1(t). It is a simple
matter to verify that, with respect to parameter t, the Frenet formulae are
reduced to a linear system of first order differential equations with constant
coefficients

(4.1)



−→e1
′(t)

−→e2
′(t)

−→e3
′(t)
...

−−→en−1
′(t)

−→en
′(t)


=



0 1 0 0 . . . 0 0
−1 0 c2 0 . . . 0 0
0 −c2 0 c3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 cn−1

0 0 0 0 . . . −cn−1 0





−→e1(t)
−→e2(t)
−→e3(t)

...
−−→en−1(t)
−→en(t)


.
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We can apply the well-known methods of integration of systems of linear
equations with constant coefficients. Let Fn be the matrix of constant coeffi-
cients of this system.

(4.2) Eigenvalues and their multiplicity. The first thing we have to do is
to compute the eigenvalues of the coefficient matrix.

Due to the skew symmetry of the matrix, it can have not real eigenvalues
other than zero. Due to the fact that the determinant of Fn vanishes only for
odd n, we can say that for odd dimensions, 0 is an eigenvalue, whereas for even
dimensions, 0 is an eigenvalue only if kn−1 = 0.

By definition, we have that the constants c2, c3, . . . , cn−2 are not zero. If the
last constant, cn−1, vanishes, then the same happens with the last curvature
function kn−1. In this case the curve is included in a hyperspace, so we can
consider it to be a curve in an n− 1 dimensional space.

Therefore, from now on, we shall consider that all the curvatures, and then
all the constants ci, are not zero.

Note that, in this case, for any x ∈ C, the rank (in C) of the matrix

x 1 0 0 . . . 0 0
−1 x c2 0 . . . 0 0
0 −c2 x c3 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . x cn−1

0 0 0 0 . . . −cn−1 x


is at least n− 1. Therefore, their eigenvalues are all of multiplicity 1.

(4.3) Canonical Jordan form. Let a` ± ib`, ` = 1, . . . , [ n
2 ], with a`, b` ∈ R,

be the non-zero eigenvalues of the coefficient matrix. Therefore, for n = 2k,
the associated canonical Jordan form is of the form

J1 0 . . . 0
0 J2 . . . 0
...

...
. . .

...
0 0 . . . Jk


where J` =

(
a` −b`

b` a`

)
.

The matrix can be diagonalized because all the eigenvalues are of multiplic-
ity one. Therefore, there is a orthogonal matrix, S, such that if C is the matrix
of constant coefficients, then

C = S−1JS.

Therefore, the general solution of the system for the first vector is

−→e 1(u) :=
k∑

`=1

−→
A` ea`u cos(b` u) +

−→
B` ea`u sin(b` u),

where {
−→
A`,

−→
B`}k

`=1 is a family of orthogonal vectors.
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For n = 2k + 1, the associated canonical Jordan form is of the form
0 0 0 . . . 0
0 J1 0 . . . 0
0 0 J2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Jk


Now, the general solution of the system for the first vector is

−→e 1(u) :=
−→
A0 +

k∑
`=1

−→
A` ea`u cos(b` u) +

−→
B` ea`u sin(b` u),

where {
−→
A0} ∪ {

−→
A`,

−→
B`}k

`=1 is a family of orthogonal vectors.

(4.4) The eigenvalues are pure imaginaries. The condition ||−→e 1(u)|| = 1
for all u implies that all the real parts of the eigenvalues are zero. Indeed, if,
for example, a1 6= 0, then let m be a non-zero coordinate of

−→
A1. Bearing in

mind that
|m| ea1u | cos(b1u)| ≤ ||−→e 1(u)||,

and that the left-hand member is an unbounded function, then ||−→e 1(u)|| 6= 1.
Therefore, all the real parts of the eigenvalues are zero and the general

solution (in the even case) of the system for the first vector is

−→e 1(u) :=
k∑

`=1

−→
A` cos(b` u) +

−→
B` sin(b` u).

Analogously for the odd case.
Moreover, let us recall that the vectors {

−→
Ai,

−→
Bi}k

i=1 are an orthogonal base of
Rn associated to the canonical Jordan form.

(4.5) The main result. Finally, an isometry of Rn allows us to state the next
result.

Theorem (4.5.1). A curve has constant curvature ratios if and only if its
tangent indicatrix is a twisted geodesic on a flat torus.

Note that in the odd dimensional case this result implies that the last co-
ordinate of the tangent indicatrix is a constant. Therefore there is a direction
making a constant angle with the curve. Nevertheless, this is not the case in
the even dimensional case. There are no fixed directions making a constant
angle with the tangent vector.

When all the curvatures are constant, then the curve is also a ccr-curve
and its tangent indicatrix is of the kind described in the previous statement.
Moreover, the reparametrization g(s) =

∫ s

0 k1(u)du is just the product by a
constant.

Since the integration of a geodesic on a flat torus in R2k with respect to its
parameter is again a curve of the same kind, we get the following corollary:
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Corollary (4.5.2). A curve has constant curvatures if and only if it is
1. a twisted geodesic on a flat torus, in the even dimensional case, or
2. a twisted geodesic on a flat torus times a linear function of the parameter,

in the odd dimensional case.

(4.6) n = 3. The eigenvalues of the matrix of coefficients are 0 and±
√

1 + c2 i
(c = c2, to simplify).

Therefore, the general solution of the system for the first vector is
−→e1(u) =

−→
A1 +

−→
A2 cos(

√
1 + c2u) +

−→
A3 sin(

√
1 + c2u),

where
−→
Ai, i = 1, 2, 3 are constant vectors.

Once we have the tangent vector, we only have to undo the reparametriza-
tion and to integrate to obtain the curve

α(s) = x0 +−→c1s +−→c2

∫ s

0
cos(

√
1 + c2g(v))dv +−→c3

∫ s

0
sin(

√
1 + c2g(v))dv.

(4.7) n = 4. The eigenvalues are

± i√
2

√
1 + c2

2 + c2
3 ±

√
(1 + c2

2 + c2
3)2 − 4c2

3.

Therefore, the general solution of the system for the first vector is
−→e 1(u) :=

−→
A1 cos(m+u) +

−→
B1 sin(m+u) +

−→
A2 cos(m−u) +

−→
B2 sin(m−u),

where

m± =
1√
2

√
1 + c2

2 + c2
3 ±

√
(1 + c2

2 + c2
3)2 − 4c2

3

and where
−→
Ai,

−→
Bi, i = 1, 2 are constant vectors.

5. Spherical ccr-curves

In order to compare ccr-curves with the definition of generalized helices
given in [1], we will try to determine which ccr-curves are included in a sphere.

Lemma (5.1). A curve α : I → R4 is spherical, i.e., it is contained in a sphere
of radius R, if and only if

(5.2)
1
k2

1
+

(
k̇1

k2
1k2

)2

+
1
k2

3

( k̇1

k2
1k2

)˙

− k2

k1

2

= R2.

Proof. The proof here is similar to that for spherical curves in R3. It consists
in obtaining information thanks to successive derivatives of the expression
< α(s)−m, α(s)−m >= R2, where m is the center of the sphere. In particular,
what can be proven is that spherical curves can be decomposed as

(5.3) α(s) = m− R

k1

−→e2(s) + R
k̇1

k2
1k2

−→e3(s) + R
1
k3

((
k̇1

k2
1k2

)·
+

k2

k1

)
−→e4(s).
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As a corollary we obtain the classical result for spherical three-dimensional
curves:

Corollary (5.4). A curve α : I → R3 is spherical, i.e., it is contained in a
sphere of radius R, if and only if

(5.5)
1
k2

1
+

(
k̇1

k2
1k2

)2

= R2.

From now on, we shall suppose that m = 0 and R = 1.

(5.6) Spherical ccr-curves in R3. In this case, we can rewrite Eq. (5.5) in
terms of curvature, k1 = κ, and torsion k2 = τ = cκ, c being a constant.

κ̇

κ2
√

κ2 − 1
= ±c.

Let us consider just the positive sign. This differential equation can be
integrated and the solution is

κ(s) =
1√

1− (cs + s0)2
.

Thanks to a shift of the parameter we get that the curvature and torsion of
a spherical generalized helix are given by

κ(s) =
1√

1− c2s2
, τ(s) =

c√
1− c2s2

.

We now need to compute the reparametrization

u = g(s) =
∫ s

0
κ(t)dt =

1
c

arcsin(cs).

With the appropriate initial conditions, the generalized spherical helix is

αc(s) =
(√

1− c2s2cos
(√1 + c2 arcsin(cs)

c

)
+

c2s√
1 + c2

sin
(√1 + c2 arcsin(cs)

c

)
,

−
√

1− c2s2sin
(√1 + c2 arcsin(cs)

c

)
+

c2s√
1 + c2

cos
(√1 + c2 arcsin(cs)

c

)
,

cs√
1 + c2

)
Note that the curve αc is defined in the interval ]− 1

c , 1
c [. If we change the pa-

rameter in accordance with s = 1
c sin t, the spherical helix is now parametrized

as

βc(t) =
(

cos t cos
(√1 + c2

c
t
)

+
c√

1 + c2
sin t sin

(√1 + c2

c
t
)

,

− cos t sin
(√1 + c2

c
t
)

+
c√

1 + c2
sin t cos

(√1 + c2

c
t
)

,
sin t√
1 + c2

)
Now, it is clear that the projection of these curves on the plane xy are arcs

of epicycloids. This result was known by W. Blaschke, as is mentioned in [8],
where it is also proven by different methods.
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(5.7) Spherical ccr-curves in R4.

5.7.1. The constant curvatures case. The curve

α(s) =
1√

r2
1 + r2

2

(
r1

m1
sin(m1s),− r1

m1
cos(m1s),

r2

m2
sin(m2s),− r2

m2
cos(m2s))

is a spherical curve (with radius 1), if and only if

r2
1m2

2 + r2
2m2

1 = m2
1m2

2(r2
1 + r2

2).

5.7.2. The non-constant case. In this case, we can rewrite Eq. (5.2) in terms
of curvature, k1, k2 = c2k1 and k3 = c3k1, where c2, c3 are constants.

(5.8)
1
k2

1
+

(
k̇1

c2k3
1

)2

+
1

c2
3k2

1

((
k̇1

c2k3
1

)·
+ c2

)2

= 1.

By changing f = 1
k2

1
the equation is reduced to

(5.9) f +
1

4c2
2

ḟ 2 +
1
c2

3
f (− 1

2c2
f̈ + c2)2 = 1.

Computation of the general solution seems to be a difficult task. Instead, we
can try to compute some particular solutions.

For instance, the constant solution f (s) = c2
3

c2
2+c2

3
or the polynomial solutions

of degree 2,

f (s) =
−2c2

2 + c2
3 − c3

√
−8c2

2 + c2
3

2(c2
2 + c2

3)
+

1
2

(
2c2

2 − c2
3 − c3

√
−8c2

2 + c2
3

)
s2,

f (s) = 2c2s +
1
2

(
2c2

2 − c2
3 − c3

√
−8c2

2 + c2
3

)
s2.

For these three particular solutions the reparametrization g, where g(s) =∫ s

0 k1(t)dt =
∫ s

0
1√
f (t)

dt, can be computed explicitly. We can thus obtain explicit

examples of ccr-curves in S3 with non-constant curvatures.

A particular case. With c2 = 1
2 , c3 :=

√
3

2 , then m1 =
√

3
2 , m2 = 1√

2
and

r1 = r2 = 1√
2
. The function f (s) = 1

2 − 2s2 is a solution of Eq. (5.9). Therefore,

k1(s) = 2√
1−4s2

, and g(s) =
∫ s

0
2√

1−4t2
dt = arcsin(2s).

If

−→e1(t) =
1√
2

(cos(

√
3
2

t), sin(

√
3
2

t), cos(
1√
2

t), sin(
1√
2

t)),

then

α(s) = (0,−
√

3
2

, 0,
1
2

) +
∫ s

0

−→e1(arcsin(2u))du, s ∈ ]− 1
2

,
1
2

[

is a spherical ccr-curve with center at the origin of coordinates, with radius 1
and with non-constant curvatures.
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6. Intrinsic generalized helices

In [1] the author proposes a definition of general helix on a 3-dimensional
real-space-form substituting the fixed direction in the usual definition of gen-
eralized helix by a Killing vector field along the curve.

Let α : I → M be an immersed curve in a 3-dimensional real-space-form M .
Let us denote the intrinsic Frenet frame by {

−→
t ,−→n ,

−→
b }. The intrinsic Frenet’s

formulae are

(6.1)


∇−→

t

−→
t = κ−→n ,

∇−→
t
−→n = −κ

−→
t + τ

−→
b ,

∇−→
t

−→
b = −τ−→n ,

where ∇ is the Levi-Civita connection of M and where κ and τ are called the
intrinsic curvature and torsion functions of curve α, respectively.

From now on we shall suppose that M = S3. Therefore, any curve on S3

can also be considered to be a curve in R4. We shall try to obtain the rela-
tionship between the Frenet elements, {−→e1,−→e2,−→e3,−→e4, k1, k2, k3}, of the curve
as a curve in 4-dimensional Euclidian space and the intrinsic Frenet elements
{
−→
t ,−→n ,

−→
b , κ, τ}. Note first that

−→
t = −→e1. Then

∇−→
t

−→
t = −̇→e1 − 〈−̇→e1, α〉α = k1(−→e2 − 〈−→e2, α〉α),

where we have used as the Gauss map of the sphere the identity map.
Therefore

(6.2) −→n =
∇−→

t

−→
t

||∇−→
t

−→
t ||

=
1√

1− 〈−→e2, α〉2
(−→e2 − 〈−→e2, α〉α),

and

κ = 〈∇−→
t

−→
t ,−→n 〉 = k1

√
1− 〈−→e2, α〉2 =

√
k2

1 − 1,

which were obtained using Eq. (5.3).
The intrinsic binormal vector is the only vector such that {

−→
t ,−→n ,

−→
b , α} is

an orthonormal basis of R4 with positive orientation. Then
−→
b = α ∧

−→
t ∧ −→n .

Now, by replacing the intrinsic tangent and normal with
−→
t = −→e1 and (6.2), we

get
−→
b =

k1√
k2

1 − 1
α ∧ −→e1 ∧ −→e2 =

1√
1− ( 1

k1
)2

α ∧ −→e1 ∧ −→e2.

Therefore

−̇→
b =

 1√
1− ( 1

k1
)2

·

α ∧ −→e1 ∧ −→e2 +
1√

1− ( 1
k1

)2
α ∧ −→e1 ∧ k2

−→e3.
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A consequence of this computation is that <
−̇→
b , α >= 0, and therefore,∇−→

t

−→
b =

−̇→
b . Finally,

τ = −〈∇−→
t

−→
b ,−→n 〉 = −

〈
1√

1− ( 1
k1

)2
α ∧ −→e1 ∧ k2

−→e3,
1√

1− ( 1
k1

)2

−→e2

〉

= − k2

1− ( 1
k1

)2
〈α ∧ −→e1 ∧ −→e3,−→e2〉 =

k2

1− ( 1
k1

)2
=

k2
1k2

κ2 .

Proposition (6.3). The only 4-dimensional spherical non-trivial ccr-curves
which are also intrinsic generalized helices of S3 are helices, i.e., curves with
all curvatures constant.

Proof. As it is proven in [1], a curve in S3 is an intrinsic helix if and only if
τ = 0 or there exists a constant b such that τ = bκ± 1.

The case τ = 0 implies that k1k2 = 0 and we get a non-regular curve.
In the other case, if the curve is also a ccr-curve (with k2 = ck1), then

ck3
1

κ2 = bκ± 1.

Equivalently

(
ck3

1

k2
1 − 1

∓ 1)2 = b(k2
1 − 1).

That is, the function k1 is the solution of a polynomial equation with constant
coefficients; and, therefore, the function k1 is constant, and so the other two
curvatures k2 and k3 are also constant. The same happens with κ and τ. We
are then in the presence of a helix according to the designation in [1], or a
geodesic in a flat torus in R4 according to [6].

Received October 02, 2006
Final version received October 20, 2006

Departmen de Geometria i Topologia
Universitat de València
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FOX’S SPREADS ON NEARNESS SPACES

HLENGANI SIWEYA

Abstract. Hunt’s uniform spreads, which are generalizations of Fox’s
spreads, are extended to the category of nearness spaces and uniformly con-
tinuous functions. We prove that there is a bijective correspondence between
Hunt’s spread points in ((X, ξ), f, (Z, µ)) and Herrlich’s ξ-clusters in (X, ξ),
where X and Z are nearness spaces.

1. Historical Background

As a basic concept, Fox’s spreads are used in the “uniform sense” of Hunt,
thus defined as triples (f, X, Z), where f is a continuous function from a topo-
logical T1-space X into a topological complete space Z with defining completely
regular topology and which carries a complete uniformity V compatible with
the topology. The induced X-component uniformity U is then compatible with
the given topology on X (explained in Section 2). If we denote by {Wλ} the
collection of all open coverings of Z (it is a uniformity base of the existing uni-
formity) then {Uλ = c[f−1(Wλ), RX]}λ is a collection of open coverings of X
generating the X-component uniformity U. We recall that c([f−1(Wλ), RX] is
defined as the set of all components of f−1[W ] for some W ∈ Wλ. We note
further that f is uniformly continuous.

In this article, Hunt’s bijective correspondence between “spread points”
in (f, X, Z) and minimal Cauchy filters in (X, U) (in [10]) is extended to one
between spread points in (X, U) and Herrlich’s ξ-clusters in nearness spaces.
In fact, a simple consequence of these ideas assures that the definitions of
“complete spread” and “completion of a spread” that Hunt formulated in terms
of the uniform concepts are topologically invariant.

The main result of this article is then the following.

Theorem (1.1). The correspondence between the collection of all spread
points in ((X, ξ), f, (Z, µ)) with Z carrying a complete nearness µ compatible
with its topology and the collection of all ξµ-clusters in (X, ξ) defined by

χ 7→ A

is a bijection, where Â = (Im χ)+.

Spreads (commonly known as Fox’s spreads [6], [10]) owe their origin to
Fox’s paper [5]. For completeness, a continuous function f : X → Z between
T1-spaces is called a spread if the collection of all the components of all inverse
images f−1(V ) of open sets V in Z form a base for a topology on X. In this note
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we denote a spread so defined by (X, f, Z). It is immediate from this definition
that X is locally connected. Now given a spread (X, f, Z) with z ∈ Z, denote by
Nz the filter base of open neighbourhoods of z, and let

CV
z = {K ⊂ X | K is a component of f−1(V )}

for open V in Z. A spread point is then a function

χ : Nz −→ {K ⊂ X | ∃V ′ ⊂ Z open in Z, K is a component of f−1(V ′)}

that satisfies

SP1 : V ∈ Nz implies χ(V ) ∈ CV
z ,

SP2 : U, V ∈ Nz and U ⊂ V

imply χ(U) ⊂ χ(V ).

Remark. (a) Note that SP2 is equivalent to each of the following:

(i) Im χ is a filter base (and the resulting filter will be denoted by (Im χ)+).

(ii) Imχ has the finite intersection property.

(b) The point z ∈ Z is necessarily unique (see [10] and [16]). The introduction
of the term spread point by Hunt was necessary in so far as it simplified
Fox’s canonical spread completion as well as provided for the leap from
this completion to Hunt’s uniform spread completion — a completion never
published but subsequently quoted and extensively used in several results
of Hunt [10] after his result on the bijective correspondence between spread
points and minimal Cauchy filters. For that reason, another objective is also
to present Hunt’s uniform spread completion.

We recall a few nearness concepts necessary for this note. (We follow Herlich
[7] and Preuβ [15].)
A nearness space is a pair (X, µ) where X is a non-empty set and µ is a set of
covers of X satisfying

N1 : {X} ∈ µ.

N2 : U ≤ V ,U ∈ µ imply V ∈ µ.

N3 : U ,V ∈ µ implies U ∧ V = {U ∩ V | U ∈ U , V ∈ V} ∈ µ.

N4 : U ∈ µ implies intU = {int U | U ∈ U} ∈ µ, where

int U = {x ∈ X | {X − {x}, U} ∈ µ}.

(The relation U ≤ V is the usual refinement; thus for each U ∈ U there exists
a V ∈ V with U ⊂ V .)

A nearness space (X, µ) is an N1-space if, in addition, µ satisfies

N5 : For any x 6= y in X,

{X − {x}, X − {y}} ∈ µ.

