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A CUT-AND-PASTE APPROACH TO CONTACT TOPOLOGY

WILLIAM H. KAZEZ

ABSTRACT. This expository paper gives an introduction to some of the
techniques used to study tight contact structures on 3-manifolds. The goal
is to develop cut-and-paste techniques that are analogous to Haken and
sutured manifold decompositions. Many examples and sketches of ideas
behind some of the main theorems are given.
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1. Convex Surfaces

Unless otherwise stated, M denotes a compact oriented 3-dimensional mani-
fold that may have nonempty boundary. Throughout this paper we assume that
all manifolds and submanifolds are oriented.

Definition (1.1). A (positive) contact structure, & on M, is a smooth 2-plane
bundle &, C T'M such that there exists a 1—form o, satisfying

1. kerp(a) =&, for all p € M and

2. aNda > 0.

Example (1.2). Figure 1 shows a family of planes in R? that is invariant under
rotation about the z-axis or translation in the z-direction. The indicated line
L is Legendrian, that is, T, L C £, for all x € L. Note the planes twist slowly
to the left as you move along L in either direction. This example can be made
more explicit by taking & to be the kernel of a = r2df + dz and checking that it
is a contact structure.

The next definition and many of the results in the section are due to Giroux,
[18].
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Figure 2. Dividing curve on a convex surface.

Definition (1.3). A vector field ¥/ is called a contact vector field for £ if flowing
in the ¥ direction preserves the contact planes. A surface S C (M, &) is convex if
there exists a contact vector field ¥ transverse to S. If S # (), we also require,
for S to be convex, that 95 be Legendrian.

Ezample (1.4). If £ is the contact structure of Example (1.2), it follows that
any horizontal plane is convex by considering the constant vector field ¥ = %.

Indeed it follows that any surface in R? transverse to the vector field % is convex.

Roughly, S is convex if and only if S has a product neighborhood. Convexity
is a global condition; all smooth surfaces are locally convex.

Definition (1.5). If S C (M, &) is convex, the dividing set is denoted I'g and
is defined to be {z € S| ¥(z) € & }.

Intuition: If we think of the vector field ¥ as vertical or perpendicular to .S, then

I's are those points whose contact planes are perpendicular to S.

Definition (1.6). The induced (singular) foliation Fg on S is defined by inte-
grating the line field {, N 7,5 on S.
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Figure 4. The induced foliation on a small sphere.

Since we are assuming that manifolds and submanifolds are oriented, and
since our contact structures are positive, the contact planes inherit a transverse
orientation. Orientations on M, S, and & allow us to orient the leaves of Fg.
Comparing these orientations leads to two ways of thinking about dividing sets:

1. The dividing set I'g divides S into regions where the contact planes are
right side up or upside down relative to S and as shown in Figure 2.

2. With respect to the induced foliation on S, I's divides S into source and
sink regions, labeled S and S_, respectively, in Figure 3.

Ezample (1.7). Figure 4 shows the induced foliation and dividing set on a
small round sphere about the origin of Example (1.2). Contact structures are
locally homogeneous by Pfaff’s Theorem. It follows that there exist small spheres
like this about every point of any contact structure.
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Figure 5. Coordinates near a convex surface.

PROPOSITION (1.8). The dividing set T's is a 1-dimensional submanifold of S
transverse to Fg.

Proof. Choose coordinates x € S and ¢ in the ¢ direction. Then the 1-form
defining £ may be written o = B(x) + f(z)dt where 8(z) is a 1-form on S, and
f is a function on S. Since ker a = £ we have:

1. oy (%) =0 if and only if f(z) = 0, and therefore I's = f~1(0).

2. 0 # anda = (B+ fdt)A(dB+df dt) = BAdGB+Bdfdi+ fdtdS = Bdf di+ fdtdg.
Therefore, if f(x) = 0, then Sdfdt # 0, and in particular df # 0. It now follows
that I's = f~1(0) is a submanifold of S.

3. Let W be tangent to I's. Then dt(w) = df (@) = 0, so Bdfdt # 0 implies
that B(wf) # 0, that is, @ ¢ ker = TFg. It now follows that I'g is transverse to
the induced foliation on S. O

The next several results are used throughout the paper.

PROPOSITION (1.9). The isotopy class of I's does not depend on the choice
of the contact vector field v. O

Definition (1.10). Let L be a Legendrian curve that is a boundary component
of a surface S. The twisting of & with respect to the framing induced by S is
denoted by t(L, Frg). Since we are assuming S and & are oriented, t(L, Frg)
will be an integer. We use the convention that if the planes of £ twist to the left
with respect to S as we move around L, then ¢(L, Frg) is negative.

THEOREM (1.11) (Existence of convex surfaces). Every closed surface can be
approzimated by a convexr surface. If S is a surface with Legendrian boundary,
and if the twisting of & with respect to S is negative on each boundary component
of S, then S can be approximated, relative to 3S, by a convex surface.

Theorem (1.11) was proved by Giroux [18] for closed surfaces and by Honda for
surfaces with boundary [20]. The approximating convex surfaces can be chosen to
be C close to S on the interior of S and C° close to S along 8S. Convex surfaces
with Legendrian boundary were first used by Kanda [25]. Theorem (1.11) follows
from

PROPOSITION (1.12). If S is Legendrian and the induced foliation Fg is
Morse-Smale, that is,
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Figure 6. Legendrian divide.

1. Fs has a finite number of closed leaves and Morse type singularities,
2. there are no saddle-saddle connections,
3. the holonomy about closed leaves is linear and either attracting or repelling,

then S is convew. O

Ezample (1.13). Proposition (1.12) gives sufficient, but not necessary condi-
tions for a surface to be convex. Figure 6 shows a portion of convex surface whose
induced foliation has a circle’s worth of singularties. The circle of singularities
is called a Legendrian divide. The contact structure hinted at in the figure is
invariant under translation in the vertical direction or parallel to the Legendrian
divide. Note that a Legendrian divide is not a dividing curve.

Figure 7 shows a product neighborhood of the Legendrian divide and the
effect of a slight perturbation of the original surface on the induced foliation.

This example hints at a remarkable theorem about the possible induced folia-
tions that can occur on perturbations of a convex surface. Roughly, the Giroux
Flexibility Theorem states that we can force the induced foliations to be what-
ever we like, within reason. The statement of the theorem will make more sense
after reading the definitions which follow it.

THEOREM (1.14) (Giroux Flexibility Theorem [18]). Let S C (M,&) be a
convex surface with dividing set I's, and let F be an arbitrary singular foliation
on S divided by I's, then there exists an isotopy of S fixing I's (and keeping S
transverse to U) such that at the end of the isotopy, F is the induced foliation on

S.

Definition (1.15). We say I's divides F if T's cuts S into a maximal number
of sink and source regions, that is, regions in which the induced foliation either
points in at every boundary component or out at every component of each region,
respectively.

Ezample (1.16). Figure 8 shows three foliations. The first and last are divided
by the indicated curves, but the middle example is not; it is not cut into a
maximal number of sink and source regions as the third example shows. Another
example to which the Giroux Flexibility Theorem can be applied is to replace
the indicated foliation on the annular region between the two dividing curves of
the third example with a Legendrian divide.
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Figure 7. Flexibility near a Legendrian divide.

Figure 8. Hypothetical induced foliations.

Definition (1.17). (M,€) is tight if there does not exist an embedded disk
D C M such that D is tangent to £ along its boundary (i.e., T, D = &, for all
x € OD). (M,£) is called overtwisted if it is not tight.

Overtwisted contact structures are classified by their underlying 2-plane bun-
dles [11]. The notion of tightness is analogous to tautness or non-existence of
Reeb components in foliation theory or incompressibility of surfaces. We shall see
that tight contact structures reflect the underlying topology of the 3-manifolds
which carry them.

Figure 9 shows an overtwisted disk that would live in the contact structure
described in Example (1.2) if the contact planes were allowed to rotate too
quickly along rays leaving the origin.
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Figure 9. An overtwisted disk.

PROPOSITION (1.18) (Giroux [19]). If S C (M, &) is convezx, a product neigh-
borhood of S is tight if and only if one of the following is satisfied:

1. S =52, and I's is connected
2. S # 52, and no component of T's is null-homotopic in S.

Sketch. (=) If either (1) or (2) is false, use the Giroux Flexibility Theorem
to realize a null-homotopic Legendrian divide, as discussed in Example (1.16).
The disk in S bounded by the Legendrian divide is an overtwisted disk.

(<) We need a starting point and gluing theorems. That is, until this point,
we have not even stated that there are any tight contact structures on any man-
ifold. The next theorem addresses this. Given simple examples of tight contact
structures we require gluing theorems to produce more complicated examples.
This paper will eventually describe several gluing theorems. Another strategy,
used by Giroux, is to produce models in which the desired S and I'g exist and
must be tight. O

THEOREM (1.19). There erists a tight contact structure on B®. Moreover,
two tight contact structures which induce the same foliations on OB are diffeo-
morphic. O

The existence portion of the theorem is due to Bennequin [1], and the unique-
ness portion is due to Eliashberg [12]. In light of the Giroux Flexibility Theorem,
we paraphrase Theorem (1.19) by saying that there is a unique tight contact
structure on B3.

Convex surfaces are required to have Legendrian boundary. Therefore to
decompose manifolds with convex boundaries along convex surfaces, we need to
know which curves on a convex surface S can be “made Legendrian”. That is,
we need to know which curves are contained in the leaves of some foliation F
divided by I's. Knowing this will allow us to decide if S can be perturbed so
that 0S becomes Legendrian. The next definition and theorem of Honda’s [20]
exactly answers this question.

Definition (1.20). A properly embedded 1-submanifold C of a convex surface
S is non-isolating if
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Figure 10. Hypothetical Legendrian curves.

1. C is transverse to I'g and
2. the closure of every component of S\C intersects I'g.

THEOREM (1.21) (Legendrian Realization Principle). If C' is non-isolating
then C' can be made Legendrian.

Sketch. The non-isolating condition guarantees that C' can be extended to a
foliation divided by I's. Then use Giroux Flexibility to realize this foliation on
S. O

Ezample (1.22). Of the curves shown in Figure 10, only 5 and + are non-
isolating. Notice that any curve, such as 3, which intersects I'g is non-isolating.
It is not too hard to extend, say (3, to a singular foliation on S divided by I'g;
however, 3 will end up passing through singularities, that is, it may not be a
smooth curve on S. Note also that in the definition of non-isolating, C' is not
necessarily connected or closed.

2. Preview

At this point we have enough of the foundational tools in place to sketch, in
general terms, some of the issues and techniques involved in studying contact
structures from a cut-and-paste point of view.

Classification: Given a 3-manifold M and a collection of curves I' contained
in M, how many tight contact structures, up to equivalence, are there on M
with T'gps = I'? Equivalence might be either diffeomorphism or isotopy taking
one contact structure to another.

To be specific, consider the case of a solid torus with four dividing curves on
its boundary shown in Figure 11.

Decomposition: How many “sensible” ways are there to decompose such an
(M,T)?
Continuing with the solid torus example, Figure 11 suggests that there are just

two possible decompositions, thus, there are at most two tight contact structures
carried by (M,T).
Gluing: Which of the decompositions into tight pieces can be glued to form a
tight union?

Unlike many situations in 3-dimensional topology, it is very difficult to give
general conditions under which the union of tight pieces is tight. The problem
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e (M,T) N

Figure 11. Different convex decompositions.

is that a manifold can contain a large overtwisted disk, but when it is chopped
into small pieces, none of the pieces may contain overtwisted disks themselves.

It turns out that regluing either of the decompositions shown in Figure 11
gives a tight contact structure. A priori, we do not know that these two contact
structures are different. By gluing we can conclude only that (M,T) carries at
least one tight contact structure.

Invariants: Of the various ways of gluing into a tight union, which result in
non-isotopic contact structures?

In our example, an Euler charactistic type invariant shows that the two gluings
result in different contact structures. It follows that (M, T') carries exactly two
tight contact structures.

3. Convex Decompositions

A convex decomposition can be viewed in two ways. First, you can start
with a contact structure on a 3-manifold M and keep splitting M along convex
surfaces until the pieces are balls. Alternatively, you can start with M and a
collection of curves I" on M that you hope will end up being dividing curves for
a contact structure that you are trying to build, and then split along surfaces
which you hope will end up being convex. We need to see how actual convex
surfaces intersect so that this structure can be correctly modelled in the definition
of a convex decomposition.

Ezample (3.1). The kernel of ay = sin(2wkz)dx + cos(2mkz)dy defines a con-
tact structure on R3 shown in Figure 12. In this example, the contact planes all
contain the z-axis, that is, any vertical line is Legendrian. The foliation induced
on horizontal planes is a linear foliation with slope changing as the height of the
plane increases. The vector field given by % in cylindrical coordinates is a con-
tact vector field, thus a cylinder at constant distance from the z-axis is convex.
The dividing curves on this cylinder start on the xz-axis and spiral upwards at a
rate depending on k. Figure 12 also shows the tangencies of the contact planes
and the cylinder as long dashed lines starting on the y-axis.
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Figure 12. The neighborhood of a Legendrian curve.

Let D? be the unit disk. By restricting to the cylinder D? x [0, 1] and identi-
fying D? x {0} and D? x {1}, ay, defines a contact structure on D? x S'. The
key features of this contact structure are:

1. T =0(D? x S1) is convex

2. HTp =2

3. slope(I'r) = —%

The next theorem may be paraphrased by saying that Legendrian curves, such
as the quotient of the z-axis in the previous example, have standard neighbor-
hoods.

THEOREM (3.2) (Kanda [25], Makar-Limanov [26]). There is a unique tight
contact structure on D? x S such that (1), (2), and (3) hold. O

When we start with a manifold with convex boundary and cut it along a con-
vex surface, the cutting surface, by definition of convexity, intersects the bound-
ary in a Legendrian curve. The next example is a portion of the region shown
in Figure 12. From it we see how the dividing curves on a pair of intersecting
surfaces are related near their Legendrian curve of intersection.

Ezample (3.3). In Example (3.1) the zz-plane is convex with respect to the
contact vector field 8% and similarly the yz-plane is convex with respect to 8%.
Figure 13 shows portions of these planes, labelled F' and G and their dividing
curves. Notice that I'p and ' are horizontal lines starting on the z-axis and

ending at a point of tangency of a contact plane and the vertical cylinder.
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Figure 13. Intersecting convex surfaces.
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Figure 14. Dividing curves before and after smoothing.
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From this we see that for general intersecting convex surfaces F' and G, the
endpoints of I'p and ' alternate along curves of F'N G. Further examination
of Figure 13 shows that if the corner of the wedge W subtended by F' and G is
smoothed, the manifold produced has convex boundary and the dividing curves
of F and G are joined by turning to the right (when viewed from the outside of
W). The “turn to the right” rule that is forced on us in the presence of a positive
contact structure serves as the model for defining the orientation conventions in
convex decompositions.

Figure 14 shows three views of W. The first shows W before rounding corners,
the second is after rounding corners. The last picture shows W without the
corner rounded, but it shows the effect on the dividing curves of corner rounding.
Most of the figures in this paper are drawn in this fashion.

Definition (3.4). (M,~) is a sutured manifold if:

1. ¥ C OM is a union annuli and tori,
2. (OM)\~ is a disjoint union of two subsurfaces Ry (v) and R_(7y), and
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E@mw @

Figure 15. B3 with a single suture.

(M,~) (M',~)
=) = (=
— /
/-
S

Figure 16. Sutured manifold splitting.

3. crossing an annular suture takes you from Ry () to Rx(7).

Gabai [14] defined sutured manifolds to study taut foliations. We are primarily
concerned with the case that all sutures are annuli. Figure 15 shows two views
of a solid ball with a single annular suture. The first view shows a manifold with
corners, as it should be drawn. The second shows how sutures are drawn; the
manifold appears smooth, and the sutures are very skinny.

Definition (3.5). If S is an oriented properly embedded surface in (M,~),

(M, ) 3 (M’,~") is defined by M’ = M\S and introducing sutures as needed
to separate the positively and negatively oriented portions of 9(M\S) as shown
in Figure 16.

Definition (3.6). A convex structure is a pair (M, T") such that:

1. T is a disjoint union of curves in OM,

2. OM split along I" is the disjoint union of two subsurfaces, R4 (') and R_(T"),
and

3. crossing a dividing curve takes you from R4 (I") to Rx(T).

Also assume each component of M has dividing curves on it.

A sutured manifold (M,~) is a manifold with corners. Convex structures
(M,~) are smooth. Figure 17 shows portions of a sutured manifold near a
suture and a convex structure near a dividing curve. Notice that the 2-planes
along each arc « turn over as « is traversed, but they do so in different fashions.

Of course we hope that (M,I") will carry an actual tight contact structure,
just as Gabai would like (M, ) to carry a taut foliation; however there is no a
priori reason that it will. When discussing a surface with curves on it, such as
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Figure 17. An arc crossing a suture compared to an arc crossing a
dividing curve.

(M,T) (M',T")
. A
— A1 (S.9)

A|H oM N

|

S S,

Figure 18. A convex splitting,

(S, 0) in the next definition, there is no need to distinguish between an “abstract”
convex surface and an actual convex surface, for a contact structure is uniquely
determined in a (product) neighborhood of S by the dividing curve configuration
g.

Definition (3.7). Let (S, o) be a convex surface in (M, I") such that 95 is non-
isolating in OM, and the endpoints of ¢ alternate with points of I' N 95 along

0S. Define (M,T) ) (M’ T") by M’ = M\S and by adding new portions of

dividing curves to (cUT')\ S using the “turn to the right” rule shown in Figure 18.

A sutured manifold with annular sutures (M, v) naturally determines a convex
structure (M, I") by replacing each annulus of v by its core. To be able to use
Gabai’s existence theorems for sutured manifold decompositions in our setting,
we must be able to start with a sutured manifold splitting (the top row of
the following diagram) and then produce a convex surface, (S,0), such that
the diagram commutes. We discuss how this can be done through a series of
examples.

(M) 5 (M)
1 1
o) 0 o)

Ezample (3.8). Figure 19 shows how to introduce boundary-parallel dividing
curves, o, so that the diagram commutes. This technique works, provided that
every component of 95 has nonempty intersection with T".
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(M,T) (M 1)
Figure 19. A commuting diagram of sutured manifold and convex splittings.

Definition (3.9). A convex surface (S, o) has boundary-parallel dividing curves
if 0S is nonempty, every component of 35 intersects o, and o is collection of
arcs each of which bounds a half disk that contains a portion of 95 but no other
arcs of g.

Ezample (3.10). Now consider the possibility that S N T = @. Such an
S might have isolating boundary, that is, it might not be possible to make
it Legendrian and hence S convex. Figure 20 shows first a sutured manifold
splitting along a surface S with S NT' = (. The second two portions of the
figure show two possible ways of introducing intersections between 95 and I' and
of adding boundary-parallel o to S.

There are two key features in this example. First, the strategy of introducing
intersections can only work if there are dividing curves on the same component
of OM as 0S — this will show up in the definition of “sutured manifold with
annular sutures” below. And second, only one of the perturbations of S makes
the splitting diagram commute.

Figure 21 is similar to Figure 20 in that S N T = (), but in this case there
are multiple portions of 95, each with its own orientation preference for creating
a pair of intersections with I', and they cannot all be satisfied simultaneously.
Rather than describe how to get around this, we just point out that Gabai con-
fronted a similar situation in developing sutured manifold theory. He introduced
a notion of “well-groomed” sutured decompositions, that is, he showed that split-
tings could be assumed to have coherently oriented boundary components, and
for such splittings we can produce a commutative splitting diagram using the
technique of Example (3.10).

THEOREM (3.11). Let (M, ) be an irreducible sutured manifold with annular
sutures, and let (M, T) be the corresponding convex structure. The following are
equivalent.

1. (M,~) is taut.
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(8.9) j ‘ﬁ <

Figure 20. Two possibilities for (S, ).

Figure 21. There is no consistent way to introduce intersections
between 0S and T

v) has a sutured manifold decomposition.

v) carries a taut foliation.

,I') carries a universally tight contact structure.
T) carries a tight contact structure.

S
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Definition (3.12). A sutured manifold has annular sutures if each component
of M has nonempty boundary, every boundary component contains at least one
annular suture, and if there are no toroidal sutures.

(M,~) is taut if Ry () and R_(y) are Thurston norm minimizing in their ho-
mology class in Ho(M, 7). A sutured manifold decomposition of M is a sequence
of splittings

(M,y) % - 2 U(B3, S x 1)
where (B2, S! x I) denotes the sutured manifold shown in Figure 15.
A foliation is taut if every leaf intersects a closed transversal.
A contact structure is universally tight if (M, €) is tight.

Thurston [28] proved (3) implies (1). Gabai [14] proved (1) implies (2) and (2)
implies (3). Eliashberg and Thurston [13] showed (3) implies (4). It is immediate
that (4) implies (5). All of these results apply without the additional assumption
of annular sutures. Since S® carries a tight contact structure but cannot support
a taut foliation, some additional hypothesis is necessary for (5) to imply (1).

The techniques of (5) implies (1) are not used in the rest of the paper, so we
instead sketch a direct proof of (2) implies (4) that has the advantages of making
the importance and utility of universal tightness clear. The proof introduces a
gluing strategy that is used repeatedly.

Proof of (2) implies (4). First replace the given sutured manifold decompo-
sition with a corresponding convex decomposition

(1.1) PR (0 5
By Theorem (1.19), (B3, 1) carries a (universally) tight contact structure.
By construction, the surfaces (S;,0;) have boundary-parallel dividing curves
(see Definition (3.9)). This portion of the theorem follows from the next gluing
theorem. 0

THEOREM (3.13) (Colin [7]). Suppose that (M',T") is obtained from (M,T)

S,o
by splitting along a convex surface (S,o), that is, (M,T) (29 (M, 1. If M
is irreducible, S has boundary parallel dividing curves, and (M',T') carries a
universally tight contact structure, then so does (M,T).

Sketch. We will illustrate key ideas of our interpretation [22] of Colin’s gluing
theorem with examples. The proof strategy is to:

1. Suppose the contact structure on (M, T") obtained by gluing (M’,T”) along
(S, 0) is overtwisted, and let D be an overtwisted disk.

2. (In small steps) isotop S to S’ and eventually off D.

3. While isotoping S, make sure that M\S’ stays universally tight.

This strategy gives a contradiction once S’ N D = (), for M\S’ is both tight
and contains the overtwisted disk D.

“In small steps” refers to a fundamental idea due to Honda [21]. That is, any
isotopy of a convex surface S can be expressed as a sequence of bypasses.

Definition (3.14). A bypass consists of:
1. a Legendrian arc o connecting 3 dividing curves in S,
2. a Legendrian arc [ joining da,
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Figure 22. A bypass attached to S along «.

T/
J | LTy =~

S S’

Figure 23. The effect on I'g of isotoping S through a bypass at-
tached along a.

3. a convex half disk in M\S with boundary equal to o U 8 which contains a
single dividing curve.

Figure 23 shows the effect on o of isotoping S across a bypass. Notice that
the “turn to the right” rule for dividing curves going around corners looks more
like a “turn to the left” rule when it is viewed from inside the manifold.

Ezample (3.15). The global effect on the dividing curves of a bypass move
depends very much on how the local picture sits with respect to the entire sur-
face and dividing curve set. Figure 24 shows an example in which the arc of
attachment connects two parallel dividing curves to a third. Isotoping S across
this bypass has the effect of removing two dividing curves from S.

Continuing with the gluing theorem, we now consider some examples of by-
passes that S might have to be isotoped through while moving S off of D.
Hopefully universal tightness of M\S’ follows from universal tightness of M\S
in each case.

Ezample (3.16). Notice that the dividing curves in Figure 25 are boundary-
parallel. If such a bypass were to exist in M, then, as shown, S’ would contain
a null-homotopic dividing curve. Proposition (1.18) implies the existence of an
overtwisted disk near S’. Since S’ may be thought of as living in the comple-
ment of S, and we are assuming M\S is universally tight, the bypass drawn in
Figure 25 cannot exist.
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h h

AN /

Figure 24. This bypass removes two parallel dividing curves.

Figure 25. This bypass cannot exist in a tight contact structure.

S/

Figure 26. A trivial bypass.

Ezample (3.17). Figure 26 shows a similar-looking bypass that has a very
different effect on the dividing curves of . Up to isotopy, the dividing curves
are unchanged. Though we omit the proof here (see [22]), it is a consequence
of the uniqueness of tight contact structures on a ball that S and S’ cobound
a contact product. It follows that M\S and M\S’ are contactomorphic, hence
both are universally tight.
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Figure 27. It is not clear what the implications of such a bypass
are in general.

Ezample (3.18). Figure 27 shows the most mysterious of these examples.
There is no reason for M\S’ to be tight if we only assume tightness of M\S.
However, a represents a nontrivial element of 71 (S) or m1(M), and any cover

m is still tight (by universal tightness). If we lift to the right cover, « is
unwound, and this example becomes the same as the previous example. Thus
the proof strategy may be continued in this and subsequent covers.

There are several other types of bypass configurations to check, but this pat-
tern repeats itself. Bypasses are of three types: those which cannot exist, those
which cause no trouble if they do exist, and all of the rest. The typical situation
is that troublesome bypasses can be dealt with in the right cover. This is the
point and power of the assumption of universal tightness. O

4. Tori

Ezample (4.1). Let ay = sin(2k7wz)dx + cos(2knwz)dy as in Example (3.1).
Restricting ay, to the cube [0,1] x [0,1] x [0, 1] and identifying the front with the
back face and the left with the right face defines a contact structure on 17" x I.
Neither T x {0} nor T' x {1} is convex. Perturbing T' x {0} and T' x {1} so that
they are convex gives the contact structure £ on T x I shown in Figure 28. A
vertical annulus, such as the one shown on the front face, is convex and has 2k
closed dividing curves.

The next theorem gives a very general, but rough, classification theorem for
tight contact structures.

THEOREM (4.2). If M s irreducible, then M carries finitely many tight (or
universally tight) contact structures if and only if M is atoroidal.

The if direction is due to Colin, Honda, and Giroux [10], and the only if
direction is due to Colin [8, 9] and Honda, Kazez, and Matié [22].

Proof. We will explain the following portions of the proof of finiteness direc-
tion:

1. There is a finite collection of branched surfaces in M which carry every
tight contact structure.
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Figure 28. &2 on T x I.
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Figure 29. Isotoping an edge of 7 across a bypass.

2. If a branched surface carries infinitely many tight contact structures then
it carries tori.

Proof of (1).
o Pick a triangulation 7 of M, and isotop it until 7! is a collection of Legen-
drian arcs.

o Isotop 72 relative to 7! so that each face is convex.

e Isotop 7 to remove interior J-parallel dividing curves. Figure 29 shows how
to pry a two cell open along an edge to effect a bypass move and accomplish this.

e For each A € 73, group the dividing curves in JA? so that, except for a
bounded number of dividing curves near the vertices, they are contained in at
most 5 prisms P;. See Figure 30.

e Use Giroux Flexibility to force the foliation induced by £ on each 0, FP; to
be a union of vertical arcs and on Jy, P; to be a fixed non-singular foliation.

e By the uniqueness of tight contact structures on B® we may assume all
vertical arcs in P; are Legendrian.

e The union over A € 73 is naturally a neighborhood N(B) of a branched
surface B, and by construction there are only finitely many such B.

e Each component of A® — N(B) is a polygonal ball. The number of such
polygonal balls is bounded, and the possible dividing curve configurations on
the boundary faces of each polygonal ball is also bounded. Thus £ is defined by
¢ |n(m)y up to finitely many choices.
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Figure 30. Dividing curves on QA are carried by a family of prisms.

Proof of (2). Suppose two contact structures &y, &; are carried by B. By con-
struction the foliations induced on 9, N (B) agree, thus &; is defined by &y and a
finite set of integer weights on the sectors of B which describe the twisting of the
planes of &; relative to the planes of £ along vertical Legendrian arcs of N(B).

An infinite collection of contact structures all carried by one branched surface
give an infinite collection of weights. Since the contact structures are all positive,
there is a lower bound, perhaps negative, on these weights. It follows that there
must be a non-negative collection of integer weights on B. In the standard way,
these non-negative weights can be used to piece together a surface in N(B) that
is transverse to the vertical Legendrian arcs. The induced foliation on such a
surface has no singularities, thus the surface is either a torus or a Klein bottle.

We draw two conclusions from this portion of the argument.

e Changing weights along a torus does not change the homotopy class of the
2-plane bundle, thus it follows that only finitely many 2-plane bundles support
tight contact structures.

e The only way to produce infinitely many contact structures on a given space
is to insert twisting in a neighborhood a torus of the sort exemplified by &, as
defined in Example (4.1).

With this in mind we sketch some of the remaining steps in the infinitely
many portion of the theorem.

3. A toroidal manifold has a universally tight contact structure.
4. Inserting &; near the torus preserves universal tightness
5. and changes the contact structure.

Proof of (3).We will assume 9M = T. This is just one gluing theorem away from
full generality. The sutured manifold (M,T'), where T is a toroidal suture, is
automatically taut, and by Gabai’s theorem it has a sutured manifold decompo-
sition. For simplicity, assume the first splitting surface S intersects T in a single

curve, and say (M, T) 3 (M’,+"). The new suture 7 is the annulus obtained
by splitting T along 0S.

We would like to consider the corresponding convex decomposition, but first
we must fix the toroidal suture. Pick two parallel curves on T dual to SN T
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(M7

(M',T)

(S,0)
Figure 31. Introducing dividing curves on a torus suture.

and define them to be I'. Figure 31 shows how we can force the usual corre-
spondence between the sutured manifold decomposition on the first row and the
convex structure on on the second row. It is particularly important to note that
(S, o) has boundary-parallel dividing curves. Since (M’,~') has a sutured man-
ifold decomposition, (M’ ,T”) carries a universally tight contact structure. By
Theorem (3.13) (M,T") does also.

The technique of adding a pair of parallel dividing curves to a boundary
component with no sutures can be used in other settings as well.

Proof of (4).

Continuing with the same M, S, and T, we need to show that the contact
structure on M U (T x I) obtained by gluing the structure built in (3) and & is
universally tight. Gluing along T is beyond the scope of Theorem (3.13). Instead

we will compare

(M, T) 22 (a8, 1)

and

MU(T x I) "5 (M\S) U (T x I\ A)
where the contact structure on T x [ is &, S is the first decomposing surface,
and A is an annulus extending 95 that is used to keep track of the k twists in
Ek-

The first row of Figure 32 shows two views of M\S near T\S. In the first
3-dimensional picture, a pair of dividing curves becomes a single dividing curve
after corner rounding. In the second, the same neighborhood is expressed as a
product with S!, and the single dividing curve is shown as a point. The second
row of the figure gives a similar view of (M\S) U (T x I\ A) in the case k = 1.
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M\S

(M\S) U (T x )\ A

Figure 32. Views of M\S near the boundary before and after
adding T' x I\ A.

The second figure in the second row shows a convex surface transverse to the S!
direction that detects the twisting along &j.

We now show that our contact structure (M\S) U (T x I\ A) is tight. This
is done by finding an embedded copy of this space in the tight space M\S, and
then using the obvious (but useful!) fact that a subset of a tight space is tight.
Here is how this is done.

The curve C parallel to 0S shown in Figure 33 is isolating. Pass to a cover,
without changing notation, in which the number of boundary components of S
is increased, and then C becomes non-isolating. Then use flexibility to make C'
a Legendrian divide. Figure 34 shows a product with S! view of M\S near T\ S.
The region shown is the product of a convex disk and S!. This disk is shown
with part of two dividing curves that end on the two points of intersection with
C, and these two points of C' are shown as hollow dots.

Figure 35 shows (M\S)U (T x I\ A). Finally, Figure 36 shows a larger version
of (M\S) than Figure 34. The shaded subset of Figure 36 is contact isomorphic
to (M\S)U (T x I\A) and is necessarily (universally) tight.

Next we show the contact structure on M U (T x I) is tight. This requires
a gluing theorem along S U A, which unlike S, does not have boundary-parallel
dividing curves. Figure 37 shows ['sya.

We use the same gluing strategy:
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Figure 33. The curve C is isolating.

Figure 34. C'is now a Legendrian divide.

C

S

x St

Figure 35. M U (T x I) split along S U A.

C

D

Figure 36. Enlarged view of M U T split along S shown with a
distinguished subset.

(a) Assume the union along S U A is overtwisted.
(b) Isotop, via bypasses, S U A off of the overtwisted disk, and
(¢c) argue that the split manifold stays tight during (b).
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Figure 37. Dividing curves on S U A.

Figure 38. A possible location of a bypass.

There is an important change in perspective though. From the point of view of
S U A, performing an isotopy in (b) is equivalent to digging a bypass out of one
side of S U A and adding it to the other side. We prove (c) by showing that
there are no troublesome bypasses that can be dug from either side of SU A in
MU(T x I).

We have discussed bypasses which involve only boundary-parallel dividing
curves in the proof of Theorem (3.13), so now we consider the existence of a
bypass involving the closed dividing curves on S U A.

Ezample (4.3). Figure 38 shows a bypass attached along a dotted curve «
connecting three different dividing curves on the boundary of (MUT x I)\(SUA).
Figure 35 showed the same space, but it showed a convex disk with a different
set of dividing curves. Certainly this bypass, if it exists, is not a subset of that
convex disk. Indeed the bypass itself may be very large and reach out of the
portion of the manifold shown in either of these figures.

PROPOSITION (4.4). The bypass shown in Figure 38 cannot ezist.

Proof. Consider the space obtained by adding the product of a bypass at-
tached along a and S! that is shown in Figure 39. The null-homotopic dividing
curve that is created implies the contact structure is overtwisted.

The opposite conclusion is reached if we add the same set and consider its
relationship to the convex disk that we know is contained in (M UT x I)\(SUA).
The union is shown in Figure 40. We see that this space must be tight, for it also
is a “fold along C”, that is, it can be found as a subset of M\S. This completes
the proof of the Proposition and hence Step (4). O

Proof of (5).
We will only give the idea behind the technique used in producing invariants
that distinguish the various contact structures on M U (T x I). Let F be a
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Figure 39. Detecting a bypass by adding a “template”.

x St

= x St

Figure 40. The actual result of adding the template.

properly embedded convex surface which intersects the boundary component
T x {1} of MU (T x I), and let § be a homotopically essential arc in F which
starts and ends on T x {1}. The minimum of #|é N T'r| over all such § and F
is an invariant which tends to infinity as the twisting, that is, the k in &, is
increased.

O

5. Surface bundles

We will give a classification of tight contact structures on ¥ x I such that

(*) ¥ is a closed surface with genus at least two, and the dividing curves on
each component of (X x I) are a pair of parallel non-separating curves.

Ezample (5.1). In Figure 41, notice that on Xi, x(Ry) = x(Z1) and
X(R—-) = 0. This is analogous to the product foliation on ¥ x I in the sense
that the contact 2-planes have outward pointing normal vectors everywhere on
31, at least as measured by Euler charactertistic. This structure is a special case
of an extremal contact structure.
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v x {1} @ by

v x {0} W‘v — %

Figure 41. Dividing curves and splitting annulus on ¥ x I.

Definition (5.2). A contact structure on a surface bundle with fibre ¥ is ez-
tremal if the Euler class, e(&), of the 2-plane bundle satisfies e(£)(X) = £x(2).
Equivalently, if ¥ is convex either x(Ry) = x(X) or x(R_) = x(X).

THEOREM (5.3). [23] There are exactly 4 (universally) tight non-product con-
tact structures satisfying (*). They correspond to a choice of dividing curve on
each of Yo and %.

This theorem is used to prove the following theorems.

THEOREM (5.4). Let ¢ be a pseudo-Anosov map of a closed surface ¥. There
is a wunique extremal, tight (or wuniversally tight) contact structure on

(X x D)/ (p(x),1) ~ (,0).

THEOREM (5.5) (Gabai-Eliashberg-Thurston Theorem). If M is Haken and
Hy(M) # 0, then M carries a universally tight contact structure.

Theorem (5.5) follows from Gabai’s work [14] on the existence of taut folia-
tions and Eliashberg and Thurston’s perturbation technique [13] for producing
universally tight contact structures from taut foliations. The proof we give [24] is
a direct construction which has the advantage of helping us discover new gluing
theorems.

Sketch of proof of Theorem (5.3). We concentrate only on the dividing curve
configuration shown in Figure 41. What the proof strategy lacks in subtlety it
makes up in directness. We start by decomposing 3 x I along a vertical annulus
~x I whose boundary components are shown in Figure 41 and analyze all dividing
curve configurations that can occur on v x I.

Figure 42 shows v x I cut by a vertical arc into a rectangle, and it lists all
possible dividing curve configurations such that the boundary components of
~ x I intesect the dividing curves twice each.
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v x {1}
T ]{IZO
+£ - \/ 1
v x {0} Type I — n=4
Type I, T k=1
\
— + N—]
Type I1,; n=3
— _ — 7~

Figure 42. Possible dividing curves on v x I.

We will show how Type I I2Jr can be reduced to Type I Igr , that is, if we start
with a convex annulus of Type I}, we can find another convex annulus of
Type I1;. This case is fairly typical of the type of arguments we use to prove
this classification theorem.

Figure 43(A) shows the result of splitting ¥ x I along an an annulus of
Type II,, and Figure 43(B) shows the dividing curves on X\o x {0}. After
rounding the corners and gathering the dividing curves on the two vertical an-
nuli of (M\o) x I, the result is shown in Figure 43(C). Cut this along a convex
rectangle § x I, and again we must consider all possible dividing curve configu-
rations on a splitting convex surface.

Suppose first that the dividing curve configuration on § x I has a boundary-
parallel component whose half disk contains the point labelled 2 in § x I. (Fig-
ure 43(D) shows a different configuration.) This would imply the existence of a
bypass with arc of attachment running from 1 to 3. Consider how this bypass
is situated relative to ¢ x I — it crosses two parallel dividing curves and ends
on a third curve in Figure 43(A). But a quick computation (Example (3.15))
shows that the effect of pushing o x I across such a bypass removes both closed
dividing curves from ¢ x I, that is, it produces a Type 11, ar annulus that we had
promised to find.

The same logic shows that if any dividing curve is boundary-parallel and
centered on the point 3, 4, or 5, a Type IL;r can be shown to exist. We are
left with the dividing curve configuration of Figure 43(D). The result of cutting
along 0 x I and rounding corners is shown in Figures 43(E,F).

LEMMA (5.6). There must exist a bypass along the arc of attachment shown
in Figure 43(E).

Sketch of proof of lemma. If such a bypass exists, then pushing the vertical
annulus of Figure 43(E) through it produces three dividing curves rather than
just the one shown in Figure 43(F). One step in a complete proof is arguing
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Bypass?

Figure 43. Decomposing ¥ x I.

that there is a vertical annulus with three dividing curves near the given vertical
annulus. This is very similar to the part of the proof of tightness in the toroidal
case, shown in Figure 36, in which a more complicated space was shown to
exist inside a manifold with a single dividing curve on a vertical annulus in its
boundary. In short, the annulus is shown to exist by a folding argument along
an isolating curve that is shown to exist near the original annulus. This more
complicated annulus implies the existence of the desired bypass. O
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Pushing d x I through this bypass produces a new dividing curve configuration
on § x I which has boundary-parallel dividing curves centered on the points
labelled 3 and 4. As above, this allows us to modify v x I and produce an
annulus of Type I . The rest of the proof of Theorem (5.3) requires:

1. Many other similar reductions.
2. Existence of the four types of contact structures must be shown.
3. Uniqueness of these contact structures must be established.

We will show the existence and uniqueness of Type I tight contact contact
structures. Figure 44(A,B) shows X x I cut along v x I. Notice that the dividing
curves on v X I are boundary-parallel. The result of rounding corners and the
next splitting surface is shown in Figure 44(C). Since ¢ x I intersects only two
dividing curves, there is no choice for the diving curve set on ¢ x I, it must be
the single boundary-parallel arc shown in Figure 44(D). The result of cutting
along 0 x I and rounding corners is shown in Figure 44(E,F). Next, choose ¢
such that € x I intersects dividing curves just twice. Continuing in this fashion
we produce a convex decomposition by splitting surfaces which have boundary-
parallel dividing curves. Morever, as long as null-homotopic dividing curves on
the splitting surfaces are not allowed, the choice of dividing curves is unique.

Since the splitting surfaces all have boundary-parallel dividing curves in this
case, (2) follows from Theorem (3.13). It is worth emphasizing that a convex
decomposition determines the contact structure near M and the splitting sur-
faces. Furthermore, by the uniqueness of tight contact structures on B3, the
contact structure is determined on the rest of M as well. Since there is just one
possible choice of dividing curves on the splitting surfaces, (3) follows.

This completes the sketch of the proof of Theorem (5.3). O

The statement of Theorem (5.3) refers to a choice of dividing curves. This
choice can be described explicitly using the notion of a straddled dividing curve.

Definition (5.7). A dividing curve in 9(X x I) is straddled if there exists a
dual convex annulus with a boundary-parallel dividing curve centered on it.

We record a couple of consequences of Theorem (5.3) that are used in appli-
cations.

COROLLARY (5.8) (Addition). Let & and & be tight, non-product contact
structures on ¥ x [0,1] and X x [1,2], respectively, that agree on ¥ x {1}. Then
&1 U & s tight if and only if no dividing curve on ¥ x {1} is straddled in both
2 % [0,1] and 3 x [1,2)]. O

COROLLARY (5.9) (Freedom of Choice). Let & be a non-product tight contact
structure on X X I, and let ay and ag be a pair of parallel, non-separating curves
on X. Then there exists a convex embedding of ¥ in X x I that is isotopic to the
inclusion of a boundary component, such that I's = a1 U as. O

The next proposition is self-evident and very useful [20].

PROPOSITION (5.10) (Imbalance Principle). Let St x [0,1] be a properly em-
bedded convexr annulus in M such that St x {0} intersects fewer dividing curves
than S* x {1}. Then S* x [0,1] contains a bypass centered on a dividing curve
intersecting ST x {1}. O
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Figure 44. Existence of uniqueness of Type IIS'.

Sketch of the proof of Theorem (5.4).

e Given a surface bundle with pseudo-Anosov monodromy ¢, pick a fibre,
isotop it until it is convex, and cut the bundle along the fibre. The dividing
curves on each boundary component consist of a family of parallel pairs of curves.

o If there are more than one pair of parallel curves on either boundary com-
ponent, then since ¢ is pseudo-Anosov, there exists an imbalance annulus.
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Figure 45. The first splitting surface S in M\X.

e [sotoping the fibre through the bypass guaranteed by the Imbalance Princi-
ple reduces the number of dividing curves. Continue until there is just a single
pair on each boundary component.

e By Freedom of Choice a new fibre can be chosen with a fixed pair of non-
separating dividing curves.

e Splitting the bundle along this fibre reduces an arbitrary bundle to one of
the four standard forms given in Theorem (5.3). Of the four possible straddlings,
two are ruled out because of the tightness of the gluing that recreates the original
surface bundle. The other two are related by another application of Freedom of
Choice. O

Sketch of the proof Theorem (5.5). By Theorem (3.11) we may assume M is
a closed manifold. Let ¥ C M be a Thurston norm minimizing surface corre-
sponding to a non-zero element of Hz(M) and split M along 3.

The sutured manifold M\ has no sutures, but it does have a sutured manifold
decomposition. Let the first splitting surface be S, and we shall assume that S
intersects each copy of ¥ in a single closed curve as shown in Figure 45. Make
M\X a convex structure by adding a pair of parallel dividing curves dual to 95
on each boundary component. Make S a convex surface by adding boundary-
parallel dividing curves o straddling a component of I', the dividing set on the
boundary of M\, on each copy of X. If the right curves are straddled, splitting
the sutured manifold M\ along S corresponds to the convex splitting defined
by (S, o). The remaining steps of the convex decomposition are directly inherited
from the sutured manifold decomposition.
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Figure 46. Possible location of bypasses before gluing.
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This convex decomposition of (M\X,T") is by surfaces, all of whose dividing
curves are boundary-parallel. Thus by Theorem (3.13), there is a tight con-
tact structure on M\X. Moreover, by construction, one dividing curve on each
boundary component of M\X. is straddled by a dividing curve on S.

By Theorem (5.3) there are four choices of tight contact structure on ¥ x I
that could be used to attach to M\X and produce a tight contact structure on
M. Tt should seem very plausible, and it is true, that a curve straddled on both
sides gives rise to an overtwisted disk. Thus we insert the unique, non-product,
contact structure on ¥ x I that gives (M\X)U X x I a chance of being tight.

We are two gluing theorems away from a complete proof of tightness on M,
we must glue along each of the boundary components of ¥ x I. As we have seen,
the general form of these gluing proofs is:

1. Given an overtwisted disk in M, push ¥ off it using bypasses while keeping
M\Y tight.

2. Analyze which bypasses exist on one component of M\Y and which can
be added to the other component while preserving tightness.

Rather than do this in generality, consider the local version of this that is
shown in Figure 46. On the left are two dividing curves, one of which is straddled.
On the right are the two dividing curves about to be identified with the curves
on the left. Also shown are two boundary-parallel dividing curves. The first,
By, is known to exist by construction, thus if it is removed and added to the
other side, tightness must be shown to be preserved. The second, Bs, if added
to the left would produce an overtwisted disk, thus, as part of a sufficient gluing
theorem, these must be shown not to exist. These local gluing results follow
from the next lemma.

O

LEMMA (5.11). Let v, and s be a pair of parallel dividing curves on OM, and
assume ys is straddled and the contact structure on M is tight. Then, adding a
bypass to M across v, produces a tight contact structure.

Since adding a bypass to M across s produces an overtwisted structure, it
follows that =, is not straddled.
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Figure 47. Adding a bypass across (3 is the same as removing a
bypass across .

Proof. Figure 47 shows a neighborhood A x I of an annular neighborhood A
of vs and v, in M. It also shows the arc of attachment o which straddles ;s
and the arc of attachment § to which a bypass is being added. The annulus
parallel to and below A shows the result of removing the bypass attached along
«. The annulus above A shows the result of adding a bypass along . The figure
on the right shows the dividing curves on the boundary A x I.

At least on the boundary, the figure on the right looks like a product contact
structure on A x I, and indeed it is. Since the attaching curves, a and 3, are
disjoint, the contact structure on A can be built by first attaching a bypass to
the bottom annulus along 3 and then attaching a bypass along «. From this
point of view, the isotopy class of the dividing curves remains unchanged after
adding each bypass (see also Example (3.17)), and thus the contact structure is
a product. It now follows that adding a bypass across ( is the same as removing
a bypass in M attached along «, and this operation preserves tightness.

O

6. Open Questions

There are two fundamental classes of open questions:

1. Which M? carry tight contact structures?
2. What are the topological implications of carrying a tight contact structure?

The central existence question, particularly from the point of view developed
in this paper, is the question of whether or not Haken homology spheres M
always carry tight contact structures.

In such a manifold, every surface ¥ C M must separate. In particular if
there is a tight contact structure & on M, then e(£)(X) = 0. This means that
if ¥ is convex, then x(R4+) = x(R-). This is exactly opposite to the extremal
case when x(R4+) = x(X) and x(R-) = 0. Presumably constructing contact
structures will involve:

e (Classification of such structures on > x I and
e new gluing theorems.
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Figure 48. Haken homology sphere.

Figure 49. A non-extremal boundary configuration.

Ezample (6.1). Perhaps the simplest example of this sort of classification ques-
tion on ¥ x I is shown in Figure 49. Preliminary work of Cofer [6] shows there
is exactly one tight, non-product, contact structure with these dividing curves.
This example has the bizarre property that if you add any non-trivial bypass, it
becomes overtwisted. It follows that it does not occur as a subset of any tight
contact structure on X x I other than itself, and it may not show up in any tight
closed 3-manifold.

Very little is known about (2), implications of carrying a tight contact struc-
ture, so we will describe results that have been obtained in lamination theory
that perhaps have analogues in contact topology.

Definition (6.2). A lamination of M3 is a disjoint union of surfaces which are
locally homeomorphic to the product of D? and a closed subset of I.

A lamination is essential if the leaves are incompressible, the complementary
regions are irreducible, and there are no folded leaves. A lamination is genuine
if it is essential and some complementary region is not a product of a boundary
leaf and I.

Figure 50 shows, in order, a folded leaf, a complementary region that is a
product of a boundary leaf and I, and a complementary region that is not such
a product.
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Figure 51. Structure on the complementary region of a genuine lamination.

Definition (6.3). The Fuler characteristic of a surface with cusped boundary
is defined to be the usual Euler characteristic of the underlying space minus half
of the number of cusps.

The cross-sections of the complementary regions shown in Figure 50 are a
disk with one cusp (x = 1/2), a disk with two cusps (x = 0), and a disk with
three cusps (x = —1/2). The definition of essential consists of bans on various
types of positive Euler characteristic, while the notion of a genuine lamination
postulates the existence of some negative Euler characteristic in M. We shall
see that atoroidal manifolds are group negatively curved (Theorem (6.6)). It is
not clear what additional structure should be made for contact structures that
might make the this theorem apply in that setting as well.

By the JSJ decomposition theorem, there is a unique I—bundle structure J
on the ends of each complementary region. Thus each complementary region
decomposes as the union of a J and the guts § as shown in Figure 51.

The key features of this decomposition are:

e G is compact.
e By maximality of J, § has no product disks, that is, there are no non-trivial

rectangles in G with sides that alternately consist of I-bundle fibres of J and arcs
in leaves of the lamination.

e An essential lamination is genuine if and only if G # (.
e GNJis a finite union of annuli A.
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Definition (6.4). M is group negatively curved if there exists a constant C
such that for every null-homotopic curve, f : S! — M, there exists an extension
of f to a disk D such that

area(f(D)) < C - length(f(0D)).

M is group negatively curved with respect to a link L in M if there exists a
constant C such that for every null-homotopic curve f : S — M, there exists
an extension of f to a disk D such that

area(f(D)) < C - (length(f(0D)) + wr(f(0D), L)).
The wrapping number wr(f(0D),L) is a geometric linking number and is

defined to be the minimum, taken over all disks £ with OFE = f(9D) of the
number of points of intersection of F with L.

The inequality in the definition of group negatively curved with respect to a
link L in M is equivalent to the existence of a constant such that at least one of
the two inequalities is satisfied:

area(f(D)) < 2C - length(f(0D))

or
area(f(D)) < 2C -wr(f(0D), L).

We need the following remarkable theorem.

THEOREM (6.5) (Gabai’s Ubiquity Theorem [15]). If M is closed, irreducible,
and atoroidal, and if L ¢ B3, then M is group negatively curved with respect to
L. O

THEOREM (6.6). [17] If M is atoroidal and contains a genuine lamination X,
then M is group negatively curved.

Before applying Gabai’s Ubiquity Theorem to the proof of Theorem (6.6), we
need the following lemma which says that to prove an isoperimetric inequality
for all null-homotopic curves, it is enough to prove the inequality on a “dense”
subset.

LEMMA (6.7). Let A be the set of all null-homotopic curves g : S* — M, and
let S be a subset of A. If

e all f €S satisfy an isoperimetric inequality,

e cach g € A is approximated by an f € S by a small area homotopy, and

o length(f) is not drastically bigger than length(g),

then all g € A satisfy an isoperimetric inequality.

Proof. This follows by piecing together the homotopies shown in Figure 52.
O

Sketch of the proof of Theorem (6.6). To apply this lemma think of § as a big,
fat subset of M. Then to show M is group negatively curved, it is enough to
prove an isoperimetric inequality for the set of null-homotopic curves f : S — M
such that

1. f is transverse to A.
2. Each component of f~1(§) has length greater than some constant €.
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small

Figure 52. A small area homotopy that does not increase length much.

x St

Figure 53. Short portions of g~1(G) can be removed efficently.

In other words, short bits of f~1(G) can be efficiently removed as in Figure 53.

Since §GN7J is a finite union of annuli A, we define L to be the union of the cores
of A. We now apply Theorem (6.5) to this choice of L. Given a null-homotopic
f: S — M satisfying (1) and (2), there exists a disk of null-homotopy, D, such
that at least one of these inequalities is satisfied:

area(f(D)) < 2C - length(f(0D))

or
area(f(D)) < 2C - |f(D)NL|.

In the first case, we have exactly the isoperimetric inequality we are looking for.

Thus it is enough to assume the second inequality is satisfied, and then show

there exists a constant C” such that

20 - |f(D) N L| < C" - length(9f(D)).

Figure 54 shows f~1(D). The figure shows f~1(G) as shaded, and f~1(J) as
white. Since we are only trying to give a sketch of the main ideas, we will think
of f as an embedding.

Figure 55 shows regions that might occur as subsets of f~1(D). The first
region, a null-homotopic circle, can be removed by choosing a new map of D —
M since leaves of \ are incompressible. The second region, a folded leaf, cannot
occur in an essential lamination. And finally the third region, a half disk mapped
into G does occur, and thus we arrive at

Conclusion 1. Regions of f~1(D) with positive Euler characteristic contribute
at least € to the length f(0D).
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Figure 54. The pullback of A\, G, and J to D.

o £ ¥

Figure 55. Possible regions of D with positive Euler characteristic.

Figure 56 shows typical regions of f~!(D) which contain points of f~!(L).
The first figure, a cusped triangle, has negative Euler characteristic. The second
region shown has Euler characteristic zero and is a product disk in §. This cannot
exist by the definition of §. The third region also has Euler characteristic zero,
but it contains an arc that is mapped into G, thus it contributes at least ¢ to
length(f(0D)). After removing the middle regions that cannot exist we reach

Conclusion 2. Points of f~!(L) either show up in regions of negative Euler
chacateristic or they contribute at least € to length(f(0D)). smallskip We can
now complete the proof. We have a disk D such that

area(f(D)) <2C-|f(D)N L,

thus a large area disk gives many points of f~!(L). By Conclusion 2, these points
either directly contribute to the length of f(9D), or they show up in regions of
negative Euler characteristic. But x(D) = 1, thus the existence of regions with
negative Euler characteristic implies the existence of regions with positive Euler
characteristic. By Conclusion 1, these in turn contribute even more to the length



40 WILLIAM H. KAZEZ

Figure 56. Regions of D which contain points of f~*(L).

of f(0D). Thus we conclude
area(f(D)) < 2C - |f(D)N L| < C"-length(f(dD)).
O

A key feature of this proof that does not have an obvious analogue in contact
topology is the crude notion of length given by pulling back G to 9D.

We would like to end up by pointing out that there are no clear connections
between tight contact structures on M and the fundamental group of M. For in-
stance, it is not known if a homotopy 3-sphere supports a tight contact structure
whether it must be S3.

By way of contrast, there are many (M) actions that can be constructed
from foliations and laminations. The leaf space is the quotient of the universal
cover by leaves and complementary regions. The quotient is an order tree, and
there is always an action of 1 (M) on it.

Bestvina and Mess [2] show that if M is group negatively curved then there is
an action of 1 (M) on S2. This can be applied to the manifolds of Theorem (6.6),
and indeed by Calegari’s work [3], there are far more manifolds in this collection
than originally realized.

Palmeira’s Theorem [27] is generalized to laminations in [16], and it follows
that the universal cover (M, )) is always homeomorphic to a product (R2, ) x R
where & is a lamination of the plane. Calegari and Dunfield [5] point out that
(R2, k) can be thought of as (H?, k) and from this they can sometimes produce
an action on S. . Calegari and Dunfield [5] have more general results. They
generalize Thurston’s work on the universal circle, and using Candel’s theorem
[4], they identify leaves of A with H?, and they identify all S1 ’s coming from the
H?s to get a w1 (M) action on S} . . This works for taut foliations and some
genuine laminations.
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ON THREE-MANIFOLDS WITH BOUNDED GEOMETRY

MICHEL BOILEAU AND DARYL COOPER

ABSTRACT. In this note we combine some of Cheeger-Gromov’s results
[CG1,CG2,CG3] from the geometry of collapses of Riemannian 3-manifolds
together with some three-dimensional topology to prove results which say
that there are at most finitely many diffeomorphism classes of prime non-
geometrizable three-manifolds which admit a metric of bounded geometry
(i.e. with bounded sectional curvatures and bounded volume).

0. Introduction

Definition. A compact orientable 3-manifold is geometrizable if it has a split-
ting along a finite collection of disjoint essential spheres and tori into finitely
many compact 3-manifolds whose interiors each admit a complete homogeneous
riemannian metric (after capping off their boundary spheres by balls).

Thurston’s geometrization conjecture states that all 3-manifolds are geomet-
rizable.

There are eight homogeneous riemannian metric, which are locally modelled
on/t\lrf following 3-dimensional geometries: S, E3, H3, §? x E', H? x E', Nil,
SLy(R) and Sol.

A 3-manifold M is:

e prime if it is not the connect sum of two 3-manifolds neither of which is
S3.

e irreducible if every smoothly embedded sphere in M bounds a ball M.

e J-irreducible if for every smooth properly embedded disc D in M there is
a ball B C M and a disc D’ C OM such that 9B = DU D’.

e atoroidal if every Z? subgroup in w3 M is conjugate into mdM and in
addition 71 M does not contain the fundamental group of the klein bottle.

A prime orientable 3-manifold which is not irreducible is homeomorphic to
S? x S', and hence geometric. An irreducible orientable 3-manifold such that
every Z? subgroup of m; M is conjugate into ;M is either atoroidal, or else the
orientable I-bundle over the Klein bottle which is geometric.

By Thurston’s hyperbolization theorem [Th2](cf. [Ka], [Ot1,2]) and the Torus
theorem ([CJ],[Ga]), a non-geometrisable prime 3-manifold is irreducible, ator-
oidal and does not contain any embedded, incompressible, orientable surface. In
particular it has an empty boundary.
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Keywords and phrases: 3-manifold, geometric structure, graph manifold, F-structure, Dehn
filling.
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Given a positive real number v > 0, let M(v) be the set of diffeomorphism
classes of closed orientable 3-manifolds which admit a Riemannian metric g with
bounded sectional curvature |K,| < 1 and bounded volume vol(M, g) < v.

There are infinitely many geometrizable 3-manifold in M(v). In fact by the
work of Cheeger and Gromov [CG1,CG2] all closed graph 3-manifolds (to be
defined in §1) belong to M(v) for any v > 0, and this characterizes graph 3-
manifolds. More precisely, there is a constant vg > 0 such that: Yo < vy, M(v) =
M(vg) is the set of closed graph 3-manifolds.

By the work of Jgrgensen and Thurston, for v sufficiently large (eg. bigger or
equal to the hyperbolic volume of the figure eight knot complement), there are
infinitely many closed hyperbolic 3-manifolds in M(v).

The main result of this note is the following finiteness result concerning non-
geometrizable prime summands of 3-manifolds in M(v).

THEOREM (0.1). Given v > 0 there is only a finite set NG(v) of orientable,
non-geometrizable 3-manifolds that may occur as a prime summand in the con-
nected sum decomposition of a 3-manifold in M(v). Moreover for every 3-
manifold in M(v) the number of such non-geometrizable prime summands is
bounded above by a number p(v) depending only on v.