A collection µB of covers on X is a base for a nearness structure on X if it
satisfies the following axioms:

NB1: U ,V ∈ µB imply there exists a W ∈ µB such that W ≤ U ∧ V ,
NB2: U ∈ µB implies {intµB

U | U ∈ U} ∈ µB.
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Moreover, each nearness space (X, µ) induces up to bijection a system ξµ of
so called “near collections” on X as follows:

A ∈ ξµ ⇔ ∀U ∈ µ ∃U ∈ U , U ∈ SecA,

where
SecA = {T ⊂ X | ∀A ∈ A, T ∩A 6= ∅} .

In addition, there also can be established a corresponding system γµ of so
called “Cauchy systems” as follows:

A ∈ γµ ⇔ ∀U ∈ µ ∃U ∈ U ∃A ∈ A, A ⊂ U.

A filter is called a Cauchy filter iff it is a Cauchy system. Consequently, a
simple bijection between the set of all Cauchy filters and the set of all “near
grills” on X will be realized by the “Sec-operator” (as defined above). This
induces an isomorphism between the categories of filter merotopic spaces in
the sense of Katetov (Katetov [11]) and grill determined prenearness spaces
(see also [1]) if we omit Axiom (N4). (Note that the neighborhood filter Nz of
z ∈ Z referred to above is a minimal Cauchy filter.)

For a nearness space (X, ξ), the maximal elements of the set ξ− {∅}, when
ordered by inclusion, are called ξ-clusters. Thus an ξµ-cluster in (X, ξ) is a
non-empty maximal ξ-near collection in X.

Unless specified otherwise, we propose to work in N1-spaces — those
nearness spaces in which the underlying topological space is T1. Given a
nearness space (X, ξ), we set

ξ̃ = {A ⊆ P(X) | ∀B ∈ ξ ∃A ∈ A∃B ∈ B, A ∩ B = ∅},

where B ∈ ξ (read B is far) means B ∈ P(P(X))− ξ.

Lemma (1.2). A Cauchy filter ξ in a nearness space (X, µ) is a µ-cluster if
and only if, for each A ∈ ξ there is some U ∈ µ and some U ∈ U such that

st (U,U ) ⊂ A .

Proof. Let A ∈ ξ. By definition there is a U in ξ̃ and therefore a U ∈ U such
that U ∩A 6= ∅ which is all we need.

Following the calculations in Preuβ [15], namely, that

int (U ∩ V ) = int U ∩ int V,

for U ∈ U , V ∈ V where U , V ⊂ P(X), we deduce that

Corollay (1.3). For any nearness base {µλ | λ ∈ Λ} of (X, µ), if ξ is a
µ-cluster in (X, µ), then the collection

ξ ∧
⋃
λ

µλ

is a nearness base for ξ. ut

Definition (1.4). [Herrlich [7], [8]] For a subcollection A ⊂ P(X), we set

Â = {B ⊂ X | ∀A ∈ A, B ∩A 6= ∅} = SecA
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In consequence, we have corresponding minimal Cauchy filters by the set
γµ when ordered by inclusion. In fact, our main result hinges on the following
result.

Proposition (1.5) (Herrlich [7], Remark 5.6 (2)). For a nearness space
(X, ξ), if A is an ξµ-cluster, then Â = SecA is a minimal Cauchy filter (and

so ̂̂A = A). Conversely, if (X, µ) is especially “regular”, then C is a minimal
Cauchy filter iff there exists a ξµ-cluster A with C = Â. The correspondence

A 7→ Â
then induces a bijection between the set of all ξµ-clusters and the set of all
minimal γµ-Cauchy filters on X.

Remark. A nearness space (X, µ) is called regular iff it satisfies the following
condition (see Herrlich [7]):

(R) For each U ∈ µ there is some (refinement) V ∈ µ such that for each
V ∈ V , there exists some U ∈ U with {X − V, U} ∈ µ.

Then, every uniform nearness space is regular and every topological near-
ness space which is regular as a topological space is regular as a nearness
space. Moreover, for a regular nearness space it holds that its induced topol-
ogy is regular in the original sense. See Preuß [15].

2. Hunt’s uniform spread completion

When Hunt introduced uniform spreads, he did not show how a uniform
spread completion could be constructed save to relate spread points (used,
implicitly, in Fox’s canonical spread completion) to minimal Cauchy filters.
Moreover, it will follow from our construction presented here that Fox’s spread
completion is a special case of Hunt’s uniform spread completion.

In this section, therefore, we present a uniform spread completion (which
we name after Hunt). Such a completion has been shown by Hunt to be unique.
In fact, Hunt has taught us many results associated with a uniform spread —
most of which have been drawn from algebraic topology. In this connection,
motivated by Fox’s founding article on spreads, Montesinos-Amilibia [14] gave
and studied modified topological definitions of a branched folded covering and
a singular covering. Contrary to Fox spread completion constructed in the
presence of local connectedness, Michael [13] showed how to complete a spread
without local connectedness. A decade ago, Bunge and Funk [3], also showed
that Fox’s (complete) spreads have a natural definition in topos theory. A few
other topologists (see e.g. [6]) have investigated Fox’s spreads in other contexts
which we believe are worth noting.

A space X is said to be locally connected in a topological space Y if there
exists a base B of Y such that X ∩ B is connected for each B ∈ B (see [5]). An
example of a subspace locally connected but not locally connected in another
space is the following: The space R−{0} is a locally connected subspace which
fails to be locally connected in R.

We say that a spread (X, f, Z) is complete if⋂
Im (χ) 6= ∅ .
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In [16], it was shown that for a spread f : X −→ Z to be complete it is necessary
and sufficient that whenever j : X −→ Y is a dense embedding, j(X) is locally
connected in Y and g : Y −→ Z is a spread such that f = g ◦ j, then j is a
homeomorphism.
A completion of a spread (X, f, Z) is a complete spread (Xs, g, Z) for which
there is a dense embedding j : X ↪→ Xs of X into Xs such that j(X) is locally
connected in Xs, where Xs is the locally connected space whose elements are
the spread points. See also [9].

Construction: Hunt’s uniform spread completion. We recall that a com-
pletely regular space is topologically complete if some uniformity compatible
with its topology is complete — where the uniformity compatible with its topol-
ogy is one whose neighborhood basis is the set

{St (p, Uα | α ∈ A}.
Hunt’s uniform spreads (in [10]) arise as follows: Given a spread (X, f, Z) in
which τX is a topology on X and Z is topologically complete, say Z carries a
complete uniformity W compatible with its topology, we know that f−1(W) is
a base for a uniformity on X. Now the uniformity generated by the collection

c[f−1(W), τX]

of all components of all sets in f−1(W) is the τ-component uniformity relative
toW on the space X. We then call the spread f a uniform spread. See also [9].

Now suppose that (X, f, Z) is a uniform spread from a uniform space X
carrying the uniformity U induced by inverse images f−1(W) of W from a
uniformity W compatible with the topology on Z. To arrive at a uniform
spread completion, consider the uniform completion XU whose uniformity is
that generated by minimal Cauchy filters of X. Then X is densely imbedded
in XU by say, jU : X → XU which maps each x ∈ X to the minimal Cauchy
filter (Imχ)+ for which χ is the spread point in (X, f, Z) taking each uniform
cover W containing f (x) to the component of f−1(W) that contains x.

Define fU : XU → Z by associating with each x ∈ XU the unique point
f (x) ∈ Z for which χ is the spread point.

(i) jU (X) is locally connected in XU : By definition of the induced uniformity
U on X, we know that X is uniformly locally connected. But then jU (X)
is uniformly locally connected and, accordingly (from Hunt [9]) it is locally
connected in XU .

(ii) fU is a complete uniform spread: Consider a uniform cover W in W and
the collection {c[f−1(W), U] | W ∈ W} of all components of f−1(W). Then
f−1

U (W) =
⋃
W

(Im χ)+.

(iii) fU ◦ j = f : Take x ∈ X. Then one easily shows that

fU ◦ jU (x) = fU (Imχ)+ = f (x).

Remark. Recall (see e.g. Preuβ [15]) that a topological space X is an R0-
space iff x ∈ {y} implies that y ∈ {x} for every x, y ∈ X. Since the category
T-Near of topological nearness spaces and uniformly continuous functions is
isomorphic to the category R0-Top of topological R0-spaces and continuous
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functions, it is clear that for an R0-space X Hunt’s uniform spread completion
so described reduces to Fox’s spread completion.

3. What are nearness spreads?

Hunt’s uniform spreads can be extended to the category of nearness spaces
and uniformly continuous functions as follows: For a topological space (X, τ)
and a collection A ⊆ P(X), we denote by

c(A, τ) = {K ⊆c A | A ∈ A}
the collection of all components of all sets in A (⊆c denotes component).
Now consider a nearness structure

µ = {µλ | λ ∈ Λ}
on X. We then have

Proposition (3.1). The collection

{c(µλ, µ) | λ ∈ Λ}
is a base for a regular nearness on X, and the resulting nearness structure on
X is called the τ-component nearness relative to µ.

Proof. This follows from Hunt [9], Proposition 3.1.

Proof of Theorem (1.1). In view of Proposition (3.1), we assume that X is a
regular nearness space and then generalize Hunt’s proof to the nearness case
as follows:

The following is a generalization of the original proof of Hunt for uniform
spreads.

(i) Suppose that χ is a spread point in (X, f, Z). Then the filter (Im χ)+

(generated by the filter base Im χ) is a Cauchy filter.
We claim that (Im χ)+ is a minimal Cauchy filter in (X, ξ)): Given z ∈ Z

and an open neighborhood W 3 z in Z, set U = χ(W ). Since the neighborhood
filter of z is a minimal Cauchy filter in (X, ξ), we pick Wα and some open
neighborhood V 3 z with V ∈ Wα such that

St (V,Wα) ⊆ W.

We set S = χ(V ). Then (by SP2)

V ⊆ St(V,Wα) ⊆ W ⇒ χ(V ) ⊆ χ(W )

Then St(S,Uλ) ⊆ U: For, if S ∩ T 6= ∅ for a component T of f−1(M) with
M ∈ Wα then V ∩M 6= ∅, and so M ⊆ W . But T ∩U 6= ∅, so T ⊆ U and then
st(S,Uλ) ⊆ U, ensuring that (Im χ)+ is a minimal Cauchy filter.

We now invoke Proposition (1.5); set A to be the ξ-cluster for which Â =
(Im χ)+.

(ii) The correspondence is surjective: For, if A is an ξ-cluster then Â is a
minimal Cauchy filter in (X, χ). It follows from the uniform continuity of
f : (X, χ) −→ (Z, µ) that the filter [f (Â)]+ generated by f (Â) is a Cauchy filter
in (Z, µ) which is complete by assumption. Accordingly, [f (Â)]+ converges to a
point z ∈ Z. To arrive at a spread point we proceed as follows: Take an open
nhood W 3 z, and note that f (Â) 3 W . Now Corollary (1.3) ensures that a
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V ∈ ξ ∧
⋃

λ µλ exists such that f (V ) ⊆ W . Find a component G of f−1(W ) such
that V ⊆ G ⊆ f−1(W ). Such a component U of f−1(W ) is unique in Â. This
then ensures that we define χ(W ) = U. Then Im χ has the finite intersection
property because Imχ ⊆ Â, and therefore, χ is a spread point in (X, f, Z).

(iii) The correspondence is injective: Take two spread points χ 6= χ′ in
(X, f, Z), say,

χ : Nz −→ CV
z ; χ : Nz −→ CV

z′ ,

for z, z′ ∈ Z. We find that

(iiia) If z 6= z′ then there are disjoint neighborhoods V, W of z and z′,
respectively, and so χ(V ) ∩ χ(W ) = ∅ making χ(W ) /∈ (Im χ′)+ since (Im χ′)+ is
a filter. This means that (Im χ)+ 6= (Imχ′)+.

(iiib) On the other hand, if z 6= z′ in Z it follows from the choice of χ, χ′ that
a neighborhood V of z = z′ exists for which χ(V ) 6= χ′(V ). Since these are
components, we must have χ(V ) ∩ χ′(V ) = ∅; thus χ(V ) /∈ (Im χ′)+.

There are other generalizations of results on Hunt’s uniform spreads to the
realm of nearness spaces, which are a subject of further investigation.
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A COMMON FIXED POINT THEOREM FOR WEAKLY
COMPATIBLE MAPPINGS IN SYMMETRIC SPACES SATISFYING

AN IMPLICIT RELATION

DURAN TURKOGLU AND ISHAK ALTUN

Abstract. In this paper, we prove a common fixed point theorem for weakly
compatible mappings in symmetric spaces satisfying an implicit relation and a
property (E.A) introduced in [M. Aamri, D. El Moutawakil, Some new common
fixed point thorems under strict contractive conditions, J. Math. Anal. Appl.
270 (2002) 181-188]. Our theorem generalizes Theorem 1 of [A. Aliouche, A
common fixed point theorem for weakly compatible mappings in symmetric
spaces satisfying a contractive condition of integral type], Theorem 2.2 of [M.
Aamri, D. El Moutawakil, Common fixed points under contractive conditions
in symmetric spaces, Appl. Math. E-Notes 3 (2003) 156-162] and Theorem 2
of [M. Aamri, D. El Moutawakil, Some new common fixed point thorems under
strict contractive conditions, J. Math. Anal. Appl. 270 (2002) 181-188].

1. Introduction and preliminaries

It is well known that the Banach contraction principle is a fundamental re-
sult in fixed point theory, which has been used and extended in many different
directions. However, it has been observed in [6] that some of the defining prop-
erties of the metric are not needed in the proofs of certain metric theorems.
Motivated by this fact, Hicks and Rhoades [6] established some common fixed
point theorems in symmetric spaces and proved that very general probabilistic
structures admit a compatible symmetric or semi-metric.

Recall that a symmetric on a set X is a nonnegative real valued function d
on X ×X such that

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x).
Let d be a symmetric on a set X and for r > 0 and any x ∈ X, let B(x, r) =

{y ∈ X : d(x, y) < r}. A topology t(d) on X is given by U ∈ t(d) if and only if
for each x ∈ U, B(x, r) ⊂ U for some r > 0. A symmetric d is a semi-metric if
for each x ∈ X and each r > 0, B(x, r) is a neighborhood of x in the topology
t(d). Note that limn→∞ d(xn, x) = 0 if and only if xn → x in the topology t(d).
The following two axioms were given by Wilson [19]. Let (X,d) be a symmetric
space.

(W.3) Given {xn}, x and y in X, limn→∞ d(xn, x) = 0 and limn→∞ d(xn, y) = 0
imply x = y.

2000 Mathematics Subject Classification: Primary 54H25; Secondary 47H10.
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(W.4) Given {xn}, {yn} and x inX, limn→∞ d(xn, x) = 0 and limn→∞ d(xn, yn) =
0 imply that limn→∞ d(yn, x) = 0.

It is easy to see that for a semi-metric d, if t(d) is Hausdorff, then (W.3)
holds. On the other hand, the notion of the weak commutativity is introduced
by Sessa [16] as follows:

Two selfmappings S and T of a metric space (X,d) are said to be weakly
commuting if

d(STx, TSx) ≤ d(Sx, Tx), for all x ∈ X.

Jungck [8] extended this concept in the following way: Let S and T be two
selfmappings of a metric space (X,d). S and T are said to be compatible if

lim
n→∞

d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X.

Obviously, two weakly commuting mappings are compatible but the con-
verse is not true as is shown in [8]. Recently, Jungck [9] introduced the con-
cept of weakly compatible maps as follows: Two selfmappings S and T of a
metric space (X,d) are said to be weakly compatible if they commute at their
coincidence points; i.e., if Su = Tu for some u ∈ X, then STu = TSu.

It is easy to see that two compatible maps are weakly compatible but the
converse is not true. All these concepts have been frequently used to prove
existence theorems in common fixed point theory.

However, the study of common fixed points of non-compatible maps is also
very interesting [10], [11].

On the other hand, Aamri and El Moutawakil [2] have established some new
common fixed point theorems under strict contractive conditions on a metric
space for mappings satisfying property (E.A) defined as follows: Let S and
T be two selfmappings of a metric space (X,d). We say that S and T satisfy
property (E.A) if there exists a sequence {xn} such that

lim
n→∞

Sxn = lim
n→∞

Txn = t for some t ∈ X.

The main purpose of this paper is to give a common fixed point theorem
for selfmappings of a symmetric space. These self mappings are assumed to
satisfy an implicit relation and a new property introduced recently in [2] on
a metric space, which generalizes the notion of non-compatible maps in the
setting of a symmetric space.

Definition (1.1). [3] Let S and T be two selfmappings of a symmetric space
(X,d). S and T are said to be compatible if

lim
n→∞

d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

d(Sxn, t) = lim
n→∞

d(Txn, t) = 0

for some t ∈ X.
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Definition (1.2). [3] Two selfmappings S and T of a symmetric space (X,d)
are said to be weakly compatible if they commute at their coincidence points.

Definition (1.3). [3] Let S and T be two selfmappings of a symmetric space
(X,d). We say that S and T satisfy the property (E.A) if there exists a sequence
{xn} such that

lim
n→∞

d(Sxn, t) = lim
n→∞

d(Txn, t) = 0

for some t ∈ X.

Example (1.4). Let X = [0,+∞[. Let d be a symmetric on X defined by
d(x, y) = e|x−y|−1 for all x, y inX. Define S, T : X → X as follows: Sx = 2x+1
and Tx = x+2, for all x ∈ X. Note that the function d is not a metric. Consider
the sequence xn = 1 + 1

n , n = 1, 2, . . . .
Clearly

lim
n→∞

d(Sxn, 3) = lim
n→∞

d(Txn, 3) = 0.

Then S and T satisfy property (E.A), but S and T are not weakly compatible.

Example (1.5). Let X = R with the above symmetric function d. It is easy
to see that the condition (W.3) holds. Define S, T : X → X by Sx = x + 1 and
Tx = x + 2, for all x ∈ X.

Suppose that property (E.A) holds. Then there exists in X a sequence {xn}
satisfying limn→∞ d(Sxn, t) = limn→∞ d(Txn, t) = 0 for some t ∈ X. Therefore

lim
n→∞

d(xn, t− 1) = lim
n→∞

d(xn, t− 2) = 0.

In view of (W.3), we conclude that t−1 = t−2, which is a contradiction. Hence
S and T do not satisfy property (E.A). It is clear from Definition (1.1), that
two selfmappings S and T of a symmetric space (X,d) will be non-compatible
if there exists at least one sequence {xn} in X such that

lim
n→∞

d(Sxn, t) = lim
n→∞

d(Txn, t) = 0 for some t ∈ X

but limn→∞ d(STxn, TSxn) is either nonzero or does not exist.
Therefore, two non-compatible selfmappings of a symmetric space(X,d) sat-

isfy property (E.A).

Definition (1.6). [3] Let (X,d) be a symmetric space. We say that (X,d)
satisfies property (H.E) if given {xn}, {yn} and x in X,

lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(xn, yn) = 0.

Example (1.7). (i) Every metric space (X,d) satisfies property (H.E).
(ii) LetX = [0,+∞) with the symmetric function d defined in Example (1.4).

It is easy to see that the symmetric space (X,d) satisfies property (H.E).

2. Implicit relation

Implicit relations on metric spaces have been used in many articles. (see
[4], [7], [12], [13], [14], [17]).

Let R+ denote the non-negative real numbers and let F be the set of all
continuous functions F : R4

+ → R satisfying the following conditions:
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F1 : there exists an upper semi-continuous and non-decreasing function f :
R+ → R+, f (0) = 0, f (t) < t for t > 0, such that for u ≥ 0,

F (u, v, v, 0) ≤ 0 or F (u, v, 0, v) ≤ 0 or F (u, 0, v, v) ≤ 0

implies u ≤ f (v).
F2 : F (u, 0, 0, 0) > 0 and F (u, u, u, 0) > 0,∀u > 0.

Example (2.1). F (t1, t2, t3, t4) = t1 − αmax{t2, t3, t4}, where 0 < α < 1.
F1 : Let u > 0 and F (u, v, v, 0) = u−αv ≤ 0, then u ≤ αv. Similarly, let u > 0

and F (u, v, 0, v) ≤ 0, then u ≤ av and again let u > 0 and F (u, 0, v, v) ≤ 0, then
u ≤ αv. If u = 0 then u ≤ αv. Thus F1 is satisfied with f (t) = αt.
F2 : F (u, 0, 0, 0) = u > 0,∀u > 0 and F (u, u, u, 0) = u(1− α) > 0 ,∀u > 0.
Thus F ∈ F .

Example (2.2). F (t1, t2, t3, t4) = t1 − ψ(max{t2, t3, t4}), where ψ : R+ → R+

is upper semi-continuous, non-decreasing and ψ(0) = 0, ψ(t) < t for t > 0.
F1 : Let u > 0 and F (u, v, v, 0) = u − ψ(v) ≤ 0, then u ≤ ψ(v). Similarly, let

u > 0 and F (u, v, 0, v) ≤ 0, then u ≤ ψ(v) and again let u > 0 and F (u, 0, v, v) ≤
0, then u ≤ ψ(v). If u = 0 then u ≤ ψ(v). Thus F1 is satisfied with f = ψ.
F2 : F (u, 0, 0, 0) = u > 0,∀u > 0 and F (u, u, u, 0) = u− ψ(u) > 0 ,∀u > 0.
Thus F ∈ F .

Example (2.3). F (t1, t2, t3, t4) = t1 − (at2 + bt3 + ct4), where a > 0, b, c ≥ 0,
and max{a + b, a + c, b + c} < 1.
F1 : Let u > 0 and F (u, v, v, 0) = u − (a + b)v ≤ 0, then u ≤ (a + b)v.

Similarly, let u > 0 and F (u, v, 0, v) ≤ 0, then u ≤ (a + c)v and again let u > 0
and F (u, 0, v, v) ≤ 0, then u ≤ (b + c)v. If u = 0 then u ≤ (b + c)v. Thus F1 is
satisfied with f (t) = max{a + b, a + c, b + c}t.
F2 : F (u, 0, 0, 0) = u > 0,∀u > 0 and F (u, u, u, 0) = u(1−a+b) > 0, ∀u > 0.
Thus F ∈ F .

Example (2.4). F (t1, t2, t3, t4) = t1 −
at23 + bt24

t2 + t3 + t4 + 1
, where a, b ≥ 0 and

a + b < 1.

F1 : Let u > 0 and F (u, v, v, 0) = u − av2

2v + 1
≤ 0, then u ≤ av2

2v + 1
≤ av.

Similarly, let u > 0 and F (u, v, 0, v) ≤ 0, then u ≤ bv and again let u > 0 and
F (u, 0, v, v) ≤ 0, then u ≤ (a + b)v. If u = 0 then u ≤ (a + b)v. Thus F1 is
satisfied with f (t) = (a + b)t.

F2 : F (u, 0, 0, 0) = u > 0,∀u > 0 and F (u, u, u, 0) =
(2− a)u2 + u

2u + 1
> 0,

∀u > 0.
Thus F ∈ F .

Example (2.5). F (t1, t2, t3, t4) = t1 −
αt2t3 + βt2t4 + γt3t4
t2 + t3 + t4 + 1

, where α, β, γ ≥ 0

and max{α, β, γ} < 1.

F1 : Let u > 0 and F (u, v, v, 0) = u − av2

2v + 1
≤ 0, then u ≤ av2

2v + 1
≤ av.

Similarly, let u > 0 and F (u, v, 0, v) ≤ 0, then u ≤ βv and again let u > 0 and
F (u, 0, v, v) ≤ 0, then u ≤ γv. If u = 0 then u ≤ γv. Thus F1 is satisfied with
f (t) = max{α, β, γ}t.
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F2 : F (u, 0, 0, 0) = u > 0,∀u > 0 and F (u, u, u, 0) =
(2− α)u2 + u

2u + 1
> 0,

∀u > 0.
Thus F ∈ F .

3. Main result

Theorem (3.1). Let d be a symmetric for X that satisfies (W.3), (W.4) and
(H.E). Let A,B, S and T be self mappings of (X,d) such that

(3.2) F

(∫ d(Ax,By)

0
ϕ(t)dt,

∫ d(Sx,Ty)

0
ϕ(t)dt,

∫ d(Sx,By)

0
ϕ(t)dt,

∫ d(By,Ty)

0
ϕ(t)dt

)
≤ 0

for all x, y ∈ X where F ∈ F and ϕ : R+ → R+ is a Lebesque-integrable
mapping which is summable, non-negative and such that

(3.3)
∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that A(X) ⊂ T (X) and B(X) ⊂ S(X), {A,S} and {B, T } are weakly
compatible and {A,S} or {B, T } satisfies property (E.A). If the range of one of
the mappings A,B, S and T is a closed subspace of X, then A,B, S and T have
common fixed point in X.

Proof. Suppose that B and T satisfy property (E.A). Then, there exists a
sequence {xn} in X such that limn→∞ d(Bxn, z) = limn→∞ d(Txn, z) = 0 for
some z ∈ X. Therefore, by (H.E) we have limn→∞ d(Bxn, Txn) = 0. Since
B(X) ⊂ S(X), there exists in X a sequence {yn} such that Bxn = Syn. Hence,
limn→∞ d(Syn, z) = 0. Let us show that limn→∞ d(Ayn, z) = 0.

Suppose that limn→∞d(Ayn, Bxn) > 0. Then, using (3.2), we have

F

(∫ d(Ayn,Bxn)

0
ϕ(t)dt,

∫ d(Syn,Txn)

0
ϕ(t)dt,

∫ d(Syn,Bxn)

0
ϕ(t)dt,

∫ d(Bxn,Txn)

0
ϕ(t)dt

)
≤ 0

and so

F

(
lim
n→∞

∫ d(Ayn,Bxn)

0
ϕ(t)dt, lim

n→∞

∫ d(Bxn,Txn)

0
ϕ(t)dt, 0, lim

n→∞

∫ d(Bxn,Txn)

0
ϕ(t)dt

)
≤ 0.

From F1, there exists an upper semi-continuous and non-decreasing function
f : R+ → R+, f (0) = 0, f (t) < t for t > 0 such that

lim
n→∞

∫ d(Ayn,Bxn)

0
ϕ(t)dt ≤ f

(
lim
n→∞

∫ d(Bxn,Txn)

0
ϕ(t)dt

)
< lim

n→∞

∫ d(Bxn,Txn)

0
ϕ(t)dt.

Therefore limn→∞
∫ d(Bxn,Txn)

0 ϕ(t)dt > 0 which is a contradiction. Then we have

that limn→∞
∫ d(Ayn,Bxn)

0 ϕ(t)dt = 0 and (3.3) implies that limn→∞ d(Ayn, Bxn) =
0. By (W.4), we deduce that limn→∞ d(Ayn, z) = 0. Suppose that S(X) is a
closed subspace of X. Then z = Su for some u ∈ X. Consequently, we have

lim
n→∞

d(Ayn, Bxn) = lim
n→∞

d(Bxn, Su) = lim
n→∞

d(Txn, Su) = lim
n→∞

d(Syn, Su) = 0.
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We claim that Au = Su. Using (3.2),

F

(∫ d(Au,Bxn)

0
ϕ(t)dt,

∫ d(Su,Txn)

0
ϕ(t)dt,

∫ d(Su,Bxn)

0
ϕ(t)dt,

∫ d(Bxn,Txn)

0
ϕ(t)dt

)
≤ 0

and letting n→∞, we have

F

(
lim
n→∞

∫ d(Au,Bxn)

0
ϕ(t)dt, 0, 0, 0

)
≤ 0

which is a contradiction withF2 if limn→∞
∫ d(Au,Bxn)

0 ϕ(t)dt > 0. Thus we obtain

limn→∞
∫ d(Au,Bxn)

0 ϕ(t)dt = 0 and (3.3) implies that limn→∞ d(Au,Bxn) = 0. By
(W.3) we have z = Au = Su. The weak compatibility of A and S implies that
ASu = SAu; i.e., Az = Sz. On the other hand, sinceA(X) ⊂ T (X), there exists
v ∈ X such that Au = Tv. We claim that Bv = Tv. If not, condition (3.2) gives

F

(∫ d(Au,Bv)

0
ϕ(t)dt,

∫ d(Su,Tv)

0
ϕ(t)dt,

∫ d(Su,Bv)

0
ϕ(t)dt,

∫ d(Bv,Tv)

0
ϕ(t)dt

)
≤ 0

and so

F

(∫ d(Au,Bv)

0
ϕ(t)dt, 0,

∫ d(Tv,Bv)

0
ϕ(t)dt,

∫ d(Bv,Tv)

0
ϕ(t)dt

)
≤ 0.

From F2 ∫ d(Tv,Bv)

0
ϕ(t)dt =

∫ d(Au,Bv)

0
ϕ(t)dt ≤ f

(∫ d(Tv,Bv)

0
ϕ(t)dt

)

which is a contradiction since
∫ d(Tv,Bv)

0 ϕ(t)dt > 0 by (3.3). Hence, z = Au =
Su = Bv = Tv. The weak compatibility of B and T implies that BTv = TBv;
i.e., Bz = Tz. Let us show that z is a common fixed point of A,B, S and T .

If z 6= Az, using (3.2), we get

F

(∫ d(Az,Bv)

0
ϕ(t)dt,

∫ d(Sz,Tv)

0
ϕ(t)dt,

∫ d(Sz,Bv)

0
ϕ(t)dt,

∫ d(Bv,Tv)

0
ϕ(t)dt

)
≤ 0

and so

F

(∫ d(Az,z)

0
ϕ(t)dt,

∫ d(Az,z)

0
ϕ(t)dt,

∫ d(Az,z)

0
ϕ(t)dt, 0

)
≤ 0

which is a contradiction with F2 since
∫ d(Az,z)

0 ϕ(t)dt > 0 by (3.3). Thus z =
Az = Sz.

If z 6= Bz, using (3.2), we get

F

(∫ d(Az,Bz)

0
ϕ(t)dt,

∫ d(Sz,Tz)

0
ϕ(t)dt,

∫ d(Sz,Bz)

0
ϕ(t)dt,

∫ d(Bz,Tz)

0
ϕ(t)dt

)
≤ 0

and so

F

(∫ d(z,Bz)

0
ϕ(t)dt,

∫ d(z,Bz)

0
ϕ(t)dt,

∫ d(z,Bz)

0
ϕ(t)dt, 0

)
≤ 0
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which is a contradiction with F2 since
∫ d(z,Bz)

0 ϕ(t)dt > 0 by (3.3). Thus z =
Bz = Tz = Az = Sz.

The proof is similar when T (X) is assumed to be a closed subspace of X.
The cases in which A(X) or B(X) is a closed subspace of X are similar to the
cases in which T (X) or S(X) respectively is closed since A(X) ⊂ T (X) and
B(X) ⊂ S(X).

For the uniqueness of z, suppose that w 6= z is another common fixed point
of A,B, S and T .

Using (3.2), we obtain

F

(∫ d(Az,Bw)

0
ϕ(t)dt,

∫ d(Sz,Tw)

0
ϕ(t)dt,

∫ d(Sz,Bw)

0
ϕ(t)dt,

∫ d(Bw,Tw)

0
ϕ(t)dt

)
≤ 0

and so

F

(∫ d(z,w)

0
ϕ(t)dt,

∫ d(z,w)

0
ϕ(t)dt,

∫ d(z,w)

0
ϕ(t)dt, 0

)
≤ 0

which is a contradiction with F2 since
∫ d(z,w)

0 ϕ(t)dt > 0 by (3.3). Thus z = w.
This completes the proof of the theorem.

If we combine Theorem (3.1) with Example (2.2) we have the following corol-
lary which it is Theorem 1 of [3].

Corollary (3.4). Let d be a symmetric for X that satisfies (W.3), (W.4) and
(H.E). Let A, B, S and T be self mappings of (X,d) such that∫ d(Ax,By)

0
ϕ(t)dt ≤ ψ

(∫ max{d(Sx,Ty),d(Sx,By),d(By,Ty)}

0
ϕ(t)dt

)
for all x, y ∈ X where ϕ : R+ → R+ is a Lebesque-integrable mapping which is
summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that A(X) ⊂ T (X) and B(X) ⊂ S(X), {A,S} and {B, T } are weakly
compatible and {A,S} or {B, T } satisfies property (E.A). If the range of one of
the mappings A,B, S and T is a closed subspace of X, then A, B, S and T have
a common fixed point in X.

If ϕ(t) = 1, A = B and S = T in Corollary (3.4), we obtain Theorem 2.1 of
[1].

If ϕ(t) = 1, in Corollary (3.4), we obtain Theorem 2.2 of [1].
Since two non-compatible selfmappings of a symmetric space (X,d) satisfy

property (E.A), we get the following result.

Corollary (3.5). Let d be a symmetric for X that satisfies (W.3) and (H.E).
Let A and S be two non-compatible weakly compatible self mappings of (X,d)
such that

F

(∫ d(Ax,Ay)

0
ϕ(t)dt,

∫ d(Sx,Sy)

0
ϕ(t)dt,

∫ d(Sx,Ay)

0
ϕ(t)dt,

∫ d(Ay,Sy)

0
ϕ(t)dt

)
≤ 0
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for all x, y ∈ X where F ∈ F and ϕ : R+ → R+ is a Lebesgue-measurable
mapping which is summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0

and A(X) ⊂ S(X). If the range of A or S is a closed subspace of X, then A and
S have a common fixed point in X.

If we combine Corollary (3.5) with Example (2.2) we have Corollary 2 of [3].

Corollary (3.6). LetA,B, S and T be self mappings of a metric space (X,d)
such that

F

(∫ d(Ax,By)

0
ϕ(t)dt,

∫ d(Sx,Ty)

0
ϕ(t)dt,

∫ d(Sx,By)

0
ϕ(t)dt,

∫ d(By,Ty)

0
ϕ(t)dt

)
≤ 0

for all x, y ∈ X where F ∈ F and ϕ : R+ → R+ is a Lebesque-integrable
mapping which is summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that A(X) ⊂ T (X) and B(X) ⊂ S(X), {A,S} and {B, T } are weakly
compatible and {A,S} or {B, T } satisfies property (E.A). If the range of one of
the mappings A,B, S and T is a closed subspace of X, then A,B, S and T have
common fixed point in X.

If we combine Corollary (3.6) with Example (2.2) we have Corollary 3 of [3].
If ϕ(t) = 1, in Corollary (3.6) and combine with Example (2.2) we have

Theorem 2 of [2].
If we combine Theorem (3.1) with Example (2.4) we have the following corol-

lary.

Corollary (3.7). Let d be a symmetric for X that satisfies (W.3), (W.4) and
(H.E). Let A,B, S and T be self mappings of (X,d) such that, for all x, y ∈ X,

∫ d(Ax,By)

0
ϕ(t)dt ≤

a
(∫ d(Sx,By)

0 ϕ(t)dt
)2

+ b
(∫ d(By,Ty)

0 ϕ(t)dt
)2

∫ d(Sx,Ty)
0 ϕ(t)dt +

∫ d(Sx,By)
0 ϕ(t)dt +

∫ d(By,Ty)
0 ϕ(t)dt + 1

where a, b ≥ 0, a + b < 1 and ϕ : R+ → R+ is a Lebesque-integrable mapping
which is summable, non-negative and such that∫ ε

0
ϕ(t)dt > 0 for all ε > 0.

Suppose that A(X) ⊂ T (X) and B(X) ⊂ S(X), {A,S} and {B, T } are weakly
compatible and {A,S} or {B, T } satisfies property (E.A). If the range of one of
the mappings A,B, S and T is a closed subspace of X, then A, B, S and T have
common fixed point in X.

Remark (3.8). We obtain some new results, if we combine Theorem (3.1)
with some examples of F .

Now we give an example.
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Example (3.9). Let X = { 1
n : n ∈ N} ∪ {0} with the symmetric defined by

d(x, y) = e|x−y|− 1 for all x, y ∈ X. It is obvious that the symmetric d satisfies
(W.3), (W.4) and (H.E). Define A, B, S, T : X → X as follows:

Ax = Bx =


1

n + 1
, x =

1
n

0, x = 0
, Sx = Tx = x for all x ∈ X.

Again it is obvious that A(X) ⊂ T (X) and B(X) ⊂ S(X), {A,S} and {B, T } are
weakly compatible and {A,S} or {B, T } satisfies property (E.A). Also S(X)
and T (X) are closed subsets of X.

Now we claim that the mappings A,B, S and T satisfy the condition (3.2) of
Theorem (3.1) with F ∈ F defined by

F (t1, t2, t3, t4) = t1 − 1
2 max{t2, t3, t4}

and ϕ : R+ → R+ defined by

ϕ(t) =


(
ln(1 + t)

) 1
ln(1+t)−2

[
1− ln(ln(1 + t))

1 + t

]
, t > 0,

0, t = 0.

That is, we claim that the following inequality is satisfied:

(3.10)
∫ d(Ax,Ay)

0
ϕ(t)dt ≤ 1

2
max

{∫ d(x,y)

0
ϕ(t)dt,

∫ d(x,Ay)

0
ϕ(t)dt,

∫ d(y,Ay)

0
ϕ(t)dt

}
.

We show sufficiently that

(3.11)
∫ d(Ax,Ay)

0
ϕ(t)dt ≤ 1

2

∫ d(x,y)

0
ϕ(t)dt

instead of (3.10). Now, since∫ s

0
ϕ(t)dt = (ln(1 + s))

1
ln(1+s) ,

the inequality (3.11) is equivalent to(
ln(1 + d(Ax,Ay))

) 1
ln(1+d(Ax,Ay)) ≤ 1

2

(
ln(1 + d(x, y))

) 1
ln(1+d(x,y))

and so, since d(x, y) = e|x−y| − 1, the inequality (3.11) is equivalent to

(3.12) |Ax −Ay|
1

|Ax−Ay| ≤ 1
2 |x − y|

1
|x−y|

for all x, y ∈ X. Using [5, Example 3.6 ] we can show that the inequality (3.12)
is true for all x, y ∈ X. Thus all conditions of Theorem (3.1) are satisfied and
so the mappings A,B, S and T have a common fixed point in X. Note that the
results of [1] and [2] are not applicable to this example.
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ON SUBGROUPS OF π∗(L2T (1) ∧M(2)) AT THE PRIME TWO

IPPEI ICHIGI, KATSUMI SHIMOMURA, AND XIANGJUN WANG

Abstract. Let L2 denote the Bousfield localization functor with respect to
the v2-localized Brown-Peterson spectrum v−1

2 BP on the stable homotopy cat-
egory of spectra at the prime two, and T (1) denote the Ravenel spectrum.
Then the Adams-Novikov spectral sequence is a tool to determine the homo-
topy groups π∗(L2T (1)). In [2], for s > 6, we determined the E∞-term Es

∞
of the Adams-Novikov spectral sequence converging to π∗(L2T (1)). The s-th
line Es

2 of the E2-term is very complicated if 1 < s ≤ 6. Let M(k) denote
the mod 2k Moore spectrum. Then the complicated parts of the E2-term for
π∗(L2T (1) ∧ M(k)) also stay in the s-th lines for 1 < s ≤ 6. Here we deter-
mine the s-th lines of the Adams-Novikov E∞-term for s = 0, 1 and s > 6 of
the Adams-Novikov spectral sequence converging to π∗(L2T (1) ∧ M(2)). The
result shows how disordered the structure of the E2-term for π∗(L2T (1)) is.