As straightforward corollaries we obtain:

COROLLARY (0.2). There is a constant n(v) depending only on v such that
M(v) contains at most n(v) prime 3-manifolds which are not geometrizable.

COROLLARY (0.3). There is a constant s(v) depending only on v such that
M(v) contains at most s(v) homotopy spheres.

Definition. For a compact orientable 3-manifold M, let Minvol(M) =
inf{vol(M, g)} where g runs over all Riemannian metrics on int(M) with bounded
curvature |K4| < 1.

Let A denote the set of compact orientable irreducible and atoroidal 3-mani-
folds, with zero Euler characteristic, and which do not admit a spherical metric
(such a manifold is not a graph manifold). We denote by 3 C A the subset of
3-manifolds which admit a complete hyperbolic structure of finite volume. By
Thurston’s hyperbolization theorem for Haken 3-manifolds, a manifold with non
empty boundary in A belongs to H. Thurston’s geometrisation conjecture states
that H = A.

When M admits a complete hyperbolic structure of finite volume gg, a deep
result, due to Besson-Courtois-Gallot [BCG] in the closed case and to Boland-
Connel-Souto [BCS] in the cusp case, shows that the hyperbolic metric realizes
the Minvol i.e. Minvol(M) = Vol(M, go).

Since there is no graph 3-manifold in A, it follows from Cheeger-Gromov’s
work [CG1,CG2] that a 3-manifold in A has a strictly positive Minvol. By
Corollary (0.2), for a given value v > 0, the set {Minvol < v} N A contains at
most finitely many prime, non-geometrizable 3-manifolds since they belong to
M(v+1).
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Since the geometrizable 3-manifolds in A are exactly the subset H of hyper-
bolic 3-manifolds, the following result is a direct consequence of [BCG], [BCS],
[Th,chap.5] and of Corollary (0.2). It shows that the set of values of the Minvol
for manifolds in A behave like the set of volumes of hyperbolic manifolds.

COROLLARY (0.4). The map Minvol : A — (0,400) is finite to one and the
set of values Minvol(A\K) is discrete. In particular the set of values Minvol(A)
is a well-ordered subset of Ry whose limit points coincide with the limit points
of the subset Minvol(X).

There are two parts in the proof of Theorem (0.1). The first part (cf. §1)
follows from Cheeger-Gromov’s theory of collapses for riemannian manifolds with
bounded sectional curvature. The second part (cf. §2) is a generalization of
Thurston’s hyperbolic Dehn filling theorem to the case of graph-fillings

1. Thick parts of Riemannian manifolds with bounded volume

A phenomenon which has received much attention in all dimensions from
geometers is the notion of collapse : we say that a family of Riemannian metrics
on a manifold collapses with bounded geometry if all the sectional curvatures
remain bounded while the injectivity radius goes uniformly everywhere to zero.

For example any flat torus 7" collapses to any small dimensional torus 7%
with k < n by rescaling the metric on some of the S! factors.

Cheeger and Gromov [CG1,CG2| have proved that a necessary and sufficient
condition for a manifold to have such a collapse with bounded geometry is the
existence of a “generalized torus action” which they call an F-structure. F
stands for “flat” in this terminology.

Intuitively an F-structure corresponds to different tori of varying dimension
acting locally on finite coverings of open subsets of the manifold. Certain com-
patibility conditions on these local actions on intersections of these open subsets
will insure that the manifold is partitioned into disjoint orbits of positive dimen-
sion. A precise definition of an F-structure can be given using the notion of
sheaf of local groups actions, but we will not need it here.

A compact orientable 3-manifold M with an F-structure admits a partition
into orbits which are circles and tori, such that each orbit has a saturated subset.
A 3-manifold M has a graph structure in the sense of Waldhausen [Wa] and is a
graph manifold if it can be obtained by glueing Seifert fiber spaces together along
torus boundary components. These tori are not required to be incompressible.
It follows from the definition of F-structure that such a partition corresponds to
a graph structure on M (see [Rol,§3]).

Another description of the family of all graph manifolds is that they are
precisely those compact three manifolds which can be obtained, starting with the
family of compact geometric non-hyperbolic three-manifolds, by the operations
of connect sum and of glueing boundary tori together. Thus they arise naturally
in both the Geometrization conjecture and in Riemannian geometry.
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The aim of this section is to prove the following proposition which is true in
any dimension:

PROPOSITION (1.1). Let M be a closed Riemannian n-manifold with |K4| <1
and vol(M,g) <wv. Then M has a decomposition M = N UG into two compact
n-submanifolds such that:

o G admits an F-structure such that ON = 0G is an union of orbits.

o N belongs, up to diffeomorphism, to a finite set N(n,v) of smooth, compact,
orientable n-manifolds.

Here is a straightforward corollary in dimension 3:

COROLLARY (1.2). Every manifold M € M(v) has a decomposition M =
N UG into two compact (maybe not connected) 3-submanifolds such that:

o GG is a (maybe empty) graph manifold.

o N belongs, up to homeomorphism, to a finite set N(v) of compact orientable
8-manifolds with zero FEuler characteristic. O

Riemannian geometry takes an important part in the proof of Proposi-
tion (1.1). This proposition is the analogue in bounded variable curvature of
Jorgensen’s finiteness theorem [Thm 5.12], which states that all complete hy-
perbolic 3-manifolds of bounded volume can be obtained by surgery on a finite
number of cusped hyperbolic 3-manifolds. The finiteness of hyperbolic manifolds
with volume bounded above and injectivity radius bounded below is a precursor
to Gromov’s compactness theorem, while the Margulis lemma takes the place of
the Cheeger-gromov thick/thin decomposition [CG2, Thm.0.1].

The following theorem is a precise version of Cheeger-Gromov’s thick/thin
decomposition (see [CFG, Thm.1.3 and 1.7] for a proof). We recall that the
e-thin part of a Riemannian n-manifold (M, g) is the set of points F(e) = {x €
M ,inj(x,g) < e}

THEOREM (1.3). For each n, there is a constant p,,, depending only on the
dimension n, such that for any 0 < & < p, and any complete Riemannian n-
manifold (M, g) with |K4| < 1, there exists a Riemannian metric g. on M such
that:

(1) The e-thin part F(e) of (M, g.) admits an F-structure compatible with the
metric g, whose orbits are all compact tori of dimension > 1 and with diameter
<e€.

(2) The Riemannian metric ge is e-quasi-isometric to g and has bounded co-
variant derivatives of curvature, i.e. it verifies the following properties:

® e g < g<ege.

o ||V9—V9| < e, where V and V9 are the Levi-Civita connections of g
and g. respectively.

o |(V9)kR,_ || < C(n,k,e), where the constant C' depends only on e, the
dimension n and the order of derivative k.

Using Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] one can prove the
following:
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PROPOSITION (1.4). For each integer n > 2, there are constants p, > 0,
Ay > 0, 6, > 0 and ¢, > 0, depending only on n, such that for any closed
Riemannian n-manifold (M, g) with |K,4| < 1, there is a metric g, which is -
quasi-isometric to g, with |K,, | < A, and a decomposition M = N UG where:

o G is a compact n-submanifold which admits an F-structure compatible with
gn and ON = 0G is saturated.

e The injectivity radius for g, at every point x € N verifies inj(x, gn) > On.

e The second fundamental form of ON for the metric induced by g, is bounded:
NEYS

e The volume vol(ON, gy,) < ¢y, - vol(M, gp).

Proof. We apply theorem (1.3) with the constant € = p,,. So there is a metric
gn which is p,-quasi-isometric to g and such that M = B(u,) U F(uy), where
B(un) = {x € M ,inj(x,9) > pn} and the p,-thin part F(u,) admits an F-
structure compatible with g,,. Moreover, since the covariant derivatives of the
curvature of g, have bounded norm by theorem (1.3), it follows that there is a
constant A,, > 0 such that |K,,| < A,,. Therefore by the uniform decay of injec-
tivity radius [GLP, Prop.8.22], there is a universal function ¢, (—, —), depending
only on n, such that: VY, 2’ € M ,inj(a', gn) > ¢n(inj(z, gn), dn(z,2")).

If B(pn) =0, we take N =0 and G = M.

We assume for the rest of the proof that B(u,) # 0. We denote by d,, the
distance on M associated with the metric g,. Let X C F(pp) be the set of
points: X = {x € F(un),dn(z,0(B(pn)) > 1+ 2pn}.

If X = 0, then every point of M is at distance less than 2(1 + p,) from
a point of B(u,). It follows from the uniform decay of injectivity radius that
ing(x,9n) = Gn(tin, 2(1 + pp)) = d,, for every point € M. So we take N = M
and G = 0.

If X # 0, let F(X) be the union of all the orbits of points in X for the
F-structure on F(uy,), compatible with g¢,. It is a compact saturated subset
of F(un). Since the diameter of the orbits of the F-structure is at most f,
it follows that d,(y, d(B(un)) > 1 for all point y € F(X). In particular the
closed tubular neighborhood of radius 1 around F(X), T1(F(X)), is contained
in F(py, ). Since the local torus groups act by isometries, the equivariant form of
Cheeger-Gromov’s chopping theorem [CG3, Thm.0.1] (see also [Ro2, Thm.2.1]),
shows that there is a compact n-submanifold U C M with smooth boundary oU
such that for some constant ¢,, > 0 depending only on n:

e F(X)CUCTi(F(X)) C Fun) and U is saturated for the F-structure;

® ”IIg?] < s

o vol(OU, gpn) < ¢y - ol (Th (F(X)), gn) < cn - vOl(M, gr).

We set G = U and N = M\int(U). Since X C U, for every point x € N
we have d,, (x,0(B(pn)) < 2(1 + py). By the uniform decay of injectivity radius
[GLP, Prop.8.22], we obtain as above that inj(z, g,) > 4, for every point = €
N. o

Proof of Proposition (1.1). By proposition (1.4), for some constants u, > 0,
A, > 0,0, > 0and ¢, > 0, depending only on n there is a metric g,, on M, which
is pn-quasi-isometric to g, with |K,,| < A, and a decomposition M = NUG
such that:
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e G is a compact n-submanifold which admits an F-structure compatible with
gn and ON = OG is saturated.

e The injectivity radius for g, at every point x € N verifies inj(z, gn) > 0n.

e The second fundamental form of ON for the metric induced by g,, is bounded:
e

e The volume vol(ON, gn) < ¢y, - vol(M, gr).

In particular, the volume of (M, g,,) verifies: vol(M, g,,) < V(n,v) for a con-
stant V(n,v) depending only on u, and v, and thus only on n and v. Since
|K,,| < A, and inj(x,g,) > d, for every point z € N, the diameter of N
verifies: diam(N, g,) < D(n,v), where the constant D(n,v) depends only on
v(n,v),d, and A,, and hence only on n and v.

To show that N belongs , up to diffeomorphism, to a finite set N(n,v) of
smooth, compact, orientable n-manifolds, we use S. Kodani’s extension [Ko] of
Gromov’s convergence theorem to some classes of Riemannian manifolds with
boundary.

Let ip be the infimum of inward normal injectivity radii of the boundary
points of N. Then iy is the infimum of the focal radius of 9N and of half the
length of a shortest geodesic which orthogonally intersects 9N at the end points.
(cf. [Ko, Lemma 6.3]). Let iny be the minimum of ip and the infimum of the
injectivity radii of points at distance greater than iy from ON. If iy < i, then
i is the infimum of the conjugate radii and of half the lengths of geodesic loops
with base points at distance at least iy from ON. In order to apply Kodani’s
results we need to have a lower bound on iy, therefore we need to control the
inward normal injectivity radius to ON. To do so the idea is to add a collar to
ON. The following construction has been pointed out by J. Porti.

Since ON is a hypersurface in M, the uniform bounds |K,,| < A, and

|15 < ¢, imply that the focal radius of N in M is bounded below by a con-
stant r,, = \/% arctan( ‘/st_) Therefore the exponential map exp : V% (ON) —

M is a smooth immersion, where v, (ON) is the subspace of the normal bundle

of ON which consists of normal vectors of length smaller or equal to % and
pointing ouside N. We use the exponential map to pull back the Riemannian

metric g, of M onto the collar v, (ON) of ON. We glue this collar to N along
ON to get a Riemannian manifol(i N’ with the same topological type as N and
endowed with the metric g/, which coincides with g, on N and with the pull
back metric on the collar Vig (ON).

By [KO, Lemmas 3.1 and 3.2], see also [BZ, Chap. 6], the norm of the jacobian
of the exponential map is uniformly bounded on v, (V) above by a constant
b, and below by a constant a,, > 0, which depend only on A,, and ¢,,. It follows
that the Riemannian metric (N’, g},) has the following properties:

o |[K, | < A}, where A}, depends only on Ay, ¢,,an, by, hence only on n.
o |[II%,| < ¢, where the constant ¢, depends only on A, ¢y, @y, by, by [KO,
Lemma 3.1].

* vol(N', gn) < (14 (an)™")vol(M, gn) < (14 (an) ")V (n,0) = V'(n,v).

e iys > &), where 4/, depends only on n, A/, ¢, b, and r,, thus only on n .
This follows from the uniform decay of injectivity radius in M, the uniform upper
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bound on the jacobian of the exponential map and the uniform lower bounds on
the conjugate radius of N’ and focal radius of ON’.

e diam(N',g)) < D’(n,v), since the volume of N’ is bounded above by a
constant V' (n,v) and the injectivity radius of N’ is bounded below by a constant
.

Therefore (N, g/,) belongs to the class of n-dimensional compact Riemann-
ian manifolds with bounded sectional curvature |[K,y | < A}, and a lower bound

on the injectivity radius iy > 6,. Moreover, if IN’ # 0, ||II§§’V,\ <c. It
follows from [GLP, Prop.7.5] and [Ko, Thm.A] in the case with boundary, that
the Gromov-Hausdorff and the Lipschitz topology coincide for this class of man-
ifolds. Furthermore vol(N’,g,) < V'(n,v) and diam(N’,g,) < D'(n,v), so
the Riemannian manifold (N',g},) belongs to a class of riemannian manifolds
which is precompact for the Gromov-Hausdorff topology by [GLP, Prop.5.2],
and thus for the bilipschitz topology. It follows from the definition of the bilips-
chitz topology that there are, up to diffeomorphism, only finitely many manifolds
in a precompact family with respect to this topology. Therefore there are, up to
diffeomorphism, only finitely many manifolds N’ and hence only finitely many
manifolds N. O

2. Graph-fillings

Definition. A graph-filling of a compact orientable 3-manifold N is the oper-
ation of gluing a compact orientable (maybe not connected) graph 3-manifold G
to N by identifying some toral components of N with some toral components

of 0G.

A graph-filling is a generalization of a Dehn filling where each connected
component of G is a solid torus.

Corollary (1.2) implies that every M € M(v) either is a graph manifold,
or belongs to N(v), or is obtained from a manifold in N(v) by a graph filling.
Hence Theorem (0.1) is a straightforward consequence of Corollary (1.2) and the
following result:

PROPOSITION (2.1). Let M be a compact orientable 3-manifold with non
empty boundary a collection of tori. There is only a finite set NG(M) of com-
pact, orientable, non-geometrizable 3-manifolds that may occur as prime factors
of the connected sum decompositions of all the compact, orientable 3-manifolds
obtained by graph fillings of M. Moreover the number of such prime factors
(counted with multiplicity) is also bounded above by a constant depending only
on M.

The purpose of this section is to prove Proposition (2.1). Before starting the
proof we give some definitions.

Definition. Let M be a compact orientable 3-manifold and let 7' C OM be a
boundary torus. A slope o € Hy(T,Z) is a homology class corresponding to an
essential simple closed curve on 7. We denote by M («) the compact orientable
3-manifold obtained by Dehn filling T with slope « i.e. by gluing a solid torus
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S1x D? along T in such way that the boundary of a meridian disk {*} x dD? has
slope a on T. By convention co will denote the empty slope, so M (co) means
that no Dehn filling occurred along T'.

Definition. Let V be a soli torus, a cable space is the complement of an open
tubular neighborhood of a (r, s)-cable of the core of V|, where r, s are coprime
integers with s > 2. It has a Seifert fibration over an annulus with one single
cone point.

Definition. A compact orientable 3-manifold H is hyperbolicabled if there is
a finite (maybe empty) set of disjoint compact cable subspaces Ci,...,C) in
H such that C; N 0H is a torus component of 9C;, for i = 1,...,k, and that
Hy = H\U¥_, C; is not empty and admits a complete hyperbolic metric of finite
volume on its interior. When the family of cable subspaces {C;}i=1,...x is empty,
the manifold H is said to be hyperbolic. Observe that a hyperbolicabled manifold
is geometrizable.

The following lemma is a straightforward extension of Thurston’s hyperbolic
Dehn filling Theorem [Thl, Chap 5] :

LEMMA (2.2). Let H be a compact, orientable, hyperbolicabled 3-manifold ,
with g toral boundary components Tt,...,T,. Then on each torus component
T; C OH there is a finite exceptional set of slopes 8; such that for any collection
of slopes (a1, ...,0q) € (H1(Th,Z)U{c0}\81) X ... (H1(Ty, Z) U{cc}\8,), the 3-
manifold H(a1, ..., aq) obtained by Dehn filling of H 1is irreducible, 0—irreducible
and geometrizable.

Proof. Let Hy = H\ U*_, C; be the hyperbolic part of H, with k& < ¢. By
Thurston’s hyperbolic Dehn filling theorem [Th1, Chap. 5], on each torus com-
ponent 7] C OHp, i = 1,...,q, there is a finite exceptional set of slopes §;
such that for any collection of slopes (B1,...,08,) € (H1(T7,Z) U {oc}\8'1) x
< (Hy(Ty,Z) U {o0}\8'y), the 3-manifold Ho(B1, ..., B,) obtained by Dehn fill-
ing of Hy admits a complete hyperbolic structure of finite volume on its interior.

Let T; C OH be a boudary component. If T; = T C 0Hj, then the exceptional
set of slopes 8; = 8';. Otherwise T; C 9C;, where C; is a cable subspace of H
and Tz/ = 8(71\Tz C Hy.

If intersection number of the slope a C T; with the fibre f C T; of the Seifert
fibration of C; is |A(e, f)| > 2, then the Dehn filled 3-manifold C;(«) is a Seifert
manifold over a disk, with two exceptional fibres and incompressible boundary.
Hence gluing C;(a) to a boundary component of an hyperbolic 3-manifold still
yields an irreducible, 0—irreducible and geometrizable 3-manifold.

If |A(ey, f)] = 1, then C;(«) is a solid torus. A homological calculation shows
that the intersection numbers of two slopes 8 and 3’ on T} corresponding to
the boundaries of meridian disks of C;(«) and C;(a’) verifies: |A(B,5)] =
s2|A(a,a’)|, where s; > 2 is the order of the exceptional fibre of C; (cf. [Go,
Lemma 3.3]). Then the existence of a finite exceptional set of slopes §; on
T C OH, implies the existence of a finite exceptional set of slopes 8; on T;. [

Let M be a compact irreducible and d-irreducible, orientable 3-manifold with
non-empty boundary a finite collection of tori. Using the JSJ-decomposition it is
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easy to show that M contains a finite (possibly empty) minimal collection T of
disjoint essential tori such that the closure of each component of M\T is either
a graph or a hyperbolicabled 3-manifold each of whose cable subspaces contains
a boundary component of M. It is a subcollection of the JSJ-family of tori of
M. One calls T the reduced JSJ-family of tori.

Let T'C OM be a torus component and let Wy be the closure of the connected
component of M\T containing T in its boundary.

Definition. A bad slope o C T is a slope such that either:

e Wy is a graph manifold and Wy («) is either reducible, or d-compressible,
or

e W is hyperbolicabled and a belongs to the exceptional set of slopes § C T
given by the lemma (2.2).

The following is a generalization of the previous lemma (2.2).

LEMMA (2.3). Let M be a compact, connected, orientable, irreducible and 0
irreducible 3-manifold with non-empty boundary a finite collection of tori. Sup-
pose also that M is not a cable space. Then on each torus component T C OM
there are only finitely many bad slopes.

Proof. Let T C M be the reduced JSJ-family of tori and let Wy be the closure
of the connected component of M\T containing 7.

We claim that Wy is not a cable-space. To see this, suppose that Wr is a
cable space. Then OWr = TUT'. If T' C OM then since M is connected we have
M = Wy, which contradicts our hypothesis. Otherwise T” is also a boundary
component of some other component, C, of the reduced JSJ decomposition. By
definition of reduced JSJ decomposition we see that C' is not hyperbolic. Thus C
is a graph manifold. But then C'UW7 is also a graph manifold which contradicts
the minimallity of the collection T of tori in the reduced JSJ decomposition. This
proves the claim. Thus if Wy is a graph manifold it is not a cable space hence
by [CGLS,§2] there are only finitely many bad slopes on T'.

Otherwise, when Wy is hyperbolicabled the set of bad slopes on T is finite by
Lemma (2.2). O

Proof of Proposition (2.1). Every graph filling of a graph manifold is a graph
manifold and hence has a geometric decomposition. Thus if M is a graph mani-
fold the set NG(M) is empty. Hence we may assume that M is not a graph man-
ifold. By considering the connected sum decomposition of M in prime factors,
one reduces the proof of Theorem (2.1) to the case where M is irreducible and
not a graph manifold. In particular M is not a solid torus and is 0-irreducible.

Since any connected sum factor of a graph manifold is a graph manifold, we
have only to consider graph fillings by irreducible graph manifolds. Moreover M
is geometrizable because it is irreducible and OM # (), hence graph fillings by
irreducible and 0-irreducible, orientable graph manifolds always yield geometriz-
able 3-manifolds. Therefore we have only to deal with Dehn fillings by solid tori,
because an orientable, irreducible 3-manifold with a compressible torus in its
boundary is a solid torus.

Now we argue by induction on the number of boundary components of M.
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If there is only one boundary component since M is irreducible and O-irre-
ducible, Lemma (2.3) shows that except for finitely many bad slopes a« C OM
the Dehn filled 3-manifold M («) is irreducible and geometrizable. This proves
Theorem (2.1) in this case.

Let Ty, ..., T, be the boundary components of 9M. By Lemma (2.3), except
for a finite set of bad slopes §; C T; on each boundary torus, any collection of
slopes (a1, ..., aq) € (H1(Th, Z)U{oo}\81) X ... (H1(Ty, Z) U{c0}\8,), yields an
irreducible and O-irreducible 3-manifold M (a1, ..., a,) which is geometrizable.

For any bad slope ; € 8; C T;, the Dehn filled manifold M (3;) =M (oo, . .., ay,

..,00) is compact orientable with strictly less boundary tori than M. From the
discussion above, clearly NG(M) C UNG(M (5;)), where the union is taken over
the finite set of all bad slopes in UL ;8;. Then NG(M) is finite since by the in-
duction hypothesis the sets NG(M (5;)) are finite. In the same way the number
of non-geometrizable prime factors for any graph filling of M is bounded above
by the maximum of non-geometrizable prime factors for the graph fillings of the
manifolds M (3;) where f3; runs over all bad slopes in U{_, ;. O

We can now prove the main theorem (0.1). By (1.2) there is a finite set N(v)
of compact orientable 3-manifolds such that every M € M(v) can be decomposed
as M = N UG with N € N(v) and G a graph manifold. Then by (2.1) the set
NG(N) is finite for each N € N(v). The union of these finite sets as IV varies over
the finite set N(v) is NG(v) and is therefore finite. Furthermore the number of
non-geometrizable prime summands is bounded by the maximum of the number
of such summands that appear for any graph filling of any N € N(v). Thus this
bound, p(v), depends only on the volume bound v. O
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CONWAY POLYNOMIALS OF THE CLOSURES OF
ORIENTED 3-STRING TANGLES

HUGO CABRERA-IBARRA

ABsTRACT. Given a certain type of oriented 3-string tangle, we consider
five different ways for closing it to obtain knots or links, and give formulas
for calculating the Conway polynomials of the closures of the composition
of two such 3-tangles. We also give a certain relation among these polyno-
mials.

1. Introduction

Tangles were introduced by Conway [2] as basic building blocks for the con-
struction of knots. In this article we analyze the relation between the Conway
polynomials associated to the closure of a skein element s of a 3-room (which
is a connected domain with three ingoing and three outgoing strands, a skein
element in a 3-room can be viewed as a 3-tangle with orientation on its strands)
and the ones associated to the composition s; - so of two of such skein elements.

We assign to s the 2 x 2 matrix My (s) whose entries are the Conway poly-
nomials of certain closures of s; in each of those closures no other crossings are
added. Tt satisfies My (s1 - s2) = My (s1)Mv(s2).

In [6], Giller made analogous computations in the case of 2-rooms and for-
mulas to compute the Conway polynomial of the numerator and denominator of
the composition of two 2-string oriented tangles were obtained; Giller pointed
out that similar computations could be made in the case 3-rooms.

In [1], another matrix M associated to 3-string tangles without orientation
was obtained; certain relations between these two matrices suggest that an analy-
sis of My (s) will give insight into the comprehension of 3-tangles. Some attempts
to classify the set of 3-string tangles have been made in [1], [3].

The study of 3-string tangles will be useful to analyze certain enzymes called
recombinases, as it was in the case of 2-string tangles [4], [5], [§]. In DNA
site-specific recombination, a recombination enzyme attaches to a pair of DNA
sites, breaks both sites, and recombines the sites to different ends. Electron
micrographs of recombinases bound to DNA show the enzyme as a blob with 2
or 3 loops of DNA sticking out of this blob. In the case of the Gin enzyme there
are three loops of DNA, thus the mathematics of 3-tangles can be useful in the
study of this enzyme.

2000 Mathematics Subject Classification: Primary 57M25; Secondary 57M27.

Keywords and phrases: knots, Tangles, Conway Polynomial.
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2. Preliminaries

Remember that the Conway polynomial of an oriented link is computed by
the following recursive formulas:

1) VL,,(Z) = VL,,,(Z)'FZVLS(Z)

i) Vo) =1
where (L;, Ly, Ly) is a skein triple of oriented knots or links that are the same,
except in a crossing neighborhood where they look as in Fig. (1).

L[ L, Lg
Figure 1. Skein triple

An n-room is a connected domain (usually a rectangle) in R?, with n ingoing
and n outgoing strings; the room may contain oriented simple closed curves. We
will only deal with 3-rooms. In Fig. (2) a) there is an example of a room.

The skein of a room R, S(R), is the set of all collections of strands in the
room which connect ingoing to outgoing strands; Fig. (2) b) shows an example
of a skein element of the room in Fig. (2) a); this element can also be seen as a
3-string tangle with orientations on its strands. In this discussion we will take R
to be the room in Fig. (2) ¢). Given s1,s2 € S(R), we say that s; = so if there
exists an ambient isotopy which carries s into ss.

- > - >
> < +\@L/®~+
a) b) c)

Figure 2. a) An example of a room, b) a skein element, ¢) the room R.

R

Yy

Y

Let S5 denote the full symmetric group on 3 letters, given a skein element s,
we assign a permutation 7(s) € S3 by numbering the strands of R as in Fig. (3).

1+\ -1
-2 = (13)

2>
o d

3

=3

Figure 3. The action of .

Now pick an ordering {m;}i=1, ¢ of Ss and fix a choice of skein elements
{8x,}i=1, .6, as in Fig. (4), such that m(s,,) = m;, and such that s,, contains no
free components. Define on S = S(R) a binary operation by juxtaposition as in
Fig. (5); note that 7(sy - s2) = w(s1)m(s2) € Ss.

H— H~ B b H~ P -~

+K+ e~ +\\Y+ /b +/ -
RS S +K+ e xa A +/+
Sn=35, §12)=5n, §03)= 83 §13)=8n, §123) =81 §132)= 8z

Figure 4. The selected skein elements.
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N - > —t-
- > -
K—)—--)—l’//\J/ -

S AY)

AR ah

Figure 5. The operation of juxtaposition.

We will call (s;, s,, s5) a skein triple, where s; is a skein element in which a
left-handed crossing appears, s, (respectively s;) is the same element with the
same crossing changed to a right-handed (respectively smoothed) crossing.

Let F' be the quotient field of Z[z], V(S) the vector space generated by S over
F, and N(S) the vector space generated by {s;—s, —zss | (s1,5r,55) a skein triple}
over F'. Define the vector space L(S) = V(S)/N(S); moreover, L(S) is an algebra
under the extension of - to L(.S) given by s1-(s2 4+ ass) = s1-s2+asy-83, a € F,
which preserves the relations in N(.59).

In [6], the following two results have been proved.

THEOREM (2.1). The set {sx; | j =1,...,6} is a basis for L(S).

COROLLARY (2.2). Any skein element s € L(S) can be expressed uniquely as
a linear combination of the sy, and therefore dimp L(S) = 6.

:.Y:

C—

Figure 6. The closure N of s.

For s € S, define N(s) as the knot (or link) obtained by closing s as in
Fig. (6). Denote by sV the Conway polynomial of N(s). Given elements s and
z in S we define s*(z) = V(N(x -s)) = (z-5)V, as before, s* may be extended
linearly to all of L(S) obtaining the dual s* : L(S) — Z[z] C F. Note that s*
preserves skein moves: s*(s, + zs5) = $*(s,) + 25%(s5) = s*(s1).

Let M be the 6 x 6 matrix defined by M;; = s+ (sx,); then we have that

0 0 z 1 1

0 1 1+ 22 z z

1 0 1422 z z
1422 1422 32242* 224 2% 22423

z z 22423 14 22 22

z z 2z + 23 22 1+ 22

— =N OO O

It can be seen that det M = —(2% +4) # 0, and therefore {s,*} is a basis for
L*(9).

Let us define a bilinear form ¢: L(S)xL(S)— F by ¢(s1, s2)=(s1-52)". Since
{5z} is a basis for L*(S) there exist ap € F such that ¢ = > apsz) ® sq.
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Then
©(8m;,87;) = E:amsmﬂ&mﬁwﬂsm)::E:amﬂﬂﬂwg

Z <Z aklei> M = ((ATM)TM)M = (M"TAM),;

l k

where Ap = ap. Since @(sx,,sx,) = Mj; we have that MT = MTAM, and
therefore o = A = M~

Given 01,02 € L(S), define uj = (sx7(0}) 25 (0)) ... sx7(0})), j = 1,2; then
we have

(2.3) p(o1,02)= ulM_luQT,
where
—24—32242 2243z 23+3z z —22—-2 —z2-2
23+ 3z 2 —22-2 -2 z z
o 1 Z3+ 3z —22 -2 2 -2 z z
T 2244 z -2 -2 2 —z —z
—22-2 z z —z —2 2242
—22 -2 z z —z 2242 -2

3. Computations for another room

Similar formulas can be derived for any room. For example, let us make
similar computations for the room in Fig. (7), which we will denote by R’. Let
s1 and so be elements of the skein of this room; as before we define - as in
Fig. (8) and a bilinear form (s1, s2) = V(N(s1-52)). Now, for s; and s3 define,
respectively, skein elements o1 and o9 of our previous room R as it is shown in
Fig. (9). It is easy to see that ¢(s1, s2) = ¢(01, 02).

> Ly - > >
- L -~ 51 5 =~
+ - > . >
Fig. 7. The room R'. Fig. 8. The operation s7 - s2.
>— — >—] —
o0 St pe an Sz pre
> > > s
(== ==
o1 02

Fig. 9. The associated skein elements in R.

We define A(s), B(s), C(s), D(s), and E(s) to be the knots (or links) obtained
by closing s € S(R’) as in Fig. (10). We will denote by s4, sZ, s 5P, and s¥ the
Conway polynomials associated to A(s), B(s), C(s), D(s), and E(s) respectively.

L F D ([ s dsD Cg?

Als) B(s) C(s) D(s) E(s)
Figure 10. The closures A, B, C, D, and FE of s.
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By drawing links one can see that

s (01) <ﬁ E— )

in a similar way, the following formulas are obtained:

U'J:UJ‘/J’ j:172a
where u; is as in Eq (2.3), v; = (si* sf s¢ sf sF s{¥), and
0 0 1 0 0 z
0 01 00 = 0 0 0 22423 1422 0
0 00 2z 1 —z
0 0 0 0 0 1
00 0 0 O 1
Vi = , Vo=10 1 0 0 0 z
010 0 0 = 0 0 0 1
000 1 0 -z > . )
100 0 0 O 1 - - 0 0 L2
Then, by the formula obtained in Eq (2.3), we have that
V(s1,52) =p(01,02) = ut M tuj .
Since u; = v;V; then
P(s1,82) = ulM_lugT =1 VlM_lVQT
This lead us to the following proposition.
PROPOSITION (3.1). For any s1,s2 € S(R'),
(32) (81 . SQ)NZ’Ul (VlMil‘/QT)UgW,
where v;,V;, for j = 1,2, are defined as above.
In order to compute (s -52)4, (s1-52)5, (51-52)C, and (s1 - s2) we proceed

as follows. Since (s - s2)” can be expressed as (t1 to)V, for t; and tp as in
Fig. (11), then t; = sy, t§ = sZ, t8 =0, t§ = sP, tP =0, t¥ = sP, and
t = s5. Using Proposition (3.1) we obtain:

_ T
(s1-52)P=(t1 - t2)V =0 (ViM V) (sF 0 sP 0 sF sP)" =P +s{sd.

ﬁ e - :
§152£ f h=<d 51 k bh=4 SQD<~
).

N "

> b

Figure 11. Expressing (s1 - s2)? as (t1 - t2)V

Similarly, we have that

(s1-82)" =sPs8 +51's8, (s1-52)P =si's8+ss8, (s1-52) =555 +5{s3".
Note that the equations obtained for (s1-52)4, (51-52)%, (51-52)¢, and (s1-52)"
can also be obtained by using a formula of Giller in Proposition 15 of [6].
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Given an element s € S(R’) we will assign to it the following matrix, which
is an invariant for s because of the properties of the Conway polynomial.

s¢ sP
My(s) = <SA SB) .
Then we obtain the following.
PROPOSITION (3.3). If s1,82 € S(R'), then My (s1 - s2) = Mv(s1)Mv(s2).

Proof. Since

M (s )M (52): slc le sQC 52D _ 5105204—le82’4 lesQB—f—slchD
VASLAEV 5’14 slB 5‘24 SQB sPsft+si'sS sfrsP+sfsP )
we obtain My (s1)Mv(s2)=Mv(s1 - s2). O

Remark. In [1], a matrix that is associated to a 3-string tangle without
orientation has been given. Let us sketch how to obtain it.

The Kauffman bracket can be seen as a function from 3-string tangle diagrams
without orientation on its strands to Laurent polynomials; it is characterized in
[7], where it is shown that the bracket polynomial is an invariant of links under
regular isotopy. Let T' be a tangle diagram; we define the bracket of T as follows:

(3.4) (T) = a(T){&) + B(T)(B) + 6(T)(0) + x(T){(x) + L(T) (),

where (T') is obtained by applying to the diagram T the formulas which define
the bracket polynomial repeatedly, until only the five tangles given in Eq. (3.4)
are left. Here &, 8, 6, ¥, and 1) denote the tangles shown in Fig. (12), the
coefficients a(T'), B(T), §(T), x(T), and (T are polynomials in @ and a~* that

are invariant under regular isotopy, and the brackets (&), (5), (0), (X), and ()
are place holders for the result of bracket’s computation restricted to the tangle
diagram 7.

8 1) -6 8 -8

Figure 12. Special tangles

We assign to T' the matrix

iy _ (D) +x(T)  B(T) :
(39) umea=("G " @ )

since the bracket polynomial is an invariant under regular isotopy, M (D)(a,a™!)
possesses the same property.

Given A and B two 2 x 2 matrices, we define the equivalence relation: A ~ B
if and only if A = (—a~3)* B for some k € Z. With this relation, the equivalence
class [M(T)(a,a™!)], which we will write as M (T, is an invariant of the tangle
T.

For this matrix we have

THEOREM (3.6). Given two tangle diagrams Th and Ty we have that

M(Ty - Ty) = M(T)M(Ty) + d <§f ii) <i22 gﬁ) ’
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=—(a®+ a2 M) = (9 B i =1,2.
where d (a®*+a=?) and M(T;) ( 5, " for j =1,

Evaluate M (T) at a = v/i and denote this matrix by M (T); then we obtain
that

(3.7) Mi(Ty - Ta) = My (Th) M;(T5) .

Note that if, as before, we close our 3-string tangle T in four different ways then
(TAy =5,  (TP)=a+w, (T =a+x, (TP)=8.

Where (T4) (respectively (T'B), (T¢), and (TP)) is the bracket polynomial

associated to the knot or link T4 (respectively T2, T, and TP).
We will assign to T' a new matrix Mg, which involves the bracket polynomials

of some closures of T',
c D
Mg (T) = (égAi §£B§> :
By Eq. (3.7), Mk (T1 - T2) = Mg (T1) Mk (T2); compare this with the formula for
My (s1 - s2).

Note that, although we have this relation, if we define a(T") = w,
from the proof of Theorem 2.1 in [1], it follows that a(T} - To) = a(T1)a(T?).
However, we do not have an analogous relation for the Conway polynomial, i.e.,
if we define w(s) = W we do not have that w(s; - s2) = w(s1)w(s2).

A generalization of this work could be to find similar relations in the case of
4-rooms, which could give us an approach of the case n-rooms and, as we point
out in our remark, an alternative way to obtain the classification of rational
3-tangles.
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ARTIN PRESENTATIONS OF COMPLEX SURFACES

J. S. CALCUT AND H. E. WINKELNKEMPER

ABSTRACT. We construct Artin Presentations of infinitely many complex
surfaces. Namely, for all elliptic surfaces E (n), in particular for the Kum-
mer surface K3. Thus, not only does AP Theory contain an analogue of
Donaldson’s Theorem, but also a purely group-theoretic theory of Donald-
son and Seiberg-Witten invariants.

Not surprisingly, our explicit Artin presentations for the Kummer sur-
face are approachable with a computer using, say, MAGMA and provide a
plethora of interesting examples pertaining to knot theory in Z—homology
3—spheres.

1. Introduction

In the purely group-theoretic theory of Artin Presentations, a smooth, com-
pact, connected, simply-connected 4-manifold W* (r) with a connected bound-
ary OW*(r) = M3 (r) is already determined, and can be reconstituted, from
a certain presentation (an Artin Presentation) of the fundamental group of its
boundary [W1]. If the boundary is S3 then of course the Artin Presentation
presents the trivial group. Even in this case the Artin Presentation already en-
codes all of the smooth structure of the 4-manifold. Thus, it makes sense to ask
whether an arbitrary, smooth, closed, connected, simply-connected 4-manifold is
given by an Artin Presentation.

We extend important work of Harer, Kas and Kirby [HKK] and show that
all elliptic surfaces F (n) admit Artin Presentations. This gives the first bridge
between AP theory and algebraic geometry. These Artin Presentations are of
special interest due to the fact that complex algebraic surfaces possess nontrivial
Donaldson invariants. In particular, this augments the remarkable fact (Theorem
1 of [W1], [R] p.621) that Donaldson’s Theorem, despite being proved with
gauge theory/connections (i.e. the smooth continuum), persists and survives
the radical, discrete, purely group theoretic holography of AP Theory.

The following illustrates the AP theory program concerning the computation
of Seiberg-Witten and Donaldson invariants and shows that the group theoretic
AP encoding goes much deeper than e.g. the mere encoding of a group through
its presentation:

Recall Gonzélez-Acunia’s formula, [CS] p.66, for the Rohlin invariant of a Z-
homology 3-sphere 33 () given by an Artin Presentation r € R,, (for clarity we
consider here only the case where A (r) is the identity matrix, see section 2.1 for

2000 Mathematics Subject Classification: Primary 14J27, 57MO05, 57MO07, 57R57; Sec-
ondary 57R60, 57M27.
Keywords and phrases: Artin presentation, elliptic surface, Donaldson invariants.
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notation):
2

p((r) =

where d = A (—1), A being the Alexander polynomial of the associated presen-
tation:

mod 2,

(@1, ..., &n | T171 = 1122, ToT2 =T223, ..., Tn_1Tn—1 = F'n—1%n) ,

where the group obviously abelianizes to Z.

This remarkable formula is entirely from the discrete theory of finitely pre-
sented groups: there is no need to mention cobordisms, spin structures, skein
methods, Heegaard decompositions, representations into SU (2), Riemannian
metrics, infinite dimensional or moduli spaces, or indeed even the smooth con-
tinuum, nor do any metric dependence, wall crossing, or word problems arise
here.

We remark that Gonzdlez-Acufia’s formula already shows that an analogue of
Floer theory should also appear in AP theory since the Rohlin invariant is the
Euler characteristic (mod 2) in Floer theory. In fact, we suspect that ‘the 8 of
Gonzélez-Acuna is the 8 of Floer’.

Concerning the importance of relating Donaldson and Floer theory, both
mathematically and physically, see [D] p.63 and [Wil] p.352.

Consider the more general problem concerning the relative Donaldson invari-
ants [TB],[Wil] of W* (r) which, when A (r) is unimodular, take values in the
Floer homology of dW* (r) = %3 (r).

The computational program of AP theory can be stated as: these invariants
and others should be computed solely in function of the Artin Presentation r in
the discrete theory of finitely presented groups, just as, with Gonzdlez-Acuna’s
formula, this was done for the Rohlin invariant of 2 ().

This is entirely in the purely group-theoretic spirit of the Princeton School
of Artin, Fox, Lyndon, Papakyriakopoulos, Stallings, et al. and extends their
approach, as far as 3D /4D manifold theory is concerned, to its natural meta-
mathematical boundary.

Immediate natural, important general questions arise (both mathematical and
physical):

1. Since AP theory dispenses not only with metrics but even topology, what
becomes of Witten’s celebrated Feynmanian formulation of Donaldson’s invari-
ants as correlation functions/expectation values [D] p.53, [Wi2], [Wi3], [AJ],
[Di] pp.36,39¢ What is the topologically independent (i.e. purely AP theoreti-
cal) analogue of Witten’s metric independent Lagrangian for the Casson theory
[AJ] p.1212 What does Gonzdlez-Acunia’s formula for the Rohlin invariant sug-
gest? Is the mysterious question about the relationship between the Donaldson
invariants of oppositely oriented X* related to the purely group-theoretic one of
finding the inverse in R, of an Artin Presentation?

2. In the absence of moduli spaces, etc., is Witten’s “mass-gap” discussion
regarding Donaldson theory, [Wi3] pp.289-291, still relevant in AP theory?

3. Is the Denjoy-like inequivalence between Seiberg- Witten theory and Don-
aldson theory detectable in AP theory? Recall that Seiberg- Witten theory requires
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spinors and the Dirac operator, i.e. an underlying C' structure, whereas Don-
aldson’s theory is valid on the wider class of Lipschitz manifolds [D] p.69, [9],
[DS].

4. In general, the word problem obstructs the study of arbitrary smooth 4-
manifolds. Although 4-manifolds in AP Theory are simply connected, we can still
ask whether the group-theoretical physical questions of Geroch-Hartle [GH] (see
also [F]) are still relevant when transferred to the group theory of 3-manifolds.
Theorem I of [W1] seems to illustrate a purely group-theoretic Bohm-Aharonov
phenomenon.

5. AP Theory does not just dispense with the smooth continuum, but also dis-
penses with integer (co)homology/intersection theory since all of this information
is already given simply by the symmetric integer matriz A (r). Hence, should e.g.
the Kronheimer-Mrowka canonical basic class of W*(r), when OW* (r) = S3,
[D] p.52, [K], [St], be already determined with Number Theory, d la Elkies [E], [D]
p.67 and Borcherds [B], thus explaining the persistence of invariants constructed
with the aid of a complex structure when this structure does not exist? For the
same reason, difficult ‘minimal genus’ and ‘simple type’ problems, [D] p.68, [St]
p.156, should be studied in this, their ultimate natural context, where artificial
complications caused by the use of the smooth continuum are absent.

It does not seem surprising, due to the basic nature of the K3 complex sur-
face (e.g. it is the only 4D, closed, simply connected Calabi-Yau manifold and
its quadratic form is the first even non-Donaldson form), that our Artin Pre-
sentations lead to several interesting and instructive examples (section 3 ahead)
which complement and extend to the ‘softer’ non-Donaldson case those exam-
ples obtained from such matrices as Fg, ¢4,, and the Coxeter-Todd extremal
duodenary matrix 2D?%, [W1].

2. The Artin Presentations

The purpose of this section is to construct Artin Presentations for all elliptic
surfaces F (n). This is carried out completely for E (2), which is diffeomorphic to
the Kummer surface K3 [GS], p.74, and follows mutatis mutandis for the others.
The organization runs as follows: 2.1 is a brief discussion of Artin Presentations
and framed pure braids, in 2.2 we obtain a surgery diagram for E (n) that is
a framed pure braid, 2.3 provides an explicit algorithm (fixing all conventions)
for obtaining an Artin Presentation from a framed pure braid, and 2.4 combines
everything obtaining the desired Artin Presentation for K3.

(2.1) Artin Presentations and Pure Braids. We begin by reviewing some
of the fundamentals of AP theory. For a rigorous introduction to AP theory,
proofs of the statements made below and a thorough bibliography we refer the
reader to [W1].

Let F,, = (z1,...,2,) be the free group on n-generators. An Artin Presen-
tation r is a balanced presentation r = (z1,...,&y | r1,...,r,) satisfying the
equation:

(AC) T1To - Ty = (rflxlrl) (7“2_13:27“2) . (r;lmnrn) ,

in F,, which we will refer to as the Artin Condition. The set of all Artin Presen-
tations on n—generators is denoted R,, and forms a group. By 2, we mean the
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compact 2—disk with n—holes and boundary 92, equal to the disjoint union
of 9y,01,...,0, (see [W1] p.225). An Artin Presentation r € R,, determines,
among other things, the following:

w(r) : the group presented by r,
M?(r) : aclosed orientable 3-manifold,
W4 (r) : asmooth compact connected

simply-connected 4-manifold,
A(r) : ann xn symmetric integer matrix,
h(r) : aself diffeomorphism of €, unique
up to isotopy fixing 0€,, with
hlsq, equal to the identity.

The relationships between these objects are canonical. The manifold M3 (r)
bounds W# (r), has fundamental group isomorphic to 7 (r), and is the open
book defined by h (r) . The symmetric matrix A (r) is the exponent sum matrix
of r and also represents the intersection form of W* (r). The manifold M3 (r) is
a Z—homology 3—sphere if and only if det A (r) = £1, and in this case we write
¥3 (r) instead of M3 ().

An Artin Presentation r € R,, also determines an automorphism of F,, by the
mapping z; —> r;lxiri. Namely, this is the automorphism hy : m (Qp,po) —
71 (Qn, po) where pg is a distinguished point in 9y C 92, and 1, . . ., z, represent
the canonical generators (see Figure 9 ahead and [W1] p.225 and p.244). This
view will prove useful when composing Artin Presentations.

As pointed out in [W1], R, is canonically isomorphic to P, x Z™, the framed
pure braid group, where P, is the pure braid group on n—strands. To see this,
notice that r € R, determines h = h(r) and h can be realized concretely in
R3 by taking ,, x I (I denotes the closed unit interval), suitably braiding the
inner boundary tubes with one another, and twisting the inner boundary tubes
by some integer numbers of complete revolutions (see [W1] p.245). Twisting the
inner tubes can be accomplished by elementary Dehn twists about the 0; and
these Dehn twists commute with all others. This braiding/twisting of the inner
boundary tubes is easily seen to be equivalent to specifying both a pure braid
(pure as h|y, = id) and an integer (the ‘framing coefficient’) for each strand.

Let r € R,,. The manifold W* (r) is defined in [W1] p.250 as follows. Embed
€, in S? and extend h to all of S? by the identity. Then, extend this map to a
self diffeomorphism of all of D3, calling the result H = H (r) (which is unique
up to isotopy). Letting W (H) be the mapping torus of H, W* (r) is defined to
be W (H) union (n + 1) 2—handles attached canonically. Notice that W (H) is
diffeomorphic to D? x S! (= 0—handle U 1—handle) as all orientation preserving
self diffeomorphisms of D? are smoothly isotopic to the identity. We wish to
examine this construction more closely. The self diffeomorphism A of €2, can
be realized, as described in the previous paragraph, in R? as Q, x I with the
inner boundary tubes braided and twisted; the map h of €, is then obtained by
bending the twisted 2, x I around and sticking the ends €, x 0 and €, x 1
together in the canonical way, exactly as one does to close a braid. To construct
H, one can first extend h to D? by taking the twisted €, x I and filling in the
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n inner boundary tubes with n copies of D? x I. One must take some care here.
For each boundary tube 0; x I, i =1,...,n, let p; be a distinguished point (see
Figure 9 ahead and [W1] p.225). Let * be a distinguished point in 9D?. Then,
when filling the i*" boundary tube 9; x I with D? x I one must attach #x I to p; x I
and fill with the identity at the ends 9; x 0 and 9; x 1. Now, h has been extended
to D? and is concretely realized as D? x I by sticking the ends together as when
closing a braid; call this intermittent mapping torus M (h) which is diffeomorphic
to D? x S*. Now, extending the map to D? is trivial (again, h|y, = id) and
one immediately sees that the 2—handle attached corresponding to dy cancels the
1—handle from the open book construction. Moreover, this cancellation occurs
without disturbing the rest of the boundary of W (H). Thus, we are left with a
0—handle (i.e. D*) with boundary S® containing a very nice copy of M (h). To
obtain W (r) we now attach the remaining n 2—handles to D* along the copies
of D? x S in M (h) in the canonical way.

Summarizing the previous two paragraphs, an Artin Presentation r deter-
mines a framed pure braid 3 in R? (which is the same as in S3) and W* (r) is
obtained from D* by attaching 2—handles according to 3. In the language of
the Kirby calculus, all W (r) s are ‘2—handlebodies’ ([GS], p.124). For more on
the manifolds W4 (r) see section 4.

Remark (2.1.1). One subtle but important distinction that must be made here
between an r € R,, and a framed pure braid in S% = dD* is that in an Artin
Presentation the framings are canonically included (they are not ‘put in by hand’
as in the Kirby calculus) thus, e.g. avoiding serious self-linking problems [Wil],
p-363. In fact, a moment of reflection by the reader should reveal that without
this ‘canonicity’ one would not obtain the purely group theoretic analogue of
Donaldson’s theorem [W1], p.240 Theorem 1, and its important consequences.
See also [W1], p.241 and [W3].

Hence, one tack to obtain an Artin Presentation for a specific 4—manifold
is to obtain a surgery diagram for the manifold that is a framed pure braid in
53 and then determine the corresponding Artin Presentation from this framed
pure braid. Of course, saying an Artin Presentation r gives a closed 4—manifold
X* means that M2 (r) = S3 and W (r) U D* = X* (i.e. close up with a
4—handle). We pursue this tack in sections 2.2-2.4 below. We abuse notation
and say an Artin Presentation or a surgery diagram gives a closed 4—manifold
when it actually presents the closed manifold minus the interior of a 4—handle
(which can only be attached in one way, so there is no ambiguity).

We close this section by recalling useful knot theoretic structures in AP The-
ory. The simplicity of these structures allows us to avoid doing surgery ‘by hand’,
avoids self-linking problems, etc. by use of a computer algebra system such as
MAGMA and significantly adds to the power of AP Theory. We point out that,
as usual, everything is group theoretic.

Fix r € Ry, r = (x1,...,&n | T1,...,7n), with det A (r) = £1, in particular
333 (r) is a Z—homology 3—sphere. There are n + 1 distinguished knots in 32 (r)
that are defined by the boundary circles dy, ..., d, of Q, and we denote these
knots by ko,...,k,. Let ¢; denote the complement of k; in X3 (r) and let G;
denote the fundamental group of ¢;. Since A (r) is unimodular, A (r)~" is also
a symmetric integer matrix and, in fact, is the linking matrix of the knots k;,
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i=1,...,n. We let b;; denote the ij'" entry of A (! (abbreviating b;; to just
b;) and let s = Eij bij. In 33 (r), the self linking number of ko is s and of k;,
1 # 0, is b;. We let m;,[; denote the peripheral structure of the knot k;, which
consists of two special commuting elements in G;, where m; is a meridian of k;
and [; is homologically trivial in the complement of k;. Then, we have:

Gy = <£L'1,...,5En|T1:T2:'~':Tn>,
mo = any r;,
lo = zize---xumy”,
and for i =1,...,n we have:
G/L' = <J)1,...,$n TI;TQ;---;ri—17ri+17---;rn>;
m; = Tq,
li = xzm;b’

Two remarks are in order. First of all, we get all knots and links in any
arbitrary closed, orientable 3—manifold this way (Gonzdlez-Acuna unpublished).
Second, the definition given here of G; for ¢ # 0 appears to be slightly different
from that given in [W1], p.227, but in fact the two are equivalent (this was
pointed out to the second author by Gonzélez-Acunia). This follows since the
Artin Condition (AC) implies that in G; (definition given here) we have:

-1
T1@2 Ty = 1T Loy (1] L) Tig1 - T,

which immediately implies that z; = r;lxiri in G;. That is, (z;,r;) = 1in G;
(where (a,b) is MAGMA notation for the commutator a=*b~tab), showing the
two definitions are equivalent. In fact, for ¢ # 0, m; and [; commuting in G; is
equivalent to x; and r; commuting in G;.

(2.2) Pure Braid for E (n). Our starting point is the framed link diagram in
[HKK], p.66 (see also [GS], p.305) that presents a 2—handlebody with boundary
S3 and gives E (n) upon closing up with a 4—handle. (As mentioned earlier, we
abuse notation and say this diagram presents F (n) where no confusion should
arise.) By straightforward isotopy of the outer strand (the trefoil) we obtain
Figure 1. The two large bands both represent 6n — 2 strands, each strand with
framing —2. A box containing ‘—1’ represents a twist of all strands (as when
twisting ribbon) in the direction corresponding to a negative crossing in our
orientation convention in Figure 8. We refer to the trefoil in Figure 1 as T and
to the small circle linking it as .S, which have framings 0 and —n respectively.
All circles formed by closing a pure braid are individually not knotted, so
the first step is to unknot the trefoil 7. To accomplish this, one performs a
2—handle slide on T'; in practice this corresponds to performing a band sum of
T with a parallel curve to another knot K representing the framing on K (see
[GS], pp.141-143). Here we slide T' over the innermost circle in the left large
band using the trivial band as in Figure 2. One checks that the curve in Figure
2 that T is being band summed with is a parallel curve to the innermost strand
and has linking number —2 with it (don’t forget the ‘=1’ box!). Let 7" denote
the result of 2-handle sliding T'. Figure 3 is obtained from Figure 2 by isotopy, in
particular grab the part of 77 in Figure 2 that hangs below the two large bands
and swing it back and then up (other minor changes by isotopy here should
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Figure 1. Surgery diagram for E (n). The large bands represent
6n — 2 strands and all framings equal —2, except the trefoil T with
framing 0 and the small circle S linking it with framing —n.

Figure 2. A 2—handle slide of T" over the innermost curve in the
left large band using the indicated parallel curve and dashed band.

be obvious). Straightforward isotopy of Figure 3 produces Figure 4 where it is
apparent that T” is not knotted.

It does not seem possible to isotop Figure 4 to a pure braid, so we perform
another 2—handle slide. This time, slide 7" over the outermost strand in the right
large band (again using a trivial band to band sum with) as shown in Figure 5.
After a little isotopy one obtains Figure 6 (ignoring the hatched rectangle for the
moment). Let 7" denote the result in Figure 6 of sliding 77 (S is unchanged).

Now, Figure 6 isotops nicely to a pure braid. To see this, take the hatched
rectangle in Figure 6, grab its upper left long boundary edge and pull it around,
making a rather large (ambient) expansion of the hatched rectangle into a large
backwards ‘C’ shape (the short dimension of the hatched rectangle extends and
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Figure 4. The result of isotoping 7" (and \S), which is not knotted.

bends around). Except for S, one now has a pure braid. A little more straight-
forward isotopy produces Figure 7, which is a pure braid for E (n). The hatched
rectangle does not appear in Figure 7, but one imagines it bending around on
the right-hand side to close the braid. Figure 7 contains a total of 12n — 2
strands: the two large bands each represent 6n — 2 strands (each strand therein
has framing —2), the (12n — 3)" strand (second from the right) is 7", and the
(12n — 2)"? strand (right-most) is S with framing —n.

It remains to determine the framing on 7" (this is the only one that changed),
which is calculated using the formula in [GS] p.142. The first 2—handle slide
results in 7”7 with framing —2 since the relevant (signed, according to handle
addition or subtraction) linking number is 0. The second 2—handle slide results
in T" with framing still —2 since in this case the relevant signed linking number
(whose overall sign is independent of orientation choices) is equal to +1 implying
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Figure 5. A 2—handle slide of T” over the outermost curve in the
right large band using the indicated parallel curve and dashed band.

Figure 6. The result T of 2—handle sliding T". The hatched rec-
tangle will be used to isotop to a pure braid.

+2lk (-,-) = +2. Thus, in the pure braid diagram for F (n) in Figure 7 all
framings equal —2 except for the right-most strand which has framing —n. In
particular, for the Kummer surface F (2) all framings equal —2.

Remark (2.2.1). In Figure 1, the two large bands together form the compacti-
fied Milnor fiber M. (2,3,6n — 1) with boundary the Seifert fibered Z—homology
3—sphere X (2,3,6n — 1) and the trefoil union the small circle linking it form the
Gompf nucleus N (n) (see [GS], sec. 3.1, 6.3, 7.3 and 8.3). It is clear from the
above that all Milnor fibers M, (2,3,6n — 1) admit Artin Presentations.

(2.3) An Algorithm. Given a framed pure braid in R?, we wish to construct
the corresponding Artin presentation. To make this explicit, we must fix some
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Figure 7. Pure braid for E (n). The large bands represent 6n — 2
strands and all framings equal —2, except for the rightmost strand
with framing —n.

conventions. We will use S to denote both a braid and a framed braid, where
no confusion should arise. As usual, braids will be drawn as generic diagrams
in the plane with the strands ordered 1,2,...,n from left to right. We read our
braids upwards, especially when composing them. In particular, each strand is
oriented up. For a pure braid 8, C; will denote the oriented circle consisting
of the i*? strand and the trivial segment that would close that strand upon
closing the braid (the orientation is inherited from that of the corresponding
braid strand). Crossings in any oriented generic link diagram in the plane are
assigned a sign as in Figure 8. If C7 and Cs are two oriented circles in a generic
link diagram in the plane, then their linking number [k (Cy, C2) is defined to
be the number of positive undercrossings of Co under C'; minus the number of
negative undercrossings of Cs under C;. The linking number is well defined and
symmetric (see [GS] sec. 4.5). For an n-strand framed pure braid g the linking
matrix L (f) of / is the n x n symmetric integer matrix L where L;; = Ik (C;, C})
for i # j and equals the framing coefficient of C; for ¢ = j. Similarly, one can
define the linking matrix of any ordered oriented framed generic link diagram in
the plane.

Remark (2.3.1). If r € R, corresponds to 3 a framed pure braid then A (r) =
L (B). This follows from [W1], section 1 and [GS], p.125. We note that orienta-
tions/conventions fixed agree with both [W1] and [GS].
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DA

Figure 8. Crossing signs in an oriented link diagram.

Figure 9. Q55 with basepoints py, . . ., p22 on boundary components
Ao, - .., 022. Also indicated is a generator xa1 of 11 (Qa2,po).

Any pure braid g € P, can be written as a product of Dehn twists about
simple closed curves in §2,,. Thus, we will need these three steps:

Step I. Given a pure braid £ resulting from a single Dehn twist, determine
the corresponding Artin Presentation.

Step II. Compose two Artin Presentations.

Step III. Correct Framings.

Remark (2.3.2). Again, Step III is necessary since when going from a framed
pure braid (where framings are not canonically included) to an Artin Presen-
tation (where framings are canonically included) an ad hoc framing correction
must be made at some point.

We describe these in detail.

Step I. First, m1 (., po) has canonical generators. Figure 9 shows Q9o with
basepoint pg and the generator xo; (the other generators are similar; see also
[W1] p.225 and p.244). Also depicted in Figure 9 are basepoints on the boundary
components d1, ..., 022 (as referred to in section 2.1).

We use two examples to illustrate this step. For the first example, take the
Dehn twist depicted in Figure 10 about the oriented simple closed curve D;
(for the moment ignore the small segment laid across D;). Usually one would
take a cylinder neighborhood S! x [~1,1] of D7 in Q22 and replace it with
a twisted version (often a cut along D; takes place) according to some fixed
orientation convention (see, for example, [GS] p.295). Following the motivation
setforth in section 2.1, we prefer to realize the Dehn twist canonically as an
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Figure 10. Q9o with an oriented simple closed curve D and a small
segment laid across it.

isotopy of Q22 in R? as follows. Start with a copy of Q2 (as in Figure 10)
laying flat on the (possibly imaginary) table in front of you and a small cylinder
neighborhood N = S x [~1,1] of Dy in Q2. The inner boundary curve of
N bounds a compact disk with 10 holes denoted Qf,. Slowly raise Qa2 up off
the table and while doing so grab €/, and slowly rotate it clockwise about a
central point (with the cylinder neighborhood N stretching like rubber) one
complete revolution. If one pictures the paths traced out by the center points
of the 22 punctures in 3o during this Dehn twist, one immediately sees the
pure braid obtained from Figure 7 with n = 2 by just taking the ‘=1’ box on
strands 11 — 20 and taking the remaining strands to be trivial. This Dehn twist,
realized as an isotopy, gives a self diffeomorphism h of Q95 that is fixed on 052,
namely the time 1 map of the isotopy. As discussed above in section 2.1 and
[W1] pp.243-244, the automorphism hy of w1 (Qa2,p0) = Fa induced by h is
of the form z; — r;lxiri for some words r; and r = (x1,...,T22 | r1,...,722)
is our desired Artin presentation. The word r; is nontrivial (# 1) only for
¢ = 11,...,20 and these are all equal to one another. To compute 711, say,
lay a straight segment across Di in front of d1; as in Figure 10 and follow the
segment through the isotopy above. After the isotopy, add two oriented edges
to the isotoped segment: one from pg to the upper endpoint and one from the
lower endpoint to pg as in Figure 11; the word in 71 (Qa22, po) represented by this
oriented loop is 711 = 2oy T1g - - 1

We note two important points concerning the above example. First, it con-
veyed the orientation convention of Dehn twists used here, namely grab the inner
compact disk with holes and twist it in the direction of the arrow on the curve one
is twisting about. Second, the small segment laid across D; formed the ‘meat’
of the relations and only crossed D; once. When computing r; in general, one
must choose this segment to traverse all occurrences of the curve one is twisting
about between a nice path (usually a straight line segment or a small isotopy of
one) from pg to p;. This is shown in the following example.

For this example, take the Dehn twist depicted in Figure 12. The automor-
phism of Fys is clearly the identity on z1, ..., x10, Z22. Figure 13 shows the loop
representing both words 711 = 791 = 25 7" (as the reader can verify using the
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Figure 11. Q95 with a loop representing 11, ..., 720.

Figure 12. Q55 with an oriented simple closed curve Dsy4 and three
small segments laid across it.

two small segments in Figure 12 that cross Da4 once). The more interesting
relations are rq9,...,r20, which are all equal to one another. To compute these
one must use a segment that crosses Doy twice, such as the middle segment in
Figure 12. The resulting loop is shown in Figure 14 and represents the word
.1?21.1311.1?2_11.131_11. This completes Step 1.

Step II. Our data is two Artin presentations r, 7’ arising from Dehn twists
about D, D’ with corresponding h,h’ and h#,h%&. Then, the composite Artin
presentation 7/ = r’ o r is obtained using the formula (see [W1], p.245):

i =i hly (ri).

Step 1I is impractical by hand when the presentations are not small and use
of a computer algebra system, such as MAGMA, is invaluable.

Step III. Our data now is a framed pure braid 8 and an Artin presentation r’
resulting from repeated applications of Steps I and II. One also has the matrices

L (8) and A (") which differ only possibly on their diagonals. One corrects (see
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Figure 13. Q95 with a loop representing r11 and 721.

Figure 14. Q95 with a loop representing 12, ..., 7.

Remark (2.3.2) and Section 2.1) using the simple rule:
let 6; = L(B),; —A("),;,and

let 7, = ot -7
The result is the Artin presentation r = (x1,...,2, | 71,...,7) and A(r) =

L (). We point out that when correcting framings one must multiply on the
left by the corresponding xf"', otherwise the resulting presentation is usually not
Artin. This completes Step III.

(2.4) Artin Presentation of K3. Begin with the framed pure braid in Fig-
ure 7 with n = 2. Call this braid £ and recall that all framings equal —2. We
need a series of Dehn twists producing § (ignoring framings for the moment).
To take care of 8 (reading up from the bottom) up until the point where the
two large bands first cross each other, perform Dehn twists about Dy, Ds, D3,
and Dy (in that order!) as in Figure 10 and Figures 15-17. (It may seem that
the ‘—1’ on the left band has been left off, but the reader should check that
this is not the case.) Now we attack the brunt of 8 consisting of the ‘Mil-
nor fiber’ where the two large bands cross each other and then intertwine. For
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Figure 15. Q95 with an oriented simple closed curve Ds.

Figure 16. Q95 with an oriented simple closed curve Ds.

this part we will need Figures 18 and 19 repeated in an alternating fashion.
Figure 18 represents Ds, D7, Dy, ..., Da3 where D595, 7 = 0,1,2,...,9, corre-
sponds to Figure 18 with k = 7 + 1 and ¥’ = j + 11. Figure 19 represents
Ds, Dg, Dqg, ..., D2z where Dgyg;, j = 0,1,2,...,8, corresponds to Figure 19
with £ = j+ 1. Then, one performs Dehn twists about the following ordered and
oriented curves: Ds, Dg, ..., Do, Da3. The reader should check that this series
of Dehn twists performs as claimed. To finish up, one twists about Ds4 as in
Figure 12 and then about D5 as in Figure 20. This series of Dehn twists gives
B up to framings.

Now, using Step I from section 2.3, one writes down the Artin presentation
corresponding to each of the Dehn twists in this series. We organize this data
into a 25 x 22 array R of words in Fh where R [i, -] corresponds to D; (i.e. R, j]
is the j*" relation of the i*" Artin presentation). Assume that R is initialized as
the 25 x 22 array of identity elements in Fao. The nontrivial elements in R are
as follows.

R3]
— T T T =T T T —T —T —T =T
i=11,...,20 [ @50 @79 @13 ¥17 T1g Tip T4 T1a T1o Ty
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Figure 17. Q95 with an oriented simple closed curve Dj.

Figure 18. 95 with an oriented simple closed curve D,.

Figure 19. Q5 with an oriented simple closed curve D,.

R[2,1]

L11212213T14L15L16L17L18L19L20
-1.-1_-1-1_-1 -1 -1_-1 —1_-1
Lo Log L9 L18 L17 16 L15 L14 L13 L12 L

LigXg Ty Ty Xg Ty Ty X3 Ty Xy

-1
11

T T .-T -1 T .-T T T -T -1
3521135201371913718135171351613715135141351313712 €
L9 Lg Tg Ty Lg Ty Ty Tz To Iy
L11212213214L15L16L17L18L19L20

—T
11
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Figure 20. 95 with an oriented simple closed curve Dss.

R3]

L1X2T3T4T5TELT7LITY

i1=1,...,9 T11T12%13T14T15216L17X18T19%20T21
it T R e Rl I St it |

Log L19 L18 L7 16 L15 L14 T13 L12 X1

-1 -1 -1 -1 -1 —1 -1 —1 —1
Tg Tg Ty Tg Ty Ty Tz To Ty
T11212213L14L15L16L17L18L19L20
-1,-1,-1,-1_-1_-1_-1_-1_-1_-1_-1
i=10 L1 Xog T19 T1g T17 L16 T15 T14 T13 T12 L11
T1X2X3X4X5TXeXLT7LRITY
T11212213L14L15L16L17L18L19L20T21
-1, -1,-1_-1-1_-1_-1_-1_-1_—
Loo £19 18 L17 16 L15 L14 L33 L19 11

Log L19 T18 L17 L16 L15 L14 L13 L12 11
=21 T1X2X3X4LT5XEXLT7TLITLY
T11212213214L15L16L17L18L19L20L21

R[4,1]

1:1,...,9|x§1xg1x;1xg

I T T I T

—T —1 —1 —1 —
Ly Ty Ty Ty Iy

Now, the relations R[5 — 23,7] lend themselves well to looping/shorthand
(which we utilize especially when using MAGMA). Let w = 219z g -+~ 27, and
let w; denote the first j letters of w read from the right for j = 0,...,9. For
example, wy = 1 (i.e. the identity in F),) and we = xf;xfll. Then, R[5,1],
R[7,i],, R[23,1] are defined by the following where j =0,1,...,9:

R[5 + 25, 1]
1= (] + ].) y ooy 10 Tjt1T542 T1145W;
i=11+y WiTj41Tj42 *** Tlitj
Also, R[6,1], R[8,1],, R[22, 1] are defined by the following where j = 0,1,...,
8:
R[6 + 25, 1]
i=(G+1),...,10 ey’ ]

And the last two Artin presentations:
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R[24,1]
i=11,21 Tl

: =1 -1
1=12,...,20 | 2171175, Tq

R[25,1]
i = 21,22 | 291390

The list of Artin Presentations corresponding to the series of Dehn twists
given above is complete. Now, one simply composes these 25 presentations (with
MAGMA!) using a loop statement and the formula from Step II in section 2.3.
Call the result of this iterated composition 7/. To correct the framings, one
computes the exponent sum matrix of 7’ (again using MAGMA) and checks the
diagonal of this matrix which is (starting from the upper left):

-1,...,-1,0,-1,0,...,0,1
—_——— ——
9 times 10 times

To make these entries all equal —2, one corrects r’ using Step III calling the
result 7. This is the desired Artin presentation for the Kummer surface K3.

After obtaining r with MAGMA, one immediately checks that the presenta-
tion is in fact Artin. To do so, simply prompt MAGMA to compute the right
hand side of the Artin condition (AC). The result should be (and for our r is)
the left hand side of (AC). This is an important test, but it is also a test that
MAGMA can always carry out as the word problem in Fj, is solved and MAGMA
must only freely reduce.

By construction, M3 (r) is S and W* (r) is K3. Despite the length of the
presentation r (which is given below) MAGMA readily verifies that 7 (r) = 1.
To look at W* (r) one proceeds to A (r) which appears in Figure 21. This matrix
is even, unimodular, has 19 negative eigenvalues and 3 positive ones, hence is
Z—congruent to 2Egs @ 3H as expected. One is now ready to reap the rewards of
this work. The Artin presentation r can be easily and orderly investigated with
MAGMA where nothing has to be done by hand and one doesn’t need to worry
about surgery diagrams, etc. Examples appear in the following section.

The inverse matrix of A (r), which appears in Figure 22, provides the periph-
eral structure of the knots k;, ¢ = 0,...,22, described at the beginning of this
section. Notice that the diagonal consists entirely of —2, 0, and 2, which as
a consequence immediately again gives Artin presentations for the appropriate
(1, £1) Dehn spheres. Further, notice that the total sum of A (7")71, denoted s,
equals —6, another computational advantage.

The knots k; are nontrivial only for 7 = 0,10, 11,21, 22; k19 and ki1 are 5ss,
koo is a trefoil, and ky1, with Alexander polynomial A = ¢4 —¢2 +1, is a cable of
the trefoil. However, ko has Alexander polynomial A = 8 —2¢7 — 55+ 13t* — . ..
and is off the usual knot tables; its 2, 3, 4, 5 torsion is given by (29), (13,13),
(15,435), (251,251).

It seems curious that here the only non-fibered knots are k19 and k11, precisely
where the pair of 3s appears off the diagonal in A ()" (Figure 22); see also the
end of section 2.1.

As Ry is a group, one may wish to compute r—!. To do so, one performs
the same series of Dehn twists as for r but in the reverse order and with reverse
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Figure 21. A (r) for r representing the Kummer surface.
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orientation. One must repeat Step I for all of these Dehn twists and the work
is equivalent to the work involved with getting r. After doing so, one compares
the lengths of the relations in r and r~! which appear below. (We use #r to
denote the total length of all relations.) We note that shorter presentations are
not necessarily more useful computationally, especially with MAGMA, as one

quickly finds.

Relation r | r~T | Relation r [ r T
1]1130| 176 12 | 252 | 502
21131 403 13 | 247 | 501
31132 | 628 14 | 240 | 500
41133 | 851 15 | 231 | 499
51134 | 1072 16 | 220 | 498
6 | 135 | 1291 17 | 207 | 497
71136 | 1508 18 | 192 | 496
8137|1723 19 | 175 | 495
9138 | 1936 20 | 156 | 494

10 | 644 | 2126 211|529 | 573
11 | 258 | 108 22 5| 383
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-2 1 1 -1 -1 1 1 -1 1 1 -1 1 1 1
-2 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1
1 -2 1 1 -1 -1 -1 -1 1 1 -1 -1 1
1 1 -2 1 1 -1 -1 1 -1 -1 1 1 -1 -1
1 1 -2 1 1 -1 1 1 -1 -1 1 1 -1 1
-1 1 1 -2 1 1 1 1 -1 -1 1 1 -1
-1 -1 1 1 -2 1 1 -1 1 1 -1 -1 1 1
-1 -1 1 1 -2 1 -1 -1 1 1 -1 -1 1 1
1 -1 -1 1 1 -2 -1 -1 1 1 -1 -1 1
1 1 -1 -1 1 1 3 -1 -1 1 1 -1 -1 -2 -1
-1 -1 1 1 -1 -1 3 1 1 -1 -1 1 1 -2 -1
1 -1 -1 1 1 -1 -1 -2 1 1 -1 -1 1
1 1 -1 -1 1 1 -1 -1 1 -2 1 1 -1 -1
1 1 -1 -1 1 1 -1 1 1 -2 1 1 -1 -1
-1 1 1 -1 -1 1 1 1 1 -2 1 1 -1
-1 -1 1 1 -1 -1 1 1 1 1 -2 1 1
-1 -1 1 1 -1 -1 1 -1 -1 1 1 -2 1 1
1 -1 -1 1 1 -1 -1 -1 -1 1 1 -2 1
1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 -2
1 1 -1 -1 1 1 -1 1 1 -1 -1 1 1 -2
-2 2 1
-1 -1

Figure 22. The inverse matrix A(r)_1 providing the peripheral
structures of the knots ky, ..., kos.

Total Relator Length

#r #r—1
4562 17260

In the following, we denote the just constructed r,r~! by k3, k3~ !. Let ¢; be
the Torelli of [W1] p.228. If we multiply k37! “at 20 by t;” [W1] p.227, i.e. if
we take the Artin presentation r € Ros where 7; equals 1 for i < 20 and equals
t; written in the variables xoq, T21, 222 for i = 20, 21,22 and multiply it by k371,
we obtain an Artin presentation, which we denote by k371¢1.20, then 7 remains
trivial and all knot groups stay the same except Gy whose Alexander polynomial
changes from A = 8 — 2t7 — 5t5 + 13t* — ... to A = 10 — 87 + 1448 — 2¢7 —
13t +15¢° — ... (both polynomials are irreducible and the new 2, 3, 4, 5 torsions
are given by (9), (65,65), (3,3,9), (899,899)). Assuming the latter homotopy
3—sphere is actually S, we have two a priori different smooth structures on the
same underlying topological 4—manifold. (Recall that the Torelli preserve A (7)
and Freedman’s theorem holds if the boundaries are the same).

Do these smooth structures differ due to, say, the arguments of Fintushel-
Stern [FS]?

To obtain another Artin presentation for the K3 surface, which we denote
by k3 and with inverse k_371, we take the pure braid in Figure 7 with n = 2
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=

Figure 23. Modified pure braid for E (n).

and modify it by an isotopy (the same modification applies to E (n) in general).
Take the portion of Cy; that crosses under the right large band and intertwines
with the left large band and simply slide it down to the bottom of the braid
and then, using the (not drawn) trivial segments that close the braid, slide it
around to the top of the braid. The result is shown in Figure 23. Of course, the
framings for this braid are the same as before. Following Steps I-III above we
obtain k3. The isotopy of the braid preserved the order of the strands and hence
the matrix A (r) for this new presentation is exactly the same as before (Figure

21). For these Artin presentations we have #k3 = 6994 and #k_371 = 4398. We

——1
note that k3 ~ is the shortest of the four Artin presentations given here for the
Kummer surface.

3. Examples

Thanks to the computer friendly, simple presentations of knot groups and
their peripheral structures in AP theory, examples therein need not be labori-
ously constructed: they just need to be systematically discovered with MAGMA.
Due to the ‘conical’, universal structure of AP theory, at least in principle this
can at least be done in a systematic, orderly, complete way. Thus, from the
beginning AP theory, due to the fact, e.g. that framings need not be put in by
hand, automatically and easily yields many of the known interesting examples of
classical 3—manifold and knot theory: old and new. From the simplest definition
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of Poincaré’s homology 3—sphere to examples pertaining to the Cabling conjec-
ture [GAS]. Specifically, at the very beginning [W1] AP theory easily yields
cosmetic surgery examples, Luft-Sjerve spheres with fixed point free involutions,
failure of Property R in general for Z—homology 3—spheres, in particular giving
boundaries of Mazur manifolds, and nontrivial knots in homotopy 3—spheres
with trivial Alexander polynomial, a phenomenon first discovered by Seifert in
the early 1930s.

Using the just constructed Artin presentations of the K3 surface, we continue
illustrating this natural, canonical flow of instructive examples.

If G is a group, by ab (G, n) we denote the abelianizations of the subgroups of
index < n (up to conjugation) and we use MAGMA notation, e.g., ab(G,4) =
1[0],2[7,0],4[2,2,0],4[0,0], means that G abelianizes to Z and has, up to
conjugation, one subgroup of index 2 which abelianizes to Zr x Z, no subgroups
of index 3, and two subgroups of index 4 abelianizing to Zy X Zg X Z and Z X Z,
respectively.

By, say, k37 'st24, we denote the Artin presentation in Ryy obtained by not
changing r; of k37! for 4 < 22 and setting rgs = x93 and roy = xo4. It is clear
(see end of previous section) what, say, k3~ 'st24t3.22 € Roy should be. By z"r
we denote the Artin presentation where r; is changed to x}*r;. The Torellis
ty,la,t3 € R3 and T) € Ry are as in [W1] pp.228,229,231. Furthermore, A;
denotes the Alexander polynomial of k;.

L. Regarding the Cabling Conjecture [GAS] in general. Consider X3 (r) where
r = 25y k37 512413.22 € Ry (#r = 17301); 7 (r) has a balanced (non-Artin)
presentation with just three generators:

<a, b,c| ® =beb, (cbe) tab® (cbe) "t a"'b  ebe =

b= %ab® = b2 (cbe) ' atebeb8a (ba)? cbc> ,

and is therefore m—prime in the sense of [GAS], however, the (1, —1) Dehn sphere
of the knot k9; has fundamental group isomorphic to I (120) * 1 (X (2,3, 11)).

Question: is this Dehn sphere homeomorphic to X (2,3,5) #X (2,3,11)?

The knot k27 has the same Alexander polynomial as that of the granny knot
in S3, but their knot groups differ since they have different ab ( ,5)s.

The (1,1) Dehn sphere of the knot ks, where Az = ¢ — ¢ + 1, is simply
connected and so 32 (r) is a (1,£1) Dehn sphere of a knot k in a homotopy
3—sphere with Alexander polynomial A = t? — ¢ 4 1, but whose group G has a
different ab ( ,3) than that of the trefoil and is presented by:

G = <a,b, c| beb = cb*c, b (a, (b_la) " (b2 (bc)f1 c (cb)fl))> )

Here, recall that in MAGMA notation (z,y) = 2 'y tay and 2"y = y~'xy. The

homology sphere 32 (r) is the quotient space of a free regular action of I (120)

on an M? with Hy (M?®,Z) = Z4* and ab (r (r),15) = ab (I (120),15), however

their ab ( ,20)s differ. The Casson invariant, A (£3(r)), of X3 (r) is £1.
Question: is G a knot group of S3?
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II. Tinkering with our Artin presentations for K3 seems to give an abundance
of Z—homology 3—spheres with nontrivial knots where Property R fails, i.e.
G/ (l) = Z where [ is the longitude.

i) k10,k11 of 23 (r) where r = 27 25, k3~ o1 € Rop (#r = 17916).

i) koo, k2o of X3 (r) where r = 274 k371T4.19 € Rag (#r = 37009) .

iii) k15, koo of X2 (r) where r = x5y k37 13.20 € Roy (#r = 44913).

iv) ki, k11 of ¥3(r) where r = mf81k3_1t1.9 € Raa (#r = 48643). Here,
ab(Gio,5) = 1[0],...,5[0], 5[0,0],5[0,0,0],5[2,0,0],5[28371,0]. The funda-
mental group of its (1,1) Dehn sphere has one single subgroup of index 5 and
it abelianizes to Zags71. Such large finite numbers have not appeared before in
computations in AP theory. What does their appearance mean?

v) The simplest example seems to be kas of 323 (1) where r = x5, k3~ 15123t5.21
€ Ras (#r = 27628). Here 7 (r) and Gz are presented by:

w(r) = <a,b | (aba)® = (bab)?, (ba)® = (a_lbab)2>7
Gy = <a, b| (aba)® = (ba)? (bab) " (ab)2> .

As is well known, the falsity of Property R, i.e. G/ (l) = Z, implies that the
Alexander polynomial is trivial; we also obtain an abundance of nontrivial knots
with trivial Alexander polynomials in homotopy 3—spheres (such examples were
first discovered by Seifert in the early 1930s): let r = :cgol k37 1st24t5.22 € Rou
(#r = 17301), then X3 (r) is simply connected and Agy = 1 but ab(Gag,5) =
1[0],...,5[0], and 5[3,15,0] repeated 5 times; let r = x2k3t2.20 € Roo
(#r = 11101), then X3 () is simply connected and A; = A1y = 1 but ab (G1,5) =
ab (Gh2,5)=11[0],...,5][0], 5[0,0,0],5[3,3,0]. Here G12 is presented by:

<a,b,c | (ail,c) (¢,b) (a,b)c=b= (cil,afl) (b, cil) (a,b) (cil,a71)> i

Question: is G2 a knot group of S3?

L If r = k37 143.20 € Roa (#r = 44550), then A; = 1 and Ay = 1 but
G1 and G2 are not isomorphic since their ab( ,5)s differ. However, both of
their (1,1) Dehn spheres are simply connected. This illustrates in a different
way the phenomenon that ‘far away’ knots in homotopy 3—spheres can have
homeomorphic (1,1) Dehn spheres [Br].

Unlike with the Donaldson matrices Es, @4, etc., with K3 we obtain a much
larger amount of knots with A = 1. Is this related to the ‘softness’ of K3 as a
Calabi- Yau manifold?

4. The manifolds W4 (r)

We have answered in the affirmative whether all elliptic surfaces E (n) appear
as W*(r)s. An open problem is whether every smooth, compact, connected,
simply-connected 4-manifold X* with a connected, simply-connected boundary
0X* = M3 is a W4 (r). (See [GS] p.344 for a related problem).

In dimension 3, AP theory obtains all closed, orientable, connected 3-man-
ifolds and there seem to be no great conceptual difficulties on the horizon in
obtaining all Seiberg-Witten invariants of 3—manifolds in AP theory [L], [T
pp-viii,115. Unlike in the simplicial combinatorial case, in AP theory the same
purely group-theoretic data that determines the 3—manifold, namely r, also
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canonically and holographically determines the 4—manifold. Hence, developing
3—dimensional Seiberg-Witten theory in this, its correct, ultimate arena, holds
greater promise in further developing also the outstanding open 4—dimensional
theory in AP theory.

Similar arguments hold for studying the smoothings of a 4—manifold, a la
Fintushel-Stern [F'S], using the action of the Torelli, thus generalizing their im-
portant work. We remark that, if the 3D Poincaré conjecture were true, then
by Freedman’s theorem the relation between the Torelli action and smoothings
would become even more direct, purely group-theoretic and pristine, perhaps too
much so.

Relevant to all of the above is that although finitely presented group theory
is considered a difficult subject, the undeniable metamathematical similarities
of AP theory with braid theory, holographic dessins denfant theory, as well as
numerous genuine analogies with Modern Physics, give hope for a definitive,
realistic, computer approachable, holographic, and universal approach to X*
theory [D] p.69, [W2], [W3].
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REPRESENTING AND RECOGNIZING TORUS BUNDLES
OVER S!

MARIA RITA CASALI

ABSTRACT. As it is well-known, torus bundles over S! are identified by
means of regular integer matrices of order two (see [S]). In the present paper
an algorithmic procedure is described which allows to construct, directly
from any matrix A € GL(2;Z), an edge-coloured graph representing the
torus bundle T'B(A) associated to A. As a consequence, five topologically
undetected elements of Lins’s catalogue of orientable 3-manifolds (see [L])
are finally recognized as torus bundles over S*.

1. Introduction

The present paper gives an approach to the study of fiber bundles with base
space S' and fiber T' (the bidimensional torus) via edge-coloured graphs as a
combinatorial PL-manifolds representation tool. In particular, an algorithmic
procedure is described which allows to construct, directly from any matrix A €
GL(2;7Z), a pseudosimplicial triangulation (and, hence, the edge-coloured graph
I'(A) visualizing it) of the torus bundle T'B(A) associated to A, i.e. of the quotient

TB(4) = T x [0,1]7
~A
where the equivalence relation ~ 4 is given by

(J),O) ~A ((&A(Jﬁ),l), Ve eT,

$4 being the punctured homeomorphism (T,z0) = (T,z0) (x0 € T) having A
as an associated matrix.

As a consequence, since edge-coloured graphs give rise to an n-dimensional
combinatorial invariant for PL-manifolds - called regular genus (see [G] for its
definition and, for example, [CG] and [BCG] for subsequent related results) -,
coinciding with Heegaard genus in the 3-dimensional setting, torus bundles over
S! are combinatorially proved to have Heegaard genus less than or equal to three
(as already obtained, via handle-decomposition, in [TO]).

On the other hand, the described construction is applied in order to topo-
logically recognize all torus bundles belonging to Lins’s catalogue (see [L]) of

2000 Mathematics Subject Classification: 55R10, 57N12, 57M15.

Keywords and phrases: 3-manifold, fiber-bundle, torus-bundle, monodromy, Heegaard
genus, edge-coloured graph .
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closed connected orientable 3-manifolds represented by edge-coloured graphs up
to 28 vertices (i.e. admitting a pseudosimplicial triangulation consisting of at
most 28 tetrahedra). In fact, Lins’s catalogue contains exactly five undetected
manifolds whose fundamental group coincides with the fundamental group of a
torus bundle, that is a semidirect product between Z and Z x Z, induced by a
matrix of GL(2;Z). Here, the 4-coloured graph I'(A) associated to each one of
these matrices is constructed and simplified by suitable combinatorial moves not
affecting the homeomorphism class of the represented manifold, until obtaining
an element of Lins’s catalogue which encode exactly the undetected manifold
with fundamental group Z - A.

We point out that the combinatorial nature of the representing tools, together
with the algorithmic feature of the described construction, allow to imagine a
suitable implementation of the whole process; actually, a Visual Basic program’
has been produced, automatically yielding the 4-coloured graph T'(A4), directly
from a matrix A € GL(2;Z), in the case that A contains a null element (which
is the case occurring for each torus bundles in Lins’s catalogue).

Since torus bundles frequently appear in existing catalogues of 3-manifolds
(see, for example, [M] and [MP]), the author hopes that the construction ob-
tained in the present paper will be of use in order to perform interesting com-
parisons between different 3-manifold complexity notions.

2. Basic notions on torus bundles over S!

As it is well-known, the homeotopy group of bidimensional torus 7', i.e. the
mapping class group of punctured homeomorphisms (T, z¢) — (T, zo) (o € T),
is isomorphic to the group of automorphisms of 71 (T), i.e. to GL(2;Z) (see
[ZVC]; Theorem 5.15.5).

This implies that any matrix A = (aoo o1

aipo aii
a homeomorphism q~5 4T — T, if ¢y and ¢ denote, respectively, a meridian and
a longitude of torus T', oriented so that their intersection number is +1, then q~5 A
maps ¢y (resp. ¢1) into the curve ¢, = agoco + agic1 (resp. ¢f = ajoco + aricy),
fixing the (unique) intersection point ¢y N ey.

According to [S]; sections 3.2 and 18.1, the homeomorphism ¢~) 4 uniquely de-
termines a fiber bundle (with base space S! and fiber T'), defined as the quotient

T x[0,1]
~A
where the equivalence relation ~ 4 is given by
(.13,0) ~A ((&A(l‘),l), Ve eT.

Note that A € GL(2;Z) directly implies that det(A) € {£1}; more pre-
cisely, the torus bundle T B(A) is orientable (resp. non-orientable) if and only if
det(A) = +1 (resp. det(A) = —1). Moreover, by the classification theorem of

> € GL(2;Z) induces, up to isotopy,

TB(A)

1Even if it pursues an autonomous aim, this program has been thought of in order to become
a part of a wider C++ program, called DUKE III, which is devoted to automatic analysis,
manipulation and recognition of PL-manifolds via edge-coloured graphs. Both programs are
available by request to author’s address.
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fiber spaces (see [S]; Theorem 18.5 or [TO]; Proposition 2), two torus bundles
TB(A) and TB(A’) turn out to be equivalent if and only if A’ is conjugate to
either A or A~ in GL(2;7Z).

The following technical lemma will be useful for our purposes, in order to
restrict the class of matrices effectively inducing torus bundles.

LEMMA (2.1). Let M be a torus bundle over S'. Then M is equivalent to

TB(A) for some matriz A = (ZOO ZOI) € GL(2;Z) such that
10 a1

ajp-a;1 >0 Vie {0, 1} and Aoj > Alj Vi e {0, 1},
where A;; = max{|a;;|,1}, Vi,j € {0,1}.
Proof. First of all, note that det(A) € {£1} excludes the possibility that a

row of A consists of concordant elements and the other one consists of discordant
elements. Thus, the existence, for any matrix in GL(2;Z), of a conjugate matrix

A= <ZOO 201> satisfying a;o - a;1 > 0 Vi € {0,1} directly follows from the
10 @11

. . a b a —b
conjugation between (c d) and (—c d )

1L 0\ fa by (1 0\ _(a b\ (1 0)_ (a =b
0 -1 c d 0 -1) \—-¢ —d 0 -1 \-¢ d
On the other hand, it is easy to check that if a matrix A = @ Z € GL(2;Z)

contains all non-null elements, the case |a| > |c¢| and [b] < |d| (resp. the case
la| < |c| and |b] > |d|) is excluded by the condition det(A) € {£+1}. Thus, the

existence, for any matrix in GL(2;Z), of a conjugate matrix A = ZOO 201
10 011
satisfying Ag; > A1; Vj € {0,1} (in addition to aio-a;1 > 0 Vi € {0,1}) directly

d ¢
b

COCHCICICIE

Finally, note that the last conjugation allows us to assume that both conditions

follows from the conjugation between (Z Z) and (

of the statement hold also in the case of a matrix A = [ %% 901) ¢ GL(2,Z)

aio a1
containing null elements: in fact, if a;; = 0, det(A) € {£1} surely yields
|laij| = la;;] =1, with {i,i'} = {7,7'} ={0,1}, and so Az = Ayj. O

Definition (2.2). A matrix A € GL(2;Z) will be said to be in normalized shape
if it satisfies both conditions of Lemma (2.1). The subset of GL(2;Z) consisting
of regular integer matrices of order two in normalized shape will be denoted by
the symbol GL(2;7Z).
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The following theorem collects results about the Heegaard genus H(M) of
a torus bundle M over S!, originally obtained in [TO]; Theorem 1 and [TO];
Proposition 3, respectively; in the present paper (section 4), they will be proved
as consequences of the algorithmic procedure to construct an edge-coloured graph
representing TB(A), for any matrix A € GL(2;Z).

PROPOSITION (2.3). a) H(M) < 3 for any torus bundle M over S'.
b) If M is a torus bundle over S' with associated monodromy A = (T 8)
(e € {1,—1}), then H(M) < 2.

3. Representation of PL-manifolds by means of edge-coloured graphs

The representation theory for PL-manifolds 2 of arbitrary dimension via edge-
coloured graphs has its origin within the italian school of Mario Pezzana (see
[FGG] or [BCG] for details), but quickly developed with contribution of re-
searchers from different countries (see, for example, [BM], [CV], [LM], [L], [V]).

If M™ is a compact PL m-manifold, a coloured triangulation of M™ may be
defined as a pair (K, &), where:

e K is a pseudocomplex 2 triangulating M™, with vertex set So(K);

o £:S50(K)— A, ={0,1,...,n}is a map (vertez-labelling) which is injective
on the vertex-set of each n-simplex of K.*

An (n + 1)-coloured graph (T',~) representing M™ is nothing but a combina-
torial tool used to visualize (K, &). In fact, the underlying multigraph T' = T'(K)
coincides with the dual graph of K, i.e. the 1-skeleton of the ball-complex dual
to K, while the edge-colouring 7 : E(I') — A,, is induced by the vertex-labelling
of K: (I',7) has a vertex v(o) for each (labelled) n-simplex o € K, and an i-
coloured edge (i € A,,) connecting v(o) and v(7) for every pair o, 7 of n-simplices
of K sharing the (n — 1)-face opposite to i-labelled vertex.

It is very easy to check that edge-coloured graphs are a universal tool to
represent PL-manifolds: in fact, for every PL n-manifold M™, the existence of
a coloured triangulation (and, hence, an edge-coloured graph) representing M™
may be directly proved by considering the first baricentric subdivision of any
simplicial triangulation of M", and by labelling every vertex by the dimension
of the simplex whose barycenter it is.

Of course, for any fixed n-manifold M"™, many edge-coloured graphs exist,
which represent M™. In particular, edge-coloured graphs which coincide up to
permutations of the vertex set and/or of the colour set (i.e. the so called colour-
isomorphic graphs) do obviously represent the same manifold. In [L] and [CG],
an alphanumerical code ¢(T') is defined for any coloured graph T', which allows
to effectively recognize colour-isomorphic graphs.®

2For basic notions on piecewise-linear (PL) category, we refer to [RS]. Throughout the
present paper, all PL-manifolds are assumed to be closed and connected, unless otherwise
stated.

3Remember that - according to [HW] - a pseudocomplex is a ball-complex which differs
from a simplicial complex because its “h-simplices” may intersect in more than one face.

4In case OM™ # (), it is also required every n-labelled vertex to be internal in K.

5Note that code computation may be easily implemented; for example, DUKE III program
contains a suitable “code computation” function.
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Within the representation theory for PL-manifolds by edge-coloured graphs,
a combinatorial invariant - called regular genus - has been introduced and deeply
investigated (see [G], [FG1], [CG] and their bibliography). It may be thought of
as a natural extension of the notion of genus for surfaces and of Heegaard genus
for 3-manifolds; in particular, for any 3-dimensional manifold M?3, the equality
G(M3) = H(M?3) holds, where G(M?3) denotes the regular genus of M3 (and
H(M?3) denotes - as already recalled - its Heegaard genus).

According to [G], it is known that, for every (n+ 1)-coloured graph (T',~y) rep-
resenting a closed orientable (resp. non-orientable) n-manifold M™ and for every
cyclic permutation € = (eg, €1, ...,€, = n) of A, there exists a regular embed-
ding of (I',7) into an orientable (resp. non-orientable) surface F; furthermore,
the genus p(T") of F; (resp. half the genus p(T") of F,) may be easily computed by
the following formula, where g; ; denotes the number of {e;, ¢; }-coloured cycles
of (T',~) and p is the number of vertices of (T',~):

p
Y. gt (l-n) 5 = 2-2pT)

JE€ZLn+1

In particular, if n = 3, p.(I') may be obtained through a simpler formula, too:

pe(T) = go2—gi —g3+1
where g; (j € A3) is the number of connected components of I'e; = (V(I'), y~1
(As —{j}))-
The regular genus p(T') of an (n + 1)-coloured graph (T',~) is, by definition,
the minimum value of p.(I") over all cyclic permutations e of A,,. Finally, the
regular genus of a PL-manifold M™ is defined as:

G(M™) =min{p(T") /(T',~v) is an (n+1)-coloured graph representing M"}.

4. From matrices to 4-coloured graphs representing torus bundles

The following paragraph will be entirely devoted to show how to construct
edge coloured graphs representing torus bundles, directly from integer matrices
inducing them.

THEOREM (4.1). Let A € GL(2;7Z). An algorithmic procedure exists, which
allows to directly construct a 4-coloured graph I'(A) representing the torus bundle
TB(A) with monodromy induced by A.

Proof. The statement is directly proved by construction, via the following
steps.

First step: We construct two cell-complexes Ky and K triangulating the
torus 7T, so that a bijective cell-map ® 4 : Ky — K exists, with |<T>A| = éA.

In order to obtain K7, it is sufficient to consider on % the geometrical
realization of ¢} (i € {0,1}) consisting of the A;o + A;1 — 1 edges, parallel to
¥ = (@40, a41), having as end-points the A;; + 1 vertices on I x {0} =TI x {1} of
first coordinate AL”, h €{0,...,A;1} and the A;p+1 verticeson {0} x I = {1} x I
of second coordinate Aiio’ ke{0,..., A}

6Note that, in case a;; = 0, the geometrical realization of c; simply coincides with the
canonically identified edges I x {0} =1 x {1} (if j =1) or {0} x I = {1} x I (if j = 0).
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On the other hand, let Ky be the cellular subdivision of £XL constructed in
the following way:

e let us consider the Agg+ Aoy vertices on I x {0} = I x {1} of first coordinate
m, r€40,...,Apo + Ao1 — 1} and the A;9 + A1 vertices on {0} x [ =
{1} x I of second coordinate z——"—=, s € {0,..., Ao+ A1 — 1}; 7

o let us consider, for every vertex on {0} xI = {1} x I, an edge internal to I x I
parallel to W= (Ao + A1 — 1, u(A)(Ago + Ao1 — 1)), where pu(A)=(—1)%i-a1i; 8

o finally, in case a;; # 0 Vi, j € Ny, let us also consider the Agg + Ag1 — A10 —
A11 edges internal to I x I, having both the end-points on I x {0} = I x {1},
parallel to @' = (A1p + A11, #(A)(Aoo + A1 — 1)).

Note that both K, and K; consist of >ijefoay |ai;| — 1 cells, among which
4—2no(A) are triangular cells and 3, ;o 1y [ai;| =5+ 2n0(A) are quadrangular
ones, ng(A) being the number of null elements in A; moreover, the required
bijective cell-map ®4 : Ko — K1, with [®4] = qBA, is easily induced by qBA (¢;) =

/

¢; (with correct orientations).

Second step: We construct two coloured triangulations Ky and K; of the
torus T', so that a bijective coloured simplicial map ®4 : Ko — K exists, with
[Pal = ¢a. _ _

Ky (resp. K1) is simply obtained from Ky (resp. K1) by performing a bari-
centric subdivision and by labelling every vertex of K, (resp. K1) with the di-
mension of the corresponding cell of Ky (resp. K1). Hence, the bijective cell-
map ®4 : Ky — K, canonically induces a bijective coloured simplicial map
Oy : Ko — K, with the property |®4| = qBA.

Third step: We construct a coloured triangulation K of the product T x I, so
that K|T><{O} = K() and K|T><{l} = Kl.

Let Hy (resp. Hy) denote the cellular subdivision of I x I inducing, via canon-
ical boundary identification, the cellular subdivision K (resp. K;) of T = 1%L,
Then, let H be the cellular subdivision of the cube I x I x I consisting of exactly
one 3-cell, coinciding with Hy (resp. Hy) on I x I x {0} (resp. I x I x {1}) and
containing exactly one 2-cell for each other face of I x I x I. Then, let H be the
coloured simplicial triangulation of I x I x I obtained from K by performing a
baricentric subdivision and by labelling every vertex with the dimension of the
cell of K whose baricenter the given vertex is. It is now easy to check that K is
simply obtained from H by canonical identification of opposite faces {0} x I x I
and {1} x I x I (resp. I x {0} x I and I x {1} x I).

Fourth step: A coloured triangulation K4 of the torus bundle TB(A) is ob-
tained from K by identifying faces I_(|T><{o} and I_(|T><{1} according to ® 4.

In order to complete the algorithmic construction, it is now sufficient to con-
sider the edge coloured graph I'(A) such that I'(A) = T'(K4) (as described in
the previous paragraph). O

"Note that the edge I x {0} = I x {1} (resp. {0} x I = {1} xI) of K results to be subdivided
into Ao + Ao1 — 1 (resp. A1g + A11 — 1) edges, as well as the geometrical realization of ¢
(resp. ¢}) in Kj.

8The assumption det(A) € {+1,—1} ensures that either ag; - a1; > 0 Vj € {0,1} or
agj - a1; < 0Vj € {0,1} surely holds.
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1
0

> € GL(2;7Z) (see Lemma (2.1)). Then, the first step

Ezample (I). If A = (

1 2
0 1
of the described algorithm yields the cell-complexes Ky and K triangulating the
torus T depicted in Figure 1(a) (where the bijective cellmap ®4/ : Koy — K
with [® /] = ¢~> A+ 1s visualized by labelling pairs of corresponding cells by equal
symbols (for example, (x,2’)). Furthermore, Figure 1(b) illustrates the coloured
triangulations Ky and K; of the torus T obtained in the second step (where
equally labelled simplices are assumed to correspond each other in the bijective
coloured simplicial map ® 4/ : Koy — K7, with [®4/| = ¢~>A/). Finally, in Figure
1(c) the boundary of the coloured simplicial triangulation H of I x I x I obtained
in the third step is depicted, and equally labelled 2-simplices indicate boundary
identifications necessary to yield K4 from H = v % O0H, v being the unique
inner 3-coloured vertex of H (forth step). The resulting edge-coloured graph
I'(A") =T(K ) is shown in Figure 1(d), where 3-coloured edges are understood
through equal labelling of pairs of 3-adjacent vertices.

_12) € GL(2;7Z), then TB(A) is equivalent to

TB(A'), with A’ = <

. , 1 1 10 1
- " o\ p d /c
1\ k i /j
1 t q ¢ b
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Figure 1(d)

-2 1
-3 2
3
-2
step of the described algorithm yields the cell-complexes K and K triangulating
the torus T depicted in Figure 2(a) (where the bijective cell-map ® 4/ : Ko — K
with [®4/| = ¢ is visualized by equally labelling of corresponding cells). Fur-
ther, Figure 2(b) illustrates the coloured triangulations Ky and K; of the torus
T obtained in the second step (where equally labelled 2-simplices are assumed to
correspond each other in the bijective coloured simplicial map ® 4/ : Koy — Ky,
with |[®4/| = ¢as). Subsequent steps of the described algorithm follow as in
Example (I).

Ezample (II). If A = ( > € GL(2;Z), then TB(A) is equivalent to

TB(A’), with A’ = (_21 ) € GL(2;Z) (see Lemma (2.1)). Then, the first

C s 1y

Figure 2(a)
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Figure 2(b)

Remark (A). Note that, by virtue of Lemma (2.1), any torus bundle over S turns
out to admit a 4-coloured graph I'(A4) (obtained as an output of the algorithmic
procedure of Theorem (4.1), for a suitable A € GL(2;Z)) representing it.

Remark (B). For every A € GL(2;7Z)), the 4-coloured graph I'(A) represent-
ing TB(A) enjoys the following combinatorial features (which may be easily
checked by direct computation via the corresponding geometrical properties of
the coloured triangulation K 4):

2p = #V(L(A)) =8B X, jeqo,1y lais| — 4+ 2no(A4));
go1 =23 jeqo1y laig] + 2

go2 = goz = g13 = 2(3 Zme{m} laij| — 4+ 2no(A));
912 = 4(21‘,]’6{0,1} lai;| — 2+ no(A));

g23 = 2(2 Ei,je{o,l} |aij| =3 +no(A));

96 = 2ijefo1y aij|l =3 +no(A);

91 =22 jeqoy laijl = 3+ no(A);

95 =142 jeqoy 1aijl;

93 =1.

PROPOSITION (4.2). For every A € dL(Q; Z), the following relations hold:

8) p(0(A) = X, e qom laig] + 1
b) S(TB(A)) < 3.

Furthermore, if A € GL(2;Z) is such that a1, = 0, then
&) S(TB(A)) <2

Proof. If € = (0,2,1,3), a direct computation yields:
pe(C(A))=go1 —gs =95 +1=2 > lay|+2—(1+ Y lag))—1+1=

i,j€{0,1} i,j€{0,1}
= > layl+1
i,j€{0,1}
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On the other hand, it is easy to check that, for any permutation ¢’ of Ag,
pe (T'(A)) > pe(T'(A)) holds; thus, statement (a) follows.

In order to prove statement (b), it is necessary to note that, if o, ¢’ are two
cells of the cellular triangulation Hy (resp. Hp) of I x I, sharing a common
boundary edge e, with e ¢ 9(I x I), then the {0, 1}-coloured cycle of T'(A4),
dual to the {2,3}-labelled edge of K4 having the baricenter of o (resp. o’) as
an end-point, has exactly one common vertex with any {2, 3}-coloured cycle of
I'(A), dual to one of the ({0, 1}-labelled) edges of K 4 subdividing e: this means
that any such common vertex identifies a so called generalized dipole, which is
a combinatorial structure that may be easily eliminated by a finite sequence of
elementary moves on edge-coloured graphs, yielding a new graph, with one less
{0, 1}-coloured cycles, representing the same 3-manifold (see [FGz] for details).
It is not difficult to check that, since Hy (resp. H;) contains Yijefoay lail —2
edges not belonging to d(I x I), the combinatorial structure of K4 allows to
perform in T'(A), for every A € GL(2;Z), a finite sequence of Yijeqoy lail —2
“independent” generalized dipole eliminations, giving rise to a new 4-coloured
graph I'V(A) representing T'B(A), so that

pe(l"(A)) = pe(D(A) = (D aiy| —2) =3.

i,j€{0,1}

This completes the proof of statement (b).

Finally, let us consider the case of a matrix A € G~L(2;Z) with a;; = 0. A
direct check allows us to verify that, if 7 is the cell of H corresponding to the
face {0} x I x I and f is the {2, 3}-labelled edge of K 4 having the baricenter of
7 as an end-point, then the sequence of generalized dipoles transforming I'(A)
into I'(A4) does not involve the vertices of the {0, 1}-coloured cycle of I'(A), dual
to f. Moreover, both in T'(A4) and in IV(A), f has exactly one common vertex
with any {2, 3}-coloured cycle, dual to one of the ({0, 1}-labelled) edges of K 4
triangulating {0} x I x {0}. Hence, the additional hypothesis a;; = 0 allows us
to perform a further generalized dipole elimination, yielding a new graph I'”(A)
representing T B(A); statement (c) now directly follows:

ar=0 = pe(I"(4)) = pe(I'(4)) — 1 =2.
O

We are now able to easily prove the already quoted upper bound results on
Heegaard genus of torus bundles.

Proof of Proposition (2.3). Statement (a) directly follows from Proposition
(4.2)(b), via Lemma (2.1) and Remark (A).

On the other hand, statement (b) is a direct consequence of Proposition
(4.2)(c), applied either to A = T 8
(m _E) (see Lemma (2.1)). O

or to the conjugate matrix A’ =

-1 0
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5. Recognition of torus bundles among elements of Lins’s catalogue

In [LS] and [L] (resp. [C]) a complete catalogue €28 (resp. C(20)) of orientable
(resp. nonorientable) 3-manifolds admitting coloured triangulations up to 28
(resp. 26) tetrahedra is obtained, and its elements are deeply analyzed; as a
consequence, the following result is proved:

ProproSITION (5.1). a) [LS] - [L] Ezactly 69 non-homeomorphic prime ori-
entable 3-manifolds exist, which admit a coloured triangulation consisting of at
most 28 tetrahedra;

b) [C] Ezactly 7 non-homeomorphic prime non-orientable 3-manifolds exist,
which admit a coloured triangulation consisting of at most 26 tetrahedra. O

In particular, all elements of C(26) are topologically recognized ?, while some
elements of €28) are simply proved to be non-homeomorphic manifolds by means
of the computation of their fundamental group.

The first result about recognition of torus bundles among catalogues €(®) and
C(26) concerns matrices A € GL(2,Z) with two null elements:

PROPOSITION (5.2). All orientable (resp. non-orientable) torus bundles hav-
ing monodromy A € GL(2;Z) with no(A) = 2 belong to catalogue €2® (resp.
é(%)), In particular, they are the following euclidean manifolds (whose corre-
sponding crystallographic groups are indicated according to notations of interna-
tional table of crystallography [IT]):

3
TB(((l) ?)) ~S'xS' xS = B with Gy = P1  (corresponding to r3* € €2¥)

_ E3
TB(( L0 )) ~ with G2 = P21 (corresponding to ras e 6(28))
0 1 E3 , (28)
TB( ) —  with G4 = P41 (corresponding to rvee )

E3
TB((1 0 )) ~ with B1 = Pb  (corresponding to 7"111 c 6(26))

E° 5
TB(<(1) é)) >~ with By = Bb (corresponding to 711y € C29)

Proof. A direct check allows us to prove that the only matrices A € GL(2;Z)

with ng(A) = 2 are (up to conjugation): A; = (1) (1)), Ag = <_1 0)

Az = (_01 é), Ay = (é _01), and A = <(1) (1)) Moreover, in case ng(A4) =
2, the first step of the algorithmic procedure of Theorem (4.1) yields two cell-
complexes Ky and K consisting of just one 2-cell; so, for each i € Nj, the
whole procedure may be very easily applied, giving rise to a 48 order 4-coloured
graph I'(A;) representing the associated torus bundle T'B(4;). Now, a standard
sequence of dipole moves may be performed (for example, by making use of

9The manifolds involved are proved to be (see [C]; Theorem I): the four euclidean non-
orientable 3-manifolds, the non-trivial S? bundle over S!, the topological product between the
real projective plane RP2? and S!, and the torus bundle over S, with monodromy induced by

matrix 0 1
1 -1/
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the corresponding function of DUKE III program), until we obtain a 4-coloured
graph belonging to catalogues C®) (in case i € {1,2,3}) or €29 (in case i €
{4,5}). Complete classification results about these catalogues allow us to directly
prove the statement. O

Finally, we will apply the above described algorithmic construction of edge
coloured graphs representing torus bundles, in order to topologically recognize
five further manifolds belonging to Lins’s catalogue as torus bundles over S'.
Note that they are the only topologically undetected elements of Lins’s catalogue
whose fundamental groups coincide with fundamental groups of torus bundles
over St.10

PROPOSITION (5.3). (a) The orientable 3-manifold corresponding to r3% €
C28) (whose fundamental group is 7 - (1 (1)>) is the torus bundle TB(A), with

10
4=1%)

(b) the orientable 3-manifold corresponding to r28 € %) (whose fundamental

group s 7 - (_01 ;))) is the torus bundle TB(A), with A = (_01 ;)) ;

(c) the orientable 3-manifold corresponding to vy € €% (whose fundamental

group is 7. - (_01 _13)) is the torus bundle TB(A), with A = (_0 1 );

1 -3
(d) the orientable 3-manifold corresponding to r35 € €% (whose fundamental
group is 7. - <_21 _01)) is the torus bundle TB(A), with A = (_21 _01> R

(e) the orientable 3-manifold corresponding to 135, € C*%) (whose fundamental

group is Z - <é _12>) is the torus bundle TB(A), with A = <é _12>

Proof. (a) Let A = (1 O) - even though A € GL(2;7), let us apply the algo-

1 1

rithmic procedure of the previous section to its conjugate matrix A’ = (é 1) €

G~L(2; Z). The coloured pseudocomplex K 4: turns out to be obtained by starring
from an inner 3-labelled vertex the coloured complex depicted in Figure 3, where
2-simplices labelled x, " have to be identified.

10Van Kampen’s Theorem allows us to directly check that the fundamental group of the
torus bundle TB(A) is the semidirect product between Z and Z x Z induced by the matrix A,
i.e. the group usually denoted by Z - A.
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It is not difficult to check that the associated order 56 4-coloured graph I'(A’)
may be transformed by a finite sequence of dipole moves (for example, by making
use of the corresponding function of DUKE III program) into an order 28 4-
coloured graph I""(A’) having code

c(T"(A")) = dabchef gkijnlmknmedclihgaj fbg f jnmkadlcbieh;

since this code identifies, up to permutation of vertices and colours, the element
7385 € €% and since Lins’s classification ensures the represented 3-manifold
to be the same as 72§ € €8 part (a) of the statement follows.

(b) Let A = (_01 ;}) ; since A ¢ G~L(2;Z), we apply the algorithmic proce-

dure of the previous section to its conjugate matrix A’ = _31 (1) € G~L(2; Z)
(see Lemma (2.1) in order to prove the conjugation). The coloured pseudocom-
plex K4/ turns out to be obtained by starring from an inner 3-labelled vertex
the coloured complex depicted in Figure 4, where 2-simplices labelled z, z’ have

to be identified.
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It is not difficult to check that the associated order 104 4-coloured graph
I'(A’) may be transformed by a finite sequence of dipole moves (for example, by
making use of the corresponding function of DUKE III program) into an order
32 4-coloured graph I''(A4’) having code

c(T'(A")) = fabedejghimklpnomlonpg febkjiadchojihkpalcbednmgf.

A direct computation allows us to prove IV(A’) admits a so called cluster,
which is a combinatorial structure that may be easily eliminated by a finite
sequence of elementary moves on edge-coloured graphs, yielding a new graph
I'"(A’) with two less vertices, representing the same 3-manifold (see Figure 5,
or [L]; Proposition 24] for details). On the other hand, I'/(A’) may be further
simplified via a generalized dipole elimination and two dipole eliminations (for
example, by making use of the corresponding functions of DUKE III program),
5o as to obtain the order 28 4-coloured graph I'"”/(A’) having code

c(T"(A")) = dabchefgkijnimknmedclihgaj fbg f jlnkadmcbhie;

since this code identifies, up to permutation of vertices and colours, the element
r28.¢ € €2 and since Lins’s classification ensures the represented 3-manifold
to be the same as 2% € C8) part (b) of the statement follows.

dipole moves

Figure 5



REPRESENTING AND RECOGNIZING TORUS BUNDLES OVER S! 103

(c) Let A = (_01 _13) ; since A ¢ G~L(2; Z), we apply the algorithmic proce-

_01> € GL(2;7)
(see Lemma (2.1) in order to prove the conjugation). The coloured pseudocom-
plex K4 turns out to be obtained by starring from an inner 3-labelled vertex
the coloured complex depicted in Figure 6, where 2-simplices labelled z, ' have
to be identified.

dure of the previous section to its conjugate matrix A’ = (_13

0 1 0
A
Iy 2 =1 a i
X i '
0 b 2 ¢ 1y
c! ! f
a7 g
' 2 o'
U Ik
1 T m'] vyl
001 0 1 0 10 G cUlo1r 0 1 0 1 0 1 0
S\NT\U'| V' /WX 1 X\W\V [U/T /5
L K K L
R Y' M J v R A M’
. 2 1 2 1 2 1 2 |
Q z | N I z Q r N
P | O o) P
C/D/E|F\G\H 1/G/F |E\D\C
0 1 o IV ONC I ONCT o 1 01 0 1 0 1 0
a\b i\j qrzs
h c\p k\v
HaA N2 At o\l
g \d Vit
o|\\1I
B )Y
file n\m
Wl X
01 0 1 0 1 0
Figure 6

It is not difficult to check that the associated order 104 4-coloured graph
I'(A4’) may be transformed by a finite sequence of dipole moves (for example, by
making use of the corresponding function of DUKE III program) into an order
30 4-coloured graph I''(A’) having code

c(T'(A")) = eabedi f ghljkomnlong fedcjimakhbnhkjomlba f cgdie.

A direct computation allows us to prove I'V(A’) admits a cluster, whose elimi-
nation yields a new graph I'’(A’) with two less vertices (i.e. 28 vertices), rep-
resenting the same 3-manifold (see Figure 5, or [L]; Proposition 24 for details).
Since its code

c(T"(A")) = dabegefjhilknmjlnedchgmaibk fnfihkbalcejmdg

identifies, up to permutation of vertices and colours, the element 735; € e(28),
and since Lins’s classification ensures the represented 3-manifold to be the same
as 75 € €% part (c) of the statement follows.
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-1

(d) Let A = (_2

_01>; since A ¢ GL(2;7Z), we apply the algorithmic

-1
GL(2;Z) (see Lemma (2.1) in order to prove the conjugation). The coloured
pseudocomplex K 4/ turns out to be obtained by starring from an inner 3-labelled

vertex the coloured complex depicted in Figure 7, where 2-dimensional faces
labelled z, ' have to be identified.

procedure of the previous section to its conjugate matrix A" = (_01 _2> S
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It is not difficult to check that the associated order 80 4-coloured graph I'(A”)
may be transformed by a finite sequence of dipole moves (for example, by making
use of the corresponding function of DUKE III program) into an order 28 4-
coloured graph I'"(A’) having code

c(T"(A")) = dabchef gkijnlmknmedclihgaj fbg fjnmkadlcbieh;

since this code identifies, up to permutation of vertices and colours, the element
28,0 € €% and since Lins’s classification ensures the represented 3-manifold
to be the same as r75 € C8) part (d) of the statement follows.