1. Introduction

LetS(p) denote the stable homotopy category of spectra localized away from a
prime number p, and BP denote the Brown-Peterson spectrum characterized
by the coefficient ring BP∗ = π∗(BP ) = Zp[v1, v2, . . . ]. Then we have the
Bousfield localization functor Ln : S(p) → S(p) with respect to v−1

n BP , and
denote the image of it as Ln. The homotopy groups π∗(LnS0) of the sphere
spectrum S0 play an important role to understand Ln. The Adams-Novikov
spectral sequence is a good tool to determine them. For n ≤ 2, the E2-term
for π∗(LnS0) is determined in [4], [10], [8] and [9], and the homotopy groups of
LnS0 are also determined if n ≤ 2, except for the case where n = 2 and p = 2.
Hereafter, we consider the exceptional case, and we set n = 2 and p = 2.
Let T (1) denote the Ravenel spectrum characterized by the BP∗-homology
BP∗(T (1)) = BP∗[t1] ⊂ BP∗BP = BP∗[t1, t2, . . . ]. Then the homotopy groups
π∗(L2T (1)) would help us to understand the homotopy groups π∗(L2S0). Let
M(k) for k > 0 and V (1) be cofibers of 2k : T (1) → T (1) and v1 : Σ2M(1) → M(1),
respectively. Note that M(k) = T (1) ∧ M(k) for the mod 2k Moore spectrum
M(k), and, in particular, M(1) is the Mahowald spectrum X〈1〉 and v1 is the self
map induced from the generator of π2(X〈1〉) (cf [3], [7]). Then the homotopy
groups π∗(L2V (1)) are determined in [3]. We consider the spectrum M(1,∞)
defined by the cofiber sequence

(1.1) M(1)
η1 // v−1

1 M(1) // M(1,∞)
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for the localization map η1 and obtain a cofiber sequence

(1.2) V (1) // M(1,∞)
v1 // M(1,∞)

We determine π∗(L2M(1,∞)) by use of the cofiber sequence (1.2), and then
π∗(L2M(1)) by (1.1) in [7]. Our next target is to determine the homotopy
groups π∗(L2T (1)) by using the mod 2 Bockstein spectral sequence. It is
very hard to compute the Bockstein spectral sequence, but we get a partial
results on π∗(L2T (1)) in [2]. Here we show how hard the other parts of the
E2-term are. (The paper [5] seems to require some more time to appear,
because it is too hard to verify the complicated results.) To do so, we
consider the mod 4 Moore spectrum M(2). Similarly, M(2,∞) denotes a
cofiber of the localization map η1 : M(2) → v−1

1 M(2). The zeroth line of the
E2-term of the Adams-Novikov spectral sequence for π∗(L2M(2,∞)) is not so
complicated that we determine the structure in Theorem (2.10). Since we know
the structure of E0

2(L2M(1,∞)), it seems easy to determine the structure of

E0
2(L2M(2,∞)) by the exact sequence 0 → E0

2(L2M(1,∞)) 2→ E0
2(L2M(2,∞)) →

E0
2(L2M(1,∞)) δ→ E1

2(L2M(1,∞)), but it is unexpectedly hard to compute the
connecting homomorphism. This is why we here employ the exact sequence
(1.3)

0 → E0
2(L2M(2, 1))→E0

2(L2M(2,∞))→E0
2(L2M(2,∞)) δ→ E1

2(L2M(2, 1))

to determine it. Here the homotopy groups π∗(L2M(2, 1)) are determined
in Theorem (2.5). It seems easier to use this exact sequence even when we
compute the first line E1

2(L2M(2,∞)) than to use that exact sequence. Since
we determine the homotopy groups π∗(v−1

1 M(2)) in Proposition (4.1), the result
on E0

2(L2M(2,∞)) gives rise to the zeroth and the first lines of the E2-term for
π∗(L2M(2)). This displays how complicated the structure of the homotopy
groups is. By use of the result [2], we also determine the s-th lines for s > 5,
and we obtain subgroups of π∗(L2M(2)). The second line is too complicated to
determine here.

This paper is divided into six sections:

1. Introduction
2. Statement of results
3. The change of rings theorem and the relations in Σ(2)
4. The homotopy groups π∗(v−1

1 T (1) ∧M(2)) and π∗(L2M(2, 1))
5. The elements xn, gn, Rn and Xn, and relations between them
6. The action of the connecting homomorphism

In the next section, we not only state our main results, but also prove some
of main results. In section three, we introduce the Hopf algebroids which
we consider in this paper and set up formulas on their right units ηR. In
section four, we determine homotopy groups π∗(v−1

1 M(2)) and prove Theorems
(2.5) and (2.6). We introduce some cochains in section five, and compute the
behavior of the connecting homomorphism in the last section. We also prove
Theorem (2.10) there.
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2. Statement of results

We work in the stable homotopy category S(2) of spectra localized away from
the prime two. Let BP denote the Brown-Peterson spectrum with coefficient
ring BP∗ = Z(2)[v1, v2, . . . ]. Then BP∗BP = BP∗[t1, t2, . . . ] is a Hopf algebroid
over BP∗(cf [6]). We compute homotopy groups of a spectrum X by the Adams-
Novikov spectral sequence with E2-term Es,t

2 (X) = Exts,t
BP∗BP (BP∗, BP∗(X)). Let

T (1) denote the Ravenel spectrum with BP∗(T (1)) = BP∗[t1] ⊂ BP∗BP . We
have an element v1+2t1 ∈ Ext0,2

BP∗BP (BP∗, BP∗[t1]) = E0,2
2 (T (1)), which survives

to a homotopy element of π2(T (1)). Since T (1) is a ring spectrum, the homotopy
element defines a self map αj : Σ2jT (1) → T (1) for each j > 0, whose cofiber
we denote by T (1)/vj

1. For the mod 2i Moore spectrum M(i) for i > 0, put
M(i, j) = M(i) ∧ (T (1)/vj

1). Then, BP∗(M(i, j)) = BP∗[t1]/(2i, (v1 + 2t1)j) ⊂
BP∗BP/(2i, (v1 + 2t1)j), and so we have the Adams-Novikov spectral sequence

Es,t
2 (L2M(i, j)) = Exts,t

BP∗BP (BP∗, v−1
2 BP∗[t1]/(2i, (v1 + 2t1)j)) ⇒ π∗(L2M(i, j)).

Note that M(1, 1) is the V (1) in the introduction. We first determine the
structure of the homotopy groups π∗(L2M(2, 1)), which is obtained from the
cofiber sequence

(2.1) M(1, 1)
2 // M(2, 1)

ĩ // M(1, 1)

given by smashing T (1)/v1 with the cofiber sequence

(2.2) M(1)
2 // M(2) // M(1)

of the Moore spectra. In order to state the result, we set up notation: In
[3], the E2-term of the Adams-Novikov spectral sequence for π∗(L2M(1, 1)) is
determined as

E∗,∗
2 (L2M(1, 1)) = K(2)∗[v3, h20]⊗ Λ(h21, h30, h31, ρ2).

Here

(2.3) K(2)∗ = Z/2[v2, v−1
2 ],

and h2i, h3i and ρ2 are the elements represented by the cocycles, whose leading
terms are t2i

2 , t2i

3 and v−5
2 t4 + v−10

2 t2
4 in the cobar complex

Ω1
BP∗BP v−1

2 BP∗[t1]/(2, v1),

respectively. By use of the generators h21 and h31 given in Lemma (4.3), we
rewrite the E2-term E∗2 (L2M(1, 1)):

E∗2 (L2M(1, 1)) = K∗[v2
3]⊗ Z/2[h20]⊗ Λ(v2, v3, h21, h30, h31, ρ2)

as a Z/2-module, where

(2.4) K∗ = Z/2[v2
2, v−2

2 ] .
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Put

F 0 = K∗[v2
3]⊗ Λ(h31, ρ2),

F = K∗[v2
3]⊗ Λ(h21, h31, ρ2) and

C = K∗[v2
3]⊗ Z/2[h20]⊗ Λ(v3, h21, h30, h31, ρ2).

We notice that F = F 0 ⊗ Λ(h21), C = Z/2[h20]⊗ F ⊗ Λ(v3, h30) and

E∗2 (L2M(1, 1)) = C ⊗ Λ(v2).

Furthermore, the map 2 (resp. ĩ) in (2.1) induces a homomorphism

2: E∗2 (L2M(1, 1)) → E∗2 (L2M(2, 1))

(resp. π : E∗2 (L2M(2, 1)) → E∗2 (L2M(1, 1))), and 2M (resp. M) ⊂ E∗2 (L2M(2, 1))
for a submodule M ⊂ E∗2 (L2M(1, 1)) denotes the image of M under the
homomorphism 2 (resp. π−1).

Theorem (2.5). The E2-term E∗2 (L2M(2, 1)) is isomorphic to

2v2C ⊕ h20C ⊕ 2v3F ⊕ h30F ⊕ 2v3h30F 0 ⊕ v3h30h21F 0 ⊕ F̃ .

Here F̃ = Z/4[v2
2, v−2

2 , v2
3]⊗ Λ(h21, h31, ρ2).

For describing the homotopy groups π∗(L2M(2, 1)), we introduce the mod-
ules

F ′0 = K∗[v4
3]⊗ Λ(h31, ρ2),

F ′ = K∗[v4
3]⊗ Λ(h21, h31, ρ2),

F̃ ′ = Z/4[v2
2, v−2

2 , v4
3]⊗ Λ(h21, h31, ρ2),

C′ = K∗[v4
3]⊗ Z/2[h20]/(h3

20)⊗ Λ(v3, h21, h30, h31, ρ2) and

C′′ = K∗[v4
3]⊗ Z/2[h20]/(h2

20)⊗ Λ(v3, h21, h30, h31, ρ2).

Theorem (2.6). The Adams-Novikov E∞-terms for the homotopy groups
π∗(L2M(2, 1)) are isomorphic to the direct sum of the modules

2v2C′, h20C′′, 2v3F, h30F ′, 2v3h30F 0, v3h30h21F 0′, F̃ ′ and 2v2
3F ′.

These theorems are proved in section four.
Next we consider the spectrum M(2,∞) = lim→ M(2, n), and the exact

sequence (1.3). Put

(2.7) E∗ = Z/2[v1, v2
2, v−2

2 ] and Ẽ∗ = Z/4[v1, v2
2, v−2

2 ].

Then K∗ in (2.4) is E∗/(v1) and Ẽ∗/(2) = E∗. Let xk = v4k

3 + . . . denote a cochain
in the cobar complex Ω∗

BP∗BP v−1
2 BP∗[t1], which is defined in (5.3), and ak for

each k ≥ 0 be the integer defined by

(2.8) ak = 4k + 2ek = ek+1 + ek, for ek = (4k − 1)/3.
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We further introduce modules:

M = 2v2v3K∗[v2
3]⊕ 2v2E∗[v4

3]〈v2
3/v3

1〉 ⊕ 2v2E∗[x2
n]〈xn/van+1

1 〉

⊕ 2v2E∗[xn+1]〈x2
n/v2an

1 〉,

L3
−1 = 2E∗[v2

3]〈v3/v1〉,

L0
k = Ẽ∗[x4

2k]〈x2
2k/vc2k

1 〉 ⊕ 2E∗[x4
2k]{x2

2k/vj
1 : c2k < j ≤ 2c2k},

L1
k = Ẽ∗[x2

2k+1]〈x2k+1/v2c2k

1 〉 ⊕ 2E∗[x2
2k+1]{x2k+1/vj

1 : 2c2k < j ≤ c2k+1 + 2},

L2
k = Ẽ∗[x4

2k+1]〈x2
2k+1/v

c2k+1+2
1 〉

2E∗[x4
2k+1]{x2

2k+1/vj
1 : c2k+1 + 2 < j ≤ 2c2k+1 + 6},

L3
k = Ẽ∗[x2

2k+2]〈x2k+2/v
2c2k+1+6
1 〉2E∗[x2

2k+2]{x2k+2/vj
1 : 2c2k+1 + 6 < j ≤ c2k+2}.

Here, the integers cn are defined by
(2.9)

cn = 4n + 3× 41+ε(n)e[ n
2 ] for n ≥ 0, ε(n) =

1− (−1)n

2
and ek =

16k − 1
15

,

and [x] denotes the greatest integer that does not exceed x.

Theorem (2.10). The zeroth line of the E2-term for π∗(L2M(2,∞)) is given
as follows:

E0
2(L2M(2,∞)) = v−1

1 Ẽ∗/Ẽ∗ ⊕ 2v2(v−1
1 E∗/E∗)

⊕M ⊕ L3
−1 ⊕

⊕
k≥0

(
L0

k ⊕ L1
k ⊕ L2

k ⊕ L3
k

)
.

We prove this in the last section.
This result shows that the structure of E0

2(L2M(2,∞)) is far compli-
cated than that of E0

2(L2M(1,∞)). The difficulty to compute the E2-term
E1

2(L2M(2,∞)) appears in the cokernel of the connecting homomorphism
δ : E0

2(L2M(2,∞)) → E1
2(L2M(2, 1)), which involves ρ2 as in Proposition (6.2).

Let
M(∞,∞) = lim

→
M(k,∞).

Then the Adams-Novikov E2-term Es
2(L2M(∞,∞)) is isomorphic to (C̃0⊗Λ(ρ2))s

for s > 4 by [2], where

C̃0 = v2v3K∗[v2
3, h20]⊗ Λ(h21, h30, h31).

This result yields the E2-terms Es
2(L2M(2,∞)) for s > 5 from the long exact

sequence

Es−1
2 (L2M(∞,∞))

4 // Es−1
2 (L2M(∞,∞))

δ′ // Es
2(L2M(2,∞))

1/4 // Es
2(L2M(∞,∞))

4 // Es
2(L2M(∞,∞))

induced from the cofiber sequence L2M(2,∞)
1/4→ L2M(∞,∞) 4→L2M(∞,∞).

Indeed, the homomorphism 4 is trivial for s > 5.
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Theorem (2.11). For s > 5, the s-th line of the E2-term for π∗(L2M(2,∞)) is
given as follows:

Es
2(L2M(2,∞)) = (C̃0 ⊗ Λ(ρ2))s ⊕ δ′((C̃0 ⊗ Λ(ρ2))s−1).

Here the summand δ′((C̃0⊗Λ(ρ2))s−1) denotes the δ′-image, which is isomorphic
to (C̃0 ⊗ Λ(ρ2))s−1.

By definition, we have a cofiber sequence

(2.12) M(2) // v−1
1 M(2) // M(2,∞) ,

which induces the long exact sequence

Es−1
2 (v−1

1 M(2)) // Es−1
2 (L2M(2,∞))

δ // Es
2(L2M(2))

// Es
2(v−1

1 M(2)) // Es
2(L2M(2,∞)).

We notice that δ is an isomorphism if s > 2, since Es
2(v−1

1 M(2)) = 0 if s > 1 by
Proposition (4.1). Now Theorems (2.10), (2.11) and Proposition (4.1) imply the
following:

Theorem (2.13). The E2-term for π∗(L2T (1) ∧M(2)) is as follows:

E0
2(L2M(2)) = Z/4[v1, v2

2]⊕ 2v2Z/2[v1, v2
2],

E1
2(L2M(2)) = Z/4[v1, v2

2]/(v∞1 , v∞2 )⊕ 2v2Z/2[v1, v2
2]/(v∞1 , v∞2 )

⊕ δ

M ⊕ L3
−1 ⊕

⊕
k≥0

(
L0

k ⊕ L1
k ⊕ L2

k ⊕ L3
k

) ,

Es
2(L2M(2)) = δ

((
C̃0 ⊗ Λ(ρ2)

)s−1
)
⊕ δδ′

((
C̃0 ⊗ Λ(ρ2)

)s−2
)

for s > 6.

Here δ(X) denotes the δ-image of X that is isomorphic to X.

Recall [2] the module

Ĉ0 = v2v3K∗[v4
3]⊗ Λ(h20, h21, h30, h31)

⊕
v2v3h2

20K∗[v4
3]⊗ Λ(h30, h31).

Then we showed in [2] that this is the submodule of the Adams-Novikov E∞-
term consisting of the survivors of the summand C0 of the E2-term, and is also a
submodule of π∗(L2M(∞,∞)). We also showed in [2] that the Adams-Novikov
differential acts trivially on the other summands of the E2-term.

Corollary (2.14). The Adams-Novikov E∞-term for the homotopy groups
π∗(L2M(2)) contains the subgroups isomorphic to

Σ
(
M ⊕ L3

−1 ⊕
⊕
k≥0

(
L0

k ⊕ L1
k ⊕ L2

k ⊕ L3
k

) )
⊕ ΣĈ0 ⊗ Λ(ρ2)⊕ Σ2Ĉ0 ⊗ Λ(ρ2).

Here Σ denotes a shift of dimension.
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3. The change of rings theorem and the relations in Σ(2)

Let BP and BP 〈n〉 denote the Brown-Peterson ring spectrum and the
unlocalized Johnson-Wilson spectrum, respectively. Then, BP gives rise to the
Hopf algebroid (A, Γ) = (BP∗, BP∗BP ) = (Z(2)[v1, v2, . . . ], BP∗[t1, t2, . . . ]) and
BP 〈n〉∗ = Z(2)[v1, v2, . . . , vn] ⊂ BP∗. Since BP 〈3〉 is a BP -module spectrum,
v2 ∈ BP∗ yields the self map v2 : BP 〈3〉 → BP 〈3〉. Let F (2) denote the spectrum
v−1

2 BP 〈3〉. Then, F (2)∗ = π∗(F (2)) = Z(2)[v1, v2, v−1
2 , v3] and F (2)∗(F (2)) =

F (2)∗⊗A Γ⊗A F (2)∗. The Hopf algebroid structure of (A, Γ) defines the one on
(B, Σ) = (F (2)∗, F (2)∗(F (2))). Consider the Hopf algebroid (E(2)∗, E(2)∗E(2))
associated to the localized Johnson-Wilson spectrum E(2) = v−1

2 BP 〈2〉. In
[1], Hovey and Sadofsky showed the change of rings theorem: Exts

Γ(A, M)
= Exts

E(2)∗E(2)(E(2)∗, E(2)∗ ⊗A M) for a v2-local Γ-comodule M . In the same
manner as the “first proof” of it, the equivalence F (2) =

∨
k≥0 Σk|v3|E(2) yields

the isomorphism Exts
Σ(B, B⊗A M) = Exts

E(2)∗E(2)(E(2)∗, E(2)∗⊗A M), and then,
we have an isomorphism

Exts
Γ(A, M) = Exts

Σ(B, B ⊗A M)

for a v2-local Γ-comodule M . Indeed, F (2)- and E(2)-Adams resolutions of a
spectrum X induce the same spectral sequence, and so the E2-terms agree.

Consider Γ(2) = Γ/(t1) = A[t2, t3, . . . ]. Then the pair (A, Γ(2)) is a Hopf
algebroid induced from (A, Γ) under the projection Γ → Γ(2). Since BP∗(T (1)) =
A[t1], we have F (2)∗(T (1)) = B[t1], which is expressed as a cotensor product

(3.1) B[t1] = B2Σ(2)Σ

for Σ(2) = B ⊗A Γ(2) ⊗A B. Here (B, Σ(2)) is a Hopf algebroid induced from
(A, Γ(2)). Write H∗M as Ext∗Σ(2)(B, M) for a Σ(2)-comodule M , and H∗(M⊗A B)
for a Γ-comodule M is isomorphic to

Exts
Γ(A, v−1

2 M ⊗A A[t1]) = Exts
Σ(B, M ⊗A B[t1]) = Exts

Σ(2)(B, M ⊗A B)

(= H∗(M ⊗A B)),

where the second equality follows from (3.1) by the change of rings theorem
[6], A1.3.13. In this paper, we employ the same method introduced in [4] to
compute H∗B/(4), which is isomorphic to the E2-term Exts

Γ(A, v−1
2 A[t1]/(4)).

For this sake, we introduce the Σ(2)-comodules M0
2 (2) and M1

1 (2):

Definition (3.2). M0
2 (2) = B/(4, v1) and M1

1 (2) is the cokernel of the inclusion
B/(4) → v−1

1 B/(4).
Note that the modules in the exact sequence (1.3) are:

(3.3) E∗2 (L2M(2, 1)) = H∗M0
2 (2) and E∗2 (L2M(2,∞)) = H∗M1

1 (2).

We study the module H∗B/(4) by the long exact sequence

Hs−1v−1
1 B/(4) −→ Hs−1M1

1 (2) δ−→ HsB/(4) −→ Hsv−1
1 B/(4) −→ HsM1

1 (2)

associated to the short exact sequence 0 → B/(4) → v−1
1 B/(4) → M1

1 (2) → 0.
We will determine H∗v−1

1 B/(4) in Proposition (4.1). We compute H∗M1
1 (2)

by the v1-Bockstein spectral sequence associated to the short exact sequence

0 → M0
2 (2)

1/v1−→ M1
1 (2) v1−→ M1

1 (2) → 0 of Σ(2)-comodules. For computing
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the Bockstein spectral sequence, we set up formulas on the structure map
ηR : B → Σ(2) of the Hopf algebroid Σ(2) and some relations in Σ(2).

We begin with the behavior of the right unit ηR : A → Γ(2) = A[t2, t3, . . . ].
Here, vi’s are the Hazewinkel generators of A defined by

(3.4) vi = 2mi −
i−1∑
k=1

mkv2k

i−k ∈ 2−1A = Q[m1, m2, . . . ]

under the inclusion A → 2−1A. The unit map i : S0 → BP induces the
right unit ηR = (i ∧ 1)∗ : A = π∗(BP ) → Γ → Γ(2), and then its localization
ηR : 2−1A → 2−1Γ(2), whose action is given by the Quillen formulas

(3.5) ηR(mi) =
i∑

k=0

mkt2k

i−k .

With a routine computation with the formulas (3.4) and (3.5), we see that

Lemma (3.6). On the generators vi for 0 < i ≤ 6, ηR : A → Γ(2) acts as
follows:

ηR(v1) = v1,

ηR(v2) = v2 + 2t2,

ηR(v3) = v3 + v1t2
2 − v4

1t2 + 2(t3 − v1v2t2 − v1t2
2),

ηR(v4) ≡ v4 + v2t4
2 + v4

2t2 + v1t2
3 + v2

1v3(t2
2 + v3

1t2) + v6
1t3

2 + v8
1t3 + v9

1t2
2 mod (2),

ηR(v5) ≡ v5 + v3t8
2 + v4

3t2 + v2t4
3 + v8

2t3 + v1t2
4 + v1c(4)

+ v1v8
2t2

2 + v2
1v2v2

3t4
2 mod (2, v3

1) and

ηR(v6) ≡ v6 + v4t16
2 + t2ηR(v4)4 + v3t8

3 + v8
3t3 + v2t4

4

+ v16
2 t4 + v2c(4)2 + v17

2 t4
2 mod (2, v1).

Here

2c(4) ≡ ηR(v2
4)− (v2

4 + v2
2t8

2 + v8
2t2

2 + v2
1t4

3) mod (4, v4
1).

Since ηR(vi) = 0 in Σ(2) if i ≥ 4, we obtain relations in Σ(2) from Lemma (3.6):
(3.7)
v2t4

2 ≡ v4
2t2 + v1t2

3 + v2
1v3t2

2 + v5
1v3t2 + v6

1t3
2 + v8

1t3 + v9
1t2

2 mod (2),

v2t4
3 = v8

2t3 + v3t8
2 + v4

3t2 + v1t2
4 + v1c(4) + v1v8

2t2
2 + v2

1v2v2
3t4

2 mod (2, v3
1) and

v2t4
4 = v16

2 t4 + v3t8
3 + v8

3t3 + v2c(4)2 + v17
2 t4

2 mod (2, v1).

By the first relation of (3.7), we see that c(4) ≡ v5
2t5

2 + v1t2
3(v2t4

2 + v4
2t2) ≡ v5

2t5
2

mod (2, v2
1), and so v−10

2 c(4) + v−2
2 t2

2 ≡ v−5
2 t5

2 + v−2
2 t2

2 ≡ v1v−6
2 t2t2

3 mod (2, v2
1).



ON SUBGROUPS OF π∗(L2T (1) ∧ M(2)) AT THE PRIME TWO 215

Then
(3.8)

v2t4
3 ≡ v8

2t3 + v3t8
2 + v4

3t2 + v1t2
4 + v2

1(v4
2t2t2

3 + v2v2
3t4

2) mod (2, v3
1)

≡ v8
2t3 + v6

2v3t2
2 + v4

3t2 + v1t2
4 + v2

1(v−2
2 v3t4

3 + v4
2t2t2

3 + v2v2
3t4

2) mod (2, v3
1)

≡ v8
2t3 + v6

2v3t2
2 + v4

3t2 + v1t2
4

+ v2
1

(
v3(v5

2t3 + v3
2v3t2

2 + v−3
2 v4

3t2) + v4
2t2t2

3 + v4
2v2

3t2

)
mod (2, v3

1) and

v2t4
4 ≡ v16

2 t4 + v3t8
3 + v8

3t3 mod (2, v1)

≡ v16
2 t4 + v14

2 v3t2
3 + v8

3t3 + v13
2 v3

3t2 + v−2
2 v9

3t2
2 mod (2, v1).

4. The homotopy groups π∗(v−1
1 T (1) ∧M(2)) and π∗(L2M(2, 1))

Note that T (1) ∧ M(2) = M(2). The Adams-Novikov E2-term E∗2 (v−1
1 M(2))

is isomorphic to Ext∗Γ(2)(BP∗, v−1
1 BP∗/(4)) by the change of rings theorem [6,

A1.3.13], since v−1
1 BP∗[t1]/(4) = v−1

1 BP∗/(4)2Γ(2)Γ.

Proposition (4.1). The Adams-Novikov E2-term for π∗(v−1
1 M(2)) is isomor-

phic to

E∗2 (v−1
1 M(2)) = Z/4[v±1

1 , v2
2]⊗ Λ(v2h20)⊕ 2v2Z/2[v±1

1 , v2
2]⊕ h20Z/2[v±1

1 , v2
2].

Furthermore, this is isomorphic to the homotopy groups π∗(v−1
1 M(2)).

Proof. In [6, 6.5.6], it is shown that E∗2 (v−1
1 M(1)) = K(1)∗[v2] ⊗ Λ(h20) for

K(1)∗ = Z/2[v1, v−1
1 ]. Consider the long exact sequence

E∗2 (v−1
1 M(1))

2 // E∗2 (v−1
1 M(2)) // E∗2 (v−1

1 M(1))
δ // E∗+1

2 (v−1
1 M(1))

of the Adams-Novikov E2-terms associated to the cofiber sequence (2.2). We
make a computation in the cobar complex Ω∗

Γ(2)v
−1
1 BP∗/(4) (cf [6, A1.2.11]), and

see that the action of the connecting homomorphism δ is obtained from the only
relation δ(v2) = h20, which is verified by the equality ηR(v2) = v2 + 2t2 in Γ(2)
in Lemma (3.6). Now the E2-term is obtained from the above exact sequence.

Since the E2-term has the horizontal vanishing line s = 2, the spectral
sequence collapses from the E2-term, and the extension is trivial.

We turn to the homotopy groups π∗(L2M(2, 1)). The cofiber sequence (2.1)
induces the long exact sequence

E∗2 (L2M(1, 1)) 2−→ E∗2 (L2M(2, 1)) −→ E∗2 (L2M(1, 1)) δ−→ E∗+1
2 (L2M(1, 1)).

Lemma (4.2). The connecting homomorphism δ acts as follows:

δ(v2) = h20,

δ(v3) = h30,

δ(h21) = h2
20,

and δ(h31) = h2
30 = (h21 + v2h20)h31 + v2v2

3h20h21.

Here, we set v2
2 = 1.
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Proof. This follows immediately from Lemma (3.6). The last equality is
given in [3].

We consider the elements

h21 = h21 + v2h20 and h31 = h31 + v3h30.

Then Lemma (4.2) implies the following:

Lemma (4.3). The connecting homomorphism δ acts trivially on the elements

h20, h21, h30 and h31.

Proof of Theorem (2.5). The connecting homomorphism δ acts as δ(v2C) =
h20C, δ(F ) = 0, δ(v3F ) = h30F and δ(v3h30F 0) = v3h30h21F 0. The last
correspondence follows from δ(v3h30) = h21(h31 + v2v2

3h20 + v3h30) = v3h30h21 +
· · · . Here, the correspondence is written as the leading term.

Proof of Theorem (2.6). The Adams-Novikov differential on E∗r (L2M(1, 1))
is shown in [3] to act as follows:

d3(v4s+t
3 x) =


0 t = 0, 1,

v2
2v4s

3 xh3
20 t = 2,

v2
2v4s+1

3 xh3
20 t = 3

for x ∈ K(2)∗[h20]⊗ Λ(h21, h30, h31, ρ2).

5. The elements xn, gn, Rn and Xn, and relations between them

In order to define generators of the cohomology H∗M1
1 (2) of the comodule

M1
1 (2) in Definition (3.2), we introduce some elements in this section.
First we redefine the elements xn, which are used to give generators of

H∗M1
1 = E∗2 (L2M(1,∞)) in [7], and then observe the behavior of them under

the differential d = ηR − ηL : B → Σ(2) of the cobar complex Ω∗
Σ(2)B.

Lemma (5.1). Put x = v4
3 + v3

1v6
2v3 ∈ B. Then d(x) ≡ v6

1v−2
2 g mod (2) in Σ(2).

Here
g = t4

3 + v1T2 + v8
1v2

3t2
2 + v10

1 (t6
2 + v2

2t4
2) + v14

1 t2
3 + v16

1 t4
2 ∈ Σ(2)

for T2 = v8
2t2 + v1v2

3t4
2.

Proof. This follows from the computation

d(v4
3) ≡ v4

1t8
2 + v16

1 t4
2 mod (2)

≡ v4
1v−2

2 (v8
2t2

2 + v2
1t4

3 + v4
1v2

3(t4
2 + v6

1t2
2) + v12

1 t6
2 + v16

1 t2
3 + v18

1 t4
2)

+ v16
1 t4

2 mod (2) by (3.7), and

d(v3
1v6

2v3) ≡ v3
1v6

2(v1t2
2 + v4

1t2) mod (2).

Hereafter, we put v2
2 = 1 for the sake of simplicity. In fact, we consider

Z/4-module structure, and v2
2 is invariant mod (4) by Lemma (3.6). Therefore,

v2
2 plays only a role adjusting the internal degrees, since every congruence is

homogeneous.
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Lemma (5.2). There is an element y of B such that

d(y) ≡ v10
1 g4 + v12

1 xg + v14
1 r4 + v16

1 r′ mod (2, v17
1 ) ∈ Σ(2)

for r = t2
4 + t4 and r′ = v2

3t8
3 + v8

3t2
3.

Proof. Put y′ = x2 + v9
1v2v2

3 + v11
1 v9

3 + v13
1 v3 + v13

1 v2v10
3 , and we have d(y′) ≡

v11
1 T2 + v13

1 v3t2
2 + v14

1 t4
4 + v16

1 (r′ + t2
2t4

3 + v3t2) mod (2, v17
1 ). Indeed, it is the sum

of the following congruences mod (2, v17
1 ):

d(x2) ≡ v12
1 (t8

3 + v2
1t2

2 + v4
1v4

3t8
2)

≡ v12
1 (t2

3 + v2
3t4

2 + v8
3t2

2 + v2
1t4

4 + v4
1v2

3t8
3 + v4

1t2
2t4

3 + v2
1t2

2),

d(v9
1v2v2

3) ≡ v11
1 v2t4

2 ≡ v11
1 (t2 + v1t2

3 + v2
1v3t2

2 + v5
1v3t2),

d(v11
1 v9

3) ≡ v12
1 v8

3(t2
2 + v3

1t2) ≡ v12
1 v8

3(t2
2 + v3

1(v2t4
2 + v1t2

3)),

d(v13
1 v3) ≡ v14

1 t2
2 and

d(v13
1 v2v10

3 ) ≡ v15
1 v2v8

3t4
2,

in which we use relations in (3.7).
We now put y = y′ + v4

1x + v8
1v18

3 + v9
1v5

3 + v12
1 v20

3 , and compute mod (2, v17
1 ),

d(y′) ≡ v11
1 T2 + v13

1 v3t2
2 + v14

1 t4
4 + v16

1 (r′ + t2
2t4

3 + v3t2),

d(v4
1x) ≡ v10

1 (t4
3 + v1T2) ≡ v10

1 (t16
3 + v4

3t8
2 + v16

3 t4
2 + v4

1t8
4 + v1T2)

≡ v10
1 (t16

3 + v4
3(t2

21 + v2
1t4

3 + v4
1v2

3t4
2) + v16

3 t4
2 + v4

1t8
4 + v1T2),

d(v8
1v18

3 ) ≡ v10
1 v16

3 t4
2 + v16

1 v16
3 t2

2,

d(v9
1v5

3) ≡ v10
1 v4

3t2
2 + v13

1 v4
3t2 + v13

1 v3t8
2 + v14

1 t10
2 and

d(v12
1 v20

3 ) ≡ v16
1 v16

3 t8
2 ≡ v16

1 v16
3 t2

2

to obtain

d(y) ≡ v10
1 (t16

3 + v4
1t4

2) + v12
1 v4

3(t4
3 + v1t2 + v2

1v2
3t4

2) + v14
1 (t8

4 + t4
4)

+ v15
1 v3(t4

3 + v1t2) + v16
1 r′

≡ v10
1 g4 + v12

1 xg + v14
1 r4 + v16

1 r′.

Here we use relations v13
1 v3t2

2 + v13
1 v3t8

2 = v15
1 v3t4

3 and v16
1 t2

2t4
3 + v14

1 t10
2 = v14

1 t4
2,

and notice that x = v4
3 + v3

1v3 and g4 ≡ t16
3 + v4

1t4
2 mod (2, v8

1).

We now define elements xk ∈ B for k ≥ 0 inductively by

(5.3) x0 = v3, x1 = x = v4
3 + v3

1v3 and xk+1 = x4
k + v

ak+1−12
1 x4ek−1y

for the integers an and en in (2.8), and consider elements gk ∈ Σ(2) satisfying

(5.4) g1 = g and d(x4ek−1y) ≡ v10
1 g4

k + v12
1 gk+1 mod (2) for k > 0.

Note that gk is a well-defined element if we consider it modulo (2).

Lemma (5.5). For k > 0,

d(xk) ≡ vak

1 gk mod (2).
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Proof. This is verified inductively by definition. Indeed, d(xk+1) ≡ d(x4
k) +

v
ak+1−12
1 d(x4ek−1y) ≡ v4ak

1 g4
k + v

ak+1−12
1 (v10

1 g4
k + v12

1 gk+1) mod (2), and ak+1 =
4ak + 2.

Lemma (5.6). For k > 1,

gk ≡ xek−1g + v2
1x4ek−2r4 mod (2, v3

1).

Here r = t2
4 + t4 as above.

Proof. For k = 2, it follows from Lemma (5.2) and (5.4). Suppose that the
lemma holds for k > 1. Then, Lemma (5.2) and the definition (5.4) show that

v12
1 gk+1 ≡ d(x4ek−1y) + v10

1 g4
k ≡ x4ek−1 (v10

1 g4 + v12
1 xg + v14

1 r4) + v10
1 x4ek−1g4

≡ v12
1 xek g + v14

1 x4ek−1r4 mod (2, v15
1 ).

Since v1 acts monomorphically on the cobar complex, we obtain the lemma.

We introduce an element Rn ∈ Σ(2) satisfying

(5.7) ven+1
1 Rn ≡ gn+1 + xngn mod (2)

for n > 0. Note also that Rn is well-defined modulo (2).

Lemma (5.8). R1 ≡ r4 + v2
1r′ mod (2, v3

1) and R2 ≡ R4
1 mod (2, v6

1). For k > 1,
there is a cochain wk such that

d(wk) ≡ v
ek+1+13
1 (R4

k + Rk+1) mod (2, v
ak+1−12
1 ).

Proof. The congruences on R1 and R2 follow from (5.7), (5.3) and (5.4).
Indeed, v14

1 R1 ≡ v12
1 g2 + v12

1 x1g1 ≡ d(y) + v10
1 g4 + v12

1 xg mod (2) , which
is congruent to v14

1 r4 + v16
1 r′ mod (2, v17

1 ) by Lemma (5.2). Thus, the first
congruence follows. For the second congruence, we compute

d(x4y) ≡ v10
1 g4

2 + v12
1 g3 mod (2)

≡ v10
1 (x4

1g4
1 + v8

1R4
1) + v12

1 (x2g2 + v6
1R2) mod (2)

≡ x4
1(v10

1 g4
1 + v12

1 g2) + v18
1 (R4

1 + R2) mod (2, v26
1 )

≡ x4
1d(y) + v18

1 (R4
1 + R2) mod (2, v24

1 ),

and obtain v18
1 (R4

1 + R2) ≡ 0 mod (2, v24
1 ), since d(x4y) ≡ x4

1d(y) mod (2, v24
1 ).

By (5.4) and Lemma (5.5), we see that

d(x4ek y) ≡ v10
1 g4

k+1 + v12
1 gk+2 mod (2),

d(x4
kx4ek−1y) ≡ v10

1 x4
kg4

k + v12
1 x4

kgk+1 mod (2, v4ak

1 ).

Put wk = x4ek y + x4
kx4ek−1y. Then,

d(wk) ≡ v10
1 (g4

k+1 + x4
kg4

k ) + v12
1 (gk+2 + x4

kgk+1) mod (2, v4ak

1 )

≡ v10+4ek+4
1 R4

k + v
12+ek+1+1
1 Rk+1 mod (2, v4ak

1 )

by (5.7). The last congruence now follows from the relations 10 + 4ek + 4 =
12 + ek+1 + 1 and 4ak = ak+1 − 2.

We have homologous relations between Rn’s:
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Lemma (5.9). There are elements un and u′n for n > 0 such that

d(u1) ≡ v10
1 (R2

1 + R1 + x1g2
1 ) mod (2, v12

1 ), and

d(un) ≡ v10×4n−1

1 (R2
n + Rn + v

4en−1
1 xng2

n + v
an−1
1 xngn) mod (2, v3×4n

1 )

for n > 1; and

d(u′n) ≡ v5×4n

1 (Rn+1 + R2
n + v2en

1 x2
ngn+1 + v

2an−1
1 x2

ng2
n) mod (2, v6×4n

1 )

for n > 0.

Proof. Put u1 = v4
1v32

3 x + v32
3 y′ + v8

1v14
3 + v11

1 v11
3 + v9

1v37
3 . Then we compute

d(v4
1v32

3 x) ≡ v10
1 v32

3 (t4
3 + v1T2) mod (2, v18

1 ),

d(v32
3 y′) ≡ v32

3 (v11
1 T2 + v13

1 v3t2
2 + v14

1 t4
4 + v16

1 (r′ + t2
2t4

3 + v3t2)) mod (2, v17
1 ),

d(v8
1v14

3 ) ≡ v8
1v8

3(v4
3 + v4

1t8
2)(v2

3 + v2
1t4

2)− v8
1v14

3 mod (2, v14
1 )

≡ v10
1 v12

3 t4
2 + v12

1 v10
3 t8

2 mod (2, v14
1 )

≡ v10
1 v12

3 t4
2 + v12

1 v10
3 t2

2 mod (2, v14
1 ) by (3.7),

d(v11
1 v11

3 ) ≡ v11
1 v8

3(v2
3 + v2

1t4
2)(v3 + v1t2

2)− v11
1 v11

3 mod (2, v14
1 )

≡ v12
1 v10

3 t2
2 + v13

1 v9
3t4

2 mod (2, v14
1 ) and

d(v9
1v37

3 ) ≡ v9
1v32

3 (v4
3 + v4

1t8
2)(v3 + v1t2

2 + v4
1t2)− v9

1v37
3 mod (2, v14

1 )

≡ v10
1 v36

3 t2
2 + v13

1 (v36
3 t2 + v33

3 t8
2) mod (2, v14

1 )

≡ v10
1 v36

3 (t8
2 + v2

1t4
3) + v13

1 (v36
3 t2 + v33

3 t8
2) mod (2, v14

1 ) by (3.7)

and obtain

d(u1) ≡ v10
1 (v32

3 t4
3 + v12

3 t4
2 + v36

3 t8
2) + v12

1 v36
3 (t4

3 + v1t2) + v13
1 v2v9

3t2 mod (2, v14
1 ).

Here, we have the relation 0 ≡ r8 + r4 + v4
3t8

3 + v32
3 t4

3 + v12
3 t4

2 + v36
3 t8

2 mod (2, v4
1).

Indeed, we compute

r8 + r4 = t16
4 + t8

4 + t8
4 + t4

4 = t16
4 + t4

4

= t4
4 + v4

3t8
3 + v32

3 t4
3 + v12

3 t4
2 + v36

3 t8
2 + t4

4 mod (2, v4
1)

by the relation in (3.8). It follows that d(u1) ≡ v10
1 (r8 + r4 + v4

3t8
3) mod (2, v12

1 ).
Notice that R1 ≡ r4 mod (2, v2

1) by Lemma (5.8), v4
3 ≡ x1 mod (2, v3

1) by (5.3) and
g1 ≡ t4

3 mod (2, v1) by (5.4) and Lemma (5.1), and we obtain

d(u1) ≡ v10
1 (R2

1 + R1 + x1g2
1 ) mod (2, v12

1 ).

We now turn to the case for n = 2. Square the above congruence, and we have

d(u2
1) ≡ v20

1 (R4
1 + R2

1 + x2
1g4

1 ) mod (2, v24
1 ).