1
0
gorithmic procedure of the previous section, applied to its conjugate matrix

A = (é _21) € GL(2;7Z), yields the coloured pseudocomplex K 4/ obtained
by starring from an inner 3-labelled vertex the coloured complex depicted in
Figure 1(c), where 2-simplices labelled z,z’ have to be identified. Now, it is not

(e) Let A = _12> As already pointed out in Example (I), the al-



REPRESENTING AND RECOGNIZING TORUS BUNDLES OVER S! 105

difficult to check that the associated order 80 4-coloured graph I'(A’) may be
transformed by a finite sequence of dipole moves (for example, by making use of
the corresponding function of DUKE IIT program) into an order 28 4-coloured
graph I'V(A’) having code

c(T"(A") = dabchef gkijnlmknmedclihgaj fbg f jmnkalecbhdi;

since this code identifies, up to permutation of vertices and colours, the element
r38.9 € C(®®) and since Lins’s classification ensures the represented 3-manifold
to be the same as r35, € €2 part (e) of the statement follows, too. (]
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STUDYING THE MULTIVARIABLE ALEXANDER
POLYNOMIAL BY MEANS OF SEIFERT SURFACES

DAVID CIMASONI

ABSTRACT. We show how Seifert surfaces, so useful for the understanding
of the Alexander polynomial Ay (t), can be generalized in order to study
the multivariable Alexander polynomial Apf (t1,...,tu). In particular, we
give an elementary and geometric proof of the Torres formula.

1. Introduction

The technique of Seifert surfaces, discovered by HERBERT SEIFERT [12] in
1935, enabled him to make great progress in the study of the Alexander polyno-
mial of a knot. In particular, he succeeded in characterizing among all Laurent
polynomials A(t) those that can be realized as the Alexander polynomial of a
knot. The introduction by RALPH FoOX of the multivariable Alexander polyno-
mial Ag(t1,...,t,) of a u-component oriented link L naturally gave rise to the
corresponding question for this new invariant (see Problem 2 [6]). GUILLERMO
TORRES made use of the free differential calculus — developed at that time by
Fox — to give several conditions for a polynomial A in Z[tfl, . ,tffl] to be
the Alexander polynomial of a u-component link [13, 5]. Since then, very little
progress has been made on this question: it is known that the Torres conditions
are not sufficient in general [7, 11], but a complete algebraic characterization
remains out of reach.

In this paper, we present an original approach to this problem. We show how
the technique of Seifert surfaces can be generalized to obtain a new geometric
interpretation of Az (t™,...,t™*) for any integers m1, ..., m, (see Proposition
(2.1) and Corollary (3.4)). If an equality holds for A (t™1,...,t™=) for any inte-
gers myq, ..., m,, then it also holds for Ap(¢1,...,t,) (Lemma (2.2)); therefore,
it is possible to prove properties of Ay with this method. As an example, we
give an elementary and geometric proof of the celebrated Torres formula, valid
for any link in a homology 3-sphere. We also present several properties of A,
which turn out to be equivalent to the Torres conditions (Proposition (4.4)).

2. Preliminaries

Let us consider an oriented ordered link L = L; U---U L, in a homology

3-sphere ¥, and let X be the exterior of L. If X 2 X denotes the universal
abelian covering of X and X the inverse image by p of a base point X° of X,
the homology H; (X, X°) is endowed with a natural structure of a module over

2000 Mathematics Subject Classification: 57M25.
Keywords and phrases: Alexander polynomial of a link, Seifert surface, Torres conditions.
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the ring A, = Z[t{, ... ,t/jfl]. Given an m X n presentation matrix of Hl()?, )/(:0)
— that is, the matrix P corresponding to a presentation with n generators and m
relations — the (n—i) X (n—4) minor determinants of P span an ideal of A, denoted
by EiHl()? , X 9). The greatest common divisor of these minor determinants is
denoted by A;H; (X' , X 9); this invariant is well defined up to multiplication by
units of A,, that is, by +t}* -t with v; € Z. In the sequel, we will write
A=A’ if two elements A, A’ of a ring R satisfy A = A’ for some unit ¢ of R.
The Laurent polynomial AlHl()? , X 9) is called the Alexander polynomial of the
link L [1, 4]. It is denoted by Ar(t1,...,t.).

Our method will be to prove statements on this polynomial in an indirect
way, by studying all the infinite cyclic coverings of X. Since these coverings are
classified by Hom(H;(X),Z) ~ H'(X;Z) ~ Hy(L) = @!_, ZL;, this leads to the
following definition [3]. A multilink is an oriented link L = Ly U---UL, ina
homology sphere ¥ together with an integer m; associated with each component
L;, with the convention that a component L; with multiplicity m; is the same
as —L; (L; with reversed orientation) with multiplicity —m;. Throughout this
paper, we will write m for the ordered set of integers my,...,m,, d for their
greatest common divisor, and L(m) for the multilink. Finally, we will also denote
by m the morphism Hy (X) — Z given by m(y) = Y1, milk(L;,~). Let X5 x
be the regular Z-covering determined by m. If X0 = p1(X?), the homology
Hi(X,X°) can be thought of as a module over the ring Z[t*!]. The Laurent
polynomial Ay, (t) = AlHl()A(:,)}:O) is called the Alexander polynomial of the
multilink L(m). Note that if m # 0, the exact sequence of the pair (X, X )
implies at once that & Hy (X, X0) = &H;(X). Therefore, Apm)(t) is also equal
to A()Hl (5(:)

Here is the dictionary between the polynomials Az, and App:

PROPOSITION (2.1) (Eisenbud-Neumann [3]).

LA™ =1
Apmy(t) = {(td_l)AL(tml,...,tm“) if p > 2.

Proof. To check this equality, we need the well-known fact that £, H; ()? , X O)=
(Ay) - I, where I is the augmentation ideal (t1 — 1,...,t, — 1) and A, some
polynomial in A,,. This can be proved by purely homological algebraic methods
using the fact that the group m1(X) has defect > 1 (see Theorem 6.1 [3]). By
considering a finite presentation of Hl()? ,X’ 9) given by an equivariant cellular
decomposition of X, it is easy to show that Hl()?, )/(\'O) ®n, L[t = Hy (X, X9),
where Z[t*!] is endowed with the structure of A,-algebra given by t; — t™¢ for
t=1,...,u. Hence,

EHI(X, X% = & (Hi(X, X" @, Z[t*))
= (ALE™, L)) (™ =1t — 1)
= (ALt™, ) - (- 1).

Since Ay, = (t1 — 1) A, if g = 1 and A = A, if p > 2, the proposition is
proved. O
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In order to show that properties of Ay, translate directly into properties of
Ay, we also need the following lemma.

LEMMA (2.2). Consider two polynomials A and A" in A, such that
AE™ ) =A™ ) an AT

for all (mq,...,my,) in Z" except possibly a finite number of them. Then, A=A’
in A,

Proof. Without loss of generality, it may be assumed that A=) a;,...;, t’f e tff
and A’ = ij1~~~jut{1 -~t{f with ag..g > 0, by..0 > 0, and only non-negative
indices i, jr > 0. By hypothesis, there are maps Z* = {#1} and Z* % Z such
that the equality

S e, P = ey ) S

holds for all but a finite number of (m1,...,m,) in Z*. Let us choose an integer
N greater than maxy deg;, A and maxjdeg, A’, and set m; = 1, my = N,
N N#~1 By choosing N sufficiently large, it may be assumed that
the equality above holds for this ordered set of integers. Since all these in-
tegers are positive as well as the coefficients ag..g and bg. o, it follows that
e(1,N,...,N*=1) =41 and v(1,N,..., N#~1) = 0. This gives

g Nigd N, . pii+ Nt NFT
Ea“...z“t po= bjy..j, b ",

But the equality 71 + Nig + -+ + N“_liu = j1+ Njo+ -+ N”_lju wit
0 <ir,jx < N forall & implies that (i,...,i,) = (j1,...,7.). Hence, a;, .. i, =
bi,....i, for all multi-indices (i1, ...,4,), which proves the result. O

3. Generalized Seifert surfaces

One of the advantages of multilinks is that they can be studied via generalized
Seifert surfaces [3]. A Seifert surface for a multilink L(m) is an open embedded
oriented surface F' C ¥\ L such that, if Fy denotes F'N (X \int N(L)), the closure
cl(F) of F intersects a closed tubular neighborhood N(L;) of L; as follows for
each i:

—If m; # 0, cl(F)NN(L;) consists of |m;| sheets meeting along L;; F is
oriented such that dFy = m;L; in H1(N(L;)).

~Ifm; =0, f(F)NN(L;) consists of discs transverse to L;; F' is oriented such
that the intersection number of L; with each of these discs is the same (either
always +1 or always —1).

This is illustrated in Figure (1). Note that FF C ¥\ L and Fy C ¥\ int N(L)
determine each other up to isotopy; to simplify the notation, we will consider
both of them as Seifert surfaces, and denote both by F. From now on, we will
write F for the union of F C ¥\ L and L.

LEMMA (3.1) (Eisenbud-Neumann [3]). Let F be a Seifert surface for a mul-
tilink L(m). Then, fori=1... u, the intersection F N ON(L;) gives a d; com-
ponent link which is the (d;pi, d;q;)-cable about L;, where p; and g; are coprime,
dipi =m; and diQi = — Zj;ﬁi ijk(Li, LJ)
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Figure 1. A Seifert surface near the multilink.

Proof. Let us denote by (P;, M;) a basis of Hy(ON(L;)) given by a standard
parallel and meridian. Since F' is a Seifert surface for L(m), FNON(L;) = m;P;+
n;M; in Hy(ON(L;)) for some integer n;. Furthermore, OF = Zj# m;L; +
m; Py +n;M; in Hi (X \ int N(L;)). By Alexander duality, this module is isomor-
phic to H'(N(L;); Z) = Z, and the isomorphism is given by the linking number
with L;. It follows that 0 = (k(L;,0F) = >_,,, mjlk(L;, L;) + ni, which gives
the result. O

In the usual case of an oriented link, a Seifert surface needs to be connected in
order to be useful. In the general case of a multilink, it has to be “as connected
as possible”. More precisely, a Seifert surface for L(m) is a good Seifert surface
if it has d = ged(m) connected components.

LEMMA (3.2). Given a multilink L(m), there exists a good Seifert surface for
L(m).

Proof. One easily shows that there exists a Seifert surface for L(m) (see
Lemma 3.1 [3]). If d > 1, a good Seifert surface for L(m) is given by d parallel
copies of a connected Seifert surface for L(%). Therefore, it may be assumed
that d = 1. Let F' be any Seifert surface for L(m) without closed component,
and let us denote by i, (resp. i_) the epimorphism Ho(F) — Ho(X \ F) in-
duced by pushing in the positive (resp. negative) normal direction off F. If i
and i_ are not isomorphisms, it is possible to reduce the number of connected
components of F' by handle attachment. So, let us assume that all the possible
handle attachment(s) have been performed, yielding ' = F; U --- U F,, with
isomorphisms i ,i_: Ho(F) — Ho(X \ F). The automorphism of Hy(F) given
by h = (i_)"!oiy cyclically permutes the connected components of F. (Indeed,
consider a component F; of F; since X = (3\ F)UF is path connected and i ,i_
are isomorphisms, there exists an integer m such that F; = h™(F1).) It easily
follows that O0F; = OF; in H1(N(L)) for 4,j = 1,...,n. Therefore, the equality

L om;L; = 0F = E;L:1 OF; = ndF holds in Hy(N(L)) = !, ZL;. Hence,
n divides m; for ¢ = 1,..., u. Since ged(ma,...,m,) =1, F is connected. O



THE MULTIVARIABLE ALEXANDER POLYNOMIAL 111

Let us now turn to the natural generalization to multilinks of the Seifert form.
Given F a good Seifert surface for L(m), the Seifert forms associated to F' are
the bilinear forms

ay,a_: Hy(F) x Hy(F) — Z

given by ay(x,y) = lk(itx,y) and a_(x,y) = Ck(i_x,y), where i (resp. i_)
is the morphism H;(F) — H; (¥ \ F) induced by pushing in the positive (resp.
negative) normal direction off F'. (Note that we use the same notation for the
morphisms Hy(i4) and Hj(i1); it will always be clear from the context which
dimension is concerned.) Let us denote by Ay and A_ the matrices associated
with these forms, called Seifert matrices. Here is the generalization of Seifert’s
famous theorem.

THEOREM (3.3). Let F' be a good Seifert surface for L(m), and let Ay, A_
be associated Seifert matrices. Then, Ay — tA_ is a presentation matriz of the

module Hy(X).

Proof. Given F a good Seifert surface for L(m), let us denote ¥\ F by Y.
By the proof of Lemma (3.2) it is possible to number the connected components
F=FU---UFjandY =Y, U---UYyso that iy F, = Yy and 1_Fy, = Y1
(with the indices modulo d). Let us set N = F' x (—1;1) an open bicollar of F,
Ny = F x (0;1), N_ = F x (—1;0) and {Y?};ez (resp. {N%};cz) copies of Y

(resp. N). Define
E— |_|Yiu|_|Ni/~,
i€z i€z

where Y* O Ny ~ Ny C N® and Y! D N_ ~ N_ C Nt The obvious
projection E 5 X is the infinite cyclic covering X — X determined by m.
Indeed, a loop v in X lifts to a loop in F if and only if the intersection number
of v with F is zero, that is, if 0 =~ - F = (k(L(m),7v) = m(y).

Consider the Mayer-Vietoris exact sequence of Z[t*!]-modules associated to
the decomposition X = (Uz Yy’ (Uz Ni); it gives

)u
(Hy(F) ® Hy(F)) @ Z[tY] & (Hy(Y) @ Hy(F)) @ Z[tF] -5 Hy (X) —
(Ho(F) @ Ho(F)) @ Z[tFY] & (Ho(Y) @ Ho(F)) ® Z[t*Y],

where the homomorphism ¢g is given by (o, 8) — Q.mz +ti_B,a+B). Since F
is good, the homomorphisms iy : Ho(F) — Ho(X \ F) are injective, and so is ¢o.
Therefore, 1 is surjective and there is an exact sequence

(Hy(F) & Hy(F)) ® Z[t*'] & (Hy(Y) @ H(F)) @ Z[tE!] — Hy (X) — 0,
with ¢1(a, 8) = (iya+ti_fB,a+ ). This can be transformed into

Hi(F) @ Z[t*'] 5 Hi(Y) @ Z[*] — Hy(X) = 0,

where ¢(a) = iya —ti_a. Let us fix bases B for Hy(F), B for H,(F), and
consider the basis B for H;(Y) which is dual to B under Alexander duality.
The matrix of i1 (resp. i_) with respect to B and B is given by A4T_ (resp. AT),
where A and A_ are the Seifert matrices with respect to the bases B and B.
Therefore, a matrix of ¢ is given by Ai — tAT. This concludes the proof. O
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Figure 2. The proof of Lemma (4.1).

COROLLARY (3.4). Let L(m) be a multilink with m # 0. If

m; = ijfk(Li,Lj) =0
J#i
for some index i, then Ap () (t) = 0. If there is no such index then the matrices
Ay and A_ are square, and App)(t) = det(Ay —tA_).

Proof. By the proof of Lemma (3.2), a Seifert surface F' is good if and
only if tkHo(F) = rkHo(X \ F), which is equal to rk Hy(F) by Alexander

duality. It is easy to show that rkHy(F) = 7, the number of indices ¢ with
mi = i milk(Li, Lj) = 0. Since x(F) = X(F), it follows that tkH;(F) =
rtkHy (F) + r. So, if r = 0 then A, — tA_ is a square presentation matrix of
Hl(f( ), and if r > 0 then there are more generators than relations. It follows

that AgH; (X) = det(A; —tA_) if r = 0, and AgHy(X) = 0 if 7 > 0. O

4. The Torres conditions

Let us now illustrate how Corollary (3.4), along with Proposition (2.1) and
Lemma (2.2), can be used to study the multivariable Alexander polynomial. As
an example, we present an elementary proof of the Torres formula [13], quite
simpler than the original proof. (On the other hand, it should be mentioned
that more perspicuous proofs have since been given, for example in [9]).

Throughout this section, we will denote by ¢;; the linking number ¢k(L;, L;).

LEMMA (4.1). Let L(m)=L(ma,...,m,—1,0) be a multilink, and let L'(m')=
L'(ma,...,mu—1) be the multilink obtained from L(m) by removing the last com-
ponent L,. Then,

Apm)(t) = (#2™5% — 1) Aps ().

Proof. 1t m; = 37, ,;m;¢;; = 0 for some index ¢ then the lemma holds by
Corollary (3.4). It may therefore be assumed that there is no such index. Let
F be a good Seifert surface for L(m); then, a good Seifert surface for L'(m')
is given by F/ = F U (FNN(L,)). By Lemma (3.1), F N N(L,) consists of
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d, = Eifll mli, discs (recall Figure (1)). Furthermore, F = FIULN. Therefore,

we have the natural isomorphisms
dy d,
Hi(F) =W (F) o @Z1; and W (F) =H(F) e @2z,
j=1 j=1
where the cycles T; correspond to the boundaries of the discs, and the ~; are
the transverse cycles depicted in Figure (2). The associated Seifert matrices A4
and A’, are related by

A’ 0
!/ —
Al ) 0 0 1
AL = . ) and A_ = 10
1 1 0
Corollary (3.4) then gives
Al —tA” 0
1 —t
Apgmy = det(A; —tA) = . -t 1
-t 1
= (t% —1) det(A, —tA) = (t% — 1) Ap(mr)(t)
and the lemma is proved. O

The demonstration of the Torres formula is now a mere translation of Lemma
(4.1) via Proposition (2.1).

TORRES FORMULA (4.2). [13] Let L=L; U---UL, be an oriented link with
> 2 components, and let L' be the sublink Ly U---UL,_1. Then,

612 _q )
+— A (t) =2
(o 1) A, ) > 2.

Ap(te,..sty—1,1) = {

Proof. Let us denote by A’ the right-hand side of this formula, and let
mi,...,mu—1 be arbitrary integers with d = ged(m1,...,mu—1) > 0. We have
the equalities

mi1l1o .
A, gy = ) e A ™) if = 2;
T (t2imilie — 1) Ap (E™, .. ™) i g > 2,
1
(Proposition (2.1)) = P (£ mitin 1) A ) (t)
. 1
(Lemma (4.1)) = T AL (t)
(Proposition (2.1)) = Ap(t™,...,t"1 1)
and the proof is settled by Lemma (2.2). O

Using the same method, it is not hard to show the following result.
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Fox-TORRES RELATION (4.3). [13, 5] Let L = Ly U--- UL, be an oriented
link with p > 2 components. Then,

Attt = (0Pt T AL (b ty)

’/"

with integers v; such that v; = Zj ¢;;(mod 2) if Ar # 0.

These results provide necessary conditions for a polynomial A in A, to be the
Alexander polynomial of a p-component link with fixed ¢k(L;, L;j) = ¢;;. They
are known as the Torres conditions (see [10] for a precise statement). Since
these conditions are not sufficient [7], [11], the problem is now to find stronger
conditions. By means of a close study of the homology H;(F) and H;(F), it
is possible to find necessary conditions for a polynomial A in Z[t!] to be the
Alexander polynomial of a multilink. Via Proposition (2.1), this translates into

the following result (see [2] for a proof).

PROPOSITION (4.4). Let L be an oriented link with u > 2 components. Then,
its Alexander polynomial Ay, satisfies the following conditions. For all integers
m = (ma,...,m,) withd= ged(my,...,m,) and d; = ged(m,, Zj mjl;;), there
exists some polynomial V1) (t) in Z[t=%] such that:

L (% = 1) Vi (6) = (¢4 = 1)2 Ap (™, ... t™);

= Vi) (1) = Vi (t);

~|Vim) ()| = Mﬁ, where D is any (u— 1) x (u — 1) minor deter-
minant of the matriz

- Ej mlmjﬁlj m1m2£12 e mlm,ﬂlu
m1m2€12 — Zj mgmjﬁgj e mgm,ﬂgu
;
mlm,ﬂlu mgmuégu e — Zj mumjﬁuj

~ If my = 0 for some index i, then Vi(m) = Vi/(m:), where L' denotes the
sublink L'\ L; and m' = (mq,...,m;,...,my). O

This result easily implies the Torres conditions. It can also be thought of
as a generalization of a theorem of Hosokawa [8], which corresponds to the case
mi =---=my, = 1. At first sight, it might therefore seem more general than the
Torres conditions. Unfortunately, this is not the case: it can be shown that every
polynomial A which satisfies the Torres conditions also satisfies the conditions
of Proposition (4.4) (see [2]).

By means of a somewhat closer study of the Seifert matrices A, it should be
possible to find new properties of Ay, (). They would translate into properties
of Ap, and provide new conditions, stronger than the ones of Torres.
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A NOTE ON TORSION IN K3 OF THE REAL NUMBERS

JOSE LUIS CISNEROS-MOLINA

ABSTRACT. Following [9], we prove that every torsion element in K3(R)
and in its indecomposable part Kisnd (R) can be constructed using Brieskorn
homology 3-spheres endowed with a representation of its fundamental group
in SL4(R). Also, using the generators of the Bloch group B(R) constructed
via the dilogarithm identities in [7], we give an explicit map Ki"d(R) ——
B(R)

tor*

1. Introduction

The regulator map is a homomorphism e: Ka,11(C) — C/Z defined indepen-
dently by Beilinson [3] and Karoubi [10] as a secondary Chern character. In [9]
J. D. S. Jones and B. W. Westbury constructed elements in the algebraic K-
group K, (R) using homology n-spheres endowed with a representation of their
fundamental group in the general linear group over the ring R. They also com-
puted the image of these elements in K3(C) under the regulator map. Using
these computations, they proved that every torsion element in K3(C) can be
constructed using Brieskorn homology 3-spheres. Finally, combining these com-
putations with results of Merkurjev and Suslin [17] and Levine [15], they gave an
explicit generator of the torsion subgroup of K3 of the ring of algebraic integers
in a non-trivial cyclotomic extension of the rationals of degree coprime to 6. The
first aim of the present paper is to give analogous results for K3(R) and its inde-
composable part Ki*4(R), that is, every torsion element in K3(R) and K*4(R)
can be constructed using Brieskorn homology 3-spheres. Following [9], it would
be good to find explicit generators in terms of Brieskorn homology 3-spheres of
the torsion subgroup of K3 of the real part of a non-trivial cyclotomic extension
of the rationals. So far we have not been able to find such generators, but we
mention a possible way to do it.

The Bloch group B(F) of a field F is a group closely related with Ki"(F) by
an exact sequence due to Suslin [21]. In [7] Frenkel and Szenes, using Roger’s
dilogarithm, constructed a map £: B(R) — R/(7?Z). Using dilogarithm iden-
tities they constructed generators of the torsion subgroup of the Bloch group of
totally real fields. Using these generators, the representation of torsion elements
in K*(R) by Brieskorn homology 3-spheres, and combining the computations

of [9] and [7], we give an explicit homomorphism
Ki"(R),., — B(R)

tor tor

2000 Mathematics Subject Classification: 19D99, 11R70.
Keywords and phrases: K-theory of real numbers, homology spheres, bloch group, diloga-
rithm identities.
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which, composed with the homomorphism £, is related with the map i, : K3(R) —
K3(C) induced by the inclusion composed with the regulator e: K3(C) — C/Z.

2. Homology 3-spheres and torsion in K3(C)
Let 3 be a homology n-sphere; since
0=Hi(5,Z) = m(X)/[m(5), m(2)],

71(X) can have no abelian quotients and so it is perfect. Given a representation
a: (X)) = GLy(R), let f: ¥ — BGLN(R) be the map which induces « on
m1. Composing this map with the inclusion BGLy(R) — BGL(R) and applying
Quillen’s +-construction we get

S" vt - BGL(R)™,

since the +-construction is functorial. Here « denotes homotopy equivalence.
The homotopy class of this map gives us the element in K-theory

[2,a] € Ku(R) = m,(BGL(R)").
Beilinson [3] and Karoubi [10] defined independently the regulator map
(21) e: K2n+1((C) —)(C/Z

as a secondary Chern character. Alternative constructions of this map can be
found in [11] and [8]. The regulator map satisfies the following properties:

1. Tt is an isomorphism on K;(C) =2 C* — C/Z.

2. The homomorphism e gives an isomorphism of the torsion subgroup of
K2n+1((c) with Q/Zv

3. It vanishes on products.

For a proof see [10] or [9].

In [9] Jones and Westbury give a formula to compute the real part of e[3, a]
when ¥ is a Seifert homology sphere and « a representation in which the central
element of 71 (X) acts as a scalar multiple of the identity; for instance, this is the
case when « is irreducible, and in general for any decomposable representation.
This formula was obtained using the fact that

(2.2) e([2,0]) = €(a, D) € C/Z
given in [9, Thm. A], where £ (o, D) is the reduced &-invariant of the Dirac
operator D on X twisted by the representation « defined in [1, (3.2)].

They also study in detail the elements [X(p,q,r),a] where X(p,q,r) is a
Brieskorn homology 3-sphere and « some representation a: m(X(p,q,7r)) —
SLy(C). Brieskorn homology 3-spheres X(p, g, r) with (p, ¢, r) pairwise coprime
integers, are given explicitly by

Y(p,q,7) = { (21, 22,23) | Y + 284+ 25 =0} N S° C C3.

The fundamental group 71 (3(p, ¢, 7)) has a presentation of the form
(2.3)
(h, 1, x0, x3] [z, h] = 1,28 = K™% 2l = h7°2 2% = h™% ayaoms = h "),

where
—pqrbg + qrby + prbs + pgbs = 1.
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It is always possible to choose b1, ba, b3 to be odd; for example, if p is even then
b1 must be odd and if p is odd then replacing x1 by hx; changes the parity of
b1. From now on we assume that by, by, bz are odd.

Consider a representation «o: m1(X(p, q,7)) — SL2(C); since 1 (Z(p, g, 7)) is
perfect, any non-trivial representation of this kind is irreducible and, therefore,
the central element h acts as an scalar multiple of the 2 x 2 identity matrix I.
Thus a(h) = (=I)f and, in view of the relations of the presentation (2.3) of
m1(2(p,q,7)), the representation « is given by the matrices A = a(x1), B =
a(xz) and C' = a(xs) in SL2(C) satistying the equations

A7 = (=1, Bi=(-I){, C"=(-I), ABC=(-I)™.

Let ¢, = e?™/d ¢ C be the standard primitive d-th root of unity. Then the
respective eigenvalues of the matrices A, B and C' are given by

.G 0<k<p,
Gy Gd 0<l<yg,
CorsCop 0O<m<r,

such that k =1 =m = f mod 2. By [9, Lemma. 6.1] we have that if one of
A, B, C'is +1, then the representation « is trivial and by [9, Thm. 6.2] that
the function given by a > (k,1,m) defines a one to one correspondence between
conjugacy classes of non-trivial representations of 71 (X(p, ¢, 7)) in SL2(C) and
triples (k, 1, m) with

0<k<p 0O0<l<gqg, O<m<r, k=l=m mod?2.

Using this characterisation of the non-trivial representations of w1 (X(p, ¢, 7)) in
SL2(C) and the aforementioned formula for the real part of e[X(p, ¢,7), ], Jones
and Westbury proved in [9, Thm. D] that every element in K5(C) of finite order
is of the form [¥(p,q,r),q], for X(p,q,r) a Brieskorn homology 3-sphere and
some representation «: w1 (X(p, q,7)) = SLa(C).

The value of e[X(p, ¢, 7), a] with « corresponding to the triple (k, 1, m) is given
by [9, Proof of Thm. D]

B P2k + p2r20? + p2Pm?
4pgqr '

(2.4) e([X(p, q,7),0]) =

Let Z[(,] be the ring of integers in the cyclotomic field Q(¢;). Then combining
the results of Borel [4], Merkurjev and Suslin [17], and Levine [15], we have that

(2.5) K3(Z[Ca]) = K3(Q(¢q)) = Z/wa(d) ® 27,

where
wa(d) = lem(24, 2d)

and ro is the number of complex places of Q(¢;). In particular, note that if
(6,d) = 1 then the torsion subgroup of K3(Q((,)) is exactly Z/24d.

In [9, Thm. E] Jones and Westbury proved that if (6,d) = 1 then there ex-
ists a representation a(d): m1(X(2,3,d)) — SL2(Z[(,]) such that the element
[2(2,3,d),a(d)] € SL2(Z[(,]) C SL2(Q(¢,)) is a generator of the torsion sub-
group. They give explicitly the representation «(d) in [9, Proof of Thm. EJ.
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3. Torsion in K3(R)
By a result of Suslin [20, Thm. 4.9], we have that

K3R)=Q/ZaV,
K3(C)=Q/Z oW,

where V' and W are uniquely divisible groups, i.e., Q-vector spaces. There are
natural representations

Un: GLy(R) — GLn(C),
Un: GLn(C) = GLap(R),

where u,, is the inclusion and, if A € GL,(C), then

RA -S4
(3.1) vn(A) = (%A RA ) )
where A = RA+iSA. Note that us,ov,(A) is conjugate to (‘g %) by ( %II 511) in

GL,(C). These representations are compatible with stabilisation and therefore
induce homomorphisms

’i*l Kg((C) — Kg(R),

where the former homomorphism corresponds to the one induced by the inclusion
i: R — C and the later is called the transfer homomorphism. We have that

the homomorphism i, restricted to the torsion subgroup i.: Q/Z X2, Q/Z is

given by multiplication by 2 and i* restricted to the torsion subgroup i*: Q/Z =N
Q/Z is an isomorphism [19, (1.18)].

Using the transfer homomorphism we can give the first result of this paper
which is an analog of [9, Thm. D] for torsion elements of K3(R)

THEOREM (3.2). Ewvery element in K3(R) of finite order can be written as
[X(p,q,7), B] for some representation 3: w1 (%(p,q,7)) = SL4(R).

Proof. By [9, Thm. D] any torsion element in K5(C) is of the form[X(p, q,7), &]
with a: m1(2(p,q,7)) = SL2(C). Since i* is and isomorphism on torsion, any
torsion element in K3(R) is of the form i*([X(p, ¢,7), @]). From the definitions of
[5(p, ,7), 0] and #* we have that i*([S(p, g, 7), a])=[S(p, ¢,), va(0)]. Thus, the
theorem follows by taking 8 = va(a). We just need to check that S has image
in SL4(R); but det f = detug, () = det(%%) = 1 since a: m1(X(p,q,7)) —
SLy(C). O

Using Theorem (3.2) we can check that the homomorphism i, on torsion
is given by multiplication by 2. Let a € K3(R), .; by Theorem (3.2) a =

tor?

[X(p,q, 1), f] with 8 = vo(«) for some representation a: w1 (X(p, g, 7)) — SL2(C).
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We have that

Z*(a’) = Z*([E(pa q, T)v B]) = Z* © Z*([E(pa q, T)v a])
= [2(1)) q, T)7 ’U,4(’U2(Oé))]
=[2(p.¢,;r), a0
= [E(p.q,7), 0] + [E(p, ¢,7), ]
=2[X(p,q. 7). ql,
since « and @ are isomorphic representations because both of them determine
the same triple (k,I,m).

Using formula (2.2) we can represent the unique element f of order 2 in K3(R)
which is the generator of the kernel of i,: K3(R) — K3(C). The Brieskorn
homology 3-sphere ¥(2,3,5) is also known as the Poincaré homology 3-sphere.
Its fundamental group is isomorphic to the binary icosahedral group I, which is
the lifting of the group of isometries of a regular icosahedron I - SO(3) to S3
under the projection S$3 — SO(3). We have that %(2,3,5) = S3/I, see [13]. The
group I has order 120 and it is the only finite group which is the fundamental
group of a homology 3-sphere [12]. It has nine irreducible representations «;,
i=1,...,9 and the character table can be found in [6, Table IV]. In [6, p. 226]
the author computed the invariants &(a;, D) for the Dirac operator of 3(2, 3,5)

5

twisted by the representations «;. In particular, we have that é (a6, D) = 5 and

£(ag, D) = %. Hence £(ag ® 4ag, D) = 2 mod Z and by (2.2) we have that the
element [X(2,3,5), as @ dag] € K3(C) has order 2; therefore the generator of the
kernel of i, is given by

f= i*([2(2, 3,5), a6 ® 4048]) € K3(R).
4. Torsion in KI"(R)

Let F be a field and let K$°¢(F') be the subgroup of K3(F') generated by prod-
ucts from K;(F). The indecomposable part Ki*4(F) of K3(F) is the quotient
KIP(F) = Ky(F) /K4 (F),

In [18] Milnor defined a graded ring KM (F), now known as the Milnor K-
ring, to be the quotient of the tensor algebra of the multiplicative group F'* of
F by the ideal generated by the homogeneous elements z ® (1 — x). The Milnor
K-group KM (F) is defined to be the subgroup of elements of degree n. We
shall write {x1,...,2,} for the image of 71 ® --- ® x,, in KM(F). There is a
natural map

bn: KM(F) = K, (F),
which is an isomorphism for 0 < n < 2. In the present paper we are interested in
this map for n = 3 and we have that the image of KJ/(F) in K3(F) is precisely
K$e¢(F). Therefore we have that

(4.1) K(F) = Ky(F)/ K (F).

From [2] we have that K2!(C) is a Q-vector space, and from [18] that K3/ (R) =
Zo & H, where H is a Q-vector space. The summand Zs is generated by the
nontrivial symbol {—1, —1, —1}. From [5] it is known that ¢3: K3/(R) — K3(R)
is injective. The image of {—1,—1, —1} under ¢3 is the unique element f of order
2 in K3(R) and generates the kernel of the homomorphism i, : K3(R) — K3(C).
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Recall that the torsion subgroup of K3(R) is isomorphic to Q/Z, thus the sub-
group of order 2 corresponding to the torsion subgroup of K2/ (R) is isomorphic

to the subgroup 1Z/Z of Q/Z and therefore K"(R), = LQ%//ZZ ~ Q/1Z. On
2

the other hand, since K2!(C) has no torsion, the projection K3(C) — Ki*4(C)
is an isomorphism in the torsion subgroups. Hence we have the following com-
mutative diagram

T

(4.2) K3(R),,, = Q/Z Q/Z = K4(C)

l lg

= Q/3Z —= Q/Z = K{™(C)

tor

Kénd (R)tor tor*

Since i, is given by multiplication by 2, we have that the lower isomorphism is
given by

Q/32 __—QJ/Z.

This agrees with the result proved independently and simultaneously by Levin
[15, Cor. 4.6] and Mercurjev—Suslin [17, Prop. 11.3] which says that if E is an
extension field of F' then the natural homomorphism KP4(F) — K*(E) is
injective.

If [X(p,q,7),B] € K3(R),, we shall denote its image in KP"(R), by

(X(p.q,7),B), that is, (X(p,q,7),B) is the coset [X(p,q,7),5] + (f) with (f)
the subgroup of order 2 generated by f. Thus we have a result analogous to

Theorem (3.2) for K*4(R)

tor®

THEOREM (4.3). Ewvery element in Ki"(R) of finite order can be written as
(3(p,q,r),B) for some representation (: m (X(p,q,7)) = SLs(R).

Let Q(¢,)™ be the real part of the cyclotomic field Q(¢,). Again by the results
of Borel [4], Merkurjev and Suslin [17] and Levine [15] we have that

(4.4) K3(Q(C)T) = Z/2we(d) & (2/2)" " @ 27

where as before
wa(d) = lem(24, 2d)

and m and 7o are respectively the number of real and complex places of Q((,).

On the other hand, in [2] Bass and Tate proved that, for a number field F,
KM(F) = (Z/2)™ where r; is the number of real places of F. Since Q(,) is
totally imaginary (r; = 0), K2(Q(¢;)) has no torsion. Then combining (4.1),
(2.5) and (4.4) we have that

Kénd((@(cd))tor = K3(Q(Cd))tor = Z/w2 (d)ﬂ
KFNQC) M or 2 K3(QCa) )00/ (2/2) = L/ w2(d).
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Thus we have a commutative diagram analogous to (4.2):
(4.5)

K3(QCy) )y = Z/2ws(d) @ (Z/2)" ™ — 7wz (d) 2 K3(Q(Cy)) o

i lu

Kénd(@(cd)ﬂmr > 7./ wo(d) — Z Jwa(d) = Kénd(@(cd))tor.

Since i is given by multiplication by 2, we have that an element of order 2ws(d)
of K3(Q(¢;)"),,, is sent by i, to a generator of K3(Q(¢,))

tor”

Problem (4.5). Tt would be good to prove a theorem analogous to Theo-
rem E of [9] for K35(Q(¢,)"), that is, for some Brieskorn homology 3-sphere
Y(p,q,r) find a representation S(d): m(X(p,q,r)) — SLn(Q(¢;)") such that
the element [X(p,q,7), 8(d)] € K3(Q(¢,)") is an element of order 2wz (d). Then
using diagram (4.5) we would also get generators for the torsion subgroups of

K:isnd(Q(Cd)+) and K3(Q(¢y))-

One possible way to do this is to find an element [X(p, ¢,7),v] in K3(C) of
order 2wq(d), then the element i*([X(p,q,7),7]) = [X(p,q,7),v2(7)] € K3(R)
also has order 2ws(d). It would then be enough to show that va(7) is conjugate
in SL4(R) to a representation with image in SL4(Q(¢,)™).

Remark (4.5). For the case (6,d) = 1 we have that K3(Q(¢,;)") = Z/48d @
(Z/2)7 1 and KPYQC) yr = KIUQC))y0r = Ka(Q(C)) oy = 7/24d. Us-
ing the representation a(d) of the generator (of order 24d) [X(2,3,d), a(d)] €
K3(Q(¢,)) given in [9, Proof of Thm. EJ, one could try to find the representa-
tion f(d) showing that the representation a(d): m(3(2,3,d)) = SL2(Q((,)) is
conjugate in SLy(C) to a representation 3(d) with image in SL2(Q(¢,;)™). Such
representation would give an element [X(p, ¢,7), 3(d)] € K3(Q(¢,;)"). Consider-
ing B(d) as a complex representation, that is, taking us (), it is conjugate to a(d)
and therefore i, ([X(2, 3,d), 8(d)]) = [2(2, 3, d), a(d)]. Since [3(2,3,d), a(d)] has
order 24d and i, is given by multiplication by 2, the element [3(2,3,d), 3(d)] €
K3(Q(¢,;)") would have order 48d.

5. The Bloch group and dilogarithm identities

In this section we define the Bloch group B(F) of a field F, which is a group
closely related to Ki"(F). Next, we define the dilogarithm and state some of
its functional identities, and show how Frenkel and Szenes used the dilogarithm
identities in [7] to construct generators of the torsion subgroup of the Bloch
group of totally real fields.

Let F'* the multiplicative group of F. Let D(F') be the free abelian group
generated by formal symbols [z] with € F'\ {0,1}. Let C(F) be the kernel of
the map

D(F) 2 F* NFX,

5.1
(51 [z] = (z A (1 —x)).
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One can check that the elements of the form

(5.2) 2] = [y] + [y/a] = (1 =27 /(1L =y~ D]+ [(1 = 2)/(1 —y)]
with « #y € F* \ {1} are contained in C(F'). The quotient B(F') of C(F') b,
the subgroup generated by the elements of this form is called the Bloch group.
The following exact sequence due to Suslin [21, Thm. 5.2] gives the precise
relation between Ki"(F) and the Bloch group
(5.3) 0 — Tor(F*, F*Y — K*(F) 5 B(F) — 0,
where Tor(F*, F*Y is the unique non-trivial extension of Z/2 by the group
Tor(F*, F*).
From now on let F' be a totally real field of algebraic numbers. Then
Tor(F*, F*y=7Z/4.

Therefore B(F) = Ki*(F)/Z4. In particular, B(Q(¢,)") is cyclic of order (12 d)
In [7] Frenkel and Szenes, using the Rogers’ dilogarithm, defined a map
L: B(R) — R/(7%Z) and, using dilogarithm identities, they constructed a set
of generator for B(F) with F' a totally real field. We shall now sketch their
construction:
The Rogers’ dilogarithm is defined by

1 [Trlog(1—vy) | logy
L(m)——a/o( ” —l—l_y)dy

and it satisfies the following functional identities (see for instance [16, 14, 7]):

(5.4) L(z) + L1 —2) = L) = %,
_ z(1l —y) y(1—z)
(5.5) L@0+L@)—L@w+441_xy)+L(1_xy%
k sin? = 5 3k
(5.6) Z n2 (J]f:_l)ﬂ') - k+2 6

Let £': D(R) — R be the map which sends [z] to L(z). We can restrict it to
C(R). Now consider the slightly modified map £ = £’ — %2: D(R) — R. Then
for any element a of C(R) of the form (5.2), by relations (5.4) and (5.5), one has
L(a) = 0 mod 72. Hence this map gives rise to a well defined homomorphism

L: B(R) — R/(7%Z).
Let Q(¢,)" be the real part of the cyclotomic field Q(¢;). We now describe the

construction of torsion elements in B(Q(¢,)"). Put

2 7
Sln F

§;i(d) = ——=2—, ji=1,...
J sin2 w(a+1>

,d—3, d>3.

Since ¢} = cos 2ZZE + isin 2Z% € Q((,), and sin® 0 = % + £ cos26, we have that
8;(d) € Q(¢,)*. Define the symbols A4 € D(Q(¢q)™) by the formula

d—3
Ag =2 [6;(d)]
j=1
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By [7, Lemma 5.3], for each d > 3, Ay € C(Q(¢4)"). Thus the symbol A,
represents an element of B(Q((4)™").

Using the symbols A, and the map £: B(R) — R/(w2Z), Frenkel and Szenes
constructed generators of the Bloch group B(F') for F' a totally real field.

PROPOSITION (5.7) (FRENKEL—SZENES [7, Prop. 5.4]). Let F be a totally real
number field and m,, the mazimal number m > 0 such that F contains Q(Cpm )™.
Then the symbols Apmp and the symbol Ag, if ms = 1, generate the group B(F) =
KPY(F)/Z4.

Sketch of proof: The proof uses the following facts:

e By results of Merkurjev and Suslin [17] and Levine [15], for a totally real
field F', the group Ki*(F) is isomorphic to the cyclic group of order 2 [ p™»,
where the product is taken over all primes. Hence the group B(F') is cyclic of
order b(F) = 3 [[p™».

e The symbol Ag = 4[3] + 2[1] € B(Q) belongs to B(F).

e By the identity (5.6) we have

2 — 2
L(Aq) = (TdWQ 3772) mod 72,
(5.8)
L£(Ag) = — mod 72,
and therefore
L(Apmp) — (2 —p™?)L(Ag) = — i 72 mod 72.

p )

The order of Ay is at least the order of its image, therefore these elements of
B(F) generate a cyclic group of order at least b(F'), hence they generate the whole
group B(F). Note that mgz > 1 for any number field. If m3 = 1, Ag generates
the 3-torsion subgroup of B(F). If mz > 1, then Ag = 3™~ Agms. O

The third fact shows that the images of the elements Ay under the homo-
morphism £ have the same order as the orders of these elements. This implies
that for a totally real number field F' the homomorphism £: B(F) — R/(7%Z)
is injective [7, Cor. 5.5].

6. Relations with the regulator map

It is known that the torsion subgroup of B(R) is generated by the images of the
groups B(Q(Cq)™) of real parts of cyclotomic fields, and is therefore isomorphic
to Q/Z. Thus we see that it is generated by the symbols Ay, and that the map
L is injective on the torsion subgroup of B(R).

Now we discuss the connection between the map £ and the regulator. Note
that since the regulator (2.1) vanishes on products it descends to a homomor-
phism

Kird(C) — C/Z.
By results of Levin [15, Cor. 4.6] and Mercurjev—Suslin [17, Prop. 11.3] Ki*(R)
embeds into K"4(C). Under this embedding, the torsion part of KI*(R) is
mapped isomorphically onto the torsion subgroup of Ki*4(C), which coincides
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with the subgroup Tor(C,CJ = Q/Z of Ki*4(C). Note that there is no torsion in
the Bloch group B(C), since Tor(C,C) is the torsion subgroup of Ki*4(C) and
by (5.3) B(C) = K»4(C)/Tor(C, C). Because of that we cannot extend the map
L from B(R) to B(C) (the five-term relation for the Rogers’ dilogarithm does
not hold for complex arguments).

In order to compare the map £ with the regulator we need to renormalise the
last one composing it with the homomorphism C/Z = C/(27i)?Z to get a map

ri KP(C) - C/(2mi)°Z.
Taking the composition
KPU(R) = KP(C) 5 ©/(2mi)°2 "8 R/ (2mi)°Z

and then taking the projection R/(27i)?Z — R/(7%Z) to kill the subgroup
Tor(R*,R*) of Ki*(R), gives a map

(6.1) 7: Ki'4(C) —» R/7°Z
which descends to a map
#: B(R) = R/7?Z.

In [7] Frenkel and Szenes conjectured that this map coincides with the map
L. This is equivalent to saying that the diagram

(6.2)  KiM(R) — > Kind(C) — > C/(27i)2Z 2L R/ (270)22

| |

B(R) R/7%Z

L

commutes, where 7 is the map in Suslin’s exact sequence (5.3).

Instead of proving that ¥ = £ o 7, one could try to prove that the image of 7
is contained in the image of £ and using the fact that £ is injective, one could
take the composition ¢ = £~ o ¥ to get a homomorphism

¥: K(R) — B(R),

which by definition makes the diagram (6.2) commute after replacing 7 by .
Hence, to prove the conjecture it would be enough to prove that v is precisely
the homomorphism 7.
Combining Theorem (4.3) with Proposition (5.7) we can do this, but restricted
to the torsion subgroups, and define an explicit homomorphism
i KP4(R),,, — B(R)

tor tor*

THEOREM (6.3). There is a homomorphism 1: Ki*(R)
by

vor = B(R),,, given

<E(pv q, T)a ﬂ) = C((2 - pqr)AG - qur);

where B = va(a) with a: w1 (X(p, q,7)) = SLa(C), C = ¢*r?k>+p?r?12+p?¢*m?,
and (k,1,m) is the triple corresponding to the representation «.
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Proof. Recall that

Z@((E(p,q,r),ﬁ}) = [E(p,q,r),u4 OUQ(a)]
=[E(p,q,7), 0 D Q)
=2[X(p,q,7),ql.

Combining (2.4) with the definition of the map 7: K*¢(R) — R/72Z in page 126
we have that o0
T 2p7qaraﬁ :—71'2,
(2(p.a.7). ) = 2=
but by (5.8) this is precisely the image of C((2 —pqr)Ag — qur) under the map
L. Finally, the injectivity of £ makes the homomorphism well-defined. o

Remark (6.3). As we mentioned above, it would be of interest to compare the
map ¢: KP4(R),,, — B(R),,, of Theorem (6.3) with the map 7: KP4(R) —
B(R) of Suslin’s exact sequence (5.3) restricted to the torsion subgroup. If they
turn out to be the same, this would prove the Frenkel-Szenes conjecture at the
torsion level.
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VOLUMES FOR TWIST LINK CONE-MANIFOLDS

D. DEREVNIN, A. MEDNYKH AND M. MULAZZANI

ABSTRACT. Recently, the explicit volume formulae for hyperbolic cone-
manifolds, whose underlying space is the 3-sphere and the singular set is the
knot 4; and the links 5% and 6%, have been obtained by the second named
author and his collaborators. In this paper we explicitly find the hyperbolic
volume for cone-manifolds with the link 6% as singular set. Trigonometric
identities (Tangent, Sine and Cosine Rules) between complex lengths of
singular components and cone angles are obtained for an infinite family of
two-bridge links containing 5% and 6%.

1. Introduction

Starting from Alexander’s works, polynomial invariants have become a very
convenient instrument for knot investigation. Several kinds of knots polynomi-
als have been discovered in the last twenty years. Among these, we recall the
Jones-, Kaufmann-, HOMFLY-, A-polynomials and others ([12], [3], [8]). These
polynomials relate knot theory to algebra and algebraic geometry. Algebraic
techniques are used to find the most important geometrical characteristics of
knots, such as volume, length of shortest geodesics and others.

The explicit volume formulae for hyperbolic cone-manifolds, whose underlying
space is the 3-sphere and the singular set is the knot 4; and the links 5% and 63,
have been obtained in [17], [19] and [15].

The aim of our paper is to explicitly find the hyperbolic volume for cone-
manifolds with the link 63 as singular set. In order to do this, we will introduce
a family of hyperbolic cone-manifolds W, (c, 8), with the two-bridge links W,
with slope (4p+4)/(2p + 1) as singular set, and «, 5 as cone angles.

Trigonometric identities (Tangent, Sine and Cosine Rules) between complex
lengths of singular components and cone angles for W («, ) are obtained. Then
the Schléfli formula applies in order to find explicit hyperbolic volumes for cone-
manifolds Wa(a, B).

In the present paper links and knots are considered as singular subsets of the
three-sphere endowed by a Riemannian metric of negative constant curvature.
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2. Trigonometric identities for knots and links

(2.1) Cone-manifolds, complex distances and lengths. We start with the
definition of cone-manifold modelled in a hyperbolic, spherical, or Euclidian
structure.

Definition (2.1.1). A 3-dimensional hyperbolic cone-manifold is a Riemannian
3-dimensional manifold of constant negative sectional curvature with cone-type
singularities along simple closed geodesics.

To each component of the singular set is associated a real number n > 1
such that the cone-angle around the component is & = 27/n. The concept of
hyperbolic cone-manifold generalizes that of hyperbolic manifold, which appears
in the partial case when all cone-angles are 27. Hyperbolic cone-manifolds are
also a generalization of hyperbolic 3-orbifolds, which arises when all associated
numbers n are integers. Euclidean and spherical cone-manifolds are defined
similarly.

In the present paper hyperbolic, spherical or Euclidean cone-manifolds C
are considered whose underlying space is the three-dimensional sphere and the
singular set ¥ = L' U X2 U ... U X* is a link consisting of the components
¥ =3%9(a), j =1,2,...,k with cone-angles a1, ..., oy respectively.

We recall a few well-known facts from hyperbolic geometry.

Let H? = {(2,§) € C xR : £ > 0} be the upper half space model of the
3 -dimensional hyperbolic space endowed by the Riemannian metric
_ dzdz + de?
= T
We identify the group of orientation preserving isometries of H? with the group
PSL(2,C), consisting of linear fractional transformations

ds?

az+b
cz+d’

A:zeC—

By a canonical procedure, A’ can be uniquely extended to an isometry of H?.

We prefer to deal with the matrix A = a b ) € SL(2,C) rather than the

d
element A’ € PSL(2,C). The matrix A is uniquely determined by the element
A’, up to a sign. In the following we will use the same letter A for both A and
A’, as long as this does not create confusion.

Let C be a hyperbolic cone-manifold with the singular set 3. Then C' defines
a nonsingular but incomplete hyperbolic manifold M = C' — 3. Denote by ® the
fundamental group of the manifold M.

The hyperbolic structure of M defines, up to conjugation in PSL(2,C), a
holonomy homomorphism

h: ® — PSL(2,C).

It is shown in [23] that the holonomy homomorphism of an orientable cone-
manifold can be lifted to SL(2,C) if all cone-angles are at most 7. Denote by
h: ® — SL(2,C) this lifting homomorphism. Choose an orientation on the
link ¥ =¥ UX2U...U X" and fix a meridian-longitude pair {m;, I} for each
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component ¥/ = %7 (a;). Then the matrices M; = h(m;) and L; = h(l;) satisfy
the following properties:
tr (M;) = 2cos(ev;/2), M;L; =L;M;, j=1,2,...,k.

Now we point out some definitions and results from the book [4]. A matrix
A € SL(2,C) satistying tr (A) = 0 is called a (normalized) line matriz. We
have by definition that A% = —1I, where I is the identity matrix. Hence any line
matrix determines a half-turn about a line in H3, and this line determines the
matrix up to sign. According to [4, p. 63], there exists a natural one-to-one
correspondence between line matrices and oriented lines in H3. Hereby, if a line
matrix A determines an oriented line A4 = [e, e’] with end points e and €', then
the line matrix — A determines the line [¢/, €]. Moreover, if a matrix F' € SL(2,C)

is considered as a motion of H?, then the matrix FAF~! determines the line
[F(e), F(€)]-

Definition (2.1.2). Let A4 and Ap be oriented lines determined by the line
matrices A and B. A complex number pu is called a complex distance from A4
to Ap if its real part R p is the distance from A4 to Ap, and its imaginary part
S is the angle from A4 to Ap chosen in [0, 27) .

We have [4, p. 68]
(2.1.3) cosh = —%tr (AB).

From now on, all lines in this paper will be assumed to be oriented.

Any isometry A of H? which is neither parabolic nor the identity has two
fixed points v and v in C. It acts as a translation of distance r 4 along the axis
Aa = [u,v] and rotation of w4 about Ay.

Definition (2.1.4). We call displacement of A the complex number 6(A4) =
TA+ipA.

The isometry A, without an orientation of its axis, determines 0(A) up to
sign. By [4, p. 46], for the isometry given by a matrix A € SL(2,C) we have

2coshd(A) = tr (A%) = tr?(A) — 2.

We remark that if §(A) # 0 then A has two different fixed points, so it admits
an axis determined by these points. The line matrix A of this axis is defined by

~ A— At
24 sinh 5
Since 6(A™!) = —§(A), the matrices A and A~! define the same line matrix

A=At (see [4]).

Definition (2.1.6). The complex length v; of a singular component %7 of the
cone-manifold C is the displacement §(L;) of the isometry L;, where L; = h(l;)
is represented by the longitude I; of 7.

Immediately from the definition we get [4, p. 46]
(2.1.7) 2coshy; = tr (L?)
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We note [2, p. 38] that the meridian-longitude pair {m;, [;} of the oriented
link is uniquely determined up to a common conjugating element of the group
®. Hence, the complex length v; = r; + 4 ¢, is uniquely determined (mod 27),
up to a sign, by the above definition.

We need two conventions to correctly choose real and imaginary parts of ;.
The first convention is the following. By the assumptions on the singular set we
have r; # 0. Hence, we can choose v; in such a way that r; > 0. The second
convention concerns the imaginary part ¢;. We want to choose ¢; so that the
following identity holds

i 1
(2.1.8) coshlzj =-3 tr (L;)

By virtue of the identity tr?(L;) — 2 = tr (L?), the equality (2.1.7) is a conse-
quence of (2.1.8), but the converse, in general, is true only up to a sign. Under
the second convention (2.1.7) and (2.1.8) are equivalent. The two above conven-
tions lead to convenient analytic formulas in order to calculate v; and r;. More
precisely, there are simple relations between these numbers and the eigenvalues
of the matrix L;. Recall that det(L;) = 1. Since L, is loxodromic, it has two
eigenvalues f; and 1/f;. We choose f; so that |f;| > 1. The case |f;| = 1 is
impossible because in this case the matrix L; is elliptic and therefore r; = 0.
Hence

fi=—e?, |fil=e?.

p half-twists

Figure 1. The cone-manifold W, («, 3).

In this paper we consider a family of cone-manifolds whose singular sets are
links which are generalizations of the Whitehead link. The link W,,, p > 0, is the
two-component link depicted in Figure 1, where p is the number of half twists
of one component. For this reason we will call them twist links. It is easy to
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see that Wy is the torus link of type (2,4) and W7 is the Whitehead link. All
twist links are two-bridge links, in particular W), is the two-bridge link with slope
(4p+4)/(2p+ 1), for all p > 0. They are all hyperbolic, except for Wy.

Denote by Wp(«, 5) the cone-manifold whose underlying space is the 3-sphere
and whose singular set consists of the twist link W), with cone angles oo = 27/m
and § = 2w /n (see Figure 1). It follows from Thurston’s theorem that W, (a, ),
with p # 0, admits a hyperbolic structure for all sufficiently small o and .

By Kojima’s rigidity theorem [13] the hyperbolic structure is unique, up to
isometry, if 0 < a, 5 < 7.

In our paper we deal only with this range of angles.

Let us investigate the hyperbolic structure of the cone-manifold W, (e, 8). Its
singular set ¥ = X! U X2 of consists of two components ©! = ¥1(a) and ¥? =
¥2(B) with cone-angles o and j3 respectively. W),(cv, 3) defines a nonsingular but
incomplete hyperbolic manifold M = W, («, ) — 3. The fundamental group of
the manifold M has the following presentation

D, = (s,t] sls =1ss) = (s,t| tly =1lit),

where s and ¢ (resp. [; and ;) are meridians (resp. longitudes) of the components
¥ and 2 respectively.
We use the following expression of I, in terms of s and ¢:

pt1 ptl
2 [ 2

(2.1.9) ls=[s,t] 2 [5,t7] if p is odd,

(2.1.10) lo = s \[t,s]2tst[s™ ', t7Y %, if p is even,
where [s,t] = sts~1t7 1.

The expressions for [; can be easily obtained by exchanging s and ¢ in the
previous formulae.

Let

h=hqpg:®, - PSL(2,C)
and
h=hqp:®, — SL2,C)

be holonomy homomorphisms and Ty 3 = ha 5(®,). The images hq, s(s) and
/Azm 5(t) of s and ¢ are rotations in H? of angles a and 3, respectively. The group
I's 3 is generated by the two matrices S = hqag(s) and T = ho g(t) with the
following properties:

tI"(S)ZQCOS%, ‘cr(T)chosg7 SLg = LgS,

where Lg = hq g(ls)-

(2.2) Complex distance equation for two-bridge links. The fundamental
group of (the exterior of) a link K is generated by two meridians if and only if
K is a two-bridge link [1]. Moreover, a two-bridge link is hyperbolic if and only
if its slope is different from p/1 and p/(p — 1) (see [21]).

PROPOSITION (2.2.1). Let ® = (s,t) be the fundamental group of a hyperbolic
two-bridge link K generated by the two meridians s and t. Let 'y g = ha,g(P)
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be the image of ® under the holonomy homomorphism of the hyperbolic cone-
manifold K(a,B). Then, up to conjugation in SL(2,C), the generators S =
ha,g(s) and T = hqa g(t) of Ta,p can be chosen in such a way that

o - B . . B
COS & 1€e2 81N & COS & 1€ sin =
(222) S=( . 22, o2 ) T=( .5 25 s %)
1€ 2SIH5 COS§ 1€e2 sm§ COS§

where p is the complex distance between the axis of S and T .

Proof. After a suitable conjugation in the group SL(2,C), one can assume
that the oriented axes of the elliptic elements S and T are A\s = [—e%,e?] and
A = [—e~%,e”%]. Since tr(S) = 2 cos $ and tr(T) = 2 cos g, the matrices
S and T are given by (2.2.2). Check that p coincides with the complex distance
p(S,T) between Ag and Ar. The line matrices S and f, corresponding to these
axes, can be obtained by (2.1.5). Since 6(S) = i« and §(T) = i3, we have

= 0  —ie? =~ 0 —ie % :
S = ( et 0 ) and T = ( iet 0 ) respectively. By [4, p.
68] we get coshp(S,T) = —3 tr (ST) = cosh p. O

The following two propositions can be obtained by direct calculation from the
above statement.