By Lemmas (5.1) and (5.2),

d(v10
1 x2

1y) ≡ v20
1 x2

1(g4
1 + v2

1g2) + v22
1 yg2

1 mod (2, v24
1 ),

where x = x1 and g = g1 by (5.3) and (5.4). Put u′′1 = u2
1 + v10

1 x2
1y. Since y ≡ x2

1
mod (2, v2

1) by the definition in Lemma (5.2), we obtain

d(u′′1 ) ≡ v20
1 (R4

1 + R2
1 + v2

1x2
1g2 + v2

1x2
1g2

1 ) mod (2, v24
1 ),
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whence u′1 = v2
1w1 +u′′1 satisfies the lemma for n = 1 by Lemma (5.8). Suppose

that

d(u′n) ≡ v5×4n

1 (Rn+1 + R2
n + v2en

1 x2
ngn+1 + v

2an−1
1 x2

ng2
n) mod (2, v6×4n

1 ).

Squaring this,

d(u′n
2) ≡ v10×4n

1 (R2
n+1 + R4

n + v4en

1 x4
ng2

n+1 + v
4an−1
1 x4

ng4
n) mod (2, v3×4n+1

1 ).

The elements x4
n, g4

n and R4
n are homologous to xn+1, v2

1gn+1 and Rn+1 by (5.3),
(5.4) and Lemma (5.8), respectively. We define un+1 to be the sum of u′n

2 and the
elements that give these homologous relations, and we obtain the congruence
on d(un+1). Here we notice that an = 4an−1 + 2.

Squaring the congruence on d(un+1), we have

d(u2
n+1) ≡ v5×4n+1

1 (R4
n+1 + R2

n+1 + v8en

1 x2
n+1g4

n+1 + v2an

1 x2
n+1g2

n+1) mod (2, v6×4n+1

1 ).

We also have

d(v5×4n+1+8en−10
1 x2

n+1x4en y) ≡ v5×4n+1+8en

1 x2
n+1(g4

n+1 + v2
1gn+2) mod (2, v6×4n+1

1 ).

Since 8en + 2 = 2en+1, we put

u′n+1 = u2
n+1 + v5×4n+1−en+2−13

1 wn+1 + v5×4n+1+8en−10
1 x2

n+1x4en y,

and obtain the congruence on d(u′n+1) by Lemma (5.8). This completes the
induction.

We also consider the elements xn,1 = 2xn + v5×4n−1

1 x2
n−1 and x′n,1 = 2x2

n +

v10×4n−1

1 x4
n−1.

Lemma (5.10). For n > 1,

d(xn,1) ≡ 2v
an+en−1+1
1 Rn−1 (= 2v7×4n−1

1 Rn−1)

mod (4, v
2×4n+en−1−1
1 ) = (4, v7×4n−1+en−1

1 ),

d(x′n,1) ≡ 2v
2an+2en−1+2
1 R2

n−1 (= 2v14×4n−1

1 R2
n−1)

mod (4, v
4n+1+2en−1−2
1 ) = (4, v14×4n−1+2en−2

1 ).

Proof. These follow from the computation:

d(2xn) ≡ 2van

1 gn ≡ 2van

1 xn−1gn−1 + 2v
an+en−1+1
1 Rn−1 mod (4),

d(v5×4n−1

1 x2
n−1) ≡ 2v

5×4n−1+an−1
1 xn−1gn−1

mod (4, v
5×4n−1+2an−1
1 ) = (4, v

2×4n+en−1−1
1 );

d(2x2
n) ≡ 2v2an

1 g2
n ≡ 2v2an

1 x2
n−1g2

n−1 + 2v
2an+2en−1+2
1 R2

n−1 mod (4),

d(v10×4n−1

1 x4
n−1) ≡ 2v

10×4n−1+2an−1
1 x2

n−1g2
n−1

mod (4, v
10×4n−1+4an−1
1 ) = (4, v

4n+1+2en−1−2
1 ).

Note that d(x2
n) ≡ 2van

1 xngn mod (4, v2an

1 ) and en + 1 + 2× 4n−1 = 2an−1 + 2.
Then the above two lemmas imply the following:
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Lemma (5.11). Put un = 2van+1+en+1−10×4n−1

1 un + xn+1,1 + v
en+2+an−1+1
1 x2

n and
u′n = 2v2an+1+2en+2−5×4n

1 u′n + x′n+1,1 + v
2en+2+2an−1+2
1 x4

n. Then,

d(un) ≡ 2van+1+en+1
1 (R2

n + v
4en−1
1 xng2

n) mod (4, v
an+1+2an−1+2
1 ) and

d(u′n) ≡ 2v2an+1+2en+2
1 (Rn+1 + v2en

1 x2
ngn+1) mod (4, v2an+1+an+2

1 )

for n > 0.

Lemma (5.12). There exist elements ũn and ũ′n such that

d(ũn) ≡ 2van+1+en+1
1 (R2

n + v6×4n−2

1 x6
n−1R2

n−2) mod (4, v
an+1+2an−1+2
1 ) for n > 2,

d(ũ′n) ≡ 2v2an+1+2en+2
1 (Rn+1 + v3×4n−1

1 x3
nRn−1) mod (4, v2an+1+an+2

1 ) for n ≥ 2.

Proof. For n > 2, put ũn = un + v
an+1+2en−2an−2
1 x6

n−1x4
n−2, and the first one

follows from

d(un) ≡ 2van+1+en+1
1 (R2

n + v
4en−1
1 xng2

n)

≡ 2van+1+en+1
1 (R2

n + v
4en−1
1 x6

n−1(x2
n−2g2

n−2 + v
2en−2+2
1 R2

n−2))

mod (4, v
an+1+2en+2en−1+2
1 ), d(van+1+2en−2an−2

1 x6
n−1x4

n−2)

≡ 2van+1+2en

1 x6
n−1x2

n−2g2
n−2 mod (4, v

an+1+2en+2an−2
1 ).

Here, note that 2an−1 = 2en + 2en−1 = en + 2× 4n−1 − 1.
In a similar way, the second congruence follows from

d(u′n) ≡ 2v2an+1+2en+2
1 (Rn+1 + v2en

1 x2
ngn+1)

≡ 2v2an+1+2en+2
1 (Rn+1 + v2en

1 x3
n(xn−1gn−1 + v

en−1+1
1 Rn−1))

mod (4, v2an+1+5en+3
1 ), d(v2an+1+4en+2−an−1

1 x3
nx2

n−1)

≡ 2v2an+1+4en+2
1 x3

nxn−1gn−1 mod (4, v
2an+1+4en+2+an−1
1 ).

We also notice that an − 1 = 5en = 2en + 4n − 1.

In the same manner as xn,1 and x′n,1, we consider

yn,1 = x4
n−1 + v

2an−1−2an−2
1 x2

n−1x4
n−2 and y′n,1 = x2

n + v
an−an−1
1 xnx2

n−1.

Lemma (5.13).

d(yn,1) ≡ 2v
2an−1+2en−2+2
1 x2

n−1R2
n−2 (= 2v14×4n−2

1 x2
n−1R2

n−2)

mod (4, v
2an−1+2an−2
1 ) for n > 2,

d(y′n,1) ≡ 2v
an+en−1+1
1 xnRn−1 (= 2v7×4n−1

1 xnRn−1) mod (4, v
an+an−1
1 ) for n > 1.
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Proof. These follow from

d(x4
n−1) ≡ 2v

2an−1
1 x2

n−1g2
n−1 mod (4, v

4an−1
1 )

≡ 2v
2an−1
1 x2

n−1(x2
n−2g2

n−2+v
2en−2+2
1 R2

n−2) mod (4, v
4an−1
1 ),

d(v2an−1−2an−2
1 x2

n−1x4
n−2) ≡ 2v

2an−1
1 x2

n−1x2
n−2g2

n−2 mod (4, v
2an−1+2an−2
1 ); and

d(x2
n) ≡ 2van

1 xngn mod (4, v2an

1 )

≡ 2van

1 xn(xn−1gn−1 + v
en−1+1
1 Rn−1) mod (4, v2an

1 ),

d(van−an−1
1 xnx2

n−1) ≡ 2van

1 xnxn−1gn−1 mod (4, v
an+an−1
1 ).

Lemma (5.14). d(x2
n−1) ≡ 2v

an−1
1 gn + 2v2×4n−1

1 Rn−1 mod (4, v
2an−1
1 ) for n ≥ 2

and d(x4
n−1) ≡ 2v

2an−1
1 g2

n + 2v4n

1 R2
n−1 mod (4, v

4an−1
1 ) for n ≥ 2.

Proof. These follow from Lemma (5.5) and the definition (5.7).

Let bn,k for n, k > 0 be integers defined by

(5.15) bn,k = 4n + 3× 4n−2k+3ek−1 − 2× 4n−2k

and consider the elements

(5.16)

Xn = xn,1 +
[ n

2 ]−1∑
k=1

v
bn,k

1 x
3ek−1

n−2k+2ũ′n−2k,

X′
n = x′n,1 +

[ n
2 ]−1∑
k=1

v
2bn,k

1 x
6ek−1

n−2k+2ũn−2k+1,

Yn = yn,1 +
[ n−1

2 ]−1∑
k=1

v
2bn−1,k

1 x2
n−1x

6ek−1

n−2k+1ũn−2k,

Y ′
n = y′n,1 +

[ n
2 ]−1∑
k=1

v
bn,k

1 xnx
3ek−1

n−2k+2ũ′n−2k,

where integers [x] and en are those given in (2.9).

Lemma (5.17). The elements in (5.16) satisfy Xn ≡ 2xn, X′
n ≡ 2x2

n, Yn ≡ x4
n−1

and Y ′
n ≡ x2

n mod (4, v2
1), and

d(Xn) ≡ 2vcn

1 x
3e[ n

2 ]−1

2+ε(n) R1+ε(n) mod (4, vcn+41+ε(n)

1 ),

d(X′
n) ≡ 2v2cn

1 x
6e[ n

2 ]−1

2+ε(n) R2
1+ε(n) mod (4, v2cn+2×41+ε(n)

1 ),

d(Yn) ≡ 2v
2cn−1
1 x2

n−1x
6e

[ n−1
2 ]−1

2+ε(n−1) R
2
1+ε(n−1) mod (4, v

2cn−1+2×41+ε(n−1)

1 ) and

d(Y ′
n) ≡ 2vcn

1 xnx
3e[ n

2 ]−1

2+ε(n) R1+ε(n) mod (4, vcn+41+ε(n)

1 )

for integers [x], cn, ε(n) and en in (2.9).
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Proof. Note that the integers bn,k in (5.15) satisfy

bn,1 = an + en−1 − 2an−1 − 2en−2 − 1 and

bn,k+1 = bn,k + 2an−2k+1 + 2en−2k + 3× 4n−2k−1 − 2an−2k−1 − 2en−2k−2;

2bn,1 = 2an + 2en−1 − an − en−1 + 1 and

2bn,k+1 = 2bn,k + an−2k+2 + en−2k+1 + 6× 4n−2k−1 − an−2k − en−2k−1.

Indeed, an + en−1 = 7× 4n−1 − 1.
The differentials on the elements in (5.16) then follow immediately from

Lemmas (5.10), (5.12) and (5.13) as follows:

d(Xn) ≡ 2v
an+en−1+1
1 Rn−1

+
[ n

2 ]−1∑
k=1

v
bn,k

1 x
3ek−1

n−2k+2(2v
2an−2k+1+2en−2k+2
1 (Rn−2k+1 + v3×4n−2k−1

1 x3
n−2kRn−2k−1))

≡ 2v
bn,[ n

2 ]−1+2a3+ε(n)+2e2+ε(n)+2+3×41+ε(n)

1 x
3e[ n

2 ]−1

2+ε(n) R1+ε(n) mod (4, vcn+41+ε(n)

1 ),

d(X′
n) ≡ 2v

2an+2en−1+2
1 R2

n−1

+
[ n

2 ]−1∑
k=1

v
2bn,k

1 x
6ek−1

n−2k+2(2v
an−2k+2+en−2k+1+1
1 (R2

n−2k+1 + v6×4n−2k−1

1 x6
n−2kR2

n−2k−1))

≡ 2v
2bn,[ n

2 ]−1+a4+ε(n)+e3+ε(n)+1+6×41+ε(n)

1 x
6e[ n

2 ]−1

2+ε(n) R2
1+ε(n) mod (4, v2cn+2×41+ε(n)

1 ),

d(Yn) ≡ 2v
2an−1+2en−2+2
1 x2

n−1R2
n−2

+
[ n−1

2 ]−1∑
k=1

v
2bn−1,k

1 x2
n−1x

6ek−1

n−2k+1(2v
an−2k+1+en−2k+1
1 (R2

n−2k + v6×4n−2k−2

1 x6
n−2k−1R2

n−2k−2))

≡ 2v
2b

n−1,[ n−1
2 ]−1

+a3+ε(n−1)+e2+ε(n−1)+1+6×4ε(n−1)

1 x2
n−1x

6e
[ n−1

2 ]−1

2+ε(n−1) R
2
1+ε(n−1)

mod (4, v
2cn−1+2×41+ε(n−1)

1 ),

d(Y ′
n) ≡ 2v

an+en−1+1
1 xnRn−1

+
[ n

2 ]−1∑
k=1

v
bn,k

1 xnx
3ek−1

n−2k+2(2v
2an−2k+1+2en−2k+2
1 (Rn−2k+1+v3×4n−2k−1

1 x3
n−2kRn−2k−1))

≡ 2v
bn,[ n

2 ]−1+2a3+ε(n)+2e2+ε(n)+2+3×41+ε(n)

1 xnx
3e[ n

2 ]−1

2+ε(n) R1+ε(n) mod (4, vcn+41+ε(n)

1 ).

Note that 2[ n
2 ] = n− ε(n) by definition (2.9), and we obtain the lemma.

Lemma (5.18). There exists an element χ such that d(χ) ≡ 2v5
1g2

1 + 2v7
1R1 +

2v7
1v2v3

3t21+2v7
1v2v6

3t2 mod (4, v8
1) for r = t4+t2

4 in Lemma (5.2) and t21 = t2
2+v2t2.

Proof. Mod (4, v8
1)

2v5
1g2

1 ≡ 2v5
1(t2

3 + v2
3t4

2 + v8
3t2

2 + v2
1t4

4 + v2
1t2

2),

d(2v2
1v2v2

3) ≡ 2v4
1v2t4

2,
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d(v4
1v2) ≡ 2v4

1t2,

d(v3
1v4

3) ≡ 2v5
1v2

3t4
2 + v7

1t8
2,

d(2v4
1v9

3) ≡ 2v5
1v8

3t2
2,

d(2v2x1) ≡ 2v6
1v2(t4

3 + v1t2)

≡ 2v6
1(t3 + v3t8

2 + v4
3t2 + v1t2

4 + v1v2t2) by (3.7),

d(2v5
1v2

3) ≡ 2v7
1t4

2,

d(3v6
1v3) ≡ 2v6

1t3 + 3v7
1t2

2,

d(v6
1v2v4

3) ≡ 2v6
1v4

3t2.

The sum of these congruences with (3.7) shows the existence of an element χ′′

such that 2v5
1g2

1 + d(χ′′) ≡ 2v7
1r2 mod (4, v8

1). We further compute mod (4, v4
1),

2v3
1t2

4 ≡ 2v3
1(t8

4 + v2
3t16

3 + v16
3 t2

3)

≡ 2v3
1(t8

4 + v2
3t4

3 + v6
3t32

2 + v18
3 t4

2 + v16
3 t2

3) by (3.7),

d(2v2
1v7

3) ≡ 2v3
1v6

3t2
2,

d(v1v20
3 ) ≡ 2v3

1v18
3 t4

2,

d(2v2v18
3 ) ≡ 2v2

1v2v16
3 t4

2,

d(v2
1v2v16

3 ) ≡ 2v2
1v16

3 t2.

These with (3.7) also imply the existence of an element χ′ such that

2v5
1g2

1 + d(χ′) ≡ 2v7
1r4 + 2v7

1v2
3t4

3 mod (4, v8
1).

The congruences

2v2
3t4

3 ≡ 2v2v2
3(t3 + v3t8

2 + v4
3t2) and

d(v2v3
3) ≡ 2v2v2

3t3 + 2v3
3t2

show that 2v2
3t4

3 is homologous to 2v2v3
3t21 + 2v2v6

3t2. Since r4 = R1 by Lemma
(5.8), we obtain the lemma.

Lemma (5.19). There exists an element χ such that d(χ) ≡ 2v3
1x1g2

1 +2v3
1v6

3t21

mod (4, v4
1) for t21 in Lemma (5.18).

Proof. Note that t4
2 ≡ v2t2 + v1v2t2

3 mod (2, v2
1). Then the lemma follows as

the sum of the congruences:

2v3
1x1g2

1 ≡ 2v3
1x1(t2

3 + v2
3t4

2 + v8
3t2

2),

d(2v2x1v2
3) ≡ 2v2

1v2x1t4
2,

d(v2
1v2x1) ≡ 2v2

1x1t2,

d(2v2
1x1v9

3) ≡ 2v3
1x1v8

3t2
2,

d(2v2
1x1v3

3) ≡ 2v3
1x1v2

3t2
2.



ON SUBGROUPS OF π∗(L2T (1) ∧ M(2)) AT THE PRIME TWO 225

6. The action of the connecting homomorphism

In this section, we determine E∗2 (L2M(2,∞)) = H∗M1
1 (2) by observing the

long exact sequence (1.3) (see also (3.3)) by the method using [4, Remark 3.11]:

Lemma (6.1). Suppose that a submodule Ds of HsM1
1 (2) fits in the exact

sequence

Hs−1M1
1 (2) δ // HsM0

2 (2)
1/v1 // Ds

v1 // Ds δ // Hs+1M0
2 (2).

Then, HsM1
1 (2) = Ds.

We read off the zeroth and the first lines of the E2-term E∗2 (L2M(2, 1)) =
H∗M0

2 (2) from Theorem (2.5) and (3.3):

H0M0
2 (2) = 2v2K∗[v2

3]⊗ Λ(v3)⊕ 2v3K∗[v2
3]⊕ Z/4[v±2

2 , v2
3] and

H1M0
2 (2) = 2v2K∗[v2

3]⊗ Λ(v3){h20, h21, h30, h31, ρ2} ⊕ h20K∗[v2
3]⊗ Λ(v3)

⊕ 2v3K∗[v2
3]{h21, h31, ρ2} ⊕ h30K∗[v2

3]

⊕ 2v3h30K∗[v2
3]⊕ Z/4[v±2

2 , v2
3]{h21, h31, ρ2}.

Proposition (6.2). For the generators of H0M1
1 (2), we see the behavior of

the connecting homomorphism:

δ(2v2v2t+1
3 /v1) = 2v2v2t

3 h21,

δ(2v2v4t+2
3 /v3

1 + v2v4t
3 /v1) = 2v4t+1

3 h30 + 2v4t
3 h31,

δ(2v2x2t+1
n /van+1

1 ) = −x2t
n v

4en−1
3 h21 + 2x2t

n v
4en−1
3 ρ2,

δ(2v2x4t+2
n /v2an

1 ) = 2v2x4t
n v

8en−1
3 h31 + 2v2x4t

n v
8en−1+1
3 h30;

δ(2v2t+1
3 /v1) = 2v2v2t

3 h20 + 2v2t
3 h21;

δ(v4t+2
3 /v1) = 2v2v4t+1

3 h20 + 2v4t+1
3 h21,

δ(2v4t+2
3 /v2

1) = 2v4t
3 h21,

δ(v8t+4
3 /v2

1) = 2v8t+2
3 h21,

δ(2x2t+1
1 /v6

1) = 2v2v8t+1
3 h21,

δ(x4t+2
1 /v6

1) = 2v2v16t+5
3 h21,

δ(2x4t+2
1 /v14

1 ) = 2x4t
1 (ρ2 + v2v3

3h21 + v2v6
3h20),

δ(x2t+1
2 /v14

1 ) = 2x8t+2
1 (ρ2 + v2v3

3h21 + v2v6
3h20),

δ(2x2t+1
2k /vc2k

1 ) = 2v2x
2×42k−2t+3ek−1
2 v2

3(v3h21 + v4
3h20) k ≥ 1,

δ(x4t+2
2k /vc2k

1 ) = 2v2x
42k−2(4t+1)+3ek−1
2 v2

3(v3h21 + v4
3h20) k ≥ 1,

δ(2x4t+2
2k /v2c2k

1 ) = 2v42k+1t+6ek

3 h21 k ≥ 1,

δ(x2t+1
2k+1/v2c2k

1 ) = 2v42k(8t+2)+6ek

3 h21 k ≥ 1,
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δ(2x2t+1
2k+1/v

c2k+1+2
1 ) = 2v2x2×42kt+3ek

1 (v3h21 + v4
3h20) k ≥ 1,

δ(x4t+2
2k+1/v

c2k+1+2
1 ) = 2v2x42k(4t+1)+3ek

1 (v3h21 + v4
3h20) k ≥ 1,

δ(2x4t+2
2k+1/v

2c2k+1+6
1 ) = 2x42k+1t+6ek

1 (ρ2 + v2v3
3h21 + v2v6

3h20) k ≥ 1,

δ(x2t+1
2k /v

2c2k−1+6
1 ) = 2x

42k−2(8t+2)+6ek−1
1 (ρ2 + v2v3

3h21 + v2v6
3h20) k > 1.