PROPOSITION (2.2.3). Let
By = (s,t:sl =1s, | = s ‘tst 1s ltsts 1t st)

be the fundamental group of the two-bridge link Wo with slope 12/5 and 'y g =
ha,3(®2) = (S,T) be the image of ®2 under the holonomy homomorphism of the
hyperbolic cone-manifold Wa(a, 8). Denote by p = p(S,T') the complex distance
between the azes of S = ha,g(s) and T = hq g(t). Then u = coshp is a non-real
root of the complex distance equation

(2.2.4) 42% — 4abz* + (3a*b* + 3a® + 3b® — 1)z — ab(a®b* + a® +b* — 3) = 0,
where a = cot 5 and b = cot g

Proof. Denote by L = S™'TST-1S~1TSTS~'T~1ST the image of the lon-
gitude [ under the holonomy homomorphism h = hy g : 2 — SL(2,C). Then
we have SL = LS.

Let N be a line matrix corresponding to the common normal to the axes of
Sand T. If S and T are represented in the form (2.2.2) then one can take N =

(Z) —Oz . It is not difficult to verify that NSN~! = S~'and NTN~! =T-1,

To complete the proof, we need the following lemma, which gives simple cri-
teria for matrices S and L to be permutable.

LEMMA (2.2.5). The following conditions are equivalent: (i) SL = LS; (ii)
NLN-'=1L"1; (iii) tr (NL) = 0.
Proof. First we show that (i) and (ii) are equivalent. Indeed, since L =
STITST=1S=ITSTS 'T~1ST we have
NLN~'=ST7'S™' ST s~ T~ 'STS~ "1~ = SL~'s~t.
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Hence (ii) holds if and only if S and L~! commute. The last property is equiv-
alent to (i). Because of N2 = —I the condition (ii) can be rewritten in the form
NLNL = —1I; this is equivalent to (iii). O

By this lemma and direct calculation we have

—4isinh p
(1+a?)3(1+b2)3
- (4u® — dabu® + (3a*b® + 3a® + 3b% — 1)u — ab(a®b* + a® +b* — 3)) =0,

where u = cosh p.

Now we have to show that u is a non-real root of (2.2.4). Since I'y g is the
holonomy group of a hyperbolic cone-manifold, it is non-elementary! and is not
conjugate to a subgroup of SL(2,R) [8].

If sinh p = 0 then the axes S and T coincide, and the group I', 3 is elementary.

If u is a root of equation

2+ a’’ +a*+12—-3=0

tr(NL) = (4u® + a®b?* +a® +b* - 3)-

then by the equality

4(a® + u?)(4u? + a®b? + a® + b — 3)?
(a® + 132 + 1)

we have tr L = 2. From (2.1.8) we obtain

1
cosh X2 = —~tr (L) =-1.
2 2

trL —2=—

Hence vs = rg + ipg = 2mi and the real length rg of the link component ¥; is
equal to zero, which is a contradiction.
Suppose that u = cosh p is a real root. Let

(23 — 21)(24 — 22)
(23 — 22)(2a — 21)

R(Zla 22, 23, Z4) =

be the cross ratio of the four points 21, 22, 23, 24 € C. Then
R(—e%,e%, —e % e %) = (coshp—1)/(coshp+1) e RU {o0}.

We have that the axes [—e2,e%] and [—e~2,e" %] of S and T lie in a common
plane. If the axes intersect then the group I'y, g = (S, T') has a fixed point and is
elementary. If they do not intersect, I'y g is conjugate to a subgroup of SL(2,R).

Therefore, we have shown that « is a non-real root of (2.2.4) and the proof of
Proposition (2.2.3) is complete. O

The next proposition can be proved by similar arguments.
PROPOSITION (2.2.6). Let
B3 = (s,t: sl = Is, | = sts 't sts 1t tst L st 15T H)

be the fundamental group of the two-bridge link W3 with the slope 16/7 and
Tap = ha,p(®3) = (S,T) the image of @3 under the holonomy homomorphism of
a hyperbolic cone-manifold W3 (o, B) generated by S = hqa g(s) and T = hq, g(t).

LA subgroup G of SL(2,C) is called elementary if it has a finite orbit in H> U C.
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Denote by p = p(S,T) the complex distance between the axes of S and T. Then
u = cosh p is a non-real root of the complex distance equation

0 = 8u® + 8abu® + 8(a®b? 4 a® 4+ b* — 1)u® + 4ab(a®b* + a® 4+ b* — 3)u*+
(a*d* +2a*b? 4 2a%b* — 4a2b* + a* +b* — 6a* — 6b% + 1)u — 4ab(ab* +a* +b> — 1),

where a = cot 5 and b = cot g

(2.3) Tangent, Sine and Cosine rules. If we set z = tr (S™!'7T') then, from
the presentation in Proposition (2.2.1), we have

@ B .o . f
z = 2(cos 5 08 5 + usin 5 Sin 2)7
where u = cosh p.

The algebraic equation for z and its behaviour was considered in a number
of papers (see [3], [5], [8] and others) devoted to PSL(2,C)-representation of
two-generator groups.

In general, the equation for u (as well as for z) is very complicated, even for
twist links. In spite of this, since u = cosh p has a very clear geometric sense, we
are able to produce some general results for twist links without calculating u.

PROPOSITION (2.3.1). Let Wy(«, 5) be a hyperbolic twist link cone-manifold.
Denote by S = hq g(s) and T = hq g(t) the images of the generators of the group
D, = (s,t | sls = lss) under the holonomy homomorphism ha g : ®, — SL(2,C).
Set u = cosh p, where p is the complex distance between the azxes of S and T,
such that Su > 0. Moreover, denote by v, and g the complex lengths of the
singular components of Wy(a, 5) with cone-angles o and [ respectively. Then

. @ B . 6 Yo
u-zcot2coth 1 —zcot2coth 1

Proof. To prove the statement we need to calculate the complex distance
between axes of elliptic elements S and T in two ways. By definition, Lg =
hap(ls) and Ly = hq g(l:), where [; and I, are the longitudes of the singular
components of Wy(a, §) with cone angles a and j3, respectively.

First of all, we fix an orientation on the axes of S and T" by the following line
matrices

~ S-S ~ T-—7"1
24 sinh =5 21 sinh%

Then the complex distance p(S,T) between the oriented axes of S and T is
defined by (2.1.3):

1 ~~
coshp(S,T) = —5 tr (ST).
Using (2.1.5) we define the line matrices for Lg and Lt as

EV_LS—Lgl ~ Lp-L;'
® 7 2isinh & T 2isinn 2

To continue the proof, we need two lemmas:

LEMMA (2.3.2). For every S,T we have S = —Lg and T = —Ly.
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Proof. Up to conjugation in SL(2,C), we can assume that S is given by

g = e 0‘
N 0 e % '

Note that Lg is a loxodromic element, with displacement 7, and commutes with

S. Since L§1 = i:g , we can assume that

+e 0
LS( 0 e % >

By convention (see formula (2.1.8)) we have
tr (Lg) = —2cosh 77&

Hence

and we obtain

fools=ls (10

27 sinh 2> 0 —i

- S —s-1 (=i 0
_21'sinh%y N 0 7 )

LEMMA (2.3.3). For every S,T we have tr(S) = tr(S71Ly) and tr (T) =
—1
tr (T Ls).

and

O

Proof. To prove tr (T) = tr(T~'Lg) it is enough to show that T~ !'Lg is
conjugate to either T or 71 in the group Iy 5. If p is odd, we have from
(2.1.9):

T'Lg =TS 1) [S, 71" =[T',8]"s T8 .

If p is even, we have from (2.1.10):

T 'Lg=T7'S7YT, 8|2 TST[S™,T7Y 2 = T-'S~YT,S])% T[T, S]" % ST.
The equality tr (S) = tr (S~'Lz) can be obtained in a similar way. O

To complete the proof of Proposition (2.3.1), we note that tr (XY) = tr (X)
tr (V) —tr (X~Y), tr(X1) = tr(X) and tr (XY) = tr (X 'Y 1) holds for
all X,Y € SL(2,C). By Lemma (2.3.2), Lemma (2.3.3) and formulae tr (S) =
2cos §, tr (Lg) = —2cosh Z*, we have

coshp(S,T) = —%tr (ST) = %tr (§LNT) =

L (5 - SV Ly — L;1> tr (SLy — S™'Ly — SL;' + S71L;Y)
= — 1r f— J—

2 2sin §  2isinh %’3 &isin § sinh %’3

_ 2(tr (SLy) —tr (S™'Ly))  tr(S)tr (Ly) —2tr (S™'Ly)

8isin § sinh 22 4isin § sinh 22
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_tr(S)tr (Lr) —2tr(S)  tr(S)(2 —tr (Lr))
N 4isin § sinh %’3 ~ —4isin 5 sinh %’3
~ 2cos§(242cosh )
—4isin § sinh %
Since cosh p(S,T) = cosh p(T, S) = u the statement follows. O

= icotgcoth’y—ﬁ.
2 4

As an immediate consequence of the previous proposition, we have the follow-
ing result.

THEOREM (2.3.4). (The Tangent Rule). Suppose that Wy(«, B) is a hyperbolic
cone-manifold. Denote by v, and vz complex lengths of the singular geodesics
of Wy(a, B) with cone angles v and B respectively. Then

o
2

tanh ’%3 o tan g '

tanh 2= tan

The following two theorems are consequences of the Tangent Rule.

THEOREM (2.3.5). (The Sine Rule). Let v = 7o + i o and v = rg + i @g
be the complex lengths of the singular geodesics of a hyperbolic cone-manifold
Wy (a, B) with cone angle o and (3 respectively. Then

‘h Pa 3 ¥B
sin % sin 5>
h Ta 1 TB
sinh < sinh 5

Proof. By the Tangent Rule we have
Yo 78
tanh Z* _ tanh -~
a b
where a = tan % and B = tang are real numbers. Hence

f(tanh Z=) _ R(tanh )

a b ’

and
S(tanh Z2)  (tanh 1)

a N b
Dividing one equation by the other we obtain
R(tanh L) _ R(tanh )
S(tanh 22)  (tanh 22)
By direct calculations we have
1

e Ve Vo
R(tanh —) = —(tanh — +tanh —) = ——=
(tan 4) 2(an 4—|—an 4) cosh 2 + cos &

sinh <

and  oa
Vo 1 Yo Yo sin 5

S(tanh —) = —(tanh— —tanh—) = ——= |

S(tan 4 ) Qi( an 4 an 4 ) cosh & + cos 5>

Since r, > 0, we have cosh%y > 1. Therefore cosh% + cos % > 0 and the

result follows. O
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THEOREM (2.3.6). (The Cosine Rule). Let ¥o = ro +ipa and v3 = rg+i@g
be the complex lengths of the singular geodesics of a hyperbolic cone-manifold
Wy (e, B) with cone angle o and B respectively. Then

Pa Ts _ b} Ta _
cos 5> cosh - — cos 5~ cosh % _ cosa — cos I3
cosh Z& cosh 22 — cos €2 cos 22 1 — cosacos 3

Proof. By the Tangent Rule
o Yo 0l ol
tanh 2 tanh 1 tanh 7 tanh 7
a? N b2 ’

where a = tan % and b = tan g Hence

1+ cosa coshZe —cos &= 1+ cosf3 cosh 2 — cos 22

1 —cosa coshfe +cos £ 1 —cosf cosh 2 + cos 22

Set " o
o B
COS 5 ;. COS -5

q =
cosh &’ cosh %’3

p=cosa, g=cosf, p =

and rewrite the above equation in the form
l+pl—p 1+ql—-¢
l—pl+p 1-—gqgl+q’

or, equivalently, as

1 1-9p 1 1-—
log +p—Hog p = log ta q
1—p 14 p 1-—

1 1
Since arctanhp = = log _tp we have
2 1—p

arctanhp — arctanh p’ = arctanh ¢ — arctanh ¢’.

and
arctanhp — arctanh ¢ = arctanhp’ — arctanh ¢’.
Hence .,
p—q P —q
l—pg  1-pq
and, after substituting the expressions for p, ¢, p’, ¢’ in the last formula, we obtain
the desired identity. O

We remark that, in the case of Whitehead link cone-manifolds, Tangent and
Sine rules were obtained in [14].

3. Explicit volume calculation for twist link cone-manifolds

(3.1) The Schlafli formula. In this section we will obtain explicit formulae
for the volume of some special cone-manifolds in the hyperbolic and spherical
geometries. In the case of complete hyperbolic structure on the simplest knot and
link complements such formulas, in terms of the Lobachevsky function, are well-
known and widely represented in [21]. In general, a hyperbolic cone-manifold can
be obtained by completion of a non-complete hyperbolic structure on a suitable
knot or link complement. If the cone-manifold is compact, explicit formulas are
only known in a few cases [9], [10], [11], [15], [16], [17], [18], [19]. In all these
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cases the starting point for the volume calculation is the Schlifli formula (see,
for example [11]).

THEOREM (3.1.1). (The Schléfli volume formula). Suppose that C is a smooth
1-parameter family of (curvature K ) cone-manifold structures on an n-manifold,
with singular locus ¥ of a fized topological type. Then the derivative of volume

of Cy satisfies

(n—1)KdV(C) =V, o(0)db(0)
where the sum is over all the components o of the singular locus ¥, and (o) is
the cone angle along o.

In the present paper we will deal mostly with three-dimensional cone-manifold
structures of negative constant curvature K = —1. The Schlafli formula in this

case reduces to )
dv = -3 zi:mdei,

where the sum is taken over all the components of the singular set ¥ with lengths
r; and cone angles 6;.

Our aim is to obtain the volume formulas for twist link hyperbolic cone-
manifolds Wz (e, 5). We note that the volume formula for W (v, 5) were obtained
earlier in [16] and [19].

PROPOSITION (3.1.2). Let Wa(a, 5) be a hyperbolic cone-manifold and ro,, 3
the lengths of its singular components, with cone angles o and [ respectively. If
a=cot g and b = cot g, then

3.1.3 Tro = 21 arctan a_ 21 arctan g
( R :

b b
(3.1.4) rg =21 arctanz — 2 arctan =,

where ¢ is a root of the equation
(3.1.5) 422+ a2 +02) - 1+ A+ b)) (z - 22?2 =0,
with (¢) > 0.
Proof. By Proposition (2.3.1) we have
(3.1.6) ibcoth% = iacoth’%ﬁ =u,
where u = coshp and p is a complex distance between the axes of S and T,
chosen so that Su > 0. By Proposition (2.2.3), u is a root of the cubic equation
423 — 4abz® + (3a*b* + 3a® 4+ 3b* — 1)z — ab(a®b* + a®> + > —3) = 0.

From (3.1.6), for a suitable choice of analytical branches,

Vo 7(){ . U . u . a . a
rq = — + — = 27 arctan — — 2¢ arctan — = 2¢ arctan — — 2¢ arctan =,
T3 T b b ¢ ¢
where ¢ = ab/u, $(¢) > 0, satisfies the equation

Q(2) = (a®b® + a® + b* — 3)2° — (3a%b? + 3a® + 3b% — 1)22 + 4a?b*z — 4a®b* = 0.
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To finish the proof we note that
(2 + DQ(2) = —4(=2 + a?)(2 + 1) + (L +a2)(1 + b2) (= — 22)".
O

In the next section we will apply this result to calculate the volume of Wa(a, §)
via the Schléfli formula.

We remark that formulae (3.1.3) and (3.1.4), as a consequence of the Tangent
Rule, also hold for all twist links W), with ¢ = ab/u, where u = cosh p.

For example, an analog for the algebraic equation (3.1.5), in the case of twist
link W3, can easily be obtained from Proposition (2.2.6). But in this case the
equation becomes too complicated, and we are not able to explicitly find the
integrand in the Schlafli formula.

(3.2) Volume of twist link cone-manifolds. The case of the Whitehead link
cone-manifolds Wi (a, 8) has already been solved (see [16] and [19]).

THEOREM (3.2.1). [16, 19] Let Wi («, 5) be a hyperbolic Whitehead link cone-
manifold with cone angles o and 3. Then the volume of W1 («, B) is given by the
formula

¢ [ 2(22 + a?) (22 + v?) dz
(

Vol W1 (o, B) _Z/Z log 1+a?)(1+02)(22—-2%)] 221"

where a = cot 5, b = cotg and ¢ is a non-real root, with I({) > 0, of the
equation
2022 +a?) (22 + %) — (1 +a®) (1 +bH)(22 - 2%) = 0.

The main result of this section is the following.

THEOREM (3.2.2). Let Wa(a, B) be a hyperbolic twist link cone-manifold with
cone angles a and B. Then the volume of Wa(a, B) is given by the formula
¢ 4(2% +a?)(22 + v?) dz
(1+a2)(1+b2)(z—22)2] 22 -1

(3.2.3) Vol Wa(a, B) =i [

¢
where a = cot g, b = cotg and ¢ is a non-real root, with I(¢) > 0, of the
equation

(3.2.4) 402 +a®)(2* +b%) — (1 +a®) (1 + %) (2 = 2%)* = 0.

Proof. Denote by V = Vol Wa(a, 8) the hyperbolic volume of Wa(a, 8). Then
by virtue of the Schlafli formula we have

ov Ta oV rg
(3.2.5) a3 95 2
where 7, and r, are the lengths of the singular geodesics having cone angles «
and [ respectively.

We note that for « = 8 and $({) — 0 the geometrical limit of the cone-
manifold Wa(«, «)is a Euclidean cone-manifold Wa(a, ), where ag = 2.7243...
< 7. (See Example 1 in Section 3.3 below). Hence, by Theorem 7.1.2 of [13], we
have

(3.2.6) V—0as a=p and () — 0.

log {
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We set )
%% :/7 F(z,a,b)dz,
¢
where
4(2% 4+ a?)(22 + b?)
22 -1 1+ a?)(1+b2)(z —22)2"
Now we show that W satisfies conditions (3.2.5) and (3.2.6). So W =V and the

theorem follows.
By the Leibniz formula we have

F(z,a,b) =

log
(

ow o¢ - ¢ ¢ 9F(z,a,b) da
3.2.7 — =F b)—~—F b)— — —d
B21) G =FGabge -~ FCange+ [ FRatS T
We note that F(C,a,b) = F(¢,a,b) =0 if {,{,a and b are the same as in the
0 1+a?
statement of the theorem. Moreover, since o = 2 arccot a we have a—z =— —;a
and
OF (z,a,b) Oa _  ia
da da 22 4a?’
Hence, by Proposition (3.1.2), we obtain from (3.2.7)
8_W = —ia /C & =—1 arctang +1 amctang S—.
da T 22+a? ¢ ¢ 2
The equation %—Vg = —% can be obtained in the same way. The boundary
condition (3.2.6) for the function W follows from the integral formula. O

(3.3) Particular cases and examples.
1. Case a = B. In this case, Equation (3.2.4) splits into two quadratic
equations:

(1+a®)(z—2%) +2(z*+a*) =0

and
(1+a?)(z — 2%) = 2(2* +a?) = 0.
The first has two real roots z = —1 and z = 2a?/(a? — 1). The second has two
non-real roots
_ 14+a*+V1—22a? — 7a*
“.2 = 2(3 + a?) '

By [10], A =1 — 22a? — Ta* is < 0 in the hyperbolic case, = 0 in the Euclidean
case and > 0 in the spherical case. In the Euclidean case we obtain a? =
cot?(a/2) = (V128 — 11)/7 = 0.0448... and a = ag = cot (ag/2) = 0.2116... .
So the cone-manifold is hyperbolic for 0 < o < ag = 2.7243... and is Euclidean
for a = ap.

From (3.2.3) we have

[( 2(2% + a?) )r dz

z2
Vol W- =1 1 .
O 2(05704) Z/ Og 2—22)(1+a2 22_1

Z1
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By differentiation with respect to @ and then by integration with respect to z we
obtain

@ VA 42212 — 1 dt
Vol Wa(a, o) = 4/ arctanh +

a0 t(5+¢2)  2+1

Since the integrand is purely imaginary for 0 < ¢ < ag we are able to compute
the volume in the more convenient way

VTt +22t2 -1 dt
t(5+12) 241’

Vol Wy (e, o) = 48‘%/ arctanh
0

where a = cot 5.
2. Case a = f = w/2. In this case equation (3.2.4) becomes

(z+1)(z*—2z+2)=0.

Hence, the non-real roots are

10T

21,2 2
and
1+ivV7 2
) 1 z+1 dz
VOIWQ(?T/Q,W/Z) = 22[—1‘,ﬁ 10gmm = 2.6667...

4

3. Case a = 8 = 0. Recall that W2(0,0) is the complete hyperbolic manifold
53 \ Wa. By arguments similar to those of the previous case, we obtain

14+iV7
VIW(OO)—Q‘/ T og—2 % 5ag3y
ol W5(0,0) = 24 ot B s g

Note that Vol W5(0,0) = 2 Vol Wy (7 /2, 7/2).
4. Case o =0, 8 = /3. In this case equation (3.2.4) reduces to

(1+2)(3-32+322—-2% =0.
Hence, the non-real roots are

) 1+iv3
Z1,2 = =
| Vi

and

—iV3

] 2

Vi ks Ll — 4.6165...

1_1
Vol Wy(0, 7/3) = z/
1

_14iV3 & (Z - 22)2 22—
¥a

The results of the above numerical calculation coincide with the corresponding
results obtained by Weeks’s SnapPea program [22].
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ACYLINDRICAL SURFACES IN 3-MANIFOLDS AND KNOT
COMPLEMENTS

MARIO EUDAVE-MUNOZ AND MAX NEUMANN-COTO

Dedicado a Fico en su 60 aniversario

ABSTRACT. We consider closed acylindrical surfaces in 3-manifolds and in
knot and link complements, and show that the genus of these surfaces is
bounded linearly by the number of tetrahedra in a triangulation of the
manifold and by the number of rational (or alternating) tangles in a pro-
jection of a link (or knot). For each g we find knots with tunnel number 2
and manifolds of Heegaard genus 3 containing acylindrical surfaces of genus
g. Finally, we construct 3-bridge knots containing quasi-Fuchsian surfaces
of unbounded genus, and use them to find manifolds of Heegaard genus
2 and homology spheres of Heegaard genus 3 containing infinitely many
incompressible surfaces.

1. Introduction

A closed incompressible surface F' embedded in a 3-manifold M is called
acylindrical if the manifold Mp = M — intN(F'), obtained by cutting M along
F contains no essential annuli (a properly embedded annulus in a 3-manifold is
essential if it is incompressible and not boundary parallel). Acylindrical surfaces
are interesting in connection with geometry, as every totally geodesic surface
in a hyperbolic 3-manifold is acylindrical, and every acylindrical surface in a
hyperbolic link complement is quasi-Fuchsian. Moreover, if F' is an acylindrical
surface in a closed, irreducible and atoroidal 3-manifold M then Mp admits a
hyperbolic metric with totally geodesic boundary [21].

In [12] Hass proved that for the finite volume hyperbolic 3-manifolds there is
a constant C, independent of the manifold, so that each acylindrical surface in
a manifold M has genus at most C'- vol(M). He used this result to show that in
any compact 3-manifold there is only a finite number of acylindrical surfaces. It
seems natural to ask if there are similar bounds which hold for all 3-manifolds
and depend not on volume, but on some topological measures of complexity.
Some candidates could be the number of tetrahedra in a triangulation or the
Heegaard genus of the manifold, and in the case of knots and links, the crossing
number, the bridge number or the tunnel number. Such bounds must exist in
the case of the number of tetrahedra in a triangulation or the crossing number
of a link, as there are only finitely many manifolds and links for each number
n. We find explicit bounds in these cases, and furthermore show that there is a
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linear bound in terms of the number of rational tangles in a link projection or
the number of alternating tangles in a prime knot projection.

The fact that 3-manifolds with Heegaard genus 2 and the complements of
knots with tunnel number 1 contain no separating acylindrical surfaces ([19], [4])
could suggest that -at least for small Heegaard genus or tunnel number- there
could be bounds for the genus of such surfaces. We show here that for each
g, there are tunnel number 2 knots which contain a closed acylindrical surface
of genus g. By performing suitable Dehn surgeries, we get closed manifolds of
Heegaard genus 3 which contain closed acylindrical surfaces of genus g. These
examples show that Heegaard genus 3 manifolds and tunnel number 2 knots are
already quite complicated.

We also consider what happens when the acylindrical assumption is weak-
ened to require that there are no essential annuli running from the surface to a
boundary torus (in the case of hyperbolic knots and links this means that the
surface is quasi-Fuchsian). We show that a knot that can be decomposed into
two alternating tangles cannot contain any quasi-Fuchsian surfaces in its comple-
ment. On the other hand, we find hyperbolic 3-bridge knots whose complements
contain infinitely many quasi-Fuchsian surfaces. These knots have an essential
branched surface which carries quasi-Fuchsian surfaces of arbitrarily high genus.
These examples show that there are no bounds for the genus of quasi-Fuchsian
surfaces based on volume, crossing number or the number of tetrahedra. Finally,
by means of suitable Dehn fillings and double covers, we produce manifolds of
Heegaard genus 2 and homology spheres of Heegaard genus 3 which contain infin-
itely many incompressible surfaces. These examples are interesting, for it seems
that all known examples of hyperbolic manifolds with infinitely many surfaces
have noncyclic homology, and in the case of knots with infinitely many surfaces,
it seems that the only known explicit examples are some satellite knots (see for
example [17]). The examples are also interesting for the study of surfaces in
the complement of 3-bridge knots, as they supplement results of Finkelstein and
Moriah [6], who showed that many 3-bridge knots contain an incompressible but
meridionally compressible surface, and of Ichihara and Ozawa [15], who proved
that any closed surface in the complement of a 3-bridge knot is meridionally
compressible or annular.

2. Bounds for the genus of acylindrical surfaces

PROPOSITION (2.1). If a closed 3-manifold M admits a (pseudo)triangulation
with n tetrahedra then the genus of a 2-sided closed acylindrical surface in M is
at most "TH

Proof. Let T be a (pseudo)triangulation of M with n tetrahedra, and denote
by T; the i-skeleton of T'.

Let F' be an incompressible surface in M in normal position with respect to
the triangulation, so F' intersects the faces of the tetrahedra along arcs and the
interior of the tetrahedra along discs which are triangles or squares. Assume
further that F' has been isotoped to minimize the number of intersections with
Ti. Let F be the boundary of a regular neighborhood N of F. As F is two-
sided, F consists of two copies of F. By definition F is acylindrical iff M — intN
contains no essential annuli.
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Figure 1.

The edges of F in each face of a tetrahedron split the face into triangles, quad-
rangles, pentagons and/or hexagons, and each edge is adjacent to a quadrangle
(which lies in N). Call an edge good if the other adjacent region (which lies in
M — intN) is also a quadrangle. Notice that if an embedded curve ¢ in F is
made of good edges, then the union of these adjacent quadrangles in M — intN
forms an annulus A that joins ¢ with another curve ¢’ in F.

We claim that if ¢ is essential in F' then the annulus A is essential. Otherwise
A would be isotopic to an annulus A’ bounded by ¢ and ¢’ in F' (in particular, ¢
must be 2-sided in F'). As F' is 2-sided in M, then A’ is parallel to an annulus
A" in F and the isotopy from A’ to A can be used to isotope A” (pushing it
even further across A) to reduce the number of intersections of F' with T;.

So if F is acylindrical, then the good edges of F carry no embedded essential
curves, and so they carry no essential curves at all. But as the edges of F split
F into discs, they must carry all of Hy(F).

So there must be at least as many non-good edges in F as the rank of H;(F).
As the number of non-good edges in a face of a tetrahedron is at most 6, the total
number of non-good edges in F is at most 127, so 12n > rank H;(F) = 2 - genus
I, and so the genus of F is at most 3n.

In order to get the better estimate one needs to look more carefully at the
graph Q formed by the edges of F'. Divide the non-good edges in each tetrahedron
in two classes: those lying in triangles of F' that cut off outermost corners of the
tetrahedron will be called fair edges and the others (which may lie in squares or
triangles) will be called bad edges (see Figure 1).

Let Q4 and Q¢ denote the subgraphs of ) made of good edges and fair edges
respectively.

Observe that ), and @y are disjoint, that is, have no vertices in common.
As the components of ) lie in the links of the vertices of a triangulation of the
manifold M, all curves contained in Q)¢ are contractible in M, and so as F is
incompressible then () contains only trivial curves of F. All curves contained in
Qg4 are also trivial because F is acylindrical. So as Q4 U Qy contains only trivial
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curves of F, by attaching to Q, U Q some of the complementary pieces of F we
obtain a (possibly empty or disconnected) simply connected subcomplex Fg of
F.

Now the Euler characteristic of F' is x(F) = x(Fs) + v — e + f where v,
e, and f count the vertices, edges and faces of F' that do not lie in Fg. So e
counts some bad edges -some others may lie in Fg- and f counts the triangles
and squares adjacent to them. It can be shown directly that in each tetrahedron
A, every subcollection fa of the set of squares and triangles of ' NA with bad
edges satisfies the inequality %eA — fa < 2. In particular, we may take fa to be
the set of squares and triangles with bad edges not contained in F'g. As F has
two components and each of them contains a component of Fgora vertex, it
follows that

X(F)>2—e+f=2+Ypcp, —36a+fa>2—2n

and so genus(F) = 1 rank Hy (F) = (4 — x(F)) < 1(2+ 2n). O

The genus of an acylindrical surface in a manifold is not bounded in terms
of its Heegaard genus, as we show in Section 3. However, there is a bound
depending on the complexity of a Heegaard splitting. Let M = H U H' be a
Heegaard splitting of M of genus g, and let Dy, Da, ..., Dy and D1, Dy, ..., D be
discs splitting H and H' into 3-balls B and B’. The complexity of the Heegaard
splitting with respect to these discs is just the minimal intersection number
between the boundaries of the discs. The complexity of a Heegaard splitting is
the minimum complexity among all such systems of discs.

PROPOSITION (2.2). If a closed 3-manifold M admits an irreducible Heegaard
splitting of genus g and complexity n then the genus of a closed acylindrical
surface in M is at most (n — %g)

Proof. Let M = H U H' be a Heegaard splitting of M of genus g as above,
with UD; meeting UD; in n points. Let F' be an acylindrical surface in M. As
F is incompressible, we may assume that I meets H’ along g stacks of parallel
discs in N(DY) (some stacks may be empty). We may also assume that I meets
B along discs and that it meets each D; along stacks of parallel arcs connecting
different components of 0D; N N (D).

As before, consider the graph of intersection Q of F with 0H U; D;. Call an
edge of @ on D; good if it is an interior arc of a stack, otherwise call it bad. Call
an edge of @ in OH good if it is part of the boundary of an interior disc of a
stack. Otherwise (i.e., if it is part of the boundary of an outermost disc of a
stack) call it fair. See Figure 2.

Observe that the subgraphs @, and @y made of good edges and fair edges
do not meet. As the components of Q)f are contained in the boundaries of discs
in H' then Qs carries no essential curves of F, and as F is acylindrical we may
assume as in the proof of 2.1 that @), carries no essential curves either.

So as Q4 U@y carries no essential curves and @ splits F into discs, the rank of
H,(F) is bounded above by the number of bad edges. If D; meets the D} in n;
points then n; > 1 (because the Heegaard splitting is irreducible) and D; contains
at most 4n; — 6 bad edges, so the rank of H,(F) is at most Y, (4n; —6) =

4n — 6¢g and so the genus of F' is at most n — %g. O
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~-good fair—

Figure 3.

There are other ways of measuring the complexity of a Heegaard splitting, for
example, by means of the curve complex, as defined in [14]. Note however that
no such bound for the genus of acylindrical surfaces exists for this complexity,
for in fact, all the examples constructed in Section 3 have a Heegaard splitting of
genus 3 which comes from a certain bridge presentation of a knot, and then by
a similar proof to Theorem 1.4 of [14], the distance in the curve complex is < 2.

We now consider bounds for the genus of acylindrical surfaces in the exterior
of knots and links in the 3-sphere.

PROPOSITION (2.3). If k is a knot or link with n crossings then the genus of
a closed acylindrical surface in the exterior of k is at most %n - 3.

Proof. Draw k on a projection sphere S, except for the crossings which lie on
the surface of n small spheres S, Ss,...,5,. Let Sy be the part of the projection
sphere outside the S;’s. Then Sy U; S; cuts S2 into n + 2 polyhedral balls B,
BT and By, Bs, ..., B, with faces determined by the equators of the bubbles
and the arcs of k. If F' is an incompressible surface in the exterior of k then F'
can be isotoped to meet BT and B~ along discs, meet each B; along parallel
saddle-shaped discs, and meet their faces along arcs. See Figure 3.

Let F be the boundary of a regular neighborhood of F, and let @ be the
graph of intersection of F with Sy U; S;. So @ splits F into discs. As before,
consider the edges of @ on each face of Sy U; S;, call those that have parallel
edges on both sides good, those which are closest to arcs of k and are parallel to
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Figure 4.

them fair, those lying on some S; and parallel to an arc of 95y which contain a
point of k are also fair, and all the others are called bad edges (so the faces of
the B;’s contain no bad edges). See Figure 4.

Again the subgraphs @, and Q; of @ are disjoint, and if F is acylindrical
then @, carries no essential curves of F. On the other hand, Q s can be regarded
as lying on the boundary tori of a regular neighborhood of the link k. But as
F is acylindrical, there can be no essential annuli running from F to k, so Q
contains no essential curves of F. So, as the graph Q carries all of H,(F), there
must be at least as many bad edges as the rank of H;(F). As there are at most
3i — 6 bad edges on each i-gon determined by the projection of k into S, the
number of bad edges in F' is at most
> i—gons in p (31 —6) = 3(2( arcs of k in S)) — 6 (regions determined by k in 5)
=120 — 6(2+n) = 6n — 12

So the rank of Hy(F) is at most 6n — 12 and the genus of F is at most

12

6

After we proved Proposition (2.3), we learned that Agol and D. Thurston,
following Lackenby [16], showed that the volume of a hyperbolic knot of link is
bounded above by 10v3(t(D) — 1) where vz is the volume of a hyperbolic ideal
tetrahedra and ¢ is the twist number of k& (the minimum number of twists in a
diagram of k, where a twist is a string of 2-gons or a crossing in the diagram).
Agol has also shown [1] that if a hyperbolic manifold M has an acylindrical
surface of genus g, then Vol(M) > 4vs(g — 1). It follows that the genus of an
acylindrical surface in the exterior of a hyperbolic link % is at most gt. These
results suggested the following.

Recall that a tangle is a 3-ball B together with two properly embedded arcs.
The tangle is rational if the arcs are isotopic (rel 9) to arcs in 0B. We will say
that a knot or link %k in S? is decomposed into tangles if there is a sphere S and
3-balls By, Bs, ..., By, each intersecting S in a disc, so that kN B; is a tangle, and
the part of k outside these balls is a collection of arcs lying on Sy = S —int(NB;).
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Figure 5.

THEOREM (2.4). If a link is decomposed into n rational tangles, then the genus
of a closed acylindrical surface in its complement is at most 2n — 4.

Proof. Draw the projection of the link %k as the union of n rational tangles
in the interior of n disjoint spheres S, Ss,...,S, joined by 2n disjoint arcs in
the projection sphere. Let Sy be the part of the projection sphere outside these
spheres. Then Sy U; S; cuts S? into polyhedral balls B, B_ and Bi,Bs,...,B,
with faces determined by the equators of the spheres and the arcs of k in Sy.

If F' is an incompressible surface in the exterior of & we may isotope F' so
that intersects B~ and B™T along discs, and intersects S and the hemispheres of
each S; along arcs. Moreover, as kN B; is a rational tangle, we may isotope F’
to intersect B; — k along parallel discs that separate the strings of the tangle,
and we may assume that their boundaries meet each hemisphere of S; along 2 or
3 families of parallel arcs -2 if the tangle is a crossing and 3 otherwise (a single
family of parallel arcs implies that the discs are vertical and the tangle has no
crossings of k).

Let F be the boundary of a regular neighborhood N of F. The intersection
of F with Sy U; S; gives a cell decomposition of F and cuts the faces of Sy U; S;
into quadrangles that lie in N and other polygons that lie in S2 — N; as before,
let @ be the graph of intersection. Call an edge of @) in a face of Sy U; S; good
if the adjacent polygon in S® — N is a quadrangle with another edge on F' (so
the two edges are parallel in that face). Otherwise, call an edge in @ fair if it is
adjacent to a quadrangle in Sy with a side in k£ N Sy that is adjacent to another
quadrangle in Sp with a side in @ (so both edges of @ are parallel to this arc of
k) or if it is adjacent to a polygon in a hemisphere of S; with exactly 2 sides in
Q@ (so the other sides lie in the equator and are separated by points of kN S;).
Call the other edges of @ bad. Note that edges lying on some S; and parallel to
an arc of 05y which contain a point of k are bad. See Figure 5.

One can use the fair edges as well as the good edges to construct annuli for
F, by taking the quadrangles that lie between two fair edges in Sp U; S; (but
that may intersect k) and pushing them outside the corresponding S;, or if they
lie in Sy, to the side of Sy that doesn’t contain an edge of ) connecting the
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two fair edges (there can’t be connecting edges on both sides because the union
of the four edges would be a meridian of k, and so F' would be meridionally
compressible). This creates quadrangles in S® — k connecting pairs of fair edges,
and one can see that the quadrangles corresponding to consecutive fair or good
edges match well.

As before, if a simple essential curve in F' is made of good and fair edges then
the annulus formed by the union of the adjacent quadrangles is essential or else F’
could be isotoped to reduce its intersection with Sy U;.S;. So, if F' is acylindrical,
the subgraph of @) consisting of the good and fair edges cannot contain any
essential curve of F, so it is contained in a simply connected subcomplex F'g of
F. Again, as F has two components and @ divides them into discs,

X(F)=x(Fs)+v—e+f>2—e+ f where v, e, and f count the vertices,
edges and discs in F' — Fg, and so rank Hy(F) = (4 — x(F) <2 +e— f.

As there are at most 4 bad edges and 8 fair edges on each S;, all contained in
the 2 outermost discs of F' N B;, the number of bad edges minus the number of
discs that contain them in US; is at most 2n.

There are at most ¢ — 3 families of parallel edges on each face of Sy determined
by ¢ > 1 arcs of k, not including the families of edges parallel to the arcs of k,
and they produce at most 2i — 6 bad edges on each face. If an arc of k£ has
parallel families edges of () on both sides, then there are two bad edges in these
families, for the edges closest to k are fair. If an arc of k£ has only edges of Q) on
one side, then there are two bad edges in this family, since in this case the edge
closest to k is not fair.

So, if no face of Sy is a monogon the number of bad edges in Sy is at most
D edgesofk 2T 2 i—gons in p (20— 6) = 4n +8n —6(2 +n) = 6n — 12.

When i = 1, the previous formula undercounts the number of bad edges in
the monogon as —3 instead of 0 -there are no edges in the monogon as they
could be isotoped into B; to eliminate two intersection curves of F with S;-. In
this case there cannot be bad edges around the endpoints of the monogon in S;
and so the discs of intersection of F with S; are vertical and the tangle is trivial
-unless F' does not meet S; at all, so there is an overcount on the number of bad
edges in US; by at least 2 and also on the number of bad edges in the face of Sy
adjacent to the monogon. So the previous bound also holds when some faces of
Sp are monogons.

Finally observe that since F has 2 components and each of them must meet
B, and B_, there must be at least 2 discs of F' — F'g inside each of these balls.

So, genus(F) = rank Hy (F) < 1(2+e— f) < 3+(2+2n+ (6n — 12) —4) =
2n — % O

Consider a tangle as above, i.e., it is determined by the intersection of a 3-ball
B with a link k, so that BN .S is a disc, where S is a projection sphere, and
k N OB consists of 4 points lying on S. We say that the tangle is alternating if
its arcs can be isotoped, keeping 0B fixed, to have an alternating projection on
the sphere S. Note that each rational tangle is alternating.

The next result extends Theorem (2.4) to allow alternating tangles.
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THEOREM (2.5). If a prime knot is decomposed into alternating tangles, n of
them rational, then the genus of a closed acylindrical surface in its complement
s at most 2n — 4.

The proof is based on the following:

Claim (2.6). Let k be a nonseparable link or a knot and S a sphere that meets
k in 4 points. Then each acylindrical surface F in S® — k is isotopic to one that
either i) is disjoint from S or ii) intersects .S in one curve or iii) meets one of the
components of $3 — k — S along parallel discs.

Proof. The sphere S separates k into two tangles. Isotope F' to minimize its
intersection with the 4-punctured sphere S—k. The intersection then contains no
trivial curves, and as F' is meridionally incompressible then it does not contain
curves surrounding only one puncture, so all the curves cy,cs,...c;; in which F'
intersects S must be parallel in S — k. As F' is acylindrical, if there is more than
one ¢; then the annuli connecting two of them in S cannot be essential, so either
one annulus is isotopic (rel 9) to an annulus in F' (and the isotopy can be used
to remove two ¢;’s) or all the ¢;’s bound discs of F. So at least one of them, say
c1, bounds a disc D; in F that lies completely on one side of S. But then, as all
¢;’s are parallel to 0Dy, one can draw parallel discs D; in $% — k on that side of
S that meet F at ¢; (and nowhere else). The union of the discs bounded by the
¢;’s in F and the D;’s form spheres in S —k, and if k is a knot or a nonseparable
link these spheres bound balls in S — k, so the D;’s must be isotopic to the discs
in F', and the isotopy reduces the number of curves unless the discs in F' were
already on one side of S. O

Claim (2.7). If k is a prime knot and kN B; is an alternating tangle, then
every acylindrical surface in the complement of & can be isotoped to meet B; — k
along parallel discs or be disjoint from it.

Proof of theorem. Assume for the moment that Claim (2.7) is true, and iso-
tope the surface F' to meet only the B;’s corresponding to separable tangles. To
estimate the genus of F' we would like to count the number of bad edges and discs
of F that contain them by replacing each nonseparable tangle in the diagram
of k by a trivial tangle to get a knot k' and counting the bad edges of F in its
diagram.

Now some bad edges in the diagram of & may become fair in the diagram
of k¥’ as in Figure 6, but in this case we may regard them as originally being
7almost fair” -there is a quadrangle joining them that lies above or below the
nonseparable tangles that were between them in the diagram of k. The quadran-
gles corresponding to almost fair edges match well with the other quadrangles
corresponding to good and fair pairs of edges, so they can be used as well to
construct annuli for F. So the same bound for the number of bad edges and
discs -and therefore the same bound for the genus of F- holds. O

The proof of Claim (2.7) is based on the following extension of the Meridional
Lemma of Menasco [18].
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Figure 6.

LEMMA (2.8). If a link k intersects a ball B in an alternating tangle, then
every meridionally incompressible surface in the complement of k can be isotoped
to intersect B along copies of a surface that separates the strings of the tangle.

Proof. Draw B as a round ball with kN B lying in an equatorial disc except at
the crossings, that lie on the surface of small “bubbles” By, Bs,....as in Figure 3.
Let 0B;+ and 0B;_ be the hemispheres of 0B;, and let Dy denote the part of the
equatorial disc outside the bubbles. Let Dy = DygU;0B;+ and D_ = DyU;0B;_,
and let By and B_ be the parts of B above and below D and D_.

If F' is a meridionally incompressible surface in the complement of k£ then by
isotoping F' to minimize its intersection with 0BU Dy U; dB; we can assume that
F meets OB along parallel curves that separate 2 points of BNk from the other
2, that F' meets Dy and each hemisphere of 0B and 9B; along arcs and that
meets B, and B_ along discs and each B; along parallel saddle-shaped discs.
So F' intersects D4 and D_ along curves and arcs with endpoints in 9B.

Following Menasco, one can show that the curves and arcs of intersection of
F with D, (and similarly with D_) have the following properties:

1. As F is incompressible, each curve (and each arc) crosses at least one
bubble.

2. As F is meridionally incompressible, each curve (or arc) crosses each bubble
at most once.

3. As the diagram of k N B is alternating, if a curve (or arc) crosses two
bubbles B; and Bj; in succession, then the 2 arcs k N 0B;4 and kN 0B,y lie on
opposite sides of the curve. See Figure 7.

So there can be no closed curves in D, because by properties 1 and 3 an
innermost such curve would have to leave an arc of k N dB;4 inside (so there
would be another curve inside) unless the curve crossed the same bubble twice,
contradicting property 2.

Let k' and k2, k; and ko be the 4 segments of kN Dy that start on 9Dy,
and end in overcrossings or undercrossings of k respectively. Note that 0Dg
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Figure 7.

encounters them in the order k', ki, k2, ks, for otherwise there is an arc on
Dg separating the strings of the tangle, but then the knot will be composite.
Properties 1, 2 and 3 for arcs imply that each outermost arc in D, goes around
k1 or ko and so every arc in D4 must separate ky from ky. See Figure 8a.

Now let Fj be a surface consisting of one or more components of F'N B. If
Fy does not separate the strings of the tangle then each path in B joining the
strings must meet Fj in an even number of points, so Fj intersects each bubble
in an even number of discs, and so the number of curves and arcs cross 0B, on
each side of kN OB, is even. We claim that in these conditions F'N D4 consists
of pairs of parallel arcs.

To show this, order the arcs according to its distance from ki, and assume
that the first 2n are paired and let a be the next one. Let B; and B; be two
consecutive bubbles crossed by a, so the segments of kN 9B, and kNOB;4 are
on opposite sides of a as in Figure 8a. Since all the curves on one side of a are
paired and each side of the bubbles is crossed by an even number of arcs, there
must be other arcs a’ and a” crossing B;; and Bjy next to a. If ¢’ and a” are
different, then one of them cannot separate k1 from ko (see Figure 8b). If a’ = a”
then either a and @’ run parallel from B; to B; or else a’ crosses other bubbles
between B; and B;. If so, let B; be the bubble crossed by ' immediately after
B;. See Figure 8c. Then kN 0B, lies between a and @', and so there must be
another arc between a and a’, and this arc would have to cross B; or B; between
a and a’, and this is impossible. Therefore a’ must run parallel to a from the first
bubble to the last bubble crossed by a. It remains to show that a’ runs parallel
to a from the first bubble to the boundary of D, and from the last bubble to
the boundary of D, i.e., that a’ does not meet other bubbles in its way to the
boundary and that the region between a and o’ does not contain other bubbles.
As k1 and ko lie outside the region between a and a’, this region does not contain
any other arc a”. So k' and k? also lie outside this region, because if k' were
between a and o' the number of arcs between k; and k! would be odd, so Fy
would separate these strings of k. Now if there were any segments of kN D in
that region, k would have to enter and leave the region at 2 bubbles crossed by a’
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on its way to the boundary. But we know that for any two consecutive bubbles
crossed by a’ the segments of k in their upper hemispheres lie on opposite sides
of a’, so one of them is in the region between a and a’ and so there must be an
arc in that region, a contradiction.

Now observe that each pair of parallel arcs of Fj in D, must be adjacent
to a pair of parallel arcs of Fy in dB4: an arc of Fj in dB4 cannot go around
the endpoints of k' or k? because F' would be meridionally compressible and
something analogous holds for the arcs of Fy in D_. So the intersection of Fj
with 0By, 0B_ and with each 0B; consists of pairs of parallel curves, and as Fj
is assembled by attaching discs to these parallel curves, Fy must consist of pairs
of parallel surfaces.

Finally, as F' is meridionally incompressible, the intersection of F' with the 4-
punctured sphere 0B — k consists of curves surrounding 2 punctures, and if there
is more than one curve these are parallel. So if F'N B has several components,
and Fy consists of any two of them, then any path in B joining the strings of
the tangle must intersect Fy in an even number of points, and this is all that we
needed before to show that F consists of parallel surfaces. O

Proof of Claim (2.7). Isotope F' to minimize its intersection with 0B;. By
the previous lemma if F' N B; is not empty then it consists of parallel copies of
a surface Fj that separates the strings of the tangle. As k is a knot F' cannot
separate the strings of kN B, so there must be an even number of copies of Fj.
Now by the previous claim either F' N B; or F'N.S3 — B; consists of discs, and in
the second case I would be the union of the components of F'N B; with discs,
and since there are at least two such components F' would not be connected. [

In [2] Adams et al. extended the Meridional Lemma of Menasco to almost
alternating knots, i.e. knots that can be obtained by changing one crossing of
an alternating knot. The following corollary extends it to knots that can be
obtained from an alternating one by mirroring any (2-string) tangle.

COROLLARY (2.9). If a knot k can be decomposed into 2 alternating tangles,
then k admits no meridionally incompressible surfaces in its complement.
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Proof. By Lemma (2.8), a meridionally incompressible surface F' in the com-
plement of k can be isotoped to meet each of the balls B; and By that determine
the tangles along an even number of parallel copies of a surface F; that separates
the strings of the tangle.

So F'N B; is the boundary of a regular neighborhood N; of one or more copies
of F;, and N; is determined by painting the components of B; — F' in a chessboard
fashion and choosing those whose color is different from that of the regions that
contain the strings of the tangle. So N7 and Ny match on 0B; = 0B5 to form
the regular neighborhood of a single surface in S3, and F is its boundary, so F'
cannot be connected. O

COROLLARY (2.10). The total genus of a disjoint family of closed, embedded,
totally geodesic surfaces in a hyperbolic 3-manifold or link complement is bounded
above by:

%t where t is the number of tetrahedra in a triangulation.

n— %g for manifolds of Heegaard genus g and complexity n.

%c — 3 for a link with ¢ crossings.

gr — 3 for a link that admits a projection made of v rational tangles.

° gr — 3 for a prime knot decomposed into alternating tangles, r of them

rational.

Proof. If M is a hyperbolic 3-manifold and F},F5,...,F}, are disjoint totally
geodesic surfaces in M, then each F; is acylindrical and there are no essential
annuli in M connecting two F;’s. For, the preimages of the F;’s in the universal
covering of M are disjoint totally geodesic planes in H?, and each preimage of
an essential annulus is an infinite strip of bounded height connecting two lines
in different planes. These lines lie at a bounded distance from geodesic lines
representing the preimages of the boundaries of the annulus, so they determine
2 different points at infinity were the two planes meet, but two disjoint totally
geodesic planes in H? can only meet at 1 point.

So we may consider the family Fy,Fs,...,F}, as a single disconnected acylindrical
surface. The arguments above show the existence of essential annuli for a surface
F if the rank of H;(F') is higher than the number of bad edges, independently of
the number of components of F. The bounds arise from a count of the number
of bad edges in each case. O

3. Acylindrical surfaces in tunnel number two complements

Let S be a closed surface of genus g standarly embedded in S2, that is, it
bounds a handlebody on each of its sides. A knot K has a (b, g)-presentation
if can be isotoped to intersect S transversely in 2b points that divide K into
2b arcs, so that the b arcs in each side can be isotoped, keeping the endpoints
fixed, to disjoint arcs on S. We say that a knot K is a (b, g)-knot if it has a
(b, g)-presentation. Consider a product neighborhood S x I of S. To say that a
knot K has a (b, g)-presentation is equivalent to say that K can be isotoped to
lie in S x I, so that KN (S x {0}) and K N (S x {1}) consist each of b arcs (or
b tangent points), and the rest of the knot consist of 2b straight arcs in S x I,
that is, arcs which intersect each leaf S x {¢} in the product exactly in one point.
It is not difficult to see that if K is a (b, g)-knot, then the tunnel number of K,
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denoted tn(K), satisfies tn(K) < b+ g — 1. In this section we construct (2,1)-
knots, which are in fact tunnel number 2 knots, which contain an acylindrical
surface of genus g.

Let T be a standard torus in S3, and let I = [0,1]. Consider T' x I C S3.
T x {0} bounds a solid torus Ry, and T x {1} bounds a solid torus Ry, such that
S3 = RyU(T x I)UR;. Choose n+1 distinct points on I, eg = 0, e1,...,e, = 1,
so that e; < e;4+1, for all 0 < i < n—1. Consider the tori T' x {e;}. By a vertical
arc in a product T' X [a, b] we mean an embedded arc which intersects every torus
T x {z} in the product in at most one point.

Let +; be a simple closed essential curve embedded in the product T'x [e;_1, ],
for i =1,...,n, so that it has only one local maximum and one local minimum
with respect to the projection to [e;—1,¢;]. Let «;, for ¢ = 1,...,n — 1, be a
vertical arc in T x [0, 1], joining the maximum point of 7; with the minimum of
~Yi+1. Let I' be the 1-complex consisting of the union of all the curves ~; and the
arcs aj. So I is a trivalent graph embedded in S®. Let R, = Ry U (T X [eg, e1])
and R} = Ry U (T X [en—1, en)).

Suppose each curve ~; satisfies the following;:

1. v; is not in a 3-ball contained in T' X [e;—1, e;], or in R}, or R}, that is, it is
not a trivial knot in that region.

2. 4; is not isotopic in T X [e;_1,€;], or in R{ or R}, to a knot lying on the
torus T x {e;}.

3. 7; is not a cable of a knot lying in T x [e;_1,e;] or in R}, or R} (it can be
proved that this is equivalent to say that -; is not isotopic to a cable of a knot
lying on the torus T' x {e;}.)

4. There is no annulus B in T x {ep} so that B x [0,1] contains I". If that
happens then each curve «; would be contained in a product B X [e;_1, €;].

5. There is no Mébius band in R{, (R}) disjoint from 7y (7y).

It is not difficult to see that there exist plenty of knots satisfying the conditions
required for the curves +;, say by taking each ~; to be a (1, 1)-knot which is not
a torus knot nor a satellite knot. For example, each «y; could be a copy of the
figure eight knot, as shown in Figure 9(a) in the case of ~;, Figure 9(b) for
Y2, ...y Yn—1, and Figure 9(c) for 7,. In the figures the knot is divided in two
arcs; the thin arc contains the minimum point of the knot, and the bold arc
contains the maximum. When assembled we get the graph I', shown for n = 2
in Figure 10.
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Figure 10.

Let N(T') be a regular neighborhood of I". This is a genus n handlebody.
We can assume that N(I') is the union of n solid tori N(v;), joined by (n — 1)
1-handles N(«;).

THEOREM (3.1). Let T be a graph as above. Then S = ON(T') is incompress-
ible and acylindrical in S — intN(T). Furthermore, M — intN (T) is atoroidal.

Proof. Consider the tori T x {e;}, 1 < i < n—1. These tori divide S into n+1
regions, where n — 1 of them are product regions and two of them are solid tori,
namely R{, and R}. The torus T x {e;} intersects I in one point, that is, a middle
point of a;, so T x {e;} N N(T') consists of a disc. Let T; =T x {e;} —intN(I),
for 1 <1i<n—1, this is a once punctured torus.

Suppose D is a compression disc for S, and suppose it intersects transversely
the tori T;. Let 8 be a simple closed curve of intersection between D and the
collection of tori, which is innermost in D. So 8 bounds a disc D’ C D, which
is contained in a product T' x [e;—1, e;], or in the solid torus R or in R}. If 3 is
trivial on T;, then by cutting D with an innermost disc lying in the disc bounded
by 8 on T;, we get a compression disc with fewer intersections with the T/s. If 3
is essential on T;, then it would be parallel to 9T;, or it would be a meridian of
T, or a longitude of T,,_1, but then in any case, one of the curves v; or ~, will
be contained in a 3-ball, which is a contradiction.

So suppose D intersects the T)s only in arcs. Let S such an arc which is
outermost on D, then it cobounds with an arc § C 9D a disc D’. We can
assume that 8 is an arc properly embedded in some T;; if 8 is parallel to an
arc on JT;, then by cutting D with an outermost such arc lying on T; we get
another compression disc with fewer intersections with the T7s, so assume that
[ is an essential arc on T;. After isotoping D if necessary, we can assume that
the arc § can be decomposed as § = §; U d2 U 03, where d1,d3 lie on ON («;) and
2 lie on ON(vy;) (if 6 were contained in ON(«;), then by isotoping D we would
get a compression disc intersecting 7T; in a simple closed curve). Let E be a disc
contained in N(a;) so that OF = §; U d4 U d3 U 5, where 04 lies on T; and 05
lies on ON(«;). So D’ U E is an annulus, where one boundary component, i.e.,
B Uy lies on T x {e;}, and the other, 65 U Js5, lies on ON(;). If 62 U J5 is a
meridian of ~;, then necessarily DU E is contained in R} (or in R}) and SUJ, is
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a meridian of that solid torus. Then v, (or 7,) intersects a meridian disc of Ry,
(R}) in one point, which implies that it is parallel to a knot lying on the torus
T x {eo} (T x {e1}), which is a contradiction. If §; U d5 is a longitudinal curve
of 7;, then this implies that 7, is parallel to a curve on T x {e;}, a contradiction.
If 92 U d5 goes more than once longitudinally on ~y;, this would only be possible
for the curves 1 or 7,, but then one of these curves would be a core of the
solid torus R{, or R}, which is not possible. This completes the proof that S is
incompressible in S — intN(T').

Suppose now that there is an essential annulus A in S® — intN(T"). Look
at the intersection between A and the punctured tori T;. Simple closed curves
of intersection which are trivial on A, and arcs on A which are parallel to a
component of JA are eliminated as above. So the intersection consists of a
collection of essential arcs on A, or a collection of essential simple closed curves
on A.

Suppose first that there are essential arcs of intersection. Let £ C A be a
square determined by the arcs of intersection. So OF = €1 Ud; Ues Udy, where €1,
€9 are contained in different components of A and 1, do are arcs of intersection
of A with the T}s. Take the square at highest level. So d1, 2 lie on the same level
T;, and possibly T; = T,,_1. So we can assume that e, ez lie on N (a; U 11).

Case 1: The arcs d1, 0o are parallel on T;, that is, they cobound a disc F in
T;.
There are two subcases, depending of the orientation of the arcs d1,d2. Give
an orientation to 0E. Suppose first that the arcs d1, d2 have the same orientation
on T; (note that the interior of F' may intersect the annulus A, but it is irrelevant
in this case). Then F U F is a Mdbius band, and by pushing it off T; we get a
Mébius band contained in the product T x [e;, €;+1] or in R}, with its boundary
lying on N(v;). This implies that either ~; is a trivial knot or that it is a 2-cable
of some knot, which is a contradiction.

Suppose the arcs d1, 02 have opposite orientations in T;. If the interior of
the disc F' intersects A, then take another square in A, which determines a disc
F’ C F with interior disjoint from A. We can form two annuli, £ U F' and
(A— E)UF. We will show that at least one of them is an essential annulus.
Note that a core of A is homotopic to the product of a core of E U F and a
core of (A — E)U F. So if these two curves are homotopically trivial, so is the
core of A. So assume one of them is incompressible, say (A — E) U F. If it is
O-compressible then it is 0-parallel, because S is incompressible. Then there is
a 0-compression disc for this annulus intersecting it on (A — E'), but this implies
that the original annulus A is also d-compressible, a contradiction. So we get a
new essential annulus with fewer intersection with the T7s.

Case 2: The arcs 61, 62 are not parallel on T;, and the arcs €1, €3 are parallel
on ON(T').

The arcs €1, €2 must have the same orientation on N(a; U ~;), see Figure
11(a). They cobound a disc F on IN (a; U~y;) with OF = €1 Uny Ueg Une, where
Y1,v2 C ON(a;) NT;. (Note that the disc F' may intersect the arc a1, or its
interior may intersect A, but this is irrelevant in this argument). It follows that
E U F is a Mdbius band whose boundary lies on T;. This is impossible if the
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Figure 11.

band lies in a product region. If it lies in R, then note that the band is disjoint
from the curve 7, but this is not possible, by hypothesis.

Case 3: The arcs 61, d2 are not parallel on T;, and the arcs €y, €3 are not
parallel on ON ().

Note that this case is only possible in a product region, see Figure 11(b).
Forget about the arc «;41, that is, consider the square F in the complement of
N(c; U~;). Then, it is not difficult to see that one of the arcs, say €5 can be slid
toward T;. Then there is a disc, whose boundary consists of two arcs, one lying
on T; and one on N(v;). By gluing to this disc a disc contained in N(«;), an
annulus between ~; and T X e; is constructed. The only possibility in this case is
that the annulus goes once longitudinally on N (v;), i.e., the curve ~; is parallel
to the torus T X e;, which is a contradiction.

This completes the proof in the case the annulus A is divided in squares.

Suppose now that the intersection of the annulus A with the tori T7s consists
of simple closed curves which are essential on A. Take an outermost curve, say
«. Then o and a component of 9A cobound an annulus, and the component of
0A must lie on some ~;. This again implies that +; is parallel to T; or that ~; or
~n are the core of the solid torus R, or R}, a contradiction.

It remains to prove that S —intN(T') is atoroidal. Suppose @ is an essential
torus, then we can assume that it intersects the tori T; in a collection of simple
closed curves which are essential on (), and divide ) in a collection of annuli.
Take one of this annuli, say A, at highest level. If A is in a product region
then it must be parallel to some T;, and then by an isotopy we can remove two
curves of intersection. So A lies on Rj. As it is an annulus in a solid torus, it
must be parallel to the boundary. If 7, is not in this parallelism region, then an
isotopy removes the intersection. If -, is the parallelism region, then take the
annulus next to A. It must be an annulus between T, _; and T, _s. Continuing
in this way, the only possibility is that the whole graph I lies inside a solid torus
bounded by @, but this is isotopic to a solid torus of the form B x I, where B
is an annulus in T X {e,}. This contradicts the choice of T". O
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Put now a knot K inside N(I") in such a way that KNN(«;), for2 <i <n—1,
consists of four vertical arcs with a pattern like in Figure 12(c), and kN N(~;)
consists of 4 vertical arcs, going from N («;) to N(a;+1), as in Figure 12(b). Also,
K N N(v1) consists of two arcs, each having a single minimum, and K N N(7,)
consists of two arcs, each having a single maximum, as in the pattern shown in
Figure 12(a). For n = 3, a knot K inside N(I") looks like in Figure 13, where
the twist is added to get a knot.

LEMMA (3.2). S = 0N(I) is acylindrical in N(I') — K. Furthermore, N(I') —
K is atoroidal.

Proof. The proof is also an innermost disc/outermost arc argument. It is
practically the same as in Lemma 2.3 of [3]. O

THEOREM (3.3). Let K and S as constructed above. K is a hyperbolic (2,1)-
knot, tunnel number 2 knot, and S is an acylindrical surface of genus g in the
complement of K.

Proof. Note that by construction K is a (2, 1)-knot, for it lies in T x I, and it
has in there exactly two maxima and two minima with respect to the projection
to the factor I. It follows from Theorem (3.1) and Lemma (3.2) that S is an
acylindrical surface. K is a hyperbolic knot because the complement of the
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surface is atoroidal and acylindrical. Finally note that the knot K has tunnel
number 2; it cannot have tunnel number one, for it contains an acylindrical
separating surface [19]. O

COROLLARY (3.4). Given any integer g > 2, there exist infinitely many hy-
perbolic 3-manifolds of Heegaard genus 8 which contain an acylindrical surface

of genus g.

Proof. For each g choose a knot K as above. Do Dehn surgery on K with slope
A, such that A(u, A) > 3, where u is a meridian of K. It follows that S remains
incompressible [22], acylindrical [11], and that M («) is irreducible and atoroidal
[9] [10]. Then by Thurston Geometrization Theorem, M («) is hyperbolic, for it
is Haken and atoroidal. K has tunnel number two, which implies that M («) has
Heegaard genus at most 3, but it cannot have Heegaard genus 2, for it contains
a separating acylindrical surface [19]. O

4. Quasi-Fuchsian surfaces of arbitrarily high genus

Let M be an irreducible orientable 3-manifold. Let K be a knot in M. Let
B be a branched surface in M disjoint from K. (see [7] [20] for definitions and
facts about branched surfaces). Denote by N a fibered regular neighborhood of
B, by On N the horizontal boundary of N, and by 9, the vertical boundary of
N, as usual.

We say that a branched surface B is incompressible in M — K if it satisfies:

1. B has no discs of contact or half discs of contact.

2. Op N is incompressible and J-incompressible in (M — K) — intN.
3. There are no monogons in (M — K) — intN.

We further say that B is meridionally incompressible if:

4. Op N is meridionally incompressible, that is , there is no disc D in M, with
DN N =09D C 0N, so that D intersects K transversely in one point.

We further say that K is not parallel to B if:

5. K is not parallel to 9NV, that is, there is no an annulus A in M, with
8A=AQUA1, so that Ay =K, and ANN = A; C 8hN

THEOREM (4.1). Let M, B, K as above, with B incompressible.

1. Suppose B is meridionally incompressible. Then a surface carried with
positive weights by B is meridionally incompressible.

2. If K is not parallel to B, then K is not parallel to any surface carried with
positive weights by B.

Then if B is meridionally incompressible and K is not parallel to it, any surface
carried by B with positive weights is quasi-Fuchsian.

Proof. Tt is essentially the same proof as in Theorem (2.5) in [7], with the
obvious modifications. O

Consider the knot K and branched surface B shown in Figure 14(a). Note
that B has 4 singular curves, denoted Cy, Ca, Cs, Cy, as in Figure 14(b). Note
that K is a 3-bridge knot. The knot K is just one in a collection of knots, to
get more just make the knot to intersect several times the discs D1, Do, D3, Dy
shown in Figure 14(b). But suppose that K intersects transversely the discs
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Figure 14.

Dy, Do, D3, Dy in at least 2 points, that is, the minimal intersection number of
the knots with the discs, when isotoping the knot in the complement of B is at
least 2. Note that K intersects the discs D5 and Dg in exactly 2 points, because
it is a 3-bridge knot. Suppose also that the arc of the knot lying in the solid
torus 7' (shown in Figure 14(b)), is not parallel to 9T; it is possible to do that,
an explicit example is in Figure 14(a).

The nonsingular part of B has six components, whose weights (a, b, ¢, d, e, f)
are shown in Figure 14(b). Note that if we give the weights (1,2n — 1,2n,2n —
2,n,n — 2), for n > 3, then this is a collection of positive weights, which is
consistent, and determines a connected surface of genus 3n.

If a knot K is not hyperbolic then it is either a torus knot or a satellite knot.
Remember that by the classical work of Schubert, a satellite 3-bridge knot must
be the connected sum of 2 two-bridge knots. It is known that two-bridge knots
do not contain any essential closed surface [13], and from this it follows that
the only essential surfaces in the connected sum of 2 two-bridge knots are the
swallow-follow tori. Also, torus knots do not contain closed essential surfaces.
This implies that a 3-bridge knot which contains an essential surface of genus
greater than 1 must be hyperbolic.
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THEOREM (4.2). The surface B is meridionally incompressible and K is not
parallel to it. So K is a hyperbolic 3-bridge knot which contains quasi-Fuchsian
surfaces of arbitrarily high genus.

Sketch of proof. Let N be a fibered neighborhood of B. Note that S — N has
3 components, denoted by Ni, No, N3, where say N3 is the region that contains
the knot, N; is the upper region, and N, the lower region.

Suppose that the part of 9, IV contained in N3 is compressible or meridionally
compressible, and let E' be a compression or meridian compression disc. Look
at the intersections between E and the discs D1, D3, D5, Dg. Let v be a simple
closed curve of intersection which is innermost on E, so v bounds a disc £’ C E;
suppose first that E’ is disjoint from K. The curve 7 also bounds a disc D’ in
some D;. Suppose D’ intersects K. If D’ is part of Dy or D3, then K intersects
the sphere E'UD’ several times always in the same direction, which is impossible.
If D’ is part of D5 or Dg then it must intersect K in two points, and then there
is an arc of K contained in the 3-ball bounded by E’U D’. But this implies that
K can be made disjoint from D5 or Dy, or from D3 or D;, which is impossible
by hypothesis. So D’ must be disjoint from K, and then an isotopy reduces the
number of intersections between E and the D;. If E’ intersects K once, then by
a similar argument, D’ intersects K also in a point, and then by an isotopy, we
get a new compression disc with fewer intersections with the D;. Suppose then
that the intersection between E and the D; consists only of arcs. Let v be an
arc of intersection which is outermost on F, and which bounds a disc E’ disjoint
from K. The arc v also bounds a disc D’ on some D;. If K is disjoint from D’,
then by cutting £ with an outermost disc lying on D’ we get a new compression
disc with fewer intersections with the D;. If K intersects D’ in one point, then
it is not difficult to see that K must intersect in one point one of Do, D4 or Dy,
which is a contradiction. So if there is such a disc E, it must be disjoint from the
D;, and by inspection it is not difficult to check that such disc does not exist.
The part of 0, N contained in N3 consists of one annulus, corresponding to the
curve Cy. Again an innermost disc/outermost arc argument shows that there is
no monogon.

The part of 0, N contained in N7 consists of a twice punctured genus two
surface; it is not difficult to check that it is incompressible. The part of 9, N
contained in Nj consists of an annulus, corresponding to the curve Ci; it is
also not difficult to check that there is no monogon. Similarly, the part of 0, IV
contained in Ny consists of a three punctured sphere and an once punctured
torus, and 9, N consists of two annuli, corresponding to the curves C5 and Cy;
again it is not difficult to check that these are incompressible and that there is
no monogon.

To see that K is not parallel to B, suppose there is an annulus A, with one
boundary being K and the other on B. Again look at the intersections between
A and the discs D;, and get that the arc of the knot that lies in the solid torus T’
must be parallel to 9T, but this is not possible by the choice of such an arc. O

The explicit knot shown in Figure 14(a) has more interesting properties, it
is a ribbon knot and it has unknotting number one, where a crossing change is
located in the arc contained in the solid torus T
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COROLLARY (4.3). There exist hyperbolic genus 3 closed 3-manifolds, in fact
homology spheres, which contain incompressible surfaces of arbitrarily high genus,
so contain infinitely many incompressible surfaces.

Proof. Let K be a knot as in Theorem (4.2). Let K(r) be the manifold
obtained by performing Dehn surgery on K with slope r. If A(r,u) > 1, where
p denotes a meridian of K, then K(r) is irreducible by [9], and B remains
incompressible in K(r) by [22], for K is not parallel to B. If A(r,u) > 2,
then K(r) is atoroidal by [10]. So if A(r,u) > 2, K(r) is an atoroidal Haken
manifold, hence it is hyperbolic. K is a tunnel number 2 knot, hence each K (r)
has Heegaard genus < 3. Finally note that among the K (r) many are homology
spheres. O

COROLLARY (4.4). There exist genus 2 closed 3-manifolds which contain in-
compressible surfaces of arbitrarily high genus, so they contain infinitely many
incompressible surfaces.

Proof. Let K be a knot as in Theorem (4.2). Let X(K) denote the double
cover of S? branched along K. As K is a 3-bridge knot, ¥(K ) has Heegaard genus
2. If S is a surface carried by B with positive weights, then as it is meridion-
ally incompressible, it lifts in X(K) to a (possible disconnected) incompressible
surface [8]. O

Remark (4.5). It should be possible to say that the manifolds obtained in this
corollary are hyperbolic; this will be the case if it is shown that the knots K do
not admit a tangle decomposing sphere.
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3-MANIFOLDS THAT ARE COVERED BY TWO OPEN
BUNDLES

J. C. GOMEZ-LARRANAGA, WOLFGANG HEIL, AND F. GONZALEZ-ACUNA

ABSTRACT. We obtain a list of all closed 3-manifolds that are covered by
two open submanifolds, each homeomorphic to an open disk bundle over
S1, or an open I-bundle over the 2-sphere, the projective plane, the torus,
or the Klein bottle.

0. Introduction

The F-category F' (M) of a closed 3-manifold M is the minimum number of
critical points of smooth functions M — R. A lower bound for F (M) is the
Lusternik-Schnirelmann category cat (M) of M, which is a homotopy invariant
and is defined to be the smallest number of sets, open and contractible in M,
needed to cover M. An invariant that turns out to be equivalent to F (M) is
the smallest number C (M) of open balls needed to cover M. Note that 2 <
C(M),F (M),cat(M) < 4, and denote by B a connected sum of any number
of S2-bundles over S'. Then the results about these three invariants can be
summarized as follows (where ~ denotes homotopy equivalence): F' (M) =2 &
M =83 F(M)<3< M=3 (proved in [12] ).

C(M)=2&M=53C(M)<3< M=B (proved in [8]).

cat (M) =2 M ~ 53 cat (M) <3< M ~ B (proved in [3]).

Generalization of these invariants were introduced by Clapp and Puppe [1]
and Khimshiashvili and Siersma [9]: Let A be a closed k-manifold, 0 < k < 2.
A subset G in the 3-manifold M is A - categorical if the inclusion map 7 :
G — M factors homotopically through A. An A-function on M is a smooth
function M — R whose critical set is a finite disjoint union of components,
each diffeomorphic to A. The A-category cata (M) of M is the smallest number
of sets, open and A-categorical, needed to cover M. The A-complexity Fa (M) of
M is the minimum number of components of the critical set over all A-functions
on M.

Then catpoins (M) = cat (M), Fpoint (M) = F (M), catg: (M) is the round
category of M, and Fg1 (M) is the round complexity of M, studied in [9].

It is now natural to ask about minimal covers of M by open sets, each homo-
topy equivalent to A. In particular when A is a point, S*, or a closed 2-manifold,

consider covers of M by open disk bundles over A, i.e. open 3-balls, D?-bundles

over S', and I-bundles over surfaces. For such an open disk bundle B (A) over
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A let Cp(a) (M) denote the minimal number of sets, each homeomorphic to
B (A), needed to cover M. In this paper we classify all closed 3-manifolds for
which Cp(a) (M) = 2, where A is S1, 52, the projective plane P2, the torus
T, or the Klein bottle K. (Note that Cg(poins) (M) = C (M)). The results are
summarized in a table at the end of the paper. Some results are unexpected;
for example the manifolds for which CT><3 (M) = 2 include all lens spaces (in-

cluding S3), which can be seen as follows. Let L; = I; Uly be the Hopf link in
53 and let I/ be parallel to I; so that Ly =I5 Ul} is a Hopf link disjoint to L.
Then S3 = (5'3 — Ll) U (5'3 — Lg) is a union of two open T x I’s. A similar
construction can be made for any lens space.

1. Preliminaries

Throughout this paper we work in the PL-category. Our goal is to obtain
information about closed 3-manifolds that are covered by open sets each of which
is homeomorphic to the interior of a compact 3-manifold. Our main lemma shows
that we can reduce the problem of a covering by two open sets to a canonical
covering by two compact manifolds, each PL embedded.

(1.1) Main Lemma. Suppose M is a closed 3-manifold covered by two open
sets Hy, Hs, such that H; is homeomorphic to the interior of a compact connected
3-manifold V; (i = 1,2). Then M admits a covering M = Vi U Va such that
OViNoVe =0 and V1, Vs are PL embedded.

Proof. Using collars on dV; (i = 1,2), we can write H; = |J int Vk(i), where

k=1
Vk(z) =~ V;, Vk(l) C int Vk(fl, k =1,2,.... The complement H{ of Hy in M is
a compact subspace of Hs, and it follows that Hf C int V,EQ) for some n. Now,

(int Vé2)) is a compact subspace of H; and hence (int Vé2)) C int Vrﬁf) for
some m. Note that 8V,52) C (int VTEZ)) C V&”. Hence if we let V] = Vé}) and
Vo = VéQ) in M we obtain M = V; U V5 as desired. O

By a knot space we mean a 3-manifold N homeomorphic to the complement
of the interior of a regular neighborhood of a non-trivial knot in S3. Note that
ON contains a meridian curve C' such that attaching a 2-handle to N with core
along C yields B2. The next lemma is well-known.

LEMMA (1.1.1). Suppose M is a compact irreducible 3-manifold.

(i) If M contains a 2-sided compressible torus T then either T' bounds a solid
torus or a knot space N in M with an essential curve of ON bounding a disk in
M — N. If T is a compressible boundary component of M then M = D? x S'.

(ii) If M contains a 2-sided compressible Klein bottle K then either K bounds
a solid Klein bottle in M or M contains a 2-sided projective plane P2. If K is a
compressible boundary component then M is a solid Klein bottle.
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Proof. (i) Let Dx[—1,1] be a neighborhood of a compressing disk D = Dx {0}
with D x [-1,1]NT = 9D x [-1,1]NT. The sphere S = (T'— D x [-1,1]NT) U
D x{—1}UD x {1} bounds a ball Bin M. If DN B =) then BUD x [—1,1] is
a solid torus in M bounded by T. If D C B then T' C B such that BN T is an
essential annulus of 7. Hence B — D x [—1, 1] is a knot space (or a solid torus)
in M bounded by T.

(ii) If we surger K as above along a compressing disk D we obtain a 2-
sphere S if 9D does not separate K. Then B U D x [—1,1] is a solid Klein
bottle bounded by K. (The case D C B can not happen since a Klein bottle
does not imbed in a ball). If 0D separates K into two Moebius bands then
(K—-Dx[-1,1]NK)UD x {—1} U D x {1} gives two 2-sided P?’s in M. O

Notation. By Bx F we denote a twisted F-bundle over B, not homeomorphic
to B x F. In particular, S'xD? is the solid Klein bottle, S*xS? is the non-
orientable S2-bundle over S', and P?x1 is the once-punctured projective space
P3. The twisted I-bundles over a torus 7" and a Klein bottle K are described in
the next section.

The union of two 3-manifolds N7, Ny glued together along boundary compo-
nents is denoted by Ny Uy Ns.

L denotes any lens space (including 3 and S* x §2).

S (2,2,n) denotes a Seifert fiber space over the 2-sphere with three exceptional
fibers of orders 2,2,n (n > 0).

The symbol ~ means homologous to.

The symbol ~ means homeomorphic.

2. I-bundles and (semi)-bundles over the torus and Klein bottle

Recall that an I-bundle over a surface F' is twisted if it is not the product
I-bundle F x I. The twisted I-bundle a?x I over the annulus a? is homeomorphic
to the product I-bundle m? x I over the Moebius band m?2. The twisted I-bundle
m?x1I over m? is homeomorphic to the solid torus D? x I (with m? embedded
in D? x I so that Om? is a (1,2)-curve on 9D? x S1).

(2.1) . There is only one twisted I-bundle T'xI = m? x S* over the torus T =
St x St

To see this, note that in such an I-bundle N there is a simple closed curve ¢
on T such that the restriction of the I-bundle over ¢ is a Moebius band. Now ¢
cuts T into an annulus a? and the restriction of the I-bundle over a? is twisted.
Hence N is the quotient m? x I/ (x,0) ~ (¢ (z),1) for a homeomorphism ¢ of
m?2. If ¢ is isotopic to the identity then N = m? x S'. The case that ¢ is not
isotopic to the identity can not occur since then ¢ would reverse the orientation
of Om?2, which would cause ON to be a Klein bottle; but N is a torus since it
is a 2-sheeted cover of T.

(2.2). There are exactly two twisted I-bundles over the Klein bottle K =
Stx St

These can be described as follows. The restriction of such an I-bundle N over
a separating simple closed curve on K splits IV into two I-bundles over Moebius
bands m?, m2, at least one of which is twisted. There are two possibilities.
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(i) N = m?xI Um3xI is a union of two solid tori along an annulus in their
boundary and N can be described as a Seifert fiber space with orbit a disk and
two exceptional fibers of order 2. In this case N is orientable and is denoted by
(KXI),.

(i) N = m? x IUm3xI, where Om? x I is identified with an annular neigh-
borhood of Om3 in 0D? x S' = 9 (m3xI). In this case IN is a Klein bottle,
and we denote this I-bundle over K by (K?I) Ny

Another description of (K xTI ) No is obtained by cutting K into an annulus
along a 2-sided non-separating circle. As for T'xI we obtain (K x 1 ) N, 38 the
quotient m? x I/ (z,0) ~ (¢ (x),1), where 1 is not isotopic to the identity.
Viewing m? as a rectangle with a pair of opposite edges identified, 1/ is induced
by a reflection about a line mid-way between the two edges (cf [10]). Thus
(K'xI) N X S1xm?, the twisted m2-bundle over S*.

Following Hatcher [4], we call a union of two twisted I-bundles over a torus T
(resp. Klein bottle K) glued together along their boundary component a torus
(resp. Klein bottle) semi-bundle. These semi-bundles are essentially classified
by the isotopy classes of their gluing maps (see e.g. [4, Thm 5.1]).

There are exactly four isotopy classes of homeomorphisms of the Klein bottle
([10]) that lead to exactly four Klein bottle-bundles over S!, described in [6].
3. Covers by int M7 and int My

In this and the following sections we consider a closed 3-manifold M that
is covered by two open sets int My, int Ms, where M, Ms are homeomorphic
compact connected 3-manifolds. In light of the Main Lemma, we may assume
throughout that

(*) M = M, U My, M, =~ M, compact, 9M; N OM, = (.
We let Q = M7 N My C M. Note that the boundary of each component of @
contains a component of both dM; and 9M,. We observe

(i) If My, My are irreducible then M; — @ is irreducible (i = 1, 2).

For a 2-sphere in int (M; — Q) bounds a ball B in int (M7) . If B does not lie

in M7 — @ then B contains a component of (), hence a component of OMj, a
contradiction.

(ii) If My, My are irreducible and M # S? then @ is irreducible.

For a 2-sphere S in Q bounds balls By C My, By C Ms. Either By = By C Q,
OrBlﬂBQZSaDdM231U3BQZS3.

. overs by open balls and open disk bundles over S*.
3.1) C b ball d disk bundl St
(a) If M; =~ B3 then M = S3.
Proof. OM> bounds a ball B in M; and M = M, Uy B = S3. O
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(b) If M; = S x D? then M = L.

Proof. Since M; does not contain a closed incompressible surface, there is a
compressing disk D for OMs in M;. If D C My — @ then M; — @ is a solid torus
(by Lemma (1.1.1) (i) and (3) (i)) and M = M; — Q Uy My is a lens space.

If D C @ then, viewing a regular neighborhood of D in @ as a 2-handle
U (D), we get that M; — QUU (D) C M, is bounded by a 2-sphere. Hence M =

(M —QUU (D)) Us (Mg -U (D)) is a union of two balls, i.e. M = S3. O

(¢) If M; = S'xD? then M = S*xS?.

Proof. OMs> is compressible in M7 and M; does not contain a projective plane.
By Lemma (1.1.1) (ii), M3 bounds a solid Klein bottle M] C M; and M =
M] Up My = S?x S (see e.g. [7, 2.14]). O

(3.2) Covers by open I-bundles over S? or P2.
(a) If M; =~ S? x I then M = S3, S' x S? or S*xS2.

Proof. Let OMy = Sy U Sy C int M;.

If Sy bounds a ball By in M; then By € M; — Q since M is closed. Now
ML = My Ug By is a ball and M = M; U MJ. The boundary S; of M} is not
isotopic to a boundary sphere of M7 (since M is closed) and hence bounds a ball
By in My, different from M} and M = M} Uy By = S3.

If both Sy and S; are parallel to the boundary spheres of M; then Sy and S;
bound a submanifold M} ~ S? x I in M; and we obtain M = M; — M’ Ua M3,
hence M = S x S% or S1x52. O

(b) If M; = P2 x I then M = P? x S*.

Proof. This follows from the fact that any projective plane in M; is isotopic
to a boundary component, hence M =~ M; Uy M,. (Note that there is no twisted
P2-bundle over S!). O

(c) If M; = P?xI then M = P? or P3#P3,

Proof. If OMy bounds a ball B in M; then M = M; Uy B = P3. Otherwise
OMs is parallel in M; to OM; and M ~ M, Uy My = P3#P3. O

(3.3) Covers by open I-bundles over S' x S! and S'xS.
Let T =S x S' and K = S'xS.

(a) If M; =T x I then M = L or a T-bundle over S*.

Proof. Let OMy =Ty U Ty, OMy = T{UT].

If Ty is incompressible in M7 then it is isotopic to a component of dM; and
splits M7 into two copies My, M{'. Assume T, C M{',T{ C M{. Then Ty C Mj,
say. Then (since T, Ty C Q) and T} C int M>) it follows that M7 is a component
of @ C M;. The other component(s) of @ lie in M] and are bounded by T] and
T;. Since T{ » 0 in M7 there is exactly one component P of @) in M] bounded
by T{ and T;. Hence Ty ~ 0 in Mj and Lemma (1.1.1) (i) implies that Ty is
incompressible in Mj. Hence Ty, T1 are isotopic in M; to T}, 7] and it follows
that M =~ M, Uy My is a T-bundle over S*'.
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Figure 1

Now suppose that Ty, T7 are both compressible in M;; hence, by Lemma
(1.1.1) (i), T; bounds a solid torus or knot space N; in My (i=0,1). Now T} is
not contained in Ny. Otherwise an arc in My from a point of Ty to a point
of T1 would be in Ny (since Ty separates in Mi), and it would follow that
Ms C Ny C My, a contradiction. Similarly Ty is not contained in Ni; hence
Ny and N; are disjoint. If Ny is a solid torus then M) = My Uy Ny is a solid
torus and M = M} Uy Ny. Thus if N; is also a solid torus, M is a lens space. If
N is a knot space then a meridian circle on 9N; bounds a compressing disk D
for M} in My — Ny (see Figure (1)).

For a regular neighborhood U (D) in M; — Ny we obtain M = M} — U (D)
UspN1 UU (D), a union of two balls, hence M = S3.

The case where both Ny and N; are knot spaces in M; can not occur. For
in this case a compressing disk D for 77 in M; — N7 must intersect Ny, since
otherwise D would be a compressing disk for 77 in M. But then an essential
innermost circle component of Ty N D bounds a disk D’ on D which would be a
compressing disk for Ty in Ny or in Ms, a contradiction. O

(b) If M; = K x I then M = S'xS? or a K-bundle over S*.

P?”OOf. Let OMy; = Ko U K7 C int M;.

If Ky is compressible in M; then it bounds a solid Klein bottle V; in M; (by
Lemma (1.1.1) (ii), since M; does not contain P?’s). The same argument as in
case (a) shows that K is also compressible and bounds a solid Klein bottle V4
in M7 such that V) and Vi are disjoint. Then M = (M3 Uy Vi) Us V4 is a union
of two solid Klein bottles, hence M = S x S2.

If both Ky, K7 are incompressible in M; then they are boundary parallel and
M = M; U M, is a K-bundle over S?!. O

We next consider the cases of twisted I-bundles over T and K.

LEMMA (3.3.1). Let M; be a twisted I-bundle over T or K (i =1,2).

(i) If OM; is incompressible in My then M ~ My Uy My is a semi-bundle.

(ii) If OM, is compressible in Ma then M = MsUp (51 X D2) (for M; = TxI
or (K?I)O), resp. M = My Uy (S'xD?), (for M; = (KQI)NO),

Proof. If OM; is incompressible Ms then it is parallel to My in Ms and
M =~ M; Uy M.
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Figure 2

If OM; compresses in Ms then it bounds a solid torus, a knot space, or a
solid Klein bottle in My (by Lemma (1.1.1)). It can not bound a knot space
N since otherwise a meridian of N would bound a compressing disk D in
My — N C @ and hence D would be a compressing disk for M7 in M;. It
follows that M = M Uy (S* x D?) or Mz Uy (S*xD?). O

(¢) If M; = T'xI then M is a torus semi-bundle or M = P2 x S* or M =
Stxs2.

Proof. By the previous lemma it suffices to consider the case where M =
My Uy (Sl X DQ) .

In the 2-sheeted orientable cover M of M, My = m?x St lifts to a®? xS' = T'xI
and the attaching solid torus S L' x D? lifts to two attaching solid tori. Hence
M is a lens space; its fundamental group is infinite, since it covers the closed
non-orientable manifold M. By the classification of (orientation-reversing) fixed
point free involutions on S* x S2 ([13], [14, Corollary]), M is as claimed. O

(d) If M; = (K?I)O then M is a Klein bottle semi-bundle or M = P3#P3
or M =5(2,2,n) (for any n > 0).

Proof. Again we need to consider only the case that M = My Uy (S1 X DQ) .
Representing M5 as a Seifert fiber space over a disk with two exceptional fibers
each of order 2 we obtain M = S (2,2,n) if the meridian dD? of the attaching
solid torus is not homotopic to a fiber on OMs, and M = P3#P? otherwise (see
e.g. [9]). O

(e) If M; = (K xI) n, then M is a Klein bottle semi-bundle or M = P2 x St

Proof. Considering only the case M = My Uy (SliDz), we represent Mo =
S'xm? (as in section 2) and note that 9m? cuts My = S' xdm? into an annulus.
Up to isotopy, there is only one simple closed curve on K that cuts K into an
annulus ([10]). Thus there is only one way to attach S'xD? to My : the meridian
dD? of S'xD? must be glued to dm?2, and it follows that M = (Slng) Ua
(5'xD?) = §'xP? = S' x P2, O

Figure (2) shows that P?xS! indeed admits a decomposition of type (K xI) YA
(S'xD?).
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The following table summarizes the results.

M :intM1 Uil’ltMQ
M; | B | §' x D? | 8'xD?* | 52 x1 | P2x1I | P*xI |

M| S3 L S1% .52 93 P2 x St pP3

St x §? P3#p?
Sl §52
M| TxI TXI KxI (KXI), (KXT)
M L S1%8% | SIS P34Pps p? xSt
K-semi bun-
T-bun(illes P2 xSl K -bun{iles S(2,2,n) dles (non ori-
over S over S
entable)
) K-semi
T-semi bundles
bundles (orientable)

Conversely, it is easy to see that each manifold in the table is a union of two
open covers as indicated.
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SELF-COINCIDENCE OF MAPS
FROM S¢-BUNDLES OVER S" TO S™

DACIBERG L. GONCALVES AND DUANE RANDALL

ABSTRACT. Let E be the total space of a sphere bundle over a sphere S™.
We investigate the problem of when a pair of maps (f1, f2) : E — S™ can
be deformed to a coincidence free pair. Special attention is given to the
case f1 = fa, called the self-coincidence case. We study this case from the
point of view of an arbitrary deformation of f and of a small deformation of
f. We show that if (f, f) : E — S™ can be deformed to a coincidence free
pair by a small deformation and f is a fibre map, then the Euler number
of the fibration is 2 and the fibration is fibre homotopy equivalent to the
Stiefel fibration p1 : Vapy1,2 — 52", We study the coincidence problem
(i.e. an arbitrary pair (f1, f2)) in more detail when the total space is one
of the spaces, S3, S7, S15, V5,2,V9,2. For many other cases of the domain
we show that the problem can be reduced to a problem of maps either
between spheres or from a complex with two cells of positive dimension
into a sphere. For maps f : ™ — S™ and m < 2n — 1 we classify the pairs
(f1, f2) which can be deformed to a coincidence free pair. We construct
maps fan : S*71 — S27 for all odd n > 1 for which (fan, forn) can be
deformed to a coincidence free pair, but not by a small deformation.

1. Introduction

Let M and N be closed manifolds of dimensions m and n, respectively. One
of the major problems in coincidence theory is to determine when a given pair
of maps f1, fo : M — N can be deformed to a pair (g1, g2) which is coincidence
free. The more general question is to describe the minimal (in some sense) set
coin(g1, g2) obtained among all pairs (g1, g2) homotopic to fi, f2, respectively.
This problem is well understood for the cases where dim(M) = dim(N) > 3.
See, for example, [14] and [7] for M, N orientable manifolds and nonorientable,
respectively. For some specific families of manifolds, see [4],[5], [18] and [8], and
for the cases where M is a CW-complex and dim(M) = dim(N), see [1], [6].
The case where m > n is more subtle. Several aspects of this problem have been
considered in [9], [2], [12], [3], [11], [19]. In [2] the coincidence problem for the
case f1 = fo was analyzed via homotopy theory. Also U. Koschorke in [12] has
considered the same case under the hypothesis that m < 2n — 2 (which we call
the stable case).

This work uses the approach and some of the main results of [2]. For a given
map f, we investigate whether the pair (f, f) can be deformed to a coincidence
free map pair, and also if there exists a small deformation. This latter question

2000 Mathematics Subject Classification: Primary: 55M20; Secondary: 55R25, 55535.
Keywords and phrases: Self-coincidence, obstruction, fibrations, Whitehead product,
Barratt-Puppe sequence.
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is interesting in its own right and often appears in analysis. Let us point out that
such phenomenon does not occur in self-coincidence of codimension zero, where
the two concepts are equivalent. In [2], a homotopy approach is developed to
study these two questions. For the benefit of the reader, we now state the main
results from [2] used here. From [2], we have the following notation: given any
two arbitrary maps, f1, fo : B — B, we say that f, can be separated from fo, or
(f1, f2) is homotopy disjoint, in symbols f1 |l fa, if there exist ¢1,¢2 : E — B such
that ¢1, g2 are homotopic to fi and fa, respectively, and ¢ (x) # g2(x) for all z;
otherwise, we write f1 f fo. Given p: E — B, denote by I', C E' x B the graph
of p. A pair of maps (f, f) : E — B is homotopy disjoint by small deformation
in [2] if NT'f, the normal bundle of 'y, admits a nowhere-zero cross section. It
follows from the above definitions that if a pair (f, f) is homotopy disjoint by a
small deformation, then it is homotopy disjoint. If the pair is homotopy disjoint
by small deformation, then we simply say that the pair can be deformed to be
coincidence free by a small deformation. Proposition (2.11) of [2] identifies the
primary obstruction to deforming a pair (f, f) to coincidence free and affirms:

ProposITION (1.1). If B is a compact, connected n-dimensional manifold
and f : E — B, then the primary obstruction to lift (f, f) in
BxB-A
+
e Y pxsB
by deformation, is the f*-image of the primary obstruction to lift (id,id) in

BxB—-A
- +
p @ BB

by deformation. The latter is the twisted Euler class of B, i.e. = x(B) - ug,
where x(B) is the Euler characteristic of B and up = m B-twisted fundamental
class.

For a pair of maps (f1, f2) into a sphere, Proposition (2.10) of [2] affirms:

PROPOSITION (1.2). If B = S", then f1 | f2 implies that Ao fy is homotopic
to f1, where A is the antipodal map on S™.

Let 75 be the tangent bundle of the differentiable manifold B, S(7p) the
sphere bundle and ¢ : S(75) — B the projection map.

In order to have a small deformation, Proposition (2.13) and (2.16) of [2]
state, respectively:

PROPOSITION (1.3). The map f : E — B admits a lift to S(t) if and only
if (f, f) is homotopy disjoint by small deformation.

PROPOSITION (1.4). If f : E — B is a map where B is a smooth manifold
then the map f : E — B admits a lift to S(7B) if and only if the horizontal
tangent bundle f*(7p) over E has a mowhere-zero cross section. Therefore we
conclude that (f, f) is homotopy disjoint by small deformation if and only if the
horizontal tangent bundle f*(1g) over E has a nowhere-zero cross section.
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In this work we consider the coincidence problem for maps f : E — S™, where
FE is a S9%-bundle over S™, and for maps between spheres. Special attention is
given to the case of self-coincidence. This paper is divided into 3 additional
sections. In section 2 we prove some generalities and reduce the problem to
a problem of maps either between spheres or from a two cell complex into a
sphere. In section 3 we study the case where the total space E is an S?"~1-
sphere bundle over S?*. In section 4 we consider maps between spheres S™ to
52" for m = 4n — 1.

2. Generalities and preliminary results

Let E be the total space of an S9—bundle over S™ and f : E — S™ be a map.
In this section we first study the primary obstruction to make (f, f) coincidence
free in the case where f is a fibre map. Then for f an arbitrary map and ¢ # n—1,
we reduce our problem to a problem either of maps between spheres, or of maps
from a complex with two cells of positive dimension into a sphere.

The coincidence problem has a simple answer for n odd. Consider fi, fa2 :
X — S™ a pair of maps where X is an arbitrary space.

LEMMA (2.1). Let n be odd. Then the pair (f1, f2), for fi,f2 : X — S™, is
homotopy disjoint if and only if [fi] = [f2]. In this case (f1, f1) is homotopy
disjoint by a small deformation.

Proof. From Proposition (1.2) we must have [f3] = [4 o f1], where A denotes
the antipodal map on S™. Since A is homotopic to the identity for n odd, the first
part follows. For the last part it suffices to compose f1 with a small perturbation
of the identity of S™ which is fixed point free. O

From now on, we restrict ourselves to the case where the target is a sphere of
even dimension. Let p : E — S2" be a fibre map.

PROPOSITION (2.2). The trangression homomorphism A : Ha,(S*") —
Hosp,—1(S7) of the Serre Spectral sequence of the sphere bundle ST — E — S™ is
the trivial homomorphism if ¢ # 2n — 1 and multiplication by an integer | € Z
for a fixed choice of generators if ¢ =2n — 1.

Proof. Since the fibre has homology only in dimension 0, ¢, the result follows
immediately from the Serre spectral sequence for dimensional reasons. O

PROPOSITION (2.3). The group H?"(E; Z) is isomorphic to Z if ¢ # 2n — 1,
2n. It is isomorphic to Z+ Z for ¢ = 2n and to Z/1 if ¢ = 2n— 1. Furthermore,
p*: H™ (S, Z) — H*(E; Z) is either the identity if H*"(E; Z) is isomorphic
to Z, the natural projection Z — Z/l if g = 2n — 1, or an inclusion Z — Z + Z
if ¢ = 2n.

Proof. This is a consequence of the Gysin sequence, where [ above is the Euler
number of the bundle. |

The integer [ in the proposition above is the Euler number of the bundle. Now
we will show that p fp in all cases where [ # £1, +2.

THEOREM (2.4). We have p §p if either ¢ # 2n — 1, or ¢ = 2n — 1 and
I 4 +1,+2.
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Proof. By Proposition (2.2) we have that x(S%")-p*(i2n) # 0. By Proposition
(1.1), the result follows. O

Let f: E — S?" be an arbitrary map and ¢ # 2n — 1. We will show that the
problem of whether f | f either by a deformation or by a small deformation is
equivalent to the same separation problem about maps between spheres or maps
from a two cell complex into a sphere.

THEOREM (2.5). Let f: E — S* where E is the total space of an S9-sphere
bundle over S®* and q # 2n — 1. Then we have:

a) For ¢ < 2n — 1, the map f factors through the cofibre L ~ E/S? of the
inclusion ST — E by a map f' : L — S and L has the homotopy type of
a two cell complex with cells in dimension 2n and 2n + q. Then the primary
obstruction in dimension 2n to have f  f can be identified with the primary
obstruction in dimension 2n to have f' || f’ either by a deformation or by a
small deformation, through the isomorphism induced by the projection E — L
in cohomology in dimension 2n. This primary obstruction is zero if and only
if f"*(t2n) = 0. When the primary obstruction to deform (f',f') coincidence
free vanishes, f' factors through a map f" : S*"+9 — S where S?"+9 s the
quotient of E by the 2n-skeleton. Similarly, the higher obstruction to have f" |2
" (by small deformation) can be identified with the only obstruction to have f”
R f" (by small deformation), respectively.

b) Forq > 2n—1, let s : S?™ — E be any section to the sphere bundle fibration
p: E — S, Suppose f os is essential for a map f: E — S*™. Then f Rk f.

Proof. Part a). The existence of the factorization f’ follows because m,(S5")
is zero for ¢ < 2n. So let f' : L — S?" be a factorization. Since the projection
FE — L induces an isomorphism in cohomology in dimensions 2n and 2n + q,
it follows that the primary obstruction to deforming (f, f) to be coincidence
free vanishes if and only if the primary obstruction to deforming (f', ') to be
coincidence free vanishes. For the case of a small deformation, a similar argument
applies using Proposition (1.3). If the primary obstruction vanishes, then we
must have f’*(t2,) = 0. So, by the Barratt-Puppe sequence, there is a second
factorization, and the proof follows in the same fashion.

b) Let g : E — S?" be any map homotopic to f. The coincidence number
of the pair (f o s,g o s) on S?" equals the Lefschetz number L(f os,gos) =
2degree (f o s) # 0. Thus f and g have a coincidence, so f cannot be separated
from itself. o

From now on, we consider the cases where E is a S?*~!-bundle over 52". The
cases where the total space is not a sphere will be treated in the next section,
and the remaining cases will be treated in the last section.

3. Self-coincidence of S?"~1-bundles over S2"

In this section we analyze the coincidence problem for maps defined on the
above bundles, for ¢ # +1. The cases £ = +1 are considered in the next section.
First we consider the self-coincidence problem for fibre maps p : E — S?". Then
we consider the coincidence problem for an arbitrary pair of maps f1, fo : £ —

S2n,
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Let p : E — 52" be an $?"~!—bundle.

For the fibration p; : Vopt1,2 — 527 we have p; [ p1 by a small deformation
(see Proposition (1.3)). We show that for £ = £2 this is the only such case, up
to fibre homotopy equivalence. More precisely:

PROPOSITION (3.1). We have that p | p by a small deformation if and only
if the fibration p : E — S*" is fibre homotopy equivalent to the fibration p; :
Vant1,2 — S

Proof. From Proposition (1.3), we have that p |t p by a small deformation if

and only if there is a map f : £ — Va,11,2 which makes the diagram below
homotopy commutative

Vonti,2

1

E 2 g

Since p; is a fibration, we can replace f by another map homotopic to f which
makes the diagram commutative. Denote also by f this new map. Thus f is
a fibre-preserving map. This map, restricted to the fibre $?"~!, is homotopic
to either the identity or its negative, since the trangression of both fibrations is
multiplication by 2. By the homotopy long exact sequence of the two fibrations
and the induced homomorphism, it follows that f is a fibre homotopy equiva-
lence. O

Remark (3.2). The above result shows, in particular, the following: Given a
map f : Vani1,2 — S?" such that (f, f) is homotopy disjoint by small deforma-
tion, then either f is not in the homotopy class of a fibre map or it is in the class
of the fibre map pq : Vop41,2 = S2n,

Now we consider arbitrary maps, but we restrict our domains to the manifolds
Vant1,2. To describe the set of homotopy classes of maps [Vay41.2,5%"], the
following lemma is useful.

LEMMA (3.3). Let L ~ Vani1.2/S%"! be the cofibre of the inclusion i :
S2n=1 <y E. Then L has the homotopy type of S2" Vv §47~1,

Proof. The manifold V5,41 2 is the sphere bundle of the tangent bundle of
the sphere S2". Since the tangent bundle is stably trivial, the Stiefel manifold
Vant1,2 is stably reducible. That is, the gluing map g : S4"~2 — K is stably
trivial, where K denotes the 2n-skeleton of V5,1,2. Thus the composite of g
with the projection K — K/S?"~1 is stably trivial. As the map g is already in
the stable range, the result follows. O

In the next Proposition we will use the Barratt-Puppe sequence. A general
reference for the sequence is [15, Chapter II, Prop. (2.48)].

PROPOSITION (3.4). We have a short exact sequence of sets

0 = Tan_1(S*) = [Vany1,5%" = Z/2 = 0
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Proof. Let K denote the 2n-skeleton of Va,112. This complex has a cell
structure of the form S2"~! U, 2™ where the characteristic map 2 : §?"~1 —
5271 is a map of degree 2. The Barratt-Puppe sequence is

e 812 S K Va0 = ST S SK = SVopi10 = .
and produces
o= [ZVana12, 87 = [BK, S*] =[S, 8% = [Vap g1 2, SP] = [K, S%" — . ..

The cell structure of K, S?"~1Uye?”, yields [K, S?"] = H*"(K, Z) ~ Z/2, where
the first equality follows from the Hopf Classification Theorem. In order to obtain
the desired result, it suffices to show that the map [Va,41.2,5%"] — [K, S?"] is
surjective and the map [LK,S*] — my,—1(S?") is trivial. Since Vo,i12 is
the total space of a fibration p1 : Vapy12 — 527 this map restricted to K
sends the generator of H?"(S?" Z) to a generator of H*"(K,Z). So the map
[Vant1.2,5%"] — [K, S?"] is surjective.

In order to prove that the map [LK, S| — my,—1(S?") is trivial , it suffices
to show that [LVa,11,2,9%"] — [XK, S?"] is surjective. First let us consider the
Barratt-Puppe sequence

ce 8P G MK ST g

Then we obtain the long sequences when we take homotopy classes into S2". By
a routine argument we deduce that [S*" ™! §2"] — [XK, S?"] is an isomorphism.

Call L the cofibre of the inclusion S%7~1 — Van+1,2. So we have the map
from Vap41,2 to L and a commutative diagram:

o= K= Vapp1o— Sl BK o SVapi1 — .

1 1 1 1 1 L

T L — Gan=1_, Gntl YL — ...
and a commutative diagram of homomorphisms:

o= [BL, 8% = [SPnFL 8] 5 L
{ 4
= [ZE, 8% - [EK,S8*] — ..
We have seen that the map [S?"*!, 2] — [LK,S?"] is an isomorphism. But

[LL, 5?7 — [2S5%7F1 §27] is surjective, since the complex L is a wedge of two
spheres by Lemma (3.3), and the result follows. O

Now we state a Proposition which is similar to the Proposition (2.12) in [2].
For let us consider the Barratt-Puppe sequence of a cofibration

A B C(h) L YA .

where h : A — B. Consider the action of the group [EA, | on the set [C(Rh), |.
This action is provided from a pinching map pin : C(h) — C(h) V £A which
arises in the study of the Barratt-Puppe sequence.

PROPOSITION (3.5). Let o, a2 € [EA, X] and [f1],[f2] € [C(h), X]. If, for
i = 1,2, obstructions 0% and 0 are defined for making (a1, az) and (f1, f2)
homotopy disjoint, respectively, then for ar#|[f1], ae#[f2] and i = 1,2, we also
have 0" (cn#[f1], o[ f2]) = (01 (a1, a2)) + 05([f1], [f2])-
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Proof. Consider the diagram:

XxX-A
!
C(h) B C(h) x C(h) """ (SAV CO(h) x (BAVC(h) S X xX

where 6 = (a1 V f1) X (a2 V f2), and also the diagram:

AopinXpin
|

C(h (BAV C(R)) x (BAV C(h))— X x X

1 T T
SAVC(h) 25 (A SA)V(C(h) x C(h)— (X x X)V (X x X)
The obstruction to deforming the pair (a;#[f1], a2#[f2]) to be coincidence
free is given by the obstruction to lift the composite of the horizontal maps in
the first diagram. The commutativity of the second diagram gives us the desired
formula. O

With respect to the action of m4,—1(S%") on [Vap41,2,5%"] we denote I([f]) =
isotropy[f] = {a € mun-1(5?")|a#[f] = [f]}. Consider the Zs-action on
[Vant1,2,5%"] given by composing a map f with the antipodal map on S$?". Call
i [Vapgi,2,9%] — [K, S?" the induced map from the inclusion i : K — E.
Recall that [K,S?"] is a group which is isomorphic to Z/2. Now we have a
necessary condition to have (f, f) homotopy disjoint.

PROPOSITION (3.6). Let f : Vapy1,2 — S*™. The primary obstruction to have
(f, f) homotopy disjoint is always zero. If i* ([f]) = O then f factors through a
map f': St — S2n and the secondary obstruction to deforming (f, f) to be
coincidence free coincides with the secondary obstruction for f'. If i* ([f]) # 0
then [f] = a#p], and the secondary obstruction to make (f, f) coincidence free
is identified with the one for the class o € 7r4n_1(52").

Proof. This follows from Proposition (3.5) and the fact that (p, p) is homotopy
disjoint. O

The behaviour of the antipodal map with respect to the action of my,_1(S?")
is given as follows:

PROPOSITION (3.7). [Ao(a#h)] = [(Aoa)|#][(Ach)|, where A is the antipodal
map. For h either the constant map or the fibre map p1 : Vapy1.2 — S* we have
[Aoh] = [h)].

Proof. The proof is straightforward. O

Now we come to the main result. Let fi, fo : Vapy12 — 527 where fi =
a1#[h1] and [f2] = as#t[hs] for a; € T4, —1(S?") and h; either the constant map
or the fibre map p1 : Vapt1,2 — S?". For n either 2 or 4 we write [o;] = (r; H +
s5;v), where H is the Hopf map S*"~! — S?" for n = 2,4 and v is a generator of
the torsion part of m4,_1(5?"). Otherwise we write [c;] = 7;[t2n, ton] + vi, where
[t2n, ton] denotes the Whitehead product and v; a torsion element (see [16] and
the next section for more details).
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THEOREM (3.8). Let f1, fo : Vant1,2 — 527 be two maps as above.

a) If we have f1  fa, then [h1] = [ha]

b) Forn #1,2,4, if f1 0 fa, then r1 = ro and vy = —va. In particular, for f
R f, v1 is an element of torsion 2.

¢) Let n = 2. In the case where [h1] = [ha] = 0 the two maps can be made
coincidence free if and only if r1 = ro and r1 + s1 + So is divisible by 12. In the
case where [h1] = [ha] = [p] the two maps can be made coincidence free if and
only if (r1 —ra)H + (r1 + 51+ s2)v € I([p]).

d) Let n = 4. In the case where [hi] = [he] = 0 the two maps can be made
coincidence free if and only if r1 = ro and r1 + s1 + So is divisible by 120. In the
case where [h1] = [ha] = [p] the two maps can be made coincidence free if and

only if (11 —reo)H + (r1 + 51+ s2)v € I([p)).

Proof. Part a) follows from Proposition (3.4). Part b) follows from Proposi-
tion (4.1) and Proposition (3.5). Part ¢) and d) follows from Proposition (3.5)
and from Proposition (4.3) and Corollary (4.4) in the next section. O

Remark (3.9). The obstruction to have the pair (a#p, a#p) coincidence free
is the pullback of the obstruction to have («, «) coincidence free, by the induced
homomorphism of the projection Va,, 1,2 — S4~1, since the obstruction to have
(p,p) coincidence free is zero. This together with Proposition (4.3) implies that
for n = 2 the elements of the form rH + sv where r + 2s are not divisible by 12,
do not belong to I([p]). Similarly, using Proposition (4.3), for n = 4 the elements
of the form rH + sv where 7+ 2s are not divisible by 120, do not belong to I([p]).

4. Coincidence of maps between spheres

In this section we discuss the coincidence problem for maps fi, fo : S™ — S™
between spheres. For the particular case of self-coincidence, we consider the
question from the point of view of deformations and small deformations.

We present some results when m < 2n — 1. More precisely we characterize in
terms of the Whitehead product and the torsion elements of the homotopy group
which pairs (f1, f2) are homotopy disjoint. In particular, (f,, f») is homotopy
disjoint for all n, where f,, = [, tn]. Then we consider the special cases S — S2,
S7” — S%* and S¥ — S8. At the end we give examples showing maps (f, f)
homotopy disjoint but not by a small deformation. These examples show that
the bounds given in [2, Lemma (2.14)] or [12, Theorem (2.2)] are sharp and
confirm the comment in [2] immediately after the definition of homotopy disjoint
deformation.

From the discussion in section 2, we can consider the target an even sphere
S2n,

PROPOSITION (4.1). The pair (fi, f2) for fi,f2 : S™ — S is homotopy
disjoint if and only if:

a) For m < 4n — 1 the class [f1] = —[f2] in ©n(S?"); in the case [f1] = [f2],
[f1] has order 2.

b) For m = 4n — 1 and n # 1,2,4, the classes [f1],[f2] are of the form
[f1] = k1[tan, tan] + 0, [fo] = k2[ton, ton] + a2, where [tay, ton] is the Whitehead
product, the «;’s are torsion elements, and k1 = ko and a1 + ag = 0. In
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particular, if [f] = klizn, tan] + T then (f, f) is homotopy disjoint if and only if
« is an element of order < 2 and k is arbitrary.

Proof. By Proposition (1.2) we must verify when fo is homotopic to A o fj.
For part a), since m < 4n — 1, we have that Ao f; = —f1 and the result follows.

For part b), from the formula in [17] or [16] for the composition of a map with
the sum of two others, it follows that:

0=[I+A)o il = [[il + [Ao fil + [e2n, —e2n] H([/2]) =

[fi] + [Ao fi] — 2k1[ean, tan],
since the Hopf invariant of the Whitehead product is 2 and the Hopf invariant of
a torsion element is zero. Therefore [Ao f1] = k1[ton, tan] — 1. From the equality
Ao fi = fo the result follows. O

Remark (4.2). If f: S™ — S?" has order 2 and m < 4n — 2, either [2, Lemma
(2.14)] or [12, Theorem (2.2)] implies that (f, f) is homotopy disjoint by a small
deformation. It is natural to ask what happens in the cases m = 4n — 2 where
[f] has order 2. We will show at the end that these results are sharp.

Now we consider the cases where the domain is one of the spheres S, S7,or
S15. and the target is S2, S%, or S®, respectively. These cases correspond to
| = +£1. The case of pairs of maps (fi, f2) where f; € [S3,5?] is quite simple.
The pair (f1, f2) is homotopy disjoint if and only if [f1] = [f2]. Further, the pair
(f, f) is homotopy disjoint by a small deformation for an arbitrary map f. We
leave the details to the reader. In order to make the exposition more clear we
deal first with the case where the total space is the sphere S7 and then the case
where the total space is S'°. From [16] we have that 77(S*) = Z + Z/12, where
a generator of the summand Z can be taken as the class of the Hopf map and
a generator of the torsion part as v, where v is the suspension of v/, for v’ a
generator of mg(S?).

Let f1 =r1H + s1v and fo = roH + sov.

PROPOSITION (4.3). For f = rH + sv € 77(S*) we have that [(Ao f)] =
rH — (r+s)v. Furthermore, the pair of maps (f1, f2) : ST — S* has the property
that f1 0 f2 if and only if 1 = ro =1 and s1 + so + 1 is divisible by 12.

Proof. The proof is the same as the proof of Proposition (4.1) part b), where
we use the fact that the Hopf invariant of the Hopf map is 1. Namely,

0=[I+A)o fil = [fil +[Ao fi] + [I, A]o H(f1) = [fi] + [Ao fi] — (2H —v)r1.
Since I + A is trivial, we get
[Ao f1] = —[fi] +2rmH —rmv=—r1H—s19+2rH —riv=r1H+ (-1 — s1)v.

From the equality Ao f; = fo = roH+s9v, we have r; = 19 and (sa+s1+71)v = 0.
Therefore 11 = ro = r and r+ s+ s2 is divisible by 12, and the result follows. [

COROLLARY (4.4). A map f: S” — S* has the property that f | f by small
deformation if and only if v + 2s is divisible by 12, where f = rH + sv.

Proof. By the previous result we have that (f, f) is homotopy disjoint if and
only if 2s + r is divisible by 12. By [2, Corollary (2.15)] the result follows. O
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COROLLARY (4.5). The kernel of the transgression Az of the fibration p :
Vs.o — S is generated by 2h —v and 6v.

Proof. By Corollary (4.4) the kernel of the transgression are the elements of
77(S%) of the form rH + sv where r + 2s is divisible by 12. A simple divisibility
argument shows that these elements are generated by 2H — v and 6v, and the
result follows. O

Remark (4.6). See [13] for results related with above Corollary.

Now we consider the case of S1°. From [16] we have that 715(S%) = Z+2/120,
where a generator of the summand Z can be take as the class of the Hopf map
and a generator of the torsion part as v, where v is the suspension of v/, for v’
a generator of m4(S7). Let f be of the form rH + sv.

PROPOSITION (4.7). Let f = rH+sv € m15(S%). Then we have that [(Aof)] =
rH — (r + s)v. Further, the pair of maps (f1, f2) : S* — S® has the property
that f1 N f2 if and only if r1 = ro =1 and s1 + sa + r is divisible by 120.

Proof. The proof is the same as the proof of Proposition (4.1) part b) where
we use the fact that the Hopf invariant of the Hopf map is 1. Namely,

0=[I+A)o fil =[fil +[Ao fi] + [I, A]o H(f1) = [fi] + [A o f1] — (2H —v)r1.
Since I + A is trivial, we get
[Ao f1] = —[fi] +2rmH —rv=—rH—s19+2rH—riv=r1H+(—r1 — s1)v.

Form the equality Ao f; = fo = roH + spv it follows that r; = ro and (s +
s1+71)v = 0. Therefore r; = ro = r and r + s1 + s is divisible by 120, and the
result follows. O

COROLLARY (4.8). A map f: S* — S® has the property that f | f by small
deformation if and only if r + 2s is divisible by 120, where f = rH + sv.

Proof. By the previous result we have that (f, f) is homotopy disjoint if and
only if 2s + r is divisible by 120. By [2, Corollary (2.15)] the result follows. O

COROLLARY (4.9). The kernel of the transgression Ais of the fibration p :
Vo2 — S® is generated by 2h —v and 60v.

Proof. By Corollary (4.8) the kernel of the transgression are the elements of
715(S®) of the form rH + sv where 7+ 2s is divisible by 120. A simple divisibility
argument shows that these elements are generated by 2H — v and 60v, and the
result follows. O

Remark (4.10). See [13] for results related with above Corollary.

Now we consider the difference between deformation and small deformation.
We construct maps fa,, : S~ — $2" for all odd n > 1 for which (fon, fon) is
homotopy disjoint, but not homotopy disjoint by a small deformation.

THEOREM (4.11). Let &, denote the bundle over S*™~1 induced from the
tangent bundle 7(S*") by the Whitehead square |12y, t2,] € Tan—1(S*™) forn > 2.
Then &oy, admits a non-zero section for all even n, but does not admit a non-zero
section for all odd n > 1.



SELF-COINCIDENCE OF MAPS 191

Proof. The Whitehead product [t2n—1,72,n—1] has order 2 for all odd n > 1
by [10, Lemma (3.5)], and is trivial for all even n. Moreover, James proved that
I([tan, tan]) = [t2n—1,M2n—1] in the homotopy exact sequence for Vo, 412 — S2"
by (6.1) and (6.2) of [10]. Consequently, Ot4n—1 = [t2n—1,N2n—1] in the homotopy
exact sequence for S(&2,) — S*"~1 by naturality. O

THEOREM (4.12). Let fa, : S~1 — S27 be any representative for [tan, t2,]
with n > 1. Then (fan, fon) s homotopy disjoint for all n > 1. Moreover,
(fan, fon) is homotopy disjoint by a small deformation if and only if n is even.