Proof. Throughout this proof, we use the relations in (3.7) freely. The first
and the second equalities follow from

d(2v2v2t+1
3 /v2

1 + v2v2t
3 /v1) = 2v2v2t

3 t2
2/v1 + 2v2t

3 t2/v1 and

d(2v2v4t+2
3 /v4

1 + v2v4t
3 /v2

1) = 2v2v4t
3 t4

2/v2
1 + 2v4t

3 t2/v2
1

= 2v4t
3 t2

3/v1.

Turn to the third equality. Suppose first that n = 1. Since

d(2v2x2t+1
1 /v8

1) = 2v2x2t
1 g1/v2

1 = 2v2x2t
1 (t4

3 + v1t2)/v2
1

= 2x2t
1 (t3 + v3t8

2 + v4
3t2 + v1t2

4)/v2
1 + 2v2x2t

1 t2/v1,

d(x2t
1 v3/v2

1) = 2x2t
1 t3/v2

1 + x2t
1 t2

2/v1 + 2x2t
1 (v2t2 + t2

2)/v1,

d(3x2t
1 v2

3/v3
1) = 2x2t

1 v3t2
2/v2

1 + 3x2t
1 t4

2/v1,

d(v2x2t
1 v4

3/v2
1) = 2x2t

1 v4
3t2/v2

1,

we obtain d(2v2x2t+1
1 /v8

1+· · · ) = 2x2t
1 t2

4/v1+x2t
1 t2

2/v1+2x2t
1 (v2t2+t2

2)/v1+x2t
1 t4

2/v1.
Put t

′
21 = t2

2 + t4
2 + 2t2

4 + 2v2t2 + 2v2t5
2 and recall t21 in Lemma (5.18). Then,

3t21 − t
′
21 = 2t2

4 + 2v2t4 mod (4, v1), since ηR(v2v4) ≡ v2v4 + v2
2t4

2 − v5
2t2 + 2v2t4 +

2v4t2 + 2v2t5
2 + 2v4

2t2
2 mod (4, v1) in Γ(2). Thus, we see that t

′
21 represents

3h21 + 2ρ2. For n > 1, the equality follows similarly from the computation

d(2v2x2t+1
n /van+2

1 ) = 2v2x2t
n gn/v2

1 = 2v2x2t
n x

en−1
1 (t4

3 + v1t2)/v2
1

= 2x2t
n x

en−1
1 (t3 + v3t8

2 + v4
3t2 + v1t2

4)/v2
1 + 2v2x2t

n x
en−1
1 t2/v1,

d(x2t
n x

en−1
1 v3/v2

1) = 2x2t
n x

en−1
1 t3/v2

1 + x2t
n x

en−1
1 t2

2/v2
1 + 2x2t

n x
en−1
1 (v2t2 + t2

2)/v1,

d(x2t
n x

en−2
2 v6

3/v3
1) = 2x2t

n x
en−1
1 v3t2

2/v2
1 + x2t

n x
en−1
1 t4

2/v1 + 2x2t
n x

en−1
1 t4

2/v1,

d(v2x2t
n x

en−1
1 v4

3/v2
1) = 2x2t

n x
en−1
1 v4

3t2/v2
1.

The fourth equality is verified by

d(2v2x4t+2
n /v2an+1

1 ) = 2v2x4t
n g2

n/v1 = 2v2x4t
n x

2en−1
1 g2

1 /v1 = 2v2x4t
n x

2en−1
1 t8

3/v1

= 2v2x4t
n x

2en−1
1 (t2

3 + v2
3t4

2 + v8
3t2

2)/v1,

d(v2x4t
n x

2en−1
1 v2

3/v1) = 2x4t
n x

2en−1
1 v2

3t2/v1,

d(2v2x4t
n x

2en−1
1 v9

3/v2
1) = 2v2x4t

n x
2en−1
1 v8

3t2
2/v1.

The fifth and the sixth ones follow from d(2v2t+1
3 /v2

1) = 2v2t
3 t2

2/v1 and
d(v4t+2

3 /v2
1) = 2v4t+1

3 t2
2/v1, respectively. The seventh and the eighth are

checked as
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d(2v4t+2
3 /v3

1) = 2v4t
3 t4

2/v1 = 2v4t
3 (t21 + t2

2)/v1,

d(2v4t+1
3 /v2

1) = 2v4t
3 t2

2/v1; and

d(v8t+4
3 /v3

1) = 2v8t+2
3 t4

2/v1,

d(2v8t+3
3 /v2

1) = 2v8t+2
3 t2

2/v1.

The ninth and the tenth ones follow from the computation:

d(2x2t+1
1 /v7

1) = 2x2t
1 g1/v1 = 2x2t

1 (v2t3 + v2v3t2
2 + v2v4

3t2)/v1,

d(v2x2t
1 v3/v1) = 2x2t

1 v3t2/v1 + 2v2x2t
1 t3/v1,

d(2x2t+1
1 v2

3/v3
1) = 2x2t+1

1 t4
2/v1; and

d(x4t+2
1 /v7

1) = 2x4t+1
1 g1/v1 = 2x4t+1

1 (v2t3 + v2v3t2
2 + v2v4

3t2)/v1,

d(v2x4t+1
1 v3/v1) = 2x4t+1

1 v3t2/v1 + 2v2x4t+1
1 t3/v1,

d(2x4t+2
1 v2

3/v3
1) = 2x4t+2

1 t4
2/v1,

in which 2v2x2t
1 v3t2

2/v1 + 2x2t
1 v3t2/v1 = 2v2x2t

1 v3t21/v1 and 2v2x4t+1
1 v3t2

2/v1 +
2x4t+1

1 v3t2/v1 = 2v2x4t+1
1 v3t21/v1. By Lemma (5.18),

d(2x4t+2
1 /v15

1 ) = 2x4t
1 g2

1 /v3
1,

d(x4t
1 χ/v8

1) = 2x4t
1 g2

1 /v3
1 + 2x4t

1 (R1 + v2v3
3t21 + v2v6

3t2)/v1.

The element ρ2 is represented by the cocycle r4, and r2 = r4 + s for s =
t4
3 = v2(t3 + v3t2

2 + v4
3t2). Note that 2v2t3 = 2v3t2 up to homology. Then

σ = [s] = v2v3h21 + v2v4
3h20. It follows that

δ(2x4t+2
1 /v14

1 ) = 2x4t
1 ρ2 + 2v2x4t

1 (v3
3h21 + v6

3h20).

In the same manner,

d(x2t
2 x4

1/v15
1 ) = 2x2t

2 x2
1g2

1 /v3
1,

d(x2t
2 x2

1χ/v8
1) = 2x2t

2 x2
1g2

1 /v3
1 + 2x2t

2 x2
1r2/v1,

and we obtain

δ(x2t+1
2 /v14

1 ) = 2x8t+2
1 ρ2 + 2v2x8t+2

1 (v3
3h21 + v6

3h20).

For n = 2k ≥ 2, by Lemma (5.17), we compute

d(x2t
2kX2k/vc2k+1

1 ) = 2x2t
2kx

3ek−1
2 R1/v1,

d(2x2t
2kx

3ek−1
2 x2

1/v15
1 + . . . ) = 2x2t

2kx
3ek−1
2 (R1 + v2v3

3t21 + v2v6
3t2)/v1.

It follows that

δ(2x2t+1
2k /vc2k

1 ) = 2v2x
2×42k−2t+3ek−1
2 v2

3(v3h21 + v4
3h20).

In the same way, for even n = 2k ≥ 2,

d(x4t
n Y ′

n/vcn+1
1 ) = 2x4t+1

2k x
3ek−1
2 R1/v1

with d(2x4t+1
2k x

3ek−1
2 x2

1/v15
1 + . . . ) = 2x4t+1

2k x
3ek−1
2 (R1 +v2v3

3t21 +v2v6
3t2)/v1, and we

obtain
δ(x4t+2

2k /vc2k

1 ) = 2v2x
42k−2(4t+1)+3ek−1
2 v2

3(v3h21 + v4
3h20).

For n = 2k ≥ 2, by Lemmas (5.17), (5.9) and (5.19),
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d(x4t
n X′

2k/v2c2k+1
1 ) = 2x

42k−1t+6ek−1
2 R2

1/v1,

d(x42k−1t+6ek−1
2 X2/vc2+1

1 ) = 2x
42k−1t+6ek−1
2 R1/v1,

d(2x
42k−1t+6ek−1
2 u1/v11

1 ) = 2x
42k−1t+6ek−1
2 (R2

1 + R1 + x1g2
1 )/v1,

d(x42k−1t+6ek−1
2 χ/v4

1) = 2x
42k−1t+6ek−1
2 (x1g2

1 + v6
3t21)/v1,

and we have

δ(2x4t+2
2k /v2c2k

1 ) = 2v42k+1t+6ek

3 h21.

For odd n = 2k + 1 ≥ 3, by Lemmas (5.17), (5.9) and (5.19),

d(x2t
n Yn/v

2cn−1+1
1 ) = 2x8t+2

n−1 x
6ek−1
2 R2

1/v1 = 2x
42k−2(8t+2)+6ek−1
2 R2

1/v1,

d(x42k−2(8t+2)+6ek−1
2 X2/vc2+1

1 ) = 2x
42k−2(8t+2)+6ek−1
2 R1/v1,

d(2x
42k−2(8t+2)+6ek−1
2 u1/v11

1 ) = 2x
42k−2(8t+2)+6ek−1
2 (R2

1 + R1 + x1g2
1 )/v1,

d(x42k−2(8t+2)+6ek−1
2 χ/v4

1) = 2x
42k−2(8t+2)+6ek−1
2 (x1g2

1 + v6
3t21)/v1.

It follows that

δ(x2t+1
2k+1/v2c2k

1 ) = 2v42k(8t+2)+6ek

3 h21.

Lemmas (5.17), (5.10) and (5.9) show the equalities

d(x2t
2k+1X2k+1/v

c2k+1+3
1 ) = 2x

2×42k−2t+3ek−1
3 R2/v3

1,

d(x2×42k−2t+3ek−1
3 x′2,1/v14×4+3

1 ) = 2x
2×42k−2t+3ek−1
3 R2

1/v3
1,

d(2x
2×42k−2t+3ek−1
3 u′1/v23

1 ) = 2x
2×42k−2t+3ek−1
3 (R2 + R2

1 + v2
1x2

1g2)/v3
1

= 2x
2×42k−2t+3ek−1
3 (R2 + R2

1 + v2
1v2x3

1(t3 + v3t2
2 + v4

3t2))/v3
1,

d(v2v3x2×42kt+3ek

1 /v1) = 2x2×42kt+3ek

1 (v3t2 + v2t3)/v1,

which give rise to

δ(2x2t+1
2k+1/v

c2k+1+2
1 ) = 2v2x2×42kt+3ek

1 (v3h21 + v4
3h20).

Consider the odd case where n = 2k + 1.

d(x4t
n Y ′

n/vcn+3
1 ) = 2x4t+1

n x
3ek−1
3 R2/v3

1 = 2x
42k−2(4t+1)+3ek−1
3 R2/v3

1,

d(x42k−2(4t+1)+3ek−1
3 x′2,1/v14×4+3

1 ) = 2x
42k−2(4t+1)+3ek−1
3 R2

1/v3
1,

d(2x
42k−2(4t+1)+3ek−1
3 u′1/v23

1 ) = 2x
42k−2(4t+1)+3ek−1
3 (R2 + R2

1 + v2
1x2

1g2)/v3
1

= 2x
42k−2(4t+1)+3ek−1
3 (R2 + R2

1 + v2
1v2x3

1(t3 + v3t2
2 + v4

3t2))/v3
1,

d(v2v3x42k(4t+1)+3ek

1 /v1) = 2x42k(4t+1)+3ek

1 (v3t2 + v2t3)/v1,

and so

δ(x4t+2
2k+1/v

c2k+1+2
1 ) = 2v2x42k(4t+1)+3ek

1 (v3h21 + v4
3h20).

For n = 2k + 1 ≥ 3, by Lemmas (5.17), (5.10), (5.9) and (5.18),
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d(x4t
n X′

2k+1/v
2c2k+1+7
1 ) = 2x

42k−1t+6ek−1
3 R2

2/v7
1,

d(x42k−1t+6ek−1
3 x3,1/v7×42+7

1 ) = 2x
42k−1t+6ek−1
3 R2/v7

1,

d(2x
42k−1t+6ek−1
3 u2/v43

1 ) = 2x
42k−1t+6ek−1
3 (R2

2 + R2 + v4
1x2g2

2 )/v7
1

= 2x
42k−1t+6ek−1
3 (R2

2 + R2 + v4
1x6

1g2
1 )/v7

1,

d(x42k+1t+6ek

1 χ/v8
1) = 2x42k+1t+6ek

1 (g2
1 + v2

1R1 + v2
1v2v3

3t21 + v2
1v2v6

3t2)/v3
1.

It follows that

δ(2x4t+2
2k+1/v

2c2k+1+6
1 ) = 2x42k+1t+6ek

1 (ρ2 + v2v3
3h21 + v2v6

3h20).

Last, for n = 2k ≥ 4, by Lemmas (5.17), (5.10), (5.9) and (5.18),

d(x2t
n Yn/v

2cn−1+7
1 ) = 2x8t+2

n−1 x
6ek−2
3 R2

2/v7
1 = 2x

42k−4(8t+2)+6ek−2
3 R2

2/v7
1,

d(x42k−4(8t+2)+6ek−2
3 x3,1/v7×42+7

1 ) = 2x
42k−4(8t+2)+6ek−2
3 R2/v7

1,

d(2x
42k−4(8t+2)+6ek−2
3 u2/v43

1 ) = 2x
42k−4(8t+2)+6ek−2
3 (R2

2 + R2 + v4
1x2g2

2 )/v7
1

= 2x
42k−4(8t+2)+6ek−2
3 (R2

2 + R2 + v4
1x6

1g2
1 )/v7

1,

d(x42k−2(8t+2)+6ek−1
1 χ/v8

1) = 2x
42k−2(8t+2)+6ek−1
1 (g2

1 +v2
1R1 + v2

1v2v3
3t21 + v2

1v2v6
3t2)/v3

1,

and we obtain δ(x2t+1
2k /v

2cn−1+6
1 ) = 2x

42k−2(8t+2)+6ek−1
1 (ρ2 + v2v3

3h21 + v2v6
3h20).

Proof of Theorem (2.10). Set D0 to be the right hand side of the formula
for E0

2(L2M(2,∞)), which is H0M1
1 (2). Then Proposition (6.2) shows that D0

satisfies the hypothesis of Lemma (6.1).
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THE LAW OF A STOCHASTIC INTEGRAL WITH TWO
INDEPENDENT FRACTIONAL BROWNIAN MOTIONS

XAVIER BARDINA AND CIPRIAN A. TUDOR

Abstract. Using the tools of the stochastic integration with respect to the
fractional Brownian motion, we obtain the expression of the characteristic

function of the random variable
∫ 1

0
Bα

s dBH
s where Bα and BH are two inde-

pendent fractional Brownian motions with Hurst parameters α ∈ (0, 1) and
H > 1

2 respectively. The two-parameter case is also considered.

1. Introduction

The theory of multiple stochastic integrals with respect to Brownian motion
is well-known (see for instance [9]), but in general, it is difficult to compute the
law of a stochastic integral with respect to the Wiener process when the inte-
grand is not deterministic. There are some known results in particular cases.
Let us recall the context. Consider W 1 and W 2 two independent Brownian
motions. In [6] and [19] the authors studied the law of the random variable

α

∫ 1

0
W 1

s dW 2
s + β

∫ 1

0
W 2

s dW 1
s .

When α = 1 and β = 0 they showed that the characteristic function of the
stochastic integral

∫
[0,1] W 1

s dW 2
s is given by

(1.1) Φ(t) =
(

cosh2
(

t

2

)
+ sinh2

(
t

2

))− 1
2

.

In the two-parameter case in [10] (see also [12]) the authors proved that the
characteristic function of the integral

∫
[0,1]2 W 1

sdW 2
s (here W 1 and W 2 denotes

two independent Brownian sheets) is given by

(1.2) Φ(t) =
∏
k≥1

cosh−
1
2

(
2t

(2k − 1)π

)
.

The aim of the present work is develop a similar study for the fractional
Brownian motion. The recent development of the stochastic integration with
respect to the fractional Brownian motion (fBm) (see for instance [14]) gives the
tools for this analysis. Concretely, we will consider two independent fractional
Brownian motion BH and Bα with Hurst parameter α ∈ (0, 1) and H > 1

2 ,
and we will find an explicit expression for the characteristic function of the

2000 Mathematics Subject Classification: 18A30, 22A05, 22D35, 43A40.
Keywords and phrases: duality, convergence group, nuclear topological group, direct limit,

inverse limit.
The authors acknowledge the financial aid received from MCYT, BFM2003-05878 and FEDER

funds.
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stochastic integral
∫ 1

0 Bα
s dBH

s . We mention that this kind of integrals appears
in the study of stochastic wave equations with fractional noise (see [5]). Related
results on the law of this integral have also been proved in [7].

2. Preliminaries: Fractional Brownian motion and Wiener integrals

Let T = [0, 1] be the unit interval and let
(
BH

t

)
t∈T

be a fractional Brownian
motion with Hurst parameter H ∈ (0, 1). Denote by RH its covariance

RH (t, s) = E
(

BH
t BH

s

)
=

1
2

(
t2H + s2H − |t − s|2H

)
.

We denote byH(H) := H the canonical space of the fractional Brownian motion
BH . That is, H is the closure of the linear span of the indicator functions
{1[0,t], t ∈ T } with respect to the scalar product

〈1[0,t], 1[0,s]〉H = RH (t, s).

The structure of the Hilbert space H varies upon the values of the Hurst pa-
rameter. Let us recall some basic facts about this space.
• if H > 1

2 the elements of H may not be functions but distributions of neg-
ative order (see [15]). Therefore, it is of interest to know significant subspaces
of functions contained in it.

Define the function

(2.1) θH (s, t) = H(2H − 1)|s − t|2H−2

and let L2
H (T ) be the set of functions f : T → R such that∫

T

∫
T

|f (u)||f (v)|θ(u, v)dudv < ∞,

endowed with the scalar product

(2.2) 〈f, g〉H =
∫

T

∫
T

f (u)g(v)θ(u, v)dudv .

It has been proved in [15] that L2
H (T ) is a strict subset of H and the scalar

products 〈·, ·〉H and 〈·, ·〉H coincide on L2
H (T ). Moreover, we have the following

inclusion

(2.3) L
1
H (T ) ⊂ L2

H (T ) ⊂ H .

• If H < 1
2 , then H is a set of functions; it coincides actually with the set

I
1
2−H

T−
(
L2(T )

)
where I

1
2−H

T− is the fractional integral of order 1
2 −H (see [8], [1],

[15]). A significant subspace of H is the set of Hölder continuous functions of
order 1

2 −H + ε for all ε > 0,

(2.4) C
1
2−H+ε(T ) ⊂ H ⊂ L2(T ) ⊂ L

1
H (T ) .

Consider EH the class of step functions of the form

(2.5) ϕ(·) =
n∑

i=1

ai1(ti,ti+1](·) n ≥ 1, ti ∈ T, ai ∈ R .
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It has been proved in [16] that EH is dense in H. For ϕ ∈ EH of the form (2.5)
we define its Wiener integral with respect to the fBm BH by

(2.6)
∫ 1

0
ϕ(s)dBH

s :=
n∑

i=1

ai

(
BH

ti+1
− BH

ti

)
The mapping ϕ 7→

∫ 1
0 ϕ(s)dBH

s provides an isometry between EH and the first
chaos of the fBm BH and it can be extended as follows:
• If H > 1

2 , it has been proved in [15] that EH is dense in L2
H (T ) with respect

to the norm ‖ · ‖H . As a consequence, the Wiener integral
∫ 1

0 ϕ(s)dBH
s can

be defined in a consistent way as limit in L2(Ω) of integrals of elementary
functions for any ϕ ∈ L2

H (T ).
• If H < 1

2 , then EH is dense in H (see [8], [15]) and the integral
∫ 1

0 ϕ(s)dBH
s

can be defined by isometry for any function ϕ ∈ H.