Proof. By Proposition (4.1) above, (fan, fon) is homotopy disjoint for all n.
Moreover, (fan, forn) is homotopy disjoint by a small deformation if and only if
n is even by Theorem (4.11) and Proposition (1.4). O

Our last result affirms that homotopy disjointness does not imply homotopy
disjoint by a small deformation even for m = 4n — 2.

PROPOSITION (4.13). Let f : S0 — S6 represent o3s. Then (f, f) is homo-
topy disjoint, but not homotopy disjoint by a small deformation.

Proof. o3 has order 2 in 730(S') by [16]. Moreover, 3(0%) = 202, where o35
has order 4 in 729(S1%) by [16]. Here @ denotes the homotopy boundary operator
in the fibration S — Vi75 — S where 0116 = 2115. By Proposition (4.1),
(f, f) is homotopy disjoint, but not homotopy disjoint by a small deformation
by Proposition (1.4). O
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ARTIN GROUPS, 3-MANIFOLDS AND COHERENCE

C. MCA. GORDON

Dedicated to Fico on the occasion of his 60th birthday.

ABSTRACT. Following work of Droms [D] and Hermiller and Meier [HM],
we show that the Artin group AI' associated with a labeled graph I' is a
3-manifold group if and only if each component of I is either a tree, or a
triangle with each edge labeled 2.

1. Introduction

By a labeled graph we shall mean a finite (non-empty) graph I', without loops
or multiple edges, each of whose edges is labeled by an integer greater than or
equal to 2. Let the vertices of I' be s1, s2,...,s,, and let the label on an edge
with endpoints s; and s; be m;; > 2. Define (ab)™ to be the word abab... of
length m. Then the Artin group AI' associated with the labeled graph I' is the
group with generators si, s2,. .., S,, and relations (s;s;)™" = (s;s;)™¥, one for
each edge of I'. In particular, if m;; = 2 then the generators s; and s; commute.
Note also that if I" is the disjoint union of graphs I'; and I'y then AT" & AT'; % ATs.

A 3-manifold group is a group that is isomorphic to 71 (M) for some (con-
nected) 3-manifold M. Note that we do not assume that M is orientable, or
compact, or without boundary. Taking a connected sum shows that if G; and
G2 are 3-manifold groups then so is Gy * G3. If T is a tree, then AL is the
fundamental group of the complement of a link L in S3, where L is a connected
sum of (2,m) torus links; see [Bru], [HM]. Thus AT is a 3-manifold group. If
I is a triangle with each edge labeled 2, then AI' & Z3 = 7 (T?) is also a 3-
manifold group. In this note we confirm the suspicion of Hermiller and Meier
[HM, p.143] that these are the only connected graphs whose Artin groups are
3-manifold groups.

THEOREM (1.1). For an Artin group AT the following are equivalent.

(1) AT is a 3-manifold group.

(2) AT is virtually a 3-manifold group.

(3) Each component of T is either a tree, or a triangle with each edge labeled 2.

The equivalence of (1) and (3) was proved by Droms [D] in the case of right-
angled Artin groups, or graph groups, that is, when all labels are 2, and by
Hermiller and Meier [HM] in the case when all labels are even.

Theorem (1.1) is proved in Section 2. The main tool used is the fact that
3-manifold groups are coherent [Sc].
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In Section 3 we make some additional remarks about coherence. In particular
we show that Aut(F:) and the braid group By are incoherent, although neither
has a subgroup of the form Fy x Fy. The latter fact for By was originally proved
by Akimenkov [A], using different methods.

2. Artin groups and 3-manifolds

Recall that a group is coherent if every finitely generated subgroup is finitely
presented.
The following is proved in [HM, Proposition 5.7(ii)].

LEMMA (2.1) (Hermiller and Meier). Let I' be a cycle of length at least 4.
Then AT is incoherent.

If T is a labeled graph, we shall say that I' is of infinite or finite type according
as the Coxeter group corresponding to the Artin group AT is infinite or finite.
We will use (p, ¢, 7) to denote a triangle with edge labels p, ¢ and r. The triangles
of finite type are then (2,2,m), (2,3,3), (2,3,4) and (2,3,5).

If T is a triangle, the simplicial complex Ky defined in [CD2] is either a triangle
or a 2-simplex, according as I' is of infinite or finite type. The Main Conjecture
of [CD1] and [CD2] therefore holds for AT, by [CD1]. The following lemma is
then a consequence of [CD2, Corollary 1.4.2 and Corollary 2.2.5].

LEMMA (2.2) (Charney and Davis). Let I' be a triangle.
(i) If T is of infinite type then AT has geometric dimension 2 and x(AT') = 1.
(ii) If T is of finite type then AT has geometric dimension 8 and x(AI') = 0.

For the three triangles (2, 3,6), (2,4,4) and (3, 3, 3) of Euclidean type, (i) also
follows from the descriptions of AT given in [Sql].

LEMMA (2.3). Let T be a triangle of infinite type. Then AT is incoherent.

Proof. Let ¢ : AT' — Z be the epimorphism that maps each generator s; to
1. By [Me, Proposition 5.1 and Corollary 5.3] K = ker ¢ is finitely generated.
Now AT has geometric dimension 2 (Lemma (2.2)), and hence K has geometric
dimension < 2. Suppose K were finitely presented. Then K would be of type
FP [Bro, p.199], and so x(K) would be defined. We would then have y(AT) =
X(K)x(Z) = 0 [Bro, p.250], [St2], (compare [G]), contradicting Lemma (2.2). O

In [W], Wall asked whether a group of the form F x¢ F’, where F' and F’
are free and C has finite index in F and F’, is coherent. This was answered
negatively by Gersten [G], who showed that the double of a free group of rank
> 2 along a subgroup of finite index > 3 is always incoherent. We remark that
Lemma (2.3) also provides examples, which are not doubles, since Squier has
shown [Sql] that A(2,3,6) and A(3, 3, 3) can each be expressed as a free product
with amalgamation F' x¢ F’, where rank I’ = 4, rank F’ = 3, and C has index 2
in F' and index 3 in F’.

LEMMA (2.4). A(2,3,3) and A(2,3,4) are incoherent.

Proof. Since A(2,3,4) embeds in A(2,3,3) (as a subgroup of finite index) [La],
it is enough to show that A(2,3,4) is incoherent. One way to do this is to use
the fact that A(3,3,3) embeds in A(2,3,4) [KP], together with Lemma (2.3).
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Another argument is that the commutator subgroup A’ of A(2,3,4) is finitely
generated but, since Hay(A") 2 Z°°, not finitely presented [Sq2]. O

Note that A(2,2,m) = A(m) x Z, where A(m) is the Artin group of a single
edge with label m. Since A(m) is a 3-manifold group, it is coherent by [Sc] (it
is also easy to show this directly), and hence A(2,2,m) is coherent.

LEMMA (2.5). A(2,2,m), m > 2, and A(2,3,5) are not virtually 3-manifold
groups.

Proof. Let G be a finitely generated group, with an epimorphism ¢ : G — Z
such that ker ¢ is finitely generated, and let H be a subgroup of G of finite index.
Then ¢ induces an epimorphism v : H — Z, where ker ¢ has finite index in ker .
Now suppose that H is a 3-manifold group. Since H is finitely generated, it is
the fundamental group of a compact 3-manifold [Sc]. Therefore, since ker) is
finitely generated, by [St1] kert) is a 2-manifold group, i.e. it is either free or
the fundamental group of a closed surface. Hence ker ¢ is virtually a 2-manifold
group.

Suppose A(2,2,m) = A(m) x Z is virtually a 3-manifold group. Then by the
above discussion A(m) has a subgroup B of finite index such that B is either
free or the fundamental group of a closed orientable surface. Since A(m) is the
fundamental group of a compact, orientable, irreducible 3-manifold M whose
boundary consists of tori, x(A(m)) = x(M) = 3x(0M) = 0. Hence x(B) = 0,
implying that B is isomorphic to either Z or Z x Z. But if m > 2, this contradicts
the fact that A(m) contains a non-abelian free group.

Now let A = A(2,3,5), and let ¢ : A — Z be abelianization. Then A’ = ker
is finitely generated by [Me]. Suppose A is virtually a 3-manifold group. Then
there is a 2-manifold subgroup B of A’ of finite index. By a standard transfer
argument, Ho(B; Q) — Hz(A’; Q) is surjective. But dim Ho(A'; Q) = 7 [Sq2],
whereas dim Ho(B; Q) < 1. O

Proof of Theorem (1.1). Clearly (1) implies (2) and (3) implies (1); we must
show that (2) implies (3).

A subgraph I'g of " is full if every edge of I" whose vertices are in I'g is an edge
of T'y. We recall the basic fact [Le] that if T'g is a full subgraph of a labeled graph
I" then the homomorphism AI'y — AT induced by the inclusion map I'y C T is
injective.

Let I" be a connected labeled graph, and suppose that AT is virtually a 3-
manifold group. By [Sc], 3-manifold groups, and hence virtual 3-manifold groups,
are coherent. Also, a subgroup of a virtual 3-manifold group is clearly a virtual
3-manifold group. It follows from Lemma (2.1) that T" is chordal, i.e. has no full
subgraph that is a cycle of length > 4. By Lemmas (2.4) and (2.5), any triangle
in I has all labels equal to 2. If " is not a tree or a (2,2, 2) triangle, then I" has
a full subgraph I'y of one of the forms shown in Figure 1 (where all unlabeled
edges are understood to have label 2); see [D].

In cases (i) and (ii), ATy = A x Z, where in case (i) A & Z3, and in case
(ii) A is the Artin group of a tree with two edges, each labeled 2. Since AT is
virtually a 3-manifold group by assumption, A has a subgroup B of finite index
that is either free or the fundamental group of a closed orientable surface. Since
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(i) (iii)
Figure 1 Figure 2

X(A) = 0, we have x(B) = 0, and hence B = Z or Z x Z, which is clearly
impossible.

In case (iii), m odd, let ¢ : ATy — Z be the epimorphism defined by ¢(a) =
o) =1, p(c) = ¢(d) = 0. By [Me], ker¢ is finitely generated. Hence ker ¢
has a subgroup B of finite index that is either free or the fundamental group of
a closed orientable surface. Since ker ¢ contains (c,d) = Z x Z, we must have
B = Z xZ. But this contradicts the fact that ker ¢ also contains the commutator
subgroup of A(m), which is a non-abelian free group.

In case (iii), m even, define ¢ : ATy — Z by ¢(b) =1, p(a) = ¢(c) = ¢(d) =0,
as in [HM]. Then ker ¢ is finitely generated and contains both Z x Z and a non-
abelian free group, giving a contradiction as before. O

3. Coherence

It is natural to ask which Artin groups AI' are coherent. For graph groups,
i.e. when all edge labels are 2, this has been answered by Droms [D]: AT is
coherent if and only if I' is chordal. For the general case, it is necessary to be
able to answer the following question.

Question (3.1). Is A(2,3,5) coherent?

If at most one of p, g, r is even, the homomorphism ¢ : A(p,q,7) — Z in the
proof of Lemma (2.3) is abelianization, so that proof shows that if (p, g, r) is of
infinite type then the commutator subgroup of A(p, ¢, ) is finitely generated but
not finitely presented. However, as pointed out in [Sq2], the commutator sub-
group of A(2,3,5) is finitely presented (the same argument applies to A(2, 3, 3)).

If A(2,3,5) is incoherent, one can show that an Artin group AL is coherent if
and only if T' is chordal, every complete subgraph of I with 3 or 4 vertices has
at most one edge label > 2, and I" has no full subgraph of the form shown in
Figure 2, where m > 2 and unlabeled edges are understood to have label 2. If
A(2,3,5) is coherent, the characterization would be more complicated.

Let F, denote the free group of rank n. A popular way of showing that a
group is incoherent is to show that it has a subgroup isomorphic to Fo x Fj,
which is well-known to be incoherent; see e.g. [G]. For example, Aut(F3) has
such a subgroup [FP], and hence Aut(F},) is incoherent for n > 3. For n = 2 we
have

THEOREM (3.2). (1) Aut(F») is incoherent.
(2) Fy X Fy does not embed in Aut(Fy).
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Let B,, denote the n-strand braid group. Note that B,, is coherent for n < 3.
Since A(2,3,3) & By, we see by Lemma (2.4) that B, is incoherent for n > 4.
Also, since the center of Fy x F is trivial, by Part (2) of Theorem (3.2) and the
proof of Part (1) below we recover the result of Akimenkov [A] that Fy x Fy does
not embed in By. It follows (see the proof of Lemma (2.4)) that the incoherent
groups A(2,3,4) and A(3,3,3) also do not contain an Fy x Fy. (It is shown in
[Ma] that Fy x Fy does embed in B, for n > 5.)

Proof of Theorem (3.2). (1)Let Z(B4) denote the center of By; then By/Z(By)
is isomorphic to an index 2 subgroup of Aut(Fs;) [DFG|. Now A(3, 3,3) embeds in
B, [KP], and since it is a free product with amalgamation of the form Fy xp, F3
[Sql], it has trivial center, and hence embeds in Aut(F3). Since A(3,3,3) is
incoherent by Lemma (2.3), Aut(F») is also incoherent.

(2) There is a short exact sequence

15 B 5 Aut(Fy) 5 GL(2,Z) — 1,

where i(g) is conjugation by g. Mapping GL(2,Z) onto PSL(2,Z) = Zs * Zs
gives the related sequence

1 — kerp — Aut(F?) L Do x T — 1 ,

where ker 7 has index 4 in ker p. In particular, ker p is virtually free.

Suppose H < Aut(F»), where H = (o, 8) X {7,0) = Hy X Hy = F» x F5. We
claim that either p(H1) = 1 or p(Hs) = 1. For, if not, then writing a@ = p(«)
etc., we may assume that @ # 1 # 5. By the Kurosh Subgroup Theorem, any
abelian subgroup of Zg * Z3 is cyclic. Therefore (@,%) = (), (a,6) = (y), say.
Then we have 1 # a = 2P = y? for some p, ¢ € Z. It follows that (x,y) has a non-
trivial center, and hence, again by the Kurosh Subgroup Theorem, (z,y) = (z),
say. Therefore (7,6) < (z) is cyclic, implying that (ker p) N Hy # 1. Similarly
(ker p) N Hy # 1. This gives Z x Z < ker p, contradicting the fact that ker p is
virtually free.

We may assume, then, without loss of generality, that p(Hz) = 1. Then p|H;
is injective, otherwise we would have Z x Hy < ker p, again contradicting the fact
that ker p is virtually free. It follows that «|H; is injective. Also, Hs < ker p,
and therefore (ker 7) N Hy has finite index in Hy. Hence (kerm) N Hy = i(G),
where G < F, has rank > 2.

Note that since F» has trivial center, ¢ € Aut(Fz) commutes with i(g), g € Fb,
if and only if ¢(g) = ¢g. Hence if ¢ € Hy, then G < Fix(p). Since rank G > 2,
it follows from the Scott Conjecture [BH] that Fix(¢) has rank 2. Furthermore,
by [CT] there is a basis a,b of F» such that ¢(a) = a, ¢(b) = ba™. Hence
() € GL(2,Z) has trace 2. But since w(H;) is a free group of rank 2, this is a
contradiction. O
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POSITIVE HEEGAARD DIAGRAMS

JOHN HEMPEL

ABSTRACT. Every (compact, orientable) 3-manifold, M, can be represented
by a positive Heegaard diagram: a closed, oriented surface S together with
a pair (X,Y) of compact 1-manifolds in S whose components serve as at-
taching curves for the 2-handles of the two sides of a Heegaard splitting for
M and for which the oriented intersection number of X with Y is 41 at each
point. Such a diagram is completely determined by the two permutations
of the intersection points of X with Y given by flowing from one point
to the next in the positive direction along X and Y respectively. Mon-
tesinos observed that these permutations also describe the (monodromy)
representation of M as a branched cover of the 3-sphere branched over a
certain universal graph. In this paper we study 3-manifolds in terms of
the combinatorics related to the corresponding permutations. We derive
“moves” sufficient to connect any two permutational representations of the
same 3-manifold, give a procedure for generating all positive diagrams of a
given genus in terms of a finite number of “carrier” graphs, and analyze the
lattice of branched covers over the associated universal graph — including
an explanation of why “good” properties of 3-manifolds proliferate upwards
in this lattice.

0. Introduction

There are many examples known of universal branch sets — graphs I' in the
3-sphere S? with the property that every closed, oriented 3-manifold, M, is a
finite sheeted branched covering p : M — S? branched over I' [M], [HLM].

For such a branched covering of degree d we have a representation

0 7r1(S3 —T) — Sy

to the symmetric group on d symbols given by the action of the fundamental
group (by path lifting) on the fiber over a regular point and called the monodromy
of the covering. We multiply permutations from left to right; so we write them
acting on the right as exponents:

i
Two such coverings are equivalent if and only if their monodromy representa-
tions are conjugate. The monodromy in turn determines an index d subgroup:

@ 1(Stab(1)) C m(S* —T)
and is conjugate to the action (by right multiplication) on the cosets of this

subgroup.

2000 Mathematics Subject Classification: 57N10, 57M12.
Keywords and phrases: Heegaard diagram, positive diagram, universal branch set.
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Figure 1. Universal branch set

The set of all coverings branched over a fixed I" forms a lattice in which
{pl My — 83} > {pg My — 83}

if there is a factorization p; = popy for a branched covering p : M7 — M. This
lattice is isomorphic to the lattice of conjugacy classes of finite index subgroups
of 71(S®—T). For I universal this lattice provides a description of all 3-manifolds
which I find to be challenging.

In this paper we will concentrate on the graph I'" shown in Figure 1. This graph
was introduced by Montesinos [M] who showed it to be universal and derived
some of its properties. There are two important advantages of this universal
graph:

First of all m1(S® —T') is a free group freely generated by the elements =, and
y indicated in Figure 1. Thus for any pair o, 7 € Sy of permutations we have a
branched covering

Maﬁ with monodromy given by = +— o, y+— 7.

Second there is, as noted in [M], a correspondence between the branched cov-
erings of 3-manifolds with this universal branch set and “positive” Heegaard
diagrams. This is the starting point of this paper. We will use this correspon-
dence in section 2 to give necessary and sufficient conditions that two pairs
(01,7), (02,72) determine the same 3-manifold. The answer will be in the
form of a set of combinatorially defined “moves” which generate the associated
equivalence on pairs of permutations. This provides a “calculus” (but not a so-
lution) for the enumeration and classification problems for 3-manifolds which is
easy to implement — I will provide a Macintosh program doing this on request.

Actually much of 3-manifold theory has a pleasant interpretation in the com-
binatorial setting of permutations and we will develop some of this here.

In section 3 we describe a way of generating all positive Heegaard diagrams:
for each genus g there is a finite number of families of genus g positive dia-
grams with each family being “carried” by a fixed configuration from which the
corresponding families of permutation pairs can be readily determined.
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In section 4 we show how the lattice structure is reflected in the combinatorial
setting. This is significant as many “good” properties proliferate upwards in this
lattice — see Proposition (4.3).

We stress that, since I' is not a manifold, the branched covers M(,’T will, in
general, only be pseudo 3-manifolds. The links of vertices lying over the singular
vertices of I' will be surfaces (which cover S? with three branch points). MU,T
will be a 3-manifold precisely when it has zero Euler characteristic. This can be
calculated in terms of o and 7 as follows. For o, 3, --- € Sy let

c(a, B,...) = number of orbits in Sy of gp(«, 5,...),

the group generated by «, 3, .... In particular for a single element «, c(«) is the
number of cycles of a. The Euler characteristic is [M]

X(MU,T) =d + c(o, 707'71) +c(r,ora™) —c(o) — ¢(1) = c([o, 7))

Thus the condition is given by:

PROPOSITION (0.1). [M] M, ; is a 3-manifold if and only if
c(o) + (1) + c([o,7]) = d + c(o, o™ + (1,010 ).

We stress that we are not assuming that o, 7 is a transitive pair; thus MU,T
need not be connected; for Maﬁ will have ¢(o,7) components. They will all
inherit an orientation from a fixed orientation of S?, and so we get a well defined
compact 3-manifold, M, ,, obtained by removing an open regular neighborhood
of the (finite) set of non-manifold points and then taking the connected sum of
the components of the result.

This generality is advantageous because the natural notion of equivalence
for permutation pairs passes through non transitive pairs and corresponds to
equivalence of the M, ;’s (not the MU,T) —and in particular provides a means
of detecting a connected sum decomposition or recognizing S* (see Example
(2.7). While it is true that every (compact, oriented, with no 2-sphere boundary
components) 3-manifold is represented as M, , for a transitive pair (o, 7), this
may disguise the nature of the manifold— it may be better to represent it as M, -
for some non transitive pair. Some of the material in section 1 is an extension
of the results of [M] to this more general setting. However what is called M, -
in [M] is what we have chosen to call M, .

We will primarily be interested in the case in which M, , is a closed 3-
manifold, i.e. when o,7 satisfy the condition of Proposition (0.1) which we
will refer to as the closed condition. Some of this material is useful (with some
complications) for compact 3-manifolds with boundary and we will keep this gen-
erality when convenient, but will revert to the closed case when the complications
become distracting.

We will frequently use the construction of splitting a manifold M along a
codimension one, properly embedded, 2-sided submanifold N. M split along N
will denote a manifold M; homeomorphic to M — N x (=1, 1) for an appropriate
product neighborhood N x [—1, 1] of N in M and is characterized by the property
that there are disjoint subsets Ny and N_ in 9M; and a map f : My — M
which takes M; — Ny U N_ homeomorphically onto M — N and takes each of
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N, and N_ homeomorphically onto N. Often we will suppress mention of this
homeomorphism and simply identify the appropriate subsets of M; and M.

1. Diagrams

By a (Heegaard) diagram we mean an ordered triple (S;X,Y") where S is a
closed, orientable, connected surface and X and Y are compact 1-manifolds in S
which are in relative general position and for which no component of S — X UY
is a “bigon” — a disk whose boundary is the union of an arc in X and an arc in
Y. This definition is more liberal than some. For example it allows X (or Y') to
have “superfluous curves” — i.e. some subset of components of X could bound a
planar surface in S. The reason for this is the correspondence (Proposition (1.2)
below ) between diagrams and pairs of permutations under which the diagram
for M, . associated with (o, 7) will most likely have superfluous curves. When
we are just interested in the topological structure of M, , , and not the particular
branched covering, we will eliminate superfluous curves.

An oriented diagram is one in which S, X, and Y are all given specific orien-
tations.

A diagram gives rise to a (Heegaard) splitting of a 3-manifold M obtained by
adding 2-handles to S x [—1, 1] along the curves of X x {—1} and ¥ x {1} and
then adding 3-handles along all resulting 2-sphere boundary components. If the
diagram is oriented, we take the corresponding orientation of M to be the one
for which S is oriented from the X-side. We use the term efficient diagram for
one such that no proper sub diagram determines the same 3-manifold. There
can be no superfluous curves in an efficient diagram. A diagram represents a
closed 3-manifold if and only if both S — X and S —Y are planar. We call such a
diagram closed. In an efficient diagram for a closed, connected 3-manifold S — X
and S — Y will be connected and X and Y will each have g = ¢(S) components.

A positive diagram is an oriented diagram in which the intersection number
(X,Y), of X with Y is +1 at each point pe X NY.

Every compact, oriented 3-manifold with no 2-sphere boundary components
is represented by a positive diagram. One can start with an arbitrary diagram
for the manifold and eliminate negative crossings by adding trivial handles. The
new curves associated with the trivial handle can be oriented so as to introduce
only positive crossings. One would expect that the minimal genus of a positive
diagram for a given 3-manifold would be much greater than the minimal genus
among all diagrams. We have worked this out for Seifert fibered 3-manifolds [H].
Here the Heegaard genus and the positive Heegaard genus (somewhat surpris-
ingly) turn out to be generically the same with the difference never more than
two.

Given (positive) diagrams D; = (S;; X;,Y:), 1 = 1,2, we can form a (oriented)
connected sum

D1#Dy = (S1#S52; X1 U X2, Y1 UY?)

of the two diagrams by choosing the “summing” disks E; C S; — (X; UY;).
This certainly involves some choices, but also leads to other complications when
dealing with manifolds with boundary. If D, determines the manifold M; then
D1#Ds determines a manifold M which is homeomorphic to a (possibly proper)
subset of M;# M, — the difference could be one or two 2-handles. The condition



POSITIVE HEEGAARD DIAGRAMS 203

for equality is that at least one of A;, As and one of By, By be planar where A;
(B;) is the component of S; — X; (S; — Y;) containing E;. If one of the M; is
closed this is automatic. Consequently we will only allow taking the connected
sum of two diagrams when at least one of them represents a closed 3-manifold.
In this case a (any) connected sum of Dy and Dy represents Mi#Mo.

We use the term isomorphism to denote equivalence in the category appropri-
ate to the objects to which it is applied. In most cases this should be clear: for
oriented manifolds it will mean orientation preserving homeomorphism, etc. For
positive diagrams, we spell it out. Isomorphism will be the smallest equivalence
relation containing all homeomorphisms of ordered triples which preserves all
orientations and modulo which allowable oriented connected sum is well defined.

Given a pair (o,7) of permutations which is either transitive or satisfies the
closed condition we get a positive diagram

D(Ua T) = (SO',T; XO'7’T) Yaﬂ—) for Mgﬂ_

as follows. Consider the branched covering p : MU,T — S3. Observe the torus
T in Figure 1 which meets I' in a single point, and note that (T;z,y) is a
positive diagram for S3. We pull this back via p to get S = p~1(T), X =
p~i(z), Y =p l(y). The positivity condition follows because x meets y at a
single point (which we choose as base point) with +1 intersection. Note that
Maﬁ can be constructed by adding 2-handles to S x [—1,1] along the curves
of X x {—1} and Y x {1} and then adding cones over the resulting boundary
components.

If (o,7) is a transitive pair, we let D(o,7) = (S;X,Y). If not then, by
hypothesis, MU,T is a closed 3-manifold each component of which contains a
single component of S which determines a positive diagram for that component.
Then we get D(o,7) by taking a (allowable) connected sum of these diagrams.

Observe that the components of X (respectively Y') are in one to one corre-
spondence with the cycles of o (respectively 7), the fiber over the base point is
pl(zxNy)=XNY,and o (1) is given by flowing along X (Y) in the positive
direction from one intersection point to the next. The components of S—(XUY)
are in one to one correspondence with the cycles of [0, 7]: each is an open disk
which is a cyclic branched cover, via p, of T'— (x Uy) of degree the length of the
cycle. If the pair is not transitive then the components of S, ; — N(X UY") will
be planar (and will depend on “where” the connected sum is done) and their
boundary curves will be in one to one correspondence with the cycles of [o, 7].
In any event we have:

PROPOSITION (1.1). For o,7 € Sy either a transitive pair or one satisfying
the closed condition the surface S, . has genus

go,r = (o, 7) +1/2(d = ([0, 7])).

Proof. As in the above discussion S = p~1(T) is a branched cover of T
branched over a single point whose inverse image has ¢([o, 7]) points. By the
Riemann-Hurwitz formula x(S) = ¢([o, 7]) — d. The conclusion follows from the
facts that S has ¢(o, 7) components whose connected sum is S ;. (|

We use the above conditions to reconstruct o and 7 from the diagram. Given
any positive diagram D = (5;X,Y) flow along X and Y respectively defines
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permutations
o(D),7(D) € Sq; d=#(XnNY)

which depend on labeling the points of X N'Y by the integers 1,2,...,d, but
are well defined up to conjugacy. If, as in the genus one diagram for S2? x S*,
X NY = (), we make the convention that (o(D), (D)) is the empty pair. We
also make the convention that the diagram corresponding to the empty pair is
the genus 0 diagram (S2;0,0) for S3.

These constructions are essentially inverse; the discrepancy is entirely due to
52 x S summands as we explain in the following two propositions. From now on
it will be simpler to restrict to closed manifolds. We say a diagram D = (S; X,Y)
is good if:

1. It is closed i.e. S — X and S —Y are planar,

2. Each simple closed curve in S — (X UY') separates S, and

3. Neither X nor Y has isolated components — components of X which don’t
meet Y or vice versa.

Note that in a diagram satisfying 1. and 2. an isolated component would be
(separating and) superfluous.

A good diagram is called very good if X UY is connected — equivalently if
each component of S — X UY is an open 2-cell. It is easy to see that every good
diagram is a connected sum of very good diagrams. The summands are unique
up to isomorphism. Each is a regular neighborhood of a component of XUY with
its boundary components capped off with 2-cells. We regard two good diagrams
as equivalent if they have isomorphic very good summands. Clearly equivalent
diagrams represent the same manifold.

The above observations are summarized in

PROPOSITION (1.2). The correspondence (o,7) — D(o,7) induces a one to
one correspondence between the set of conjugacy classes of pairs of permutations
satisfying the closed condition and the set of equivalence classes of good positive
diagrams. The inverse correspondence is D — (o(D), 7(D)).

We could add copies of the genus 1 splitting of S? x S* to D(o,7) to get
a positive diagram for M, ,#S5% x S14 ... which determines the same pair of
permutations. The converse is true:

ProPOSITION (1.3). If D = (S; X,Y) is a positive diagram of genus g for a
closed 3-manifold M then (o(D),7(D)) satisfies the closed condition and M is
isomorphic to My (py +(py#(9 — 9o(D),r(D))S* X S*.

Proof. First suppose that D is a good diagram. Then by the above we see
that D and D(o(D),7(D)) are equivalent and M is isomorphic to M,(py,+(p)-

If D is not good, there is a simple closed curve J C S — X UY which does
not separate S. Since M is closed, J must bound disks on both sides of S. The
union of these disks is a non- separating 2-sphere in M. Splitting the pair (M, S)
along this 2-sphere and capping off the boundary components gives a 3-manifold
M, represented by a positive diagram D; of genus g — 1 with M isomorphic to
M;#5% x St and (D7), 7(D1) the same as o(D), 7(D). So we can complete the
proof by induction on g — g(o, 7). O
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For D(o,7) = (S;X,Y) we have noted that the orbits of o (respectively 7)
are in one to one correspondence with the components of X (respectively V). Tt
is convenient to identify the integers 1,2, ..., d with the points of X N'Y which
they index. So for a cycle (i1, 42, ...,i) of o there is a corresponding component
of X which contains i1, 42,...,4; in the indicated order.

We can identify the components of S — X (and of S—Y) in a similar manner.
For C' a component of § — X we distinguish between the topological boundary
Bd(C) = C N (X — C) and the combinatorial boundary OC = Bd(C). Each is
the union of components of X, but some components of X may have C on both
sides and so lie in Bd(C) —9C. If Z is a component of X then we say that Z is
positively oriented by C'if either Z C Bd(C)—0C or Z C OC and its orientation
agrees with that induced from C. We let

O(C) = {i € XNY : the component of X containing 7 is positively oriented by C}.

PROPOSITION (1.4). For a transitive pair (o,7) the function O gives a one
to one correspondence between the components of S, — X, . and the orbits
of gp(o,Tor™Y). Similarly there is a one to one correspondence between the
components of Sy — Yo r and the orbits of gp(r,0ma ™).

Proof. Let S = S, -, etc. If D is a component of S—(XUY') then D is a cyclic
branched cover of the “square” T — (x Uy). In particular Bd(D) is connected.
A component of S — X is obtained by (maximally) pasting together such D’s
along edges in Y. At a point ¢ € X NY the pair (X,Y) gives a local coordinate
system for S, and i € O(C) exactly when the first and second quadrants lie in C.
The sets O(C) partition {1,2,...,d} and are in one to one correspondance with
the components C. If the first quadrant at ¢« € X NY lies in a component D of
S — X UY, then the first quadrant at % lies in a component D’ of S — X UY
sharing an edge in Y with D, and the second quadrant at 77" lies in D. Thus
an orbit of gp{o, 70,771} lies in a single O(C). By moving from one component
of S— X UY to an adjacent one shairing an edge in Y we see that any two points
of O(C) N D lie in the same orbit of gp(o, 7o~ 1). O

A Heegaard diagram for a closed 3-manifold always gives rise to a pair of
“dual” presentations for its fundamental group. When (o, 7) is an efficient rep-
resentation of the closed 3-manifold M, ,, these presentations can be written
down as follows. Order the cycles 01,09,...,04 of ¢ and 71,7,...,74 of 7. For
1=1,2,...,d let s(i) be the index of the cycle of o containing i. The presenta-
tion Px has generators aj,as,...,aq dual to the components of X and for each
cycle (i1,i9,...,4,) of T a relation

Ag(3y)Os(in) - + - s(i,) = 1

The presentation Py is similarly obtained by interchanging the roles of o and
T.
From the above it should be clear that the incidence matriz

P = (#(O’i n Tj))

is a presentation matrix for Hy(M, ).
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2. Equivalence of the M, ;

The theorem of Reidemeister and Singer [R],[S] asserts that any two Heegaard
splittings of a given 3-manifold are stably equivalent — become equivalent after
adding some trivial handles to each. The purpose of this section is to understand
this theorem in the context of positive diagrams and to derive a set of moves
on pairs (o,7) of permutations which generate the relation of isomorphism of
the corresponding 3-manifolds M, . The moves are of five types. Each involves
replacing (o, 7) by a pair (o1,71) as described below. Some of these moves are
described in terms of adding and/or deleting some elements in certain cycles of
o and 7. We will always assume that the initial permutations are on the symbols
{1,2,...,d} and, without saying so, that the new elements are renumbered to
be {1,2,..., (new) d}. We assume throughout this section that (o, ) satisfies
the closed condition.

0. Superfluous cycle deletion. Let s be a cycle of o and = the correspond-
ing component of X = X, .. We say that s (respectively x) is a superfluous cycle
(curve) if (S; X —x,Y) is still a (positive) diagram for M, . This will be the
case if and only if the components of S — X on opposite sides of z are distinct.
Proposition (1.4) then tells us how to recognize superfluous cycles. Move 0 is:

Delete all the elements in a cycle (i1, 42, . . ., %) of o for which i1 and iffl (and
hence i; and ijfl) are in different orbits of gp(o, 70771) to get (o1, 71) € Sa—r-

Similarly one can delete a superfluous cycle of 7.

The result of deleting superfluous cycles changes the manifolds only to the
extent allowed by Proposition (1.3):

PROPOSITION (2.1). If (01,71) is obtained from a pair (o,7) which satisfies
the closed condition by deleting some superfluous cycles, then (o1,71) satisfies
the closed condition and My = My, m#(go.r — Gou,7)(S? x ST)

The following example illustrates how this can happen.
Ezample (2.2).
o=1(12)(34)(56)(78910), 7=(13958)(27)(4106)
represents S2 x S. If we delete the superfluous cycle (789 10) from o we get
o1 =(12)(34)(56), m = (135)(2)(46)

which represents S3. Observe that after deleting the superfluous curve corre-
sponding to this cycle, the resulting diagram is no longer good.

We say that (o, 7) is an efficient representation of a closed 3-manifold M if
M = M, ; and D(o, ) is an efficient diagram — equivalently

c(o) =c(r) =c(o,7) +1/2(d — ¢([o, T])).
and yet equivalently
c(o,7) = c(o,ror™ 1) = ¢(r,0m07 1)

If we start with any representation (o, 7) of M and delete superfluous cycles in
some order, we will get to an efficient representation (o1, 71 ) which also represents
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M unless ¢o, 7 < gor- If we “add” in go,r — go,,~ copies (on distinct symbols)
of the efficient representation

o=(123)(456), 7= (1364)(25)

of 5% x S* (because there is a trivial handle and the first homology is Z), we get
an efficient representation of M.

We will never have to consider the inverse move of inserting a superfluous
cycle: in what follows we will establish the equivalence between efficient repre-
sentations of a 3-manifold by moves which keep efficient representations at every
stage. This is the reason we have introduced it first — to keep it separate from
the other moves.

I. Elementary equivalence.
A. Conjugation:

(01,71) = (pop™ ", prp="); € Sa.
B. Inversion:
(o1,71) = (71, 771).
C. Exchange:
(01,71) = (7,0).

It should be clear that each of these induces an isomorphism between the asso-
ciated manifolds. The exchange will reverse orientation of the splitting surfaces
while reversing the sides of the splittings.

It is interesting to note that exchange is not actually needed. This is im-
plicit in the use of the Reidemeister-Singer Theorem which allows one stably to
interchange the two sides of a Heegaard splitting by an orientation preserving
automorphism of the underlying manifold even though this is not in general pos-
sible to do without stabilization. However it seems better to keep it as a basic
move. In particular, it allows us to get by with stating only the “o-side” version
of the moves.
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Figure 3. Sum of cycles

II. Trivial handle insertion/cancellation.
A. Insertion: Add a fixed point to both ¢ and 7:
(01,71) = (0. (d+1),7.(d+1))

B. Cancellation: Delete a common fixed point of o and 7 to get (o1, 71) € Sq—1.

It should be clear that these moves correspond to adding or removing a can-
celing pair of handles to the associated positive diagrams.

The rationale for the next move is as follows. We consider the diagram
D(o,7) = (5;X,Y) and look for two components of X which can be piped
together in an orientation preserving manner without creating any additional in-
tersections. Doing this and pushing the result off of X gives a new curve which
can be added to X as a superfluous curve (it doesn’t separate S as it has positive
intersection number with some component of Y'). Either of the original curves
is now superfluous and can be eliminated. The process gives a new diagram D,
for the same splitting. We then take (o1, 71) = (o(D1), 7(D1)) which represents
the same manifold.

For a transitive representation, the two curves contain intervals in the bound-
ary of some component C of S — (X UY'). The new curve is obtained by taking
parallel copies of these curves and piping them together in C'. This can be done
only if C lies on the positive side of both curves (case A) or on the negative
side of both curves (case B). For a non transitive representation we could also
choose to construct the splitting D(c, 7) in such a way that two components of
X corresponding to cycles of o in different orbits of gp(c, 7) are adjacent. The
following describes the combinatorics for detecting these and in writing down
the resulting permutations. Refer to Figure 3 which illustrates case A.
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Figure 4. Difference of cycles

ITI. Adding two cycles of o.

A. On the positive side. Choose distinct cycles s1,s2 (with lengths ¢1,£¢2) of
o which either share elements with some cycle of [0, 7] or are in different orbits
of gp(o, 7). Choose elements 41 in s1, i2 in so such that, in the first case 4; and
io are in the same cycle of [0, 7]. Then add the cycle

d+1,d+2,...,d+ 01 + L)

to o to get o’ € Syie, 4+4,. Insert d + n between

n

i1 and i17 T for 1 <n </,
in the appropriate cycle of 7 and insert d 4+ ¢1 + n between
ig"n and ig"nT forl1 <n</{y

to get 7' € Sqte,+¢,- Then delete the now superfluous cycle s; from (o, 7') to
get 01,71 € Sats,. We refer to this process as replacing s1 by si + s2 on the
positive side (at iy € s1,i2 € S3 ).

B. On the negative side. Choose distinct cycles s; and so of ¢ and elements
i1 in s1 and ig in s5 such that either i; and iy are both in some cycle of [0, 771]
or s1 and sg are in different orbits of gp(o, 7). Then add the cycle

(d+1,d—|—2,...,d+€1+€2)

to o to get o’ € Siye, +4,. Insert d + n between
il"nfl and il"n for1<n</{

in the appropriate cycle of 7 and insert d 4+ #1 + n between

02" ™ and ix”" for 1 <n < fy
to get 7' € Sgye, 10, Then delete the now superfluous cycle s; from (¢/,7') to
get 01,71 € Sqte,.- We say (01, 71) is obtained by replacing s1 by s1 + s2 on the
negative side.

The next move involves finding a pair x1,z2 of components of X so that
the curves of Y which leave (or enter) z; on a particular side form a parallel
family all leading to (coming from) xzo. We tube together these curves along a
neighborhood of this parallel family to get a new curve which meets Y positively
and which we exchange with x2 to get a new diagram. This is described at the
level of permutations as follows. Refer to Figure 4.
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IV. Subtracting one cycle of o from another.

A. On the positive side. Choose a cycle s; of ¢ which contains exactly one
element i; which is not fixed by [0, 7] and such that ;7 lies in a cycle sy of o
different from s; ( if s = s1 we would immediately see that M, , has a lens
space summand). It follows that i” € sy for every i € s1, and that £y = £(s2) >
£1 = {(s1). In fact we must have ¢o > ¢1; otherwise the curve we get from tubing
the components of X is a non separating curve lying in S — X UY. Delete the
image, under 7, of the elements of s; from the cycles of o and 7 containing them
to get 01,71 € Sq—¢,. We say (o1, 71) is obtained by replacing s2 by s2 — s1 on
the positive side.

B. On the negative side. Choose a cycle s; of o which contains exactly one
element i; which is not fixed by [0, 77!] and such that ™ lies in a cycle sg
of o different from s;. It follows that it € so for every ¢ € s1, and that
Uy = (s3) > {1 = £(s1). Delete the the image, under 7!, of the elements of s;
from the cycles of o and 7 containing them to get to get 01,7 € Sq—r,. We say
(01,71) is obtained by replacing so by so — s1 on the negative side.

Note that “positive/negative side” in cycle subtraction refers to the positive
side of (the curve corresponding to s1); so $1 — sz on positive/negative side
will lie on the positive/negative side of s; (and on the negative/positive side of
s2). With this (arbitrary) convention the inverse of s; — s} = s3 + s1 on the
positive/negative side is 8] — s} — s} on the positive/negative side. Also note
that the two move sequence of replacing s by so — s; and then replacing s; by
s1+ (s2 — s1) accomplishes the replacement of s; by so — s7.

Since each of the moves II — IV is based on describing a new good, positive
diagram for the same splitting, we have

THEOREM (2.3). Suppose (o,T) satisfies the closed condition and that (o', 7")
is obtained from (o, T) by a sequence of moves of types I through IV. Then (o, 7")
satisfies the closed condition and

M, ;=
o, T — o’ !

Now we consider the converse. Suppose that D = (S;X,Y) is a positive
diagram for a closed 3-manifold M, and z is an simple closed curve in S — X
which meets Y positively at each point and which separates the two copies of
some component x; of X in S cut open along X. We say that the diagram

D*=(5;X —z1UzY)
is obtained from D by replacing z1 by z.

LEMMA (2.4). If(o,7) is an efficient representation for a closed 3-manifold M
and D* is obtained from D = D(o,T) by replacing a component x1 of X = X, -
by a curve z C S — X as above, then there is a sequence of moves of types 111
and IV taking (o,7) to (o(D*),7(D*))

Proof. D is a good diagram and z does not separate S;so zNY # (. S — X*
is connected and planar. It follows that D* is a good positive diagram for
M = M, ;. Let P, @ be the components of .S split along X Uz with x(P) > x(Q).
We show, by induction on —x(P) that there is a sequence of moves of type III
and IV taking (o, 7) to (o(D*), 7(D*).
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If x(P) = 0 then D and D* are isomorphic. If x(P) = —1, then 0P consists of
z, x1 and some x; # x1. By positivity not all pairs of components of P can be
joined by arcs of YN P nor can any such arc have ends in the same component of
OP. If there are no arcs of Y N P joining xy to x;, then z = x1 + x; and replacing
x1 by z is a type III move. If there are no arcs of Y N P joining x; to z, then
z = x1 — x;, and we have a type IV move. In the third case we can replace x;
by x; — x1 = z and then replace x1 by z1 + z = x;.

so assume x(P) < —2. The components of P split along Y have vertices in
OP and edges coming alternately from Y and X U z. By positivity the number
of edges is a multiple of four. If any component of 0P only had edges in squares,
P would be an annulus. Thus at least one such region R has at least eight edges
with one edge e in 2. Count around JR in a fixed direction to the fourth edge
from e to an edge f in OP such that the orientations on e and f induced from
X U z are both the same or both opposite the orientation induced from R. We
pipe together the components of P containing e and f along an arc in R then
push into R to get an oriented 1-manifold w C Int (R) which meets Y positively
at every point. If e and f are in different components of 0P, then w has a single
component which splits P to two regions of larger (negative) Euler characteristic
and we can apply induction to replace z; by w and then w by z by a sequence of
moves. If e and f lie in the same component of P, then w has two components.
At least one is not parallel to a component of OP ; otherwise x(P) = 2, and can
be used as above to complete the proof by induction. O

LEMMA (2.5). Each of the following moves applied to a pair (o,7) satisfying
the closed condition can be accomplished by a sequence of moves of types I through
IV:

1. Easy handle cancellation. Delete all elements in a cycle of o which
contains a fixed point p of T.

2. Easy handle insertion. Add a cycle (d+1,d+2,...,d+¥{) to o and
define (d+1)" =d+1. The elements d+2,...,d+ ¢ will be inserted in existing
cycles of 7. The choice for the position of d 4+ 2 can be arbitrarily specified.

3. Meiosis. Choose a cycle (i1,i2,...,ir,...,is) of o and replace it by the
two cycles (i1, ...,0r,d+1)(d+2,4r41,...,i5). Then add the cycle (d+ 3,d+4)
to o and add the two cycles (d+1,d+ 3)(d+ 2,d +4) to .

Proof. For the first move we replace the cycle ¢ of 7 which contains p” by the
difference ¢ — (p). This reduces the length of the cycle of o containing p by one
(see Figure 5). We repeat this process until p is fixed by both ¢ and 7. Then we
remove the corresponding trivial handle.
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The second move is the inverse of the first. We introduce a fixed point, d+ 1,
to both ¢ and 7. This corresponds to adding a trivial handle which we may
suppose is done in a component of S — (X UY') whose boundary contains the
interval in Y from ¢ to ¢”. Then replace the cycle of 7 containing ¢ by its sum
with (d+1). The effect is to insert d + 2 between ¢ and ¢” in this cycle of 7 and
to change (d+1) to (d+1,d+2) as a cycle of 0. We can continue to add (d+1)
to cycles of T subject to the rules. We will have no need to be more specific than
this in the applications of this move.

The geometry behind the third move is as follows. The given cycle of o
corresponds to a component x of X which bounds a disk F on the X side
of the splitting. Take a properly embedded arc a in E which separates the
two indicated subsets of E. We get a new splitting for the same manifold by
removing a neighborhood of a from one side of the splitting and adding it to the
other. This neighborhood splits E into two new meridional disks for the X side
of this new splitting, but we need a new meridional disk for the Y side. This
introduces a negative intersection which we correct with a a trivial handle. This
is accomplished by two easy handle insertions (see Figure 6) corresponding to
adding two fixed points to 7 followed by replacing x by a curve z ala Lemma (2.4).

O

THEOREM (2.6). Let (o,7) and (o', 7") be efficient representations of isomor-
phic closed 3-manifolds. Then (o,7) can be transformed into (o/,7') by a finite
sequence of moves of types I through IV.

Proof. By assumption M, r and M, .+ are isomorphic. Take the correspond-
ing positive diagrams D(o,7) = (5;X,Y),D(c¢’,7") = (S';X',Y’). The as-
sociated splittings are stably equivalent [R], [S]. Since adding trivial handles is
realized by type II moves, there is no loss in assuming that they are already equiv-
alent. Using this equivalence we identify S’ with S in a 3-manifold M = U UV
where U and V are handlebodies with U NV = 9U = 9V = S and with the
components of X and of X’ (respectively Y and Y’) bounding disks in U (re-
spectively V). In particular (S;X,Y) and (S; X', Y’) are positive diagrams for
the same splitting of M.
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Figure 7

We may assume that all curves are in general position and that X (respectively
X') meets Y (respectively Y') positively at each point. To see this we note that
a negative intersection between (say) X and Y’ can be eliminated by a trivial
handle addition which is simultaneously a easy handle insertion for both systems.
This is depicted in Figure 7 which shows replacing X by X Uz, X’ by X' U2/,
Y by YUy, and Y by Y/ Uy’ .

Now suppose that XNX’ = YNY’ = (. Note that in this case each component
of X’ meets Y and so on; otherwise we get a non separating simple closed curve
of § lying in S — X UY. I claim that there are orderings x1,2,...,x4 of the
components of X and z1', x5/, ..., x4 of the components of X’ such that for each
1=0,...,9

Di: (S;Xi,Y);Xi=$1/U'-'Ul‘i/U$i+1U"-U$g

is a good positive diagram. Since we are dealing with efficient representations,
the curves of X (and those of X') represent a maximal set of linearly independent
elements of H1(S;Z). We merely need to preserve this property for each X;. This
can be done by the (linear algebra) replacement theorem of Steinitz.

Now D;;1 is obtained from D; by replacing x;11 by z;+1’. By Lemma (2.4)
this can be done by type III and IV moves. Repeating this argument for the “Y
side” completes the proof in case X N X' =Y NY’' = 0.

In general we take sets E, E’ (respectively F, F’) whose components are prop-
erly embedded disks in U (respectively V') bounded by the components of X, X’
(respectively Y, Y”) and such that the components of ENE’ (respectively FNF’)
are properly embedded arcs and induct on the total number of these arcs.

We have already considered the initial case; so suppose (say) that ENE’ # 0.
Choose a component a of E N E’. We get a new splitting which corresponds
to a Meiosis associated to a on each of the two systems. This corresponds to
eliminating a component of £ N E’. One must check that no new intersections
need to be introduced and that we preserve the condition that X (X’) meets Y’
(Y) positively. Lemma (2.5) and induction then complete the proof. O

Ezample (2.7). See Figure 8.
o=(123456)(789101112131415) 7 = (13139674 1410)(212851511)

is an efficient pair satisfying the closed condition whose degree cannot be reduced
by any elementary move. Replacing ¢1 by t; +t2 (at 0 € t1,15 € t2) gives

o' =(1217345206)(78199101116121813141521)
7 =(116171819202131396741410)(212851511)
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Figure 8. Example 2.7

Replacing s, by sh — s} (positive side) gives
o’ =(1211345136)(7128910) 7 = (1111213386 49)(275 10)
Replacing s by s§ — s (positive side) gives
o = (182)(37456) 7" = (178425)(36)

Replacing s’ by s5’ — s{’ (positive side) gives

oW =(152)(34) 7 = (152)(34)
This is a connected sum of diagrams representing Lo 1# L3 1.
In general for o a p-cycle and ¢ prime to p
(0,0%) represents the lens space Ly,
We leave the following as an exercise.

PROPOSITION (2.8). If the incidence matriz of an efficient pair (o, T) satis-
fying the closed condition has an entry p which is the only non zero entry of its
row or column, then My has a lens space summand Ly, , for some q.

3. Carriers for Positive Diagrams

In this section we show how to decompose the positive diagrams into families
which are generated by a single graph, called a carrier for the family, from which
the family and its associated permutation pairs can be readily computed. We
then show how to generate all the carriers. Some authors use the term Whitehead
graph, but this tends to have a more group theoretic interpretation which may
not stress the embedding of the graph in S?; so we prefer to keep the concepts
separate.

To motivate this construction, we start with a positive diagram (S; X,Y") of
genus g > 2. We assume that the diagram is efficient; so X and Y each have g
components and that X UY is connected — otherwise we immediately recognize
a connected sum of lower genus diagrams. We cut open S along X and collapse
the resulting boundary curves to points. This changes S to a 2-sphere and Y
to a bipartite graph in S? with g source vertices (corresponding to the positive
sides of the components of X, g sink vertices, and edges (corresponding to the
components of Y — X each directed from a source vertex to a sink vertex. The
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Figure 9

complementary regions will have an even number of edges whose orientations
alternate as one traverses the boundary of the region. The regions with two
edges (bigons) will occur in stacks: maximal sequences of bigons each sharing an
edge with the next one. We collapse each stack of bigons to a single directed edge
to which we assign a weight: the number of original edges which were identified
to this edge. The condition g > 2 prevents us from collapsing S? to a graph.
Thus we continue to get a bipartite graph in S? with g source and g sink vertices.
The complementary regions will be 2i-gons, ¢ > 2. If some complementary region
is a 2i-gon with ¢ > 3, we can add an edge in this region directed from a source
vertex to a sink vertex three edges distant on the boundary of the region. This arc
splits the region into a square and a 2(i— 1)-gon. We associate zero weight to the
added edge. By repeating this operation we may assume that all complementary
regions are squares. We say that the given positive diagram is carried by the
resulting graph.

We want to make one additional simplification which will be useful in enumer-
ating carriers. The complementary squares need not have distinct edges. This
can happen in just one way — see Figure 9a. There must be an edge with a
vertex of order one. Since we are assuming that X UY is connected and g > 2
the weight on this edge and at least one other weight on an edge at the opposite
vertex must be positive. Now back the picture to the level of S cut open along
X (Figure 9b.) .

The curve, denoted x;, corresponding to the order one vertex cannot be paired
with the curve, z;, corresponding to the other end of this edge; as these vertices
have different weight sums. Thus we can replace z; by z; — ;. The degree
d=#(XNY) is reduced to d — #(Y Nz;). Since the degree cannot be reduced
indefinitely, there must result after a finite repetition of the above operation a
positive diagram equivalent to the original one which is carried by a graph with
no vertices of order one.

We now formalize this by defining a genus g carrier to be a connected, bipartite
graph C' C S? with

e g source vertices and g sink vertices, with

e cach component of S% — C a disk having boundary the union of four distinct
edges of C.

o A bijective pairing p : Vi (C') — V_(C) between the source and sink vertices
of C, and
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e a weight w(e) > 0 assigned to each edge e of C so that for each v € V (C)
we have

Z{w(e) tvEe}= Z{w(e) :p(v) € e}

PROPOSITION (3.1). A genus g carrier has
49 — 4 edges, and
2g — 2 complementary regions.

Proof. Since the complementary regions are squares, £ = 2F.
Also, F = 3y(5% — C) which by duality is the same as 1+ 31(C) = 2 —x(C)
2-29g+E.

o

The preceding discussion has established

PROPOSITION (3.2). FEach efficient, positive diagram of genus g > 2 is equiv-
alent, via type IV moves, to one which is either carried by a genus g carrier or
is a connected sum of lower genus diagrams.

To reconstruct a diagram from a carrier, we remove neighborhoods of the
vertices to obtain a 2g-punctured sphere S’. We replace each edge e of E(C)
by w(e) parallel arcs to obtain a properly embedded 1-manifold Y’ C S’. We
identify paired components of 95’ to obtain an oriented surface S in such a way
that Y maps to a closed 1-manifold Y C S and we denote the image of S’ by
X. We have naturally induced orientations on S, X, and Y so that X meets Y
with +1 intersection at each point of X NY.

The ambiguity in this construction is the amount of twist used in gluing the
paired components of 95’. We find it convenient to “mark” one corner of some
complementary region of S? — C' at each vertex to indicate the zero-twist gluing.

To determine the corresponding permutations we label the initial points of the
components of Y’ in some convenient way. Then the cycle o; of o correspond-
ing to the component x; of X is read from the associated “positive” boundary
component of S’. This way o is determined independent of the twisting.

If 79 is the permutation determined by Y for the zero-twist gluing, then the
permutation corresponding to Y with twist coordinates (t1,...,t,) will be:

T()Uil ... 0;9.

It is not hard, for small genus, to determine the possible carrier graphs (see
remark below), and eliminate the pairings which do not admit non trivial weight
solutions. In this way we can prove:

Ezample (3.3). There is just one genus two carrier (Figure 10). The genus
two positive diagrams are determined by

J:(lv2a7Q+p)(q—’_p+1vq—"p+2a7Q+2p+r)20102

T=(q+1,q+p+1)(g+2,g+p+2)...(¢+p,q+2p)otiol

for some p,q,r € Zy,t1,t2 € Z.
There are ten genus three carriers. They are based on all pairings of the two
graphs of Figure 11 (modulo the obvious symmetries).
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X X
. 1 q 1 .
O-twist
P —
- +
X2 r X2

Figure 10. Genus two carrier

1

Figure 11. Genus three carriers

Remark. If C C S? is a carrier graph, then there is a branched cover p :
52 — S2 branched over three points — all the oriented edges of C' are identified
and diametrically opposite points on each square are identified. So the source
vertices map to one branch point, the sink vertices to the second, and the centers
of squares to the third. This process is reversible:

PROPOSITION (3.4). The genus g carrier graphs are determined by the fized
point free, transitive pairs p,v € Sag—a with c(p) = c(v) = g and pv a product
of 29 — 2 2-cycles.

4. The lattice structure

Remember that we have a partial order M;,,; = Maﬁ if there is a factorization
p=pog:
Nips 55 N1, 2§
of branched coverings. At the level of permutations this is given by:
PROPOSITION (4.1). Let 5,7 € S, 0,7 € Sq. Then Ms: = My, if and
only if d = M for some \ € Z and there is a X to one map 1 : {1,2,...,d~} —
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{1,2,...,d} such that

for all i.

Proof. We have identifications of the fibers p~!(z¢) with {1,2,.. ,J} and
p~1(xg) with {1,2,...,d}. So % will be induced by ¢ to give necessity.

Conversely, given 1, we note that the corresponding unbranched coverings
(of S* — T') are determined by the subgroups ¢~ !(Stab(1)) C ¢~ !(Stab(1)) of
m1(S? —T'). So the existence of g follows. O

Note that with the above proposition it is easy to construct lots of branched
covers of a given MUJ. However even if the given space is a closed 3-manifold
(MU,T = M, ;), the total space will most likely be a non-manifold. We are most
interested in determining the true (finite sheeted) covers of a manifold. This is
given by

PROPOSITION (4.2). Let 0,7 and 6,7 be transitive pairs with M(,’T =M,: a
closed 8-manifold and M;,,; =M, .

Suppose that (&) = Ae(0), c(T) = Ae(T), and c([G,7]) = Ac([o,7]) for some X €
Z. Then q : M&,; — M, ; is a true covering map, and M;,,;(: M5 7) is a closed
S-manifold.

Proof. Note that the map v : {1,2,. ,ci} — {1,2,...,d} maps each cycle
of 5,7, or [5,7] onto a cycle of o, 7, or [0,7]. So we always have ¢(6) < Ac(0),
e(T) < Ae(r), and ¢([6,7]) < Ac([o,7]), and the condition of the proposition is
equivalent to asserting that for each cycle of o, 7, or [0, 7] there are A cycles of
g,7, or [F, 7] projecting one-to-one to it.

We note that ¢ will always be a covering on a neighborhood in S5 7 of XU
Y. We get S, from this neighborhood by filling in disks whose boundaries
correspond to the cycles of [7,7]. The condition ¢([&,7]) = Ac([o, 7]) makes ¢ a
homeomorphism on the curves — hence on the disks they bound.

Similarly we see that ¢ will be a homeomorphism on the 2-handles of M5
to those of M, . The links of the vertices of M, ; are 2-spheres and we have
seen that ¢ is a covering map on the inverse image of these 2-spheres. Hence the
components of their inverse images are 2-spheres mapping homeomorphically by
q and so ¢ will take the 3-cells they bound homeomorphically as well. O

The following illustrates that “good” properties for closed 3-manifolds tend
to proliferate upwards in the lattice of branched coverings over I'.