We will need in this paper stochastic integrals of the form
∫

T usdBH
s where

u is a stochastic process independent by BH . Using the above facts, it follows
that this integral can be defined by isometry for any u ∈ L2(Ω) × L2

H (T ) if
H > 1

2 and for any u ∈ L2(Ω;H) if H < 1
2 .

Remark (2.7). The integral
∫

T usdBH
s coincides also with the Skorohod in-

tegral introduced in [2], [1] since, by independence, the Malliavin derivative
of u with respect to BH is zero.

More generally, for H > 1
2 , let L2

H (T n) be the set of functions f : T n → R
such that∫

T n

|f (u1, . . . , un) ||f (v1, . . . , vn) |

(
n∏

i=1

θH (ui, vi)

)
du1 . . . dundv1 . . . dvn < ∞,

endowed with the scalar product
(2.8)

〈f, g〉Hn =
∫

T n

f (u1, . . . , un) g (v1, . . . , vn)

(
n∏

i=1

θH (ui, vi)

)
du1 . . . dundv1 . . . dvn .

Obviously, L2
H (T n) is a subset of H⊗n and if f, g ∈ L2

H (T n) then we have

〈f, g〉Hn = 〈f, g〉H⊗n .

We will denote by L2
s,H (T n) the set of symmetric functions f ∈ L2

H (T n) and
if f ∈ L2

s,H (T 2) let us introduce the (Hilbert-Schmidt) operator (see [7]) KH
f :

L2
H (T ) → L2

H (T ) given by

(2.9)
(

KH
f ϕ
)

(y) =
∫

T

∫
T

f (x, y)ϕ(x′)θH (x, x′)dxdx′ .

Remark (2.10). Note that if f is positive and H > 1
2 , then the operator KH

f

is a positive operator. Indeed, we can write(
KH

f ϕ
)

(y) =
∫

T

A(x′, y)ϕ(x′)dx′
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where A(x′, y) =
∫

T f (x, y)θH (x, x′)dx is positive. Thus the eigenvalues of KH
f

are positive.

3. The characteristic function of the double integral

Throughout this section BH and Bα will denote two independent fractional
Brownian motion with parameter H and α respectively. We compute the char-
acteristic function of the random variable

(3.1) S :=
∫

T

Bα
s dBH

s .

Note that, when H > 1
2 , the random variables S (3.1) is well-defined since

obviously Bα belongs to L2(Ω) × L2
H (T ) for any α. When H < 1

2 , if we assume
that α + H > 1

2 , then we have Bα ∈ C
1
2−H+ε(T ). But in the following we will

need to restrict ourselves to the situation H > 1
2 .

We start with the following lemma which gives an approximation of the
random variable S given by (3.1) when the Hurst parameter of the integrator
fbm BH is bigger than one half.

Lemma (3.2). Assume that H > 1
2 and α ∈ (0, 1). Denote by

(3.3) Tn =
n−1∑
i=0

Bα
ti

(
BH

ti+1
− BH

ti

)
where π : 0 = t0 < t1 < . . . < tn = 1 denotes a partition of [0, 1]. Then

Tn → S in L2(Ω) as |π| → 0.

Proof. Using the independence of Bα and BH we can write

Bα
ti

(
BH

ti+1
− BH

ti

)
=
∫ ti+1

ti

Bα
ti
dBH

s .

To prove the lemma it is enough to prove that

n−1∑
i=0

Bα
ti
1[ti,ti+1](·) → Bα

· =
n−1∑
i=0

Bα
· 1[ti,ti+1](·) in L2(Ω)× L2

H (T ) as |π| → 0.

Actually in general, to prove the convergence of a sequence of stochastic in-
tegrals of divergence type one needs also the convergence of the Malliavin
derivatives, but in our caseit is unnecessary due to the independence of the
two fBms. We have, using formula (2.2),
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E

∥∥∥∥∥
n−1∑
i=0

(Bα
ti
− Bα

· )1[ti,ti+1]

∥∥∥∥∥
2

H

=
n−1∑
i,j=0

H(2H − 1)
∫ ti+1

ti

∫ tj+1

tj

E(Bα
ti
− Bα

s )(Bα
tj
− Bα

r )|r − s|2H−2drds

≤
n−1∑
i,j=0

H(2H − 1)
∫ ti+1

ti

∫ tj+1

tj

|ti − s|α|tj − r|α|r − s|2H−2drds

≤ H(2H − 1)|π|2α
n−1∑
i,j=0

∫ ti+1

ti

∫ tj+1

tj

|r − s|2H−2drds

= |π|2α
n−1∑
i,j=0

〈1[ti,ti+1], 1[tj ,tj+1]〉H = |π|2α

and this goes to 0 for every α ∈ (0, 1).

We will also need to prove the following technical lemma:

Lemma (3.4). a) Assume that α > 1
2 and consider the function

(3.5) fH (x, y) =
1
2

(
(1− x)2H + (1− y)2H − |x − y|2H

)
, x, y ∈ T = [0, 1].

Then fH ∈ L2
s,α(T 2).

b) Assume that H > 1
2 and consider the function

(3.6) fα(x, y) =
1
2

(
x2α + y2α − |x − y|2α

)
, x, y ∈ T = [0, 1].

Then fα ∈ L2
s,H (T 2).

Proof. Let us prove first the point 2a); the point 2b) is similar. We have to
show that

I :=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
fH (x1, y1)fH (x2, y2)θα(x1, x2)θα(y1, y2)dx1dx2dy1dy2 < ∞.

Note that ∣∣∣fH (xi, yi)
∣∣∣ = E(BH

1 − BH
xi

)(BH
1 − BH

yi
)

≤
(

E(BH
1 − BH

xi
)2
)1/2 (

E(BH
1 − BH

yi
)2
)1/2

= (1− xi)H (1− yi)H .

The integral I is therefore bounded by

I ≤ (c(α))2
∫

[0,1]4
(1− x1)H (1− y1)H (1− x2)H (1− y2)H |x1 − x2|2α−2·

· |y1 − y2|2α−2dx1dx2dy1dy2

=

(
c(α)

∫ 1

0

∫ 1

0
(1− x1)H (1− x2)H |x1 − x2|2α−2dx1dx2

)2



236 XAVIER BARDINA AND CIPRIAN A. TUDOR

with c(α) = α(2α− 1). Now, using the change of variables z = x−y
1−y , we get

I ′ :=
∫ 1

0

∫ 1

0
(1− x)H (1− y)H |x − y|2α−2dydx

= 2
∫ 1

0

∫ x

0
(1− x)H (1− y)H (x − y)2α−2dydx

= 2
∫ 1

0
(1− x)2H+2α−1

(∫ x

0
(1− z)−H−2αz2α−2dz

)
dx

=
1

H + α

∫ 1

0
(1− z)Hz2α−2dz < ∞,

using that α > 1
2 .

We state now our main result. The point b) allows to consider the situation
when the Hurst parameter of the integrand α is less than 1

2 .

Theorem (3.7). a) Let α > 1
2 and H > 1

2 . Then the characteristic function
of the random variable S given by (3.1) is

E
(

eitS
)

=
∏
i≥1

(
1

1 + t2µi

) 1
2

where (µi)i≥1 are the eigenvalues of the operator Kα
fH given by (2.9) where fH is

defined by (3.5).
b) Assume that H > 1

2 and α ∈ (0, 1). Then the characteristic function of S
(3.1) is

E
(

eitS
)

=
∏
i≥1

(
1

1 + t2ξi

) 1
2

−→

where (ξi)i≥1 are the eigenvalues of the operator KH
fα given by (2.9) and fα is

defined by (3.6).

Remark (3.8). If α = 1
2 , then the operator Kα

fH must be replaced by

(3.9)
(

K
1
2

fH ϕ
)

(y) =
∫ 1

0
fH (x, y)ϕ(x)dx.

Proof of Theorem (3.7). We prove first a). By Lemma (3.2) we have

E
(

eitS
)

= lim
n→∞

E
(

eitTn

)
where Tn is given by (3.3) with ti = i

n , for every i = 0, . . . , n−1. Let us compute
the characteristic function of the random variable Tn.

We will use the following fact: If X, Y are two independent random variables,
then

E
(
Φ(X, Y )/X

)
= ϕ(X)

where ϕ(x) = E(Φ(x, Y )). Let us put

(3.10) X =
(

Bα
0 , Bα

1
n
, . . . , Bα

n−1
n

)
and Y =

(
BH

1
n
− BH

0 , . . . , BH
n
n
− BH

n−1
n

)
.
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Therefore, we obtain

ϕ(x) = E

(
eit
∑n−1

k=0
xkYk

)
= e−

t2
2 xT AH x

where the matrix AH =
(

AH
k,l

)
k,l=0,...,n−1

is given by

AH
k,l = E

(
BH

k+1
n
− BH

k
n

)(
BH

l+1
n
− BH

l
n

)
=

1
2n2H

(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)
.

We will obtain

E
(

eitTn

)
= E(e−

t2
2 Sn )

where

Sn :=
n−1∑
k,l=0

AH
k,lB

α
k
n
Bα

l
n

=
n−1∑
k,l=1

AH
k,lB

α
k
n
Bα

l
n

=
n−1∑
k,l=1

AH
k,l

(
k−1∑
k′=0

(
Bα

k′+1
n

− Bα
k′
n

))( l−1∑
l′=0

(
Bα

l′+1
n

− Bα
l′
n

))

=
n−2∑

k′,l′=0

(
Bα

k′+1
n

− Bα
k′
n

)(
Bα

l′+1
n

− Bα
l′
n

) n−1∑
l=l′+1

n−1∑
k=k′+1

AH
k,l.

We calculate first
n−1∑

l=l′+1

n−1∑
k=k′+1

AH
k,l

=
1

2n2H

n−1∑
l=l′+1

[
n−1∑

k=k′+1

(
|k − l + 1|2H + |k − l − 1|2H − 2|k − l|2H

)]

=
1

2n2H

n−1∑
l=l′+1

[
n−1∑

k=k′+1

(
|k − l + 1|2H− |k − l|2H

)
−

n−1∑
k=k′+1

(
|k − l|2H− |k − l − 1|2H

)]

=
1

2n2H

n−1∑
l=l′+1

[
|n − l|2H − |k′ + 1− l|2H − |n − 1− l|2H + |k′ − l|2H

]

=
1

2n2H

[
n−1∑

l=l′+1

(
|l − k′|2H − |l − 1− k′|2H

)
−

n−1∑
l=l′+1

(
|l + 1− n|2H − |l − n|2H

)]

=
1

2n2H

[
(n − k′ − 1)2H + (n − l′ − 1)2H − |l′ − k′|2H

]
= fH

(
k′ + 1

n
,
l′ + 1

n

)
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where the function fH is given by (3.5). By combining the above calculations
we get

Sn =
n−1∑
k,l=0

fH

(
k + 1

n
,
l + 1

n

)(
Bα

k+1
n
− Bα

k
n

)(
Bα

l+1
n
− Bα

l
n

)
.

Let us denote by (µi)i≥1 the eigenvalues of the operator Kα
fH and by (gi)i≥1 the

corresponding eigenfunctions. Then, using Lemma (3.4), we can write

fH (x, y) =
∑
i≥1

µigi(x)gi(y)

with the vectors (gi)i≥1 orthogonal in L2
s,α(T ) and the µi are square-summable.

The sum Sn becomes

Sn =
n−1∑
k,l=0

∑
i≥1

µigi(
k + 1

n
)gi(

l + 1
n

)

(Bα
k+1

n
− Bα

k
n

)(
Bα

l+1
n
− Bα

l
n

)

=
∑
i≥1

µi

(
n−1∑
k=0

gi(
k + 1

n
)
(

Bα
k+1

n
− Bα

k
n

))2

.

Since α > 1
2 and gi ∈ L2

s,α(T ) it follows from [15] that

n−1∑
k=0

gi(
k + 1

n
)
(

Bα
k+1

n
− Bα

k
n

) |π|→0−→
∫ 1

0
gi(x)dBα(x) in L2(Ω)

and therefore we have that

Sn
n→∞−→

∑
i≥1

µiH
2
i in L1(Ω)

where
(

Hi =
∫ 1

0 gi(x)dBα(x), i ≥ 1
)

are independent, standard normal ran-
dom variables. As a consequence, since the eigenvalues are positive (see Re-
mark (2.10))

E(eitT ) = E

exp

− t2

2

∑
i≥1

µiH
2
i


=
∏
i≥1

E

(
exp

(
− t2

2
µiH

2
i

))

=
∏
i≥1

(
1

1 + t2µi

) 1
2

.

Let us discuss now the point b). We follow the lines of a) by interchanging
the roles of X and Y in (3.10). We obtain that E(eitS ) = limn→∞ E

(
e−

t2
2 Sn

)
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where

Sn =
n−1∑
k,l=0

E
(

Bα
k
n
Bα

l
n

)(
BH

k+1
n
− BH

k
n

)(
BH

l+1
n
− BH

l
n

)

=
n−1∑
k,l=0

fα

(
k

n
,

l

n

)(
BH

k+1
n
− BH

k
n

)(
BH

l+1
n
− BH

l
n

)
and where fα is given by (3.6). Now we use Lemma (3.4) b) and we proceed as
in the proof of the point a).

Remark (3.11). As a final comment, let us note that the points a). and b). of
the above theorem agree if α and H are bigger than 1

2 . In fact it can be shown
that in this case KH

fα and Kα
fH have the same eigenvalues and in this case

their characteristic functions coincide term by term. Indeed, let us suppose
that λ 6= 0 is an eigenvalue for KH

fα . Then there exists a non identically zero
function ϕα,H ∈ L2

H (T ) such that

(KH
fαϕα,H )(y) = λϕα,H (y)

or

H(2H−1)
∫ 1

0

∫ 1

0

1
2

(
x2α + y2α − |x − y|2α

)
ϕα,H (x′)|x−x′|2H−2dxdx′ = λϕα,H (y).

Let us denote by
χα,H (y) = ϕH,α(1− y).

It is easy to check that χα,H ∈ L2
α(T ) and by using the change of variables

1− x = u and 1− x′ = v we obtain

(Kα
fH χα,H )(y) = λχα,H (y)

which implies that λ is also an eigenvalue for Kα
fH .

4. The two-parameter case

In this section, we will briefly discuss the case of the fractional Brow-
nian sheet. Let us denote by

(
Bα1,α2

s,t

)
s,t∈T

and
(

BH1,H2
s,t

)
s,t∈T

two indepen-

dent fractional Brownian sheets. We recall that a fractional Brownian sheet(
BH1,H2

s,t

)
s,t∈T

with Hurst parameters H1, H2 ∈ (0, 1) is a centered Gaussian

process starting from 0 with covariance given by

E
(

BH1,H2
s,t BH1,H2

u,v

)
= RH1 (s, u)RH2 (t, v), s, t, u, v ∈ T,

where RHi is the covariance of the one-parameter fBm with Hurst index Hi

(i = 1, 2). We refer to [4] or [3] for the basic properties and [17], [18] or [11] for
elements of the stochastic calculus with respect to this process. We only point
here the following facts:
• the canonical Hilbert space H(H1, H2) of the Gaussian process BH1,H2 is

defined as the closure of the linear vector space generated by the indicator
functions {1[0,s]×[0,t], s, t ∈ T } with respect to the scalar product

〈1[0,s]×[0,t], 1[0,u]×[0,v]〉H(H1,H2) = RH1 (s, u)RH2 (t, v).
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• if H1 or H2 is bigger than 1
2 , then the elements of H(H1, H2) may not

be functions, but distributions. In this case it is convenient to work with the
following subspace of H(H1, H2)

L2
H1,H2

(
T 2) := L2

H1
(T )⊗ L2

H2
(T )

which is a space of functions (and which plays the role played by L2
H (T ) in the

one-parameter case). Therefore Wiener integrals with respect to BH1,H2 can be
naturally defined for integrands in L2

H1,H2

(
T 2
)
.

We prove here the following result.

Theorem (4.1). a). Assume that Hi > 1
2 and αi > 1

2 , i = 1, 2. Then the
characteristic function of the random variable

(4.2) A :=
∫

T

∫
T

Bα1,α2
u,v dBH1,H2

u,v

is given by

(4.3) E
(

eitA
)

=
∏

i,j≥1

(
1

1 + t2µi,1µj,2

) 1
2

where (µi,1)i are the eigenvalues of the operator Kα1

fH1
given by (2.9), (µj,2)j are

the eigenvalues of Kα2

fH2
and fH1 , fH2 are defined by (3.5).

b). If Hi > 1
2 and αi ∈ (0, 1), then

E
(

eitA
)

=
∏

i,j≥1

(
1

1 + t2ξi,1ξj,2

) 1
2

where for j = 1, 2, (ξi,j)i are the eigenvalues of the operator K
Hj

f
αj , where fαj is

defined by (3.6).

Proof. We prove only the first part because the second point is similar. De-
note by

An :=
n−1∑
k,l=0

Bα1,α2
k
n , l

n

BH1,H2 (∆k,l)

where
BH1,H2 (∆k,l) = BH1,H2

k+1
n , l+1

n

− BH1,H2
k
n , l+1

n

− BH1,H2
k+1

n , l
n

+ BH1,H2
k
n , l

n

As in Lemma (3.2), we can prove that An → A when n →∞ in L2(Ω) for αi > 1
2 ,

Hi > 1
2 , i = 1, 2. We obtain, using the methods used in the proof of Lemma

(3.2) (see also [10]) that

E(eitA) = lim
n→∞

E
(

eitSn

)
with

Sn=
n−1∑
k,l=0

n−1∑
k′,l′=0

fH1

(
k + 1

n
,
k′ + 1

n

)
fH2

(
l + 1

n
,
l′ + 1

n

)
Bα1,α2 (∆k,l)Bα1,α2 (∆k′,l′ ).
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By Lemma (3.4) a) we get that fHi ∈ L2
s,αi

(T ) (i = 1, 2) and thus fHi
=
∑

k µk,igk,i

where (gk,i)k≥1 are the eigenvectors of Kαi

fHi
(i = 1, 2).

Sn =
∏

i,j≥1

µi,1µj,2

 n−1∑
k,l=0

gi,1(
k + 1

n
)gj,2(

l + 1
n

)Bα1,α2 (∆k,l)

2

.

Since gi,1 ∈ L2
α1

(T ) for every i ≥ 1 and gj,2 ∈ L2
α2

(T ) for every j ≥ 1, we have
that gi,1 ⊗ gj,2 ∈ L2

α1,α2
(T 2) and it is not difficult to see that

n−1∑
k,l=0

gi(
k + 1

n
)gj(

l + 1
n

)Bα1,α2 (∆k,l) →n→∞

∫
T

∫
T

gi(x)gj(y)dBα1,α2
x,y := Hi,j

and the random variables Hi,j are mutually independent and N(0, 1) dis-
tributed. The conclusion follows easily.
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[1] E. Alòs and D. Nualart, Stochastic integration with respect to the fractional Brownian
motion, Stochastics and Stochastics Reports 75 (2002), 129–152

[2] E. Alòs, O. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes,
Ann. Probab. 29, 766–801.

[3] A. Ayache, S. Leger and M. Pontier, Drap Brownien fractionnaire, Potential Analysis, 17
(1), (2002), 31–43.

[4] X. Bardina, M. Jolis and C.A. Tudor, Weak convergence to the fractional Brownian sheet
and other two-parameter Gaussian processes, Statsit. Probab. Lett. 34 (3), (2003), 389–400.

[5] B.P. Belinsky and P. Caithamer, Energy of a string driven by a Gaussian white noise in
time, J. of Applied Probability 38 (2001), 960–974.



242 XAVIER BARDINA AND CIPRIAN A. TUDOR
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