PROPOSITION (4.3). Let M@; = Ms # and MUJ = M, - be closed 3-manifolds
with Ms z = My ». If My, has a finite sheeted true cover which has positive first
betti number or which contains a closed, 2-sided incompressible surface then so
does Ms ;.

Proof. By hypothesis there is a finite sheeted true covering r : My« « —
M, - whose total space has one of the “good” properties mentioned. We have a
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pullback diagram:
My — M- -

l I

M&,f' T> MO’,T

with monodromy determined by

a,7 € Aut(S)

where S = {(i,5) € {1,...,d} x {1,...,d*}) : q(i) = ()}
(we are identifying points with their labels), and

g=6x0"|S,T=7x71"|8.

We wish to show that M[—,f — M > is a true covering and that (any com-
ponent of) the total space has the corresponding “good” property. Each cy-
cle 6; of & covers ( in the sense of proposition (4.1) cycles &; of & and o}, of
o* which cover the same cycle g, of 0. The lengths of these cycles satisfy
&;) = lem(€(65,0(cf)). But £(o%) = £(0m); since r is a true covering, and
U om)|l(a;) by (4.1); so £(7;) = £(G;). The same argument applies to cycles of 7
and of [7,7] to give the conditions of proposition (4.2).

Now w1 (M5 7) maps to a subgroup of finite index in m (My» ++). So if
51 (Ma*,T*) > 0 then ﬁl(Mﬁﬁ') > 0.

If My« ;« contains a closed, 2-sided incompressible surface F', we pull it back
to a closed 2-sided surface F' C Mz 7. If F does not compress completely we
are done. If it does, then using the fact that m1(F) — 71 (My~ -+) is monic, we
see that 71 (F) — 7 (F) factors through a free group. So F' — F factors, up to
homotopy, through a 1-complex. This is impossible since Ho(F) — Hz(F) is not
Z€ro. O

In the next proposition we use the presentation Px of m (M, ) described at
the end of section 1. In particular we have an indexing o1, ..., 04 of the cycles of
o, corresponding generators a1, ..., a4 for m (M ;), and s(i) denotes the index
of the cycle of ¢ containing i.

PRrROPOSITION (4.4); Let 0,7 € Sg be an efficient presentation of a closed 3-
manifold and let p : M — M, . be a A-sheeted covering map with monodromy
J WI(MULT) — S)\,

Then M = Mz = where 6,7 € Sxg =2 Aut({1,...,d} x {1,...,A}) are given
by:

5 (b4) = (07, )
7o (i, g) = (i, j1e0))

Proof. We have branched covers p : M, , — S* and p = pop : M — S3
branched over I" and the associated diagrams D(o,7) = (S; X,Y) and D(5,7) =
(5;X,Y) = (p="(S); p~1(X), p~'(Y)). The components of X and Y lift home-
omorphically to components of X and Y respectively. S — X is connected and
each component of p~1(S — X) projects homeomorphically via p. Thus we can
regard p as permuting these components — in terms of some labeling. Since a;
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is represented by a curve dual to x;, a lift of this curve which begins in the
component of S — X labeled j ends in the component labeled j#(%).

We have a labeling of the points of X N'Y consistent with o, 7. We label the
points of X N'Y as follows. A point z € X NY is labeled (4, j) provided that
p(z) is labeled i and the component of S—X lying on the negative side of the
component of X containing z is labeled j. It should be clear that in terms of
this labeling the permutation given by flowing along X (Y) is & (7). O

Remarks. 1. The above propositions give an alternate way of thinking about
the finite representations of my (M, ). A finite representation is determined by
a transitive pair 6,7 € Syq4, for some A, satisfying the conditions of (4.1) and
(4.2). The representation (to Sy) is recovered by reversing the proof of (4.4).
We note that the corresponding cover Ms » — M, » will be regular if and only
if the group generated by & and 7 has order A.

2. Tt is straightforward, using Proposition (4.4), to determine the maximal
abelian cover of M, , (if finite). Successive applications determine the coverings
corresponding to the derived series of w1 (M, -). I have found this quite effective
in determining whether a given fundamental group is finite or not. The possible
finite fundamental groups of 3-manifolds are known [Mi], [L], and from a com-
parison of the quotients of the derived series of the given example with those
of the known examples one can either guarantee that the group is infinite (no
comparison) or determine its order if finite. Of course one would need an effec-
tive procedure for settling the triviality problem for these group presentations
to make this algorithmic.
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THE VARIETY OF CHARACTERS IN PSL;(C)

MICHAEL HEUSENER AND JOAN PORTI

ABSTRACT. We study some basic properties of the variety of characters in
PSL2(C) of a finitely generated group. In particular we give an interpreta-
tion of its points as characters of representations. We construct 3-manifolds
whose variety of characters has arbitrarily many components that do not
lift to SL2(C). We also study the singular locus of the variety of characters
of a free group.

1. Introduction

The varieties of representations and characters have many applications in 3-
dimensional topology and geometry. The variety of SLo(C)-characters has been
intensively studied since the seminal paper of Culler and Shalen [CS], but for
many applications it is more convenient to work with PSLo(C) instead of SLy(C)
(see [BZ] and [BMP] for instance). The purpose of this note is to study some
basic properties of the variety of characters in PSLy(C). Most of the results of
invariant theory that we use can be found in any standard reference (e.g. [KSS],
[Kra], [PV]).

Throughout this paper, I' will denote a finitely generated group.

Definition (1.1). The set of all representations of I' in PSLa(C) is denoted by
R(T") and it is called the variety of representations of T' in PSLa(C).

The variety of representations R(I') has a natural structure as an affine al-
gebraic set over the complex numbers given as follows: the group PSLy(C) is
algebraic (see Section 2). Given a presentation I' = (y1,...,7s | (1i)ier) we have
a natural embedding:

R(I) — PSLy(C) x --- x PSLy(C)
p o= (p(n)s-eup(7s))

and the defining equations are induced by the relations. This structure can be
easily seen to be independent of the presentation. In fact using the isomorphism
PSL3(C) = SO3(C), R(T") has a structure of an affine set (see Lemma (2.2.1)).

The action of PSLy(C) on R(T') by conjugation is algebraic. The quotient
R(T")/PSLy(C) may be not Hausdorff and it is more convenient to consider the
algebraic quotient of invariant theory, because PSLs(C) is reductive.

Definition (1.2). The variety of PSLy(C)-characters X(T') is the quotient
R(T")//PSLy(C) of invariant theory.

2000 Mathematics Subject Classification: 57M50, 57M05, 20C15.
Keywords and phrases: representation spaces; variety of characters; PSLa(C).
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This definition means that X (T') is an affine algebraic set together with a
regular map t: R(I') — X (T") which induces an isomorphism

- (C[X(F)] —>(C[R(F)]PSL2(C)

(i.e. the regular functions on X (I') are precisely the regular functions on R(T")
invariant by conjugation). We will use the notation R(M) = R(miM) and
X(M)=X(mM) if M is a path-connected topological space.

In this paper we study the basic properties of X (I').

First we explain the name “variety of characters”: given a representation
p: I' = PSLy(C), its character is the map

xXp: I' = C
v o= ¥ (p(v)

THEOREM (1.3). There is a natural bijection between X (T') and the set of
characters of representations p € R(I"). This bijection maps every t(p) € X (I')
to the character x,.

In many cases the representations of R(T") lift to SL2(C), for instance if T’
is a free group. In such a case, X(T') is just a quotient of the usual variety of
characters in SLy(C) (See Proposition (4.2.2)). This quotient is the definition
already used in [Bur90], [HLM1],[HLM2] and [Ril84] for 2-bridge knot exteriors.
The explicit computation for the figure eight knot exterior is found in [GM].

There are cases where representations do not lift to SLy(C), for instance the
holonomy representation of an orientable hyperbolic 3-orbifold with 2 torsion.
The next result proves that there are manifolds with arbitrarily many compo-
nents of characters that do not lift.

THEOREM (1.4). For every n, there exist a compact irreducible 3-manifold M
with OM a 2-torus such that X (M) has at least n irreducible one dimensional
components whose characters do not lift to SLa(C).

In Section 2 we prove Theorem (1.3). In Section 3 we study the fiber of the
projection t: R(I') — X(I'), introducing the different notions of irreducibility.
Section 4 is devoted to the study of lifts of representations and the proof of
Theorem (1.4). In the last section we determine the singular set of X (I') when
I' &2 F,, is the free group of rank n > 3.

2. Invariants of PSLy(C)

Before proving Theorem (1.3) we quickly review some basic notions of alge-
braic geometry and invariant theory (that the reader may prefer to skip and go
directly to the proof in Subsection 2.3). For details see [KSS], [Kra] or [PV].

(2.1) Basic notions of invariant theory. A closed algebraic subset Z C
CV is called affine. We denote by C[Z] the ring of regular functions on Z.
An algebraic group G that acts algebraically on Z acts naturally on C[Z] via
gf(z) == f(g7'z). We denote by C[Z]% the ring of invariant functions, i.e.
functions f € C[Z] for which gf = f for all g € G.

The group G is called reductive if it has the following property: for each
finite dimensional rational representation p: G — GL(V') and every G-invariant
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subspace W C V there exist a complementary G-invariant subspace W/ c V,
e V=WaoW.

If Z is affine and G is reductive, then the ring C[Z] is finitely generated.
The affine set Y such that C[Y] = C[Z]9 is called the algebraic quotient and it
is denoted by Z//G.

We shall use the following properties of reductive groups:

— By Maschke’s theorem, finite groups are reductive.

— More generally, let G C GL,,(C) be a linear algebraic group. The group G

is reductive if there is a Zariski-dense subgroup K C G which is compact
in the classical topology. It follows that GL,(C), SL,(C), O,(C), SO, (C)
and Sp,,(C) are reductive.

— Let G be a reductive linear algebraic group. Let Y and Z be varieties

on which G acts and let f: X — Y be a G-invariant regular map. If
f*: C[Y] — C[X] is surjective then f*(C[Y]¥) = C[X]% holds.

(2.2) Algebraic structure of PSLy(C). The group PSLy(C) is algebraic, it
is the quotient of SLy(C) by the finite group {+Id}.

It is useful to recall the isomorphism with SO3(C), that we construct next.
We denote by

Ad: PSLQ((C) — Aut(ﬁ[g((C))

the adjoint action of PSLy(C) on its Lie algebra sly(C). The Killing form
on sl3(C) is a non degenerate symmetric bilinear form over C. For each
A € PSLy(C), Ad(A) preserves the Killing form and det(Ad(A)) = 1, hence
Ad(PSL2(C)) C SO3(C). The following lemma is well known from representation
theory (see for instance [FH]):

LEMMA (2.2.1). The action of PSLy(C) on the Lie algebra induces an iso-
morphism Ad: PSLy(C) — SO3(C).

In this paper the trace will be abbreviated by tr, and tr?(A) stands for
(tr(A))2. By direct computation we obtain the equality

(2.2.2) tr(Ad(A)) = tr?(A) — 1 =tr(A*)+1 for all A € PSLy(C)

that will be used later.
Given v € I', we have a well defined function

v: R(IT) — C
p — tr’(p(v))

Since it is invariant by conjugation, it induces a function
Jy: X(T) — C.
(2.3) Proof of Theorem (1.3). Theorem (1.3) is a consequence of:

PROPOSITION (2.3.1). The ring of invariant functions C[R(T)]¥SL2(©) is gen-
erated by the functions 7, with v € I'.

Proof. Thereis asurjection: F,, — I where F,, is a free group of rank n € N.
We obtain an inclusion ¢*: R(I"') C R(F),). This inclusion induces a surjection
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Y«: CIR(F,)] — C[R(T")]. Now, PSLy(C) is reductive and acts regularly by
conjugation on the representation varieties. Hence we obtain a surjection

g CIR(E,)PSE)  CR(D)PS=O
and it is sufficient to prove the proposition for I' = F), since 1« (7y) = Ty ().
Using Lemma (2.2.1) and (2.2.2), we have to prove that C[R(F,)]3%¢(©) is
generated by the trace functions on elements of F,,. Equivalently, we claim that

C[SO3(C) x - -- x SO3(C)]5°:(©)

is generated by traces of products of matrices and their transposes.

Let M3(C) denote the algebra of 3 x 3 matrices with complex coefficients. The
group PSL2(C) = SO3(C) acts on the product M3(C) x --- x M3(C) diagonally
by conjugation. A theorem of Aslaksen, Tan and Zhu (see [ATZ]) states that
the algebra of invariant functions

(C[Mg((C) X oo X Mg(@)]sog(c)
is generated by the traces of products of matrices and their transposes. Thus
the proof of the proposition reduces to show that we have a natural surjection
C[M3(C) x --- x M3(C)]3°*(© — C[SO3(C) x - - - x SO3(C)]39:(©) .
Since SO3(C) x - -+ x SO3(C) € M3(C) x --- x M3(C) is a closed subvariety we
obtain a natural surjection
C[M3(C) x - -+ x M3(C)] = C[SO3(C) x --- x SO3(C)]

which is of course SO3(C)-invariant. Using the fact that SO3(C) is reductive gives
the surjection C[M3(C) x - - - x M3(C)]893(®) — C[SO3(C) x - - - x SO3(C)]893(©),
O

Since C[X (T)] = C[R(I")]3°3(©) is finitely generated, we also obtain:

COROLLARY (2.3.2). There are finitely many elements y1,...,yn in I' such
that Jy, x -+ X Jyy: X(M) — CN is an embedding and its image is a closed
algebraic set.

(2.4) Other invariant functions. There are other natural functions to con-
sider. Let I'? be the subgroup of I' generated by the squares v2 of all elements
v of I'. Tt is well known that we have an exact sequence:

1 =T2 T — H(T,C) — 1,

where Cy = {£1} is the group with 2 elements. For instance, if I" is a finite
group of odd order, then I'? = I'. In general, if v, € I' the commutator
[v, 1] = yuy tp=t = (yp)?(p= 1y 1u)?p~2 is in T'? and hence I'? contains the
commutator group IV = [I',T']. Notice that
= m Ker(e)
c€H'(T,C2)
where H'(T',C3) = Hom(T', C3). Let R(T,SLz2(C)) denote the variety of repre-
sentations of I' in SLy(C). The cohomology group H!(T', Cs) acts on this variety

of representations as follows: an homomorphism e: I' — Cy = {£1} maps the
representation p € R(I",SL2(C)) to the product of representations € - p (which

maps 7 € T to e(7) - p()).
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Invariant functions for the free group. Let F be a finitely generated free group.
For v € F? and p € R(F), tr(p(v)) is well defined since the representation
p: F — PSLy(C) lifts to p: F — SL2(C) and for v € F? the trace tr(p(y))
depends only on . Note that two lifts p; and ps of p differ by a homomorphism
€ € H(F,Cy) and that F? C Ker(e) for each € € H'(F, Cy).

PROPOSITION (2.4.1). Let F be a free group. For every k-tuple y1,...,v € F
such that the product v - - -, € F?, the function
Oyipeevi R(F) - C
p = tr(p(n) - tr(p(m)
is reqular (i.e. 0y, . ., € CI[R(F)]). Here, p: F — SLy(C) denotes a lift of p.

In order to prove this proposition we shall use the following:

LEMMA (2.4.2). Let F,, be the free group of rank n. We have a natural iso-
morphism
R(F,,SLy(C))//H(F,,Cs) = R(F,).

Proof. Since R(F,,,SLy(C)) = SLo(C)™, R(F,) = PSLy(C)™ and SLy(C)/Cy =
PSL3(C), we have the lemma. O

Proof of Proposition (2.4.1). For a free group F and v1, ...,y € F, the func-
tion &: R(F,SL2(C)) — C given by &(p) = tr(p(y1))---tr(p(yx)) is regular.
Moreover, we have (e - p) = €(y1 - y%)5(p). Since the product 7y -+ -y, € F?
we get that & € C[R(F,,, SLa ((C))]Hl(F’“Cz) is an invariant regular function on the
SLo(C) representation variety. By Lemma (2.4.2), this function factors through
R(F') and gives the regular function o, .. -, € C[R(F)]. O

Ezxample (2.4.3). Given v,n € F, by Proposition (2.4.1), 0.~ € C[R(F)],
thus by Proposition (2.3.1), 0.~y is a polynomial on the functions 7.

To compute explicitly the polynomial of Example (2.4.3), we recall some iden-
tities of traces in SLq(C):
tr(AB) = tr(BA) and tr(A) =tr(A™Y) VA,B e SLy(C).
In addition, we have the fundamental identity:
(2.4.4) tr(AB) + tr(A'B) = tr(A) tr(B) VA, B € SLy(C).

This identity can be deduced from A? — (tr A)A + Id = 0 multiplying by A~'B
and taking traces. Taking the square of tr(AB~1) = tr(A) tr(B) — tr(AB) we
deduce:

2tr(A) tr(B) tr(AB) = tr?(A) tr?(B) + tr*(AB) — tr*(AB™!).

Thus
1

(2.4.5) Oymyn = 5(7'7777 + Tyn — Typ-1)-

Example (2.4.6). For every 7,u € F, the commutator [y,u] = yuy ‘u~
belongs to F? and therefore o1,,,) € C[R(F)]. Using the the same method as for
Equation (2.4.5) one can find:

1

1 1 1
(247) O‘[’y,n] =Ty + Ty + 57—777 + 57—77]71 - 57‘—}/7—” — 2.
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Invariant functions for other groups. Let I' be a finitely generated group,
F a free group and ¢: F' — T a surjection. It induces another surjection
Yy C[R(F)] = CIR()], ¥« f(p) = f(poty). Hence we obtain for all ny, ..., 7 €
F such that the product n; - - -, € F? a regular function 9.0, .. € C[R(D)].
Note that the functions ¢.0,;, and 1.0, might be different even if ¢(n1) = ¥ (n2)
in I'. This reflects the fact that in general not every representation p: I' —
PSLy(C) lifts to SLa(C).

Ezample (2.4.8). Let ¢: F — T be the canonical projection where F' = (z,y |
—)and I' = (z,y | [z,y] = 1). We consider the representation p: I' = PSLy(C)
given by p(z) = £A, and p(y) = £A, where

i 0 0 1
Ax<0 —i> zmdAy<_1 O>'

We obtain tr([A,, Ay]) = —2 and hence .01, ,(p) = —2. On the other hand we
have [z,y] =1 in I and ¢.0; = 2 is a constant function.

If the representation p € R(I') admits a lift p: T' — SL2(C) then

(2.4.9) Va0, (p) = tr(p((m))) - - tr (AP (i)
only depends on the elements ¥ (n1),...,¥(nk) € T.

3. Irreducibility

To study the fiber of the map ¢: R(I') — X (I") we shall consider two differ-
ent notions of irreducibility for p € R(T"), the usual one as a representation in
PSLy(C) and the so called Ad-irreducibility, for the three dimensional represen-
tation Adop: I' = SO3(C).

(3.1) Irreducible representations.

Definition (3.1.1). A representation p € R(I') is called reducible if p(I") pre-
serves a point of P1(C). Otherwise it is called irreducible. A character x: T' — C
1s called reducible if it is the character of a reducible representation.

Remark (3.1.2). Up to conjugation, the image of a reducible representation is
contained in the set of upper-triangular matrices (§ ).

We shall require the following well known lemma (see [Bea, § 4.3]).
LEMMA (3.1.3). Two non-trivial elements g,h € PSLa(C) have a common

fized point in PY(C) if and only if tr([g, h]) = 2. In addition, this fized point is
unique if [g, h] is not the identity.

Irreducibility is a property that can be detected from characters:

LEMMA (3.1.4). A representation p € R(T') is reducible iff tr([p(7), p(n)]) = 2
for all elements v,n in T.

Proof. If p is reducible then all the p(y) have a common fixed point and
Lemma (3.1.3) gives the result.
Assume now that tr([p(v), p(n)]) = 2 for all elements ~,n in T.

Case 1: There are two elements v and 7 in I' such that [p(7), p(n)] is not the
identity. Then A = [p(7), p(n)] is a non-trivial parabolic element in the image of
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T. For any u € T', either p(u) commutes with A or [p(u), 4] is non-trivial. The
former possibility implies that p(u) fixes the unique fixed point of A, the latter
too by Lemma (3.1.3).

Case 2: The image of p is an abelian group. Abelian subgroups of PSLs(C)
are well-known: either they have a global fixed point in P!(C) or they are
conjugated to the group with four elements generated by + ( ° §) and + (§ %;).
Since the commutator of these two generators is (*01 _01), this possibility does
not occur. o

Definition (3.1.5). A non-cyclic abelian subgroup of PSLa(C) with four ele-
ments is called Klein’s 4-group. Such a group is realized by rotations about three
orthogonal geodesics and it is conjugated to the one generated by + (_01 (1)) and

+(6%)-

Let R™4(T") denote the set of reducible representations and X"¢4(T') =
t(R™4(T")). Let F be a free group and let ¢: F — T be surjective. Lemma (3.1.4)
implies that

RND) ={p € RT) | Ysopy(p) =2 Yv.neF}

is a Zariski closed subset invariant by conjugation. Thus, by invariant theory we
have:

COROLLARY (3.1.6). The set X"°4(T') is Zariski closed and R"*4(T) =
t=1(Xred(D)).

Remark (3.1.7). Every reducible character x is the character of a diagonal
a~ b,y
0 ¢y

representation, because if p(v) = :l:( ) is a representation, then p/(y) =

+ (a(; C(l> is also a representation with x, = x, .

(3.2) Ad-irreducibility.

Definition (3.2.1). A representation p € R(I') is Ad-reducible if sl3(C) has a
proper invariant subspace by the action of Adop. Otherwise it is Ad-irreducible.

Let H? denote the three-dimensional hyperbolic space and O,,H? its ideal
boundary. We use the isomorphism Isom™ (H?) = PSLy(C) and the natural
identification 9, H?® = P1(C).

LEMMA (3.2.2). A representation p: I' — PSLo(C) is Ad-reducible if and
only if p(T') preserves either a point in OxH® or a geodesic in H3.

Proof. Let V be a proper subspace of sl3(C) invariant by Ad op(T"). Up to tak-
ing V+, we may assume dim V' = 1, because the Killing form is not degenerate.
We have then two possibilities: either the Killing form restricted to V' vanishes
or not. In the first case V consists of parabolic Killing fields, in particular the
1-parameter group {exp(v) | v € V'} = C is parabolic and fixes a unique point at
infinity, that has to be fixed also by p. In the second case, when the Killing form
restricted to V' does not vanish, the 1-parameter group {exp(v) |v € V} = C*
is a subgroup of index two in the group of isometries which preserve a geodesic
in H. This geodesic has to be preserved by the representation. Conversely, if a
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representation preserves a point in 0,,H> or a geodesic, the previous argument
shows how to construct an invariant subspace of sly(C). O

COROLLARY (3.2.3). Reducible representations are also Ad-reducible.

Remark (3.2.4). A representation Ad-reducible but not reducible is a Cs-
extension of an abelian one that fixes an oriented geodesic. Thus it preserves an
unoriented geodesic.

We call a representation p € R(I") abelian respectively metabelian if its image
is an abelian respectively metabelian subgroup of PSLy(C)

LEMMA (3.2.5). A representation p € R(I") is Ad-reducible iff it is metabelian.

Proof. 1If p is Ad-reducible then its image is contained in the stabilizer of either
a point in P*(C) or a geodesic in H3. Those stabilizers are metabelian, since
they are respectively the group of affine transformations of C and the semidirect
product C* x Cs.

Now assume that p(I") C PSLy(C) is a metabelian subgroup. We use the fact
that an abelian subgroup of PSLz(C) preserves a unique point of P!(C), a unique
geodesic or it is Klein’s 4-group (Definition (3.1.5)). If p([T', I']) is trivial then p is
Ad-reducible by this fact. If p([I",I'])is not trivial, then we look at those unique
invariant objects: the unique point in P*(C), the unique geodesic, or the unique
three geodesics if it is Klein’s 4-group. Since [I',T] is normal in I'; uniqueness
implies that p(I') preserves the same objects, hence p is Ad-reducible. O

LEMMA (3.2.6). The set of characters of Ad-reducible representations is Zariski
closed.

Proof. Lemma (3.2.5) gives that the set of Ad-reducible representations is
RAd=red — 5 R(T) | p(c) = £Id VeeTl"}

where I denotes the second commutator group of I'. This is a closed subset of
R(T) invariant under conjugation. Hence we have XAd—7¢d(T") = ¢(RAd—7ed) ig
a closed subset of X (T). O

Remark (3.2.7). The image of an Ad-reducible representation is elementary,
but elementary groups also include groups that fix a point in H?>.

(3.3) The fibers of t: R(I') — X (I).

LEMMA (3.3.1). The fiber of an irreducible character consists of a single closed
orbit (i.e. two irreducible representations have the same character iff they are
conjugate).

Proof. Let p1, p2 € R(T') be two irreducible representations with x,, = X,

We assume first that each p; is irreducible but Ad-reducible. Thus each p;
preserves a geodesic [, that we may assume to be the same after conjugation.
The action of p;(vy) on [ is determined by the value of x,, (), except in the case
Xp; (7) = 0, which means that p;(7) is a rotation through angle m, but it can
be either about 7 or about an axis perpendicular to . Thus if there exists an
element o € T with x,, (70) # 4,0 (i.e. pi(70) is either a loxodromic element or
a rotation of angle # m) then V-~ € T" the action of p;(y) on the geodesic ! is
determined by x,, (7) and x,, (770). In particular p; is unique up to conjugation.
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The exceptional case occurs when x,, (7) = 0 or 4 for every v € T'. In this special
case, p; is necessarily a representation into Klein’s 4-group. The lemma is also
clear in this case.

When p; are Ad-irreducible, we can assume that I' is a free group. Thus we
can lift p; to p;: T' = SLy(C). By Example (2.4.3), for every pair 7,7 € T' we
obtain a regular function 0., /4 : X(I') = C, given by

Ty (Xp) = tr p(7Y) tr p(y) trp(y')
where p: I' = SL2(C) is any lift of p. Thus:

(3.3.2) trp1(vy') trp1(v) trpr(y) = tr p2(vy') tr pa(y) trpa(v) .
We define €: I' = Cy = {£1} by the formula:

trp1(y) = e(y)trp2(y), Vo €T such that x,, () # 0.

When x,, (7) = 0, since we assume that p; is Ad-irreducible, we can find vo € T
with x,, (70) # 0 and x,, (7o) # 0. In this case we define () = €(v0) - €(y70).

By (3.3.2), e is a morphism. Hence ;1 and e- py are irreducible representations
in SL2(C) with the same character. By [CS] they are conjugate. O

PROPOSITION (3.3.3). (i) A character x is wrreducible iff PSLa(C) acts tran-
sitively on the fiber and with finite stabilizer.
(ii) A character is Ad-irreducible iff PSLo(C) acts faithfully on the fiber.

Proof. (i) By Lemma (3.3.1), if x is irreducible then PSLy(C) acts transitively
on t~1(x). Assume now that the stabilizer is infinite: i.e. there exists nontrivial
A € PSL2(C) of order > 3 (possibly infinite) and p in the fiber such that A
commutes with p. If A is parabolic, then it has a fixed point in P*(C) and
therefore p fixes this point. Otherwise A has an invariant geodesic; since A has
order > 3, p preserves the oriented geodesic, and therefore p is also reducible.

Assume the character is reducible, then it has a diagonal representation p on
the fiber (Remark (3.1.7)), and therefore the group of diagonal matrices stabilizes
it. Thus the stabilizer is infinite.

(ii) Assume PSL2(C) does not act faithfully on the fiber, i.e. there exists
nontrivial A € PSLy(C) and p in the fiber such that A commutes with p. If A is
parabolic, then p fixes a point in P1(C) by the previous argument. Otherwise A
has an invariant geodesic, and by commutativity, p must preserve this geodesic.
In both cases, p is Ad-reducible.

If the character is irreducible but Ad-reducible, then it preserves a geodesic,
and the rotation through angle = about this geodesic commutes with p. Hence
the stabilizer is nontrivial. O

Remark (3.3.4). The projection t: R(I') — X (I") induces a bijection between
irreducible components.

A priori R(T") could have more components than X (I'), but the number of
components is the same, because PSLy(C) is irreducible.
From Corollary (3.1.6) and Proposition (3.3.3) we deduce:
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COROLLARY (3.3.5). Let p € R(T") be an irreducible representation. Let Ry
denote an irreducible component of R(T) that contains p and let Xy denote the
corresponding irreducible component of X(T'). Then

4. Lifts of representations to SLy(C)
Let R(I') ¢ R(T) denote the set of representations p € R(I') that lift to

SL2(C). According to [Cul, Thm. 4.1] R(T) is a union of connected components
of R(T"). In particular R(T") is a Zariski-closed algebraic subset of R(I"), since
irreducible complex varieties are connected in the C-topology [Sha, VII, §2].

Moreover, R(T') is invariant under conjugation and hence the algebraic quotient
X(I) = R(T)//PSLs(C)
is a well defined closed subset of X (T").

In many cases, X (I') = X(I"). For instance this is clear when I is a free group.
It is also true if H(T', C2) = 0 by the following remark (see [GM] or [Cul]).

Remark (4.1). Let p: T' — PSLy(C) be a representation. There is a second
Stiefel-Whitney class wz(p) € H?(T', C3) which is exactly the obstruction for the
existence of a lift 5: T' — SLa(C).

(4.2) Properties of X(I'). Let R(I',SLy(C)) and X (I, SL2(C)) denote the va-
riety of representations and characters in SLy(C). The ring C[R(T, SLy(C))}52(©)
is generated by the trace functions 7.,: R(T",SL2(C)) — C, 7y (p) = tr(p(7)). The
function induced by 7, is denoted by I,: X (I') — C, therefore C[X (T")] is finitely
generated by the functions I, v € T [CS].

Elements of the cohomology group H!(T',C3) are homomorphisms 6: T'" —
Cy = {£1} that act on representations by multiplication. The action of € €
HY(T',C3) on I, is given by: €I, = e(y)I,. Since HY(I',Cs) is finite, it is
reductive and we may take the quotient of invariant theory.

Let F be a finitely generated free group and ¢: F' — I' be a surjection. We
fix a k-tuple ~1,...,7 € I' such that the product ; - - -y € I'>. Moreover, we
choose n; € F such that ¥(n;) = ; and such that the product ny ---n € F2.
The function v*0y, ., € C[R(T)] is invariant under conjugation and gives us
a function ¥*ay, ., € C[X(T)]. By Equation (2.4.9) we have ¢*o,, ., (X) =
X(71) - x(vx) where x € X (T',SLy(C)) is a character such that m(x) = x. Note
that 7: X (I, SLy(C)) — X(T') is surjective. The function

(4.2.1) St = O 0y € CIX(T)]
depends only on the elements v; € T'.
PROPOSITION (4.2.2). There is a natural isomorphism:
X(I,SLy(C))//H' (T, C2) 2 X(T).
Proof. Composition with the projection SLa(C) — PSL2(C) induces a surjec-
tion

71 X(T,SLy(C)) — X(I),
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which is easily seen to be algebraic and is given by m(x) = x2. At the level of
function rings it induces an injection

7*: C[X(I')] — C[X(T,SLy(C))].
We have 7* f(x) = f(x?) for f € C[X(T)] and x € X (I, SL2(C)). The image of

7* is contained in the set of invariant functions:
Im7* C C[X (T, SLy(C))]H (T:C2),

More precisely, we have 7* f(ex) = f(€2x?) = 7* f(x) for all e € HY(T',C3). It
remains to prove that this inclusion is an equality.

Since C[X (T, SL2(C))] is generated as C-algebra by the functions I, with
v € I', the monomials

I“/l I“/z o 'I“/k
generate C[X (I", SLy(C))] as a C-vector space. Taking the average of the action of
HYT,C3), we deduce that the subspace of invariant functions

C[X (T, SLy(C))]H' (T:C2) is generated by

1 1
LY enn = (Y D

e€H(I',Cz) e€HY(T',C3)

where r is the rank of H'(T', C3) (see [Kra, I11.3.6] for instance). Using the fact

that
1 1 ifyel?
y > -,

otherwise
e€cHI(I',C2)

we deduce that C[X (T, SLQ(C))]Hl (I'2) js generated by the monomials .., - - - I,
such that the product 7y ...v, € I'2
On the other hand we have for x € X (T, SLy(C)):

TS e (00 = B () = X)X (k) = Loy -+ Ly, (0
where ¥, ., is the function defined in (4.2.1). This gives that the monomials

L, ---1I,, such that the product v ... € I'? is in the image of 7* and therefore
C[X (T, SLy(C))] ' C:C2) = Im 7~ O

Remark (4.2.3). Let p: X(I',SLy(C)) — X(T') denote the projection. If
x € X(T') is Ad-irreducible, then p~'(x) has 2" points where  is the rank of
HY(T, Cy). If x is Ad-reducible then the cardinality of p~!(x) is strictly less than
2". Thus p is a branched covering with branching locus the set of Ad-reducible
characters.

Ezample (4.2.4). Let F» be the free group of rank 2, with generators « and
8. There is an isomorphism:

(I, Ig,10p): X (Fy,SLy(C)) — C?

where I, denotes the regular function induced by 7. In particular X (Fs, SL2(C))
is smooth.
Since every representation in R(F3) lifts to SLy(C), we deduce

X (F,) = X(Fy,SLy(C))//H (Fy, Cs).
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The group H'(Fy, Cy) = (C3)? has four elements, and its action on X (Fy, SL2(C))
is generated by the involutions

(IOMI,57I(X6) = (_Ia,Iﬁ,_I(yﬁ)
(Iavlﬁvlaﬂ) = (Iaa_Iﬁa_aﬂ)'

Thus C[X (F3), SLy(C)}H (7€) s generated by X = I2, Y = I2, Z = I2; and
W = I,Igl.s. Hence

(4.2.5) X(F) =2{(X,Y,Z,W)eC* | W?=XYZ}

The relationship with Corollary (2.3.2) is given by the change of coordinates (cf.
Equality (2.4.5))

Jo=X
Jo=Y
Jop =7

Jag1 = XY + Z —2W.

Remark (4.2.6). From Equality (4.2.5) we remark that the singular set of
X (F») consists of those points such that two of {X,Y, Z} vanish. This is the
same as the set of characters of representations generated by two rotations of
angle 7. This is also the set of Ad-reducible but non-reducible representations.

Ezample (4.2.7). If M is a knot exterior in S3, then Ha(m1 M) = Hy(M) =20
and therefore X (M) = X (M). When in addition M is a 2-bridge knot exterior,
explicit methods of how to compute X (M) are given in [HLMI1] and [HLMZ2],
where X (M) for this particular case was already defined as X (M, SLy(C))//Cs.
The explicit computation for the figure eight knot exterior is found in [GM], for
instance.

(4.3) Representations that do not lift.

Proof of Theorem (1.4). The manifold M is a bundle over S with fiber T2 a
torus minus a disk. Up to homeomorphism, M is described by the action of the
monodromy on Hi(7T?,Z), which is given by the matrix

1 mo
my 1+ mimg
with m; € 2Z, m; > 0. We shall show that X (M) — X (M) has arbitrarily many
components by choosing m; sufficiently large.

To have a presentation of m; M, we use an automorphism f of 71712 induced
by the monodromy. Since 77?2 is the free group of rank 2 generated by o and

B,
mM = {a,B,p | pop™" = f(a), uBu~t = F(B))
We choose f such that:

pBu~t = Blapm)m™

We choose odd numbers p1,ps € 2Z + 1, with 1 < p; < m;/2 and an arbitrary
complex number z € C. By Example (4.2.4), there exist matrices A,, B, €

{uau‘l = apfm
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SLo(C) with
tr(A,) = 2cos @, tr(B.) = 2cos P2 and tr(A.B;) = z.
my ma2
Those trace equalities imply that A7'* = B*?> = —Id. In particular

AZB;nz = _sz
B.(A.B™)™ = _B..

Let p, € R(T") be the representation that p,(a) = £A,, p.(8) = £B, and
p:(p) = £Id. Since my and mg are even, this representation does not lift to
SLo(C). In addition, for each value of p; and ps we have defined a one pa-
rameter family of characters, with parameter z = tr(4,B,) € C. By [CCGLS,
Proposition 2.4] the dimension of each component of X (M) is at most one, hence
different values of p; and py give different components. O

5. The singular set of X (F,)

In this section we compute the singular set of X (F},), but before we need two
preliminary subsections: in Subsection (5.1) we recall some basic facts about
the Zariski tangent space and Luna’s slice theorem, and in Subsection (5.2) we
compute the cohomology of free groups with twisted coefficients.

(5.1) The Zariski tangent space. Given a representation p € R(I"), we define
the space of cocycles

Zl(F,AdOp)={9i I' — sl5(C) Yy, €T

0(7172) = 0(71) + Ad (4, (0(12)), } .

Given a smooth path of representations p;, with ¢ in a neighborhood of the origin,
one can construct a cocycle as follows:

I' — sb ((C)
v o= Ge o) M=o
This construction defines an isomorphism, due to Weil [Weil]:
THEOREM (5.1.1) ([Weil]). The previous construction defines an isomorphism
Zar ~ 71
T (R(L)) = Z1(T, Adop).

Here T7*(R(I')) denotes the Zariski tangent space in the scheme sense (i.e.
the defining ideals are not necessary reduced).
We also consider the space of coboundaries

there exists a € sl3(C) such that }
0(y) = Ad,(yy(a) —a, Vy €T '

The isomorphism of Theorem (5.1.1) identifies the subspace of the Zariski
tangent space corresponding to the orbits by conjugation with B*(T', Ad op). So
it seems natural that in some cases Tfar (X (T)) is isomorphic to the cohomology
group

BYT,Adop) = {9: I — R?

HY(T',Adop) = ZH(T', Adop)/B'(T', Ad op)
as we will show next.
The stabilizer of a representation p € R(I') is denoted by

Stab, = {A € PSLy(C) | ApA~" = p}.



234 MICHAEL HEUSENER AND JOAN PORTI

In particular, for and Ad-irreducible representation Stab, is trivial.
PROPOSITION (5.1.2). If p is a smooth point of R(T") with closed orbit, then
TZ"(X (D)) = T3 (H' (T, Ad op) // Stab,) -

Proof. We use the slice theorem of Luna: there exists an algebraic subvariety
S C R(T') that contains p and that is Stab,-invariant, such that

(5.1.3) Z'(I',Adop) = B*(I',Adop) & T/ (S)
and the map induced by the projection
S//Stab, — X (T')

is an étale isomorphism (in particular their tangent spaces are isomorphic). Since
we assume that p is a smooth point, Luna’s theorem shows that S//Stab, and
T?*(S)//Stab, are étale equivalent (see [KSS, p. 97 ]). Since T2%(S) and
H'(T, Ad op) are isomorphic as Stab,-modules (by Equation (5.1.3)), the propo-
sition follows. O

(5.2) Cohomology of Free groups. We start with irreducible characters:
LEMMA (5.2.1). Let x, € X(F},) be an irreducible character. Then
dim H'(F,,, Adop) = 3n — 3.

Proof. Notice first that Z1(F,,, Adop) = 5l5(C)"™ = C3". Irreducibility implies
that dim B!(F,,, Adop) = 3, which is maximal (even if Ad-reducible represen-
tations have invariant subspaces, irreducibility implies that the eigenvalues are
different from 1). O

We are interested in computing H'(F,,Adop) as a Stab,-module. If p is
Ad-irreducible, then Stab, is trivial, and therefore H'(F,,, Adop) is the trivial
module C?>*~3. In the reducible and Ad-reducible cases we need further compu-
tations.

Reducible characters. Let x € X(F),) be a non trivial reducible character.
There exists a representation p € R(F),) with character x such that p consists of
diagonal matrices, constructed in Remark (3.1.7).

We decompose the Lie algebra sl(C) = hg @ h— @ h, where hg, h4 and h_
are the one dimensional C-vector spaces generated respectively by (§ %), (§9)

and (99).

LEMMA (5.2.2). If p is diagonal then Adop preserves the splitting sla(C) =
ho ® h— @ hy. If in addition p is non-trivial, then Stab, preserves the splitting
5lo(C) = ho @ (h— @ hy) (some elements may permute hy and h_).

Proof. The first assertion is clear, because diagonal matrices preserve each
factor hg and h4.

When the image of p has order > 3, the group Stab, is precisely the set of
diagonal matrices. When the image has order precisely 2, then Stab, is the group
of diagonal and anti-diagonal ones (¢ ). Antidiagonal matrices preserve hgy and
permute h_ with h, hence the second assertion is proved. O

LEMMA (5.2.3). Let p € R(Fy,) be a non-trivial diagonal representation, then
HY(F,,Adop) 2 hl @& (hy ® h_)""! as Stab,-modules.
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Proof. By construction, Z1(F,,, Adop) = sl3(C)". We have the splitting
HY(F,,Adop) = H'(F,, ho) ® H*(Fy,hy) ® HY (F,, h-).

A diagonal matrix + (g agl) acts trivially on hg and by multiplication by a factor
a*? on hy. Therefore BY(F,,ho) = 0 and B*(F,,h+) = hy, and the lemma

follows. 0

Ad-reducible but irreducible characters. Let p € R(I") be irreducible but Ad-
reducible. Up to conjugation the image of p is contained in the group of diagonal
and anti-diagonal matrices. There are two possibilities for the stabilizer Stab,,.
If the image of p has more than four elements, then Stab, has two elements: the
identity and + (6 fi). Otherwise the image of p is Klein’s 4-group (i.e. the group
generated by + (6 Bi) and + (_01 (1)) ). In this case Stab, equals the image of p.

With the same argument as in Lemma (5.2.2), one can prove:

LEMMA (5.2.4). Let p be as above. Then both Adop and Stab, preserve the
splitting sl2(C) = ho & (hy S h_).

LEMMA (5.2.5). Let p € R(F,) be an irreducible but Ad-reducible representa-
tion, then H'(F,, Adop) = sl5(C)"~1 as Stab,-modules.

Proof. Again Z'(F,,, Adop) = sl5(C)", and we have the decomposition
HY(F,,Adop) = H'(F,, ho) ® H'(F,,,hy ©h_).
The group B!(F,, ho) has dimension one, because the antidiagonal matrices act
on hg by change of sign. In addition, dim(B*(F,,, hy @ h_)) = 2 is also maximal,

because this is the case when we restrict it to diagonal representations (see the
proof of Lemma (5.2.3)). O

(5.3) Singular locus for free groups. We saw above that X (F», SLy(C)) =
C3 is smooth. We also showed that the singular points of X (Fy) are Ad-reducible
but irreducible characters.

PROPOSITION (5.3.1). For n > 3 the singular set of X (F,) is precisely the
set of Ad-reducible characters.

Proof. Since R(F,,) = PSLy(C)", X (F,) is irreducible and of dimension 3n—3.
Thus x € X(F},) is singular if and only if

dim 77" X (F,) > 3n — 3.

This dimension is computed by means of Proposition (5.1.2): if the orbit of
p € t71(x) is closed then

dim 77" X (F,) = dim T{*"(H" (F,,, Ad op) // Stab,,).

If p € R(F,) is irreducible, by Lemma (5.2.1) dim H!(F,,, Adop) = 3n — 3. If in
addition p is Ad-irreducible, then Stab, is trivial and therefore x, is smooth.
If p is irreducible but Ad-reducible, then H*(F,,, Ad op) = slo(C)"~! as Stab,
modules, by Lemma (5.2.5). We may assume that the image of p has more
than 4 elements, because the adherence set of such characters is the whole set
of irreducible but Ad-reducible characters, and the singular set is closed. Hence
Stab,, is the group generated by the involution + (5 _Oi), that acts trivially on hg
but as a change of sign on hy @h_. Thus the action of Stab, on H'(F,,Adop) is
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equivalent to the involution on C3"~3 that fixes (n — 1) coordinates and changes
the sign of the remaining (2n — 2) coordinates. The quotient of C3"~3 by this
involution is not smooth, hence dim TZ* (H(F,,, Ad op)//Stab,) > 3n — 3.
When x,, is reducible but non trivial, we may assume that p is diagonal and its
image has more that three elements (again the adherence set of those characters
is the whole set of reducible ones). Thus Stab, is the group of diagonal matrices,
and by Lemma (5.2.3), H(F,,, Adop) = hiy & (hy®h_)""! as Stab,-module. We
have an isomorphism Stab, = C* and t € C* acts on hg trivially and on h+ by
multiplication by ¢*1. An elementary computation shows that (hy @h_)"~!//C*
has dimension 2n — 3 and it is not smooth for n > 2. O

A similar argument yields that for n > 3 the singular part of X (F,,SL2(C))
is precisely the set of reducible characters.
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ABSTRACT. A knot is said to be 2-universal if every closed orientable 3-
manifold occurs as a branched covering of S% with branch set the knot and
all branching of order one or two. In this paper we show that 2-universal
knots exist and we comment on the possible significance of this results.

1. Introduction

In several papers ([17], [2], [3], [4], [5], [6], [16]) universal knots and links have
been studied. In these papers it was shown that certain knots and links, such as
for example the figure eight knot and the Borromean rings, are universal, and
others, such as the trefoil knot, are not.

A knot or link K is said to be universal if every closed orientable 3-manifold
occurs as a finite branched covering of S3 with branch set equal to K.

There are good reasons for refining the definition of universal knot or link to
the concept of universal orbifold (see [8], [10], [13]).

In this paper we refine the definitions of universal knot and link, and in
particular we define the concept of 2-universal knot and link (corresponding to
a m-orbifold), and we show that 2-universal knots exist.

The organisation of the paper is as follows: In section two we give definitions
and examples and we introduce the notation that we use throughout the paper.

Our main result, Theorem (3.4), is proved in section three. Our basic idea
is to begin with a certain branched covering p : S2 — 3, which is called a
special branched covering, and to perform a series of modifications so as to obtain
another branched covering p : S® — S2 branched over a knot K. The natura
of the modifications is such that a 2-universal link appears as a sublink of the
preimage of the branch set. The knot K is then 2-universal. Thus 2-universal
knots exist.

In the final section we comment on the importance of 2-universal knots and
their possible geometric applications. In particular we raise the question as to
whether 2-universal knots occur as the singular sets of hyperbolic orbifolds or
cone-manifolds with cone angle 180 degrees. We speculate as to whether a 2-
universal knot occurs in Rolfsen’s Table ([15]) and, if so, which one it might
be.
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2. Definitions and examples

In this section “manifold” will always mean closed orientable 3-dimensional
piecewise linear manifold. Maps between manifolds will always be piecewise
linear. A map between manifolds p : M — N is a branched covering space
map if there is a piecewise linearly embedded link L in N such that the map
p: M\ p (L) — N\ L is a finite covering space map in the usual sense, and
the following additional condition is fulfilled:

Let D be a meridian disc for L; that is to say a disc in N that intersects
L in exactly one interior point. Then the preimage of D is a finite collection
Dy, ..., Dy, of disjoint discs in M. Each disc D; is mapped by p onto D in a
manner equivalent to the map z — 2", for some n, of the unit disc in the complex
plane to itself. In this situation the integer n is independent of the choice of D
and depends only on the component of the link p~!(L) that intersects D;. The
link L is called the branch set.

Thus given a branched covering space map p : M — N, with branch set
L, each component of the link p~!(L) in M is labelled with an integer which is
called its ramification index. We also label each component of L in N with the
set of ramification indices of its preimages. Thus we can speak of a branched
covering p : M — N, branched over the knot K of type {1,2,3} for example.

A knot K is said to be universal of type {a, b, c, ...} if for every closed orientable
3-manifold M, there is a branch covering space map p : M — S3 branched over
K of type {a,b,c,...}.

A knot K is said to be 2-universal if it is universal of type {1,2}. Later we
will show that 2-universal knots exists.

The definition of universal link of a particular type is similar, but a little more
complicated, in that there can be different sets of integers attached to different
components. As an example we refer to [10, Theorem 1.1] where it is shown
that the Borromean rings are universal of such a type that two components are
labelled with {1,2,4} and one of the components is labelled with {2,4}. We can
compose with the three fold symmetry of the Borromean rings to find that the
link 62 (Rolfsen’s notation) is universal with one component labelled {1,2,4}
and the other labelled {3}.

There is another way to refine the definition of universal knot or link. A
branched covering space map p : M — 52 branched over, say, the knot K is
completely determined by the unbranched covering space map p : M\p~}(K) —
S3\ K. This map induces an injective homomorphism

e m(M\ p~(K)) — mi(S7\ K)

in which the image is a subgroup of 71 (S% \ K) of finite index; say index equal
n. Labelling the left cosets of p.(m1 (M \ p~1(K))) as

{Hl :p*(ﬂ-l(M\p_l(K)))) g2H17 "'7gnH1}7

a natural transitive representation of (S \ K) in ¥, is induced (left multi-
plication induces a permutation of left cosets). In this way there is a one to
one correspondence between n fold branched covering space maps p : M — S3
branched over K, and transitive representations w : 71(S% \ K) — %,,. Given
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a transitive representation, w, the subgroup of the covering is
{g€m(S°\ K)lw(g)(1) = 1}.

However a transitive representation w : m (S® \ K) — %,, need not be sur-
jective. We say the branched covering space map p : M — S3 is associated to
the group G C %, if w(m1(S® \ K))is contained in G.

Given a class of groups C, for example € might be the class of dihedral groups,
or C might be the class of groups {SL(2, finite ring)}, we say the knot K is
universal for the class of groups € if given any closed orientable 3-manifold M,
there is a branched covering space map p : M — S3, branched over K such
that the group G C X, associated to the branched covering space map belongs
to the class C.

At this point we can ask several questions (to which we do not know the
answers).

Question (2.1). The character variety of representations in SL(2,C) for the
figure eight knot, (4; in Rolfsen’s notation), has been computed in various places
(see [18], [7], [9]) and contains the character of many representation of the form

p:m(S3\41) — SL(2,R)

where R is the ring of integers of an algebraic number field k. Let € be the class
of finite groups G = SL(2,R/I) where I is an ideal in R. Is the figure eight
knot universal of type €7 How about the Borromean rings? In fact we can ask
a weaker question.

Question (2.2). Given a 3-manifold M is there a knot K and branched cover-
ing map p : M — S3, branched over K such that the group G associated to the
covering space map is derived from a representation p : 71 (5% \ 41) — SL(2, R)
by factoring out by some ideal I contained in R?

A positive answer to questions (2.1) and (2.2) would lead to an interesting
connection between character varieties and the classifications of 3-manifolds. In
the next section we show, among others things, that 2-universal knots exist.

3. 2-Universal knots exist

In this section p : M3 — S3 will be a special branched covering space map
branched over a knot K, unless otherwise indicated.

The word special, which we will use only in this section, will mean that
w: m(S3\ K) — 3, sends meridians to transpositions, whereas branched
covering of type {1,2} implies that meridians are sent to disjoint products of
transpositions.

LEMMA (3.1). The map w : 71 (S%\ K) — ¥, is surjective.

Proof. We know that w is transitive by definition. Let X = {nq,...,n;} be
a subset of {1,...,n} such that w : w™}(X(X)) — ¥(X) is surjective and X is
maximal with respect to this property. Here (X)) is the full group of permuta-
tions of X and it is understood that the elements of (X)) fix the points not in
X.

Suppose X # {1,...,n}. Since w is transitive and 71 (S® \ K) is generated by
meridians, there must be a meridian m such that w(m) = (a,b) where a belong
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to X but b does not. Let Y = X U{b}, then X(Y) is generated by (a, b) and 3(X)
so that w : w™1(X(Y)) — X(Y) is surjective, contradicting the maximality of
X. o

In the branched covering p : M3 — S3 the preimage of K is a link consisting
of various components {K1,..., K;} of branching index one, and a single com-
ponent B of branching index two. The component B is called the branch cover
and the link K7 U ... U K is called the pseudo-branch cover.

LEMMA (3.2). Let S be any non empty subset of the set of components of the
pseudo-branch cover. Let H be the subgroup of mi (M3 \ p~1(K)) generated by
meridians in the components of S. Then the map

Wip, (H) ZP*(H) — Y1 = {U c En|0(1) = 1}

18 surjective.

Proof. The group H is a normal subgroup of 71 (M3 \ p~!(K)) because the
conjugate of a meridian of S is again a meridian of S. Thus since p, is injective,
p.«(H) is normal in p, (7 (M?3\p~!(K))) and as w is surjective, p.(H) is a normal
subgroup of ¥,,_;. However, p, sends meridians of S to meridians of K, not
powers of meridians of K, the image of a meridian of K under w is a transposition.
And no proper normal subgroup of 3,,_1 contains a transposition. Therefore the
image of p.(H) under w must be ¥, itself and w|,, () : p«(H) — X1 is
surjective. O

Now we would like to describe certain moves that change a special branch
covering space map p : M> — S2 branched over a link L to a different special
branch covering space map p : M3 —» S3 branched over a link L. The nature
of the moves is such that M3 ~ M3 and S ~ S3 but the link E, and therefore
its preimages, will be different from the link L and its preimages.

Figure 1. The disc D.

Consider a disc D that cuts the link L transversely in two points as in Figure
1. The branched covering space map when restricted to p~1(D) is a branched
covering of D by a disconnected bounded surface. The meridians m; and msy
are sent to transpositions (a,b) and (c,d) respectively by the representation
w:m(S3\ L) — X,,. There are three possibilities; {a, b} and {c, d} are disjoint,
{a,b} and {c, d} have one common point, and {a, b} = {¢,d} . We shall arrange
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that the case {a,b} = {¢,d} never occurs so we don’t need to consider it. The
other two cases give rise to moves.

In each of the other two cases the preimage of a disc is a disjoint union of
discs. To see this we compute the preimage of D by splitting D along arcs A
and B as in Figure 2, following [14].

Figure 2. Splitting the disc D along A and B.

We take n copies of D; Dy, ... , D, and if w(mq) = (j, k) we glue A;r to A,
and A} to A: and similarly for B.

In the case where {a,b} and {c, d} are disjoint, the preimage of D consists of
n — 4 discs that are mapped homeomorphically by p to D, and two discs that
are mapped by p as double branched covers. In this case our move consists of
splitting S® below along D and splitting along all the preimages of D above. We
then do a double Dehn twist below and reglue. We do the same double Dehn disc
twist above on all the homeomorphic preimages. In the preimage discs for which
p is a double branch cover we do a single Dehn disc twist above and then reglue,
as the double Dehn disc twist below lifts to a single Dehn disc twist above. The
effect of this move, called a type I mowve is illustrated in Figures 3 and 4. We
note that a type I move does not change L, except in a small neighbourhood
of D and its preimages, and does not change the number of components of L
below.

Before

-

Figure 3. Effect on the disc below and on the n — 4 homeomorphic
preimages above.

/
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pseudo-branch cover

Before

Figure 4. Effect on the disc above that is mapped by p as a double
branched cover of D.

In the case where {a, b} and {c, d} intersect in one common point, the preimage
of D consists of n — 3 discs that are mapped homeomorphically by p to D, and
one disc that is mapped as a three-to-one irregular branched cover of D. In this
case again our move consists of first splitting 52 along D below and splitting
M? along all the disc preimages of D above. This time we do a triple Dehn
disc twist below before regluing (the single and double Dehn disc twists do not
lift). Above we do a triple Dehn disc twist on all the homeomorphic preimages
and a single Dehn disc twist on the preimage that is mapped as a three-to-one
irregular cover. Then we reglue, the effects of this move, called a type II mowve,
are illustrated in Figures 5 and 6. Again we note that a type II move changes
nothing outside a small neighbourhood of D and the preimages of this small
neighbourhood of D.

Before

Figure 5. Effect on the disc below and on the n — 3 homeomorphic
preimages above.

We note that moves of type I and II have appeared before (see [10], [4]).
Our next task will be to produce a specific special branched covering space
map p : S% — S3 branched over a knot. We start with the trivial link of n — 1
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/ pseudo-branch cover

Before

/

L/

branch cover

Figure 6. Effect on the disc above that is mapped by p as a 3 to
1 irregular cover of D.

components, and assign to the meridian generators of its fundamental group,
which is a free group, the transpositions indicated in Figure 7.

1,2) (1,3) (1,4) (1,n-1) (1,n)

Figure 7. The trivial n — 1 component link and assigned transpositions.

This gives a special n to 1 branched covering of S® to $%. We then do type
IT moves between adjacent circles in the discs indicated by the dotted lines to
obtain the connected sum of trefoils where we twist in opposite directions in
adjacent discs, such that the last one is in the right handed direction. In this
way we obtain the branched covering p : S — S2 branched over a knot K with
images of meridians as indicated in Figure 8.

Figure 8. The knot K.
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The knot K is the connected sum of n — 2 trefoils, some of which are right
handed and some of which are left handed. The dotted line is just the knot
pushed off to its right.

This curve, together with a meridian, forms a basis for the fundamental group
of the torus boundary of a regular neighbourhood of the knot K. The knot K is
obtained by pasting together several segments of the type pictured in the right
hand side of Figure 9, plus two trivial arcs in the case of an even connected sum
of trefoils, or plus a trivial arc and the segment in the left hand side of Figure 9
in the case of an odd connected sum.

(1,3)

Figure 9. Computing the image of the dotted curve.

Next we compute the image of the dotted curve under w : 71 (S3\ K) — %,,.
As we move from A to B we obtain (j,j+1)(j+1,7+2) = (j,j+2,j+1). As we
move from C to D we obtain (1,7 4+1)(1,7)(1,7+2)(1,7+1) = (j,j + 2,5+ 1),
which is the same permutation.

Starting at the extreme right of the knot in Figure 8 and working toward the
left, an inductive argument shows that in the case where we have the connected
sum of an even number of trefoils, that the image of the dotted curve under w
is the identity. And in the case where we have the connected sum of an odd
number of trefoils, multiplying transpositions assigned to over crossings as we
move to the right from F in Figure 9 though the rest of the knot returning to
F from the right also gives the identity. The rest of the computation, the part
pictured in Figure 9, shows that, the element of ¥, assigned to the dotted curve
is (1,3)(1,2)(1,3) which is equal to (1,2) using % as a basepoint.

In both the odd and the even cases we see that the image by w of the funda-
mental group of a torus boundary T of a regular neighbourhood of K in ¥, is a
two element group. If follows that the preimage of this torus neighbourhood con-
sists of n — 2 tori that are mapped homeomorphically to T" and one torus that is
mapped to T as a double cover. And from this it follows that the pseudo-branch
cover of K has n — 2 components and the branch cover one. For convenience we
summarise the above in a lemma.

LEMMA (3.3). For n > 3, there exists a knot K, and a special branched
covering p : S3 — S2 branched over K, such that the pseudo-branch cover
has n — 2 components and the branch cover has only one. O
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We now state and prove our main theorem. We remark that our proof is
constructive.

THEOREM (3.4). Let L be any m component link with m > 1. There is a
special (2m + 3) to 1 branched covering space map p : S* — S3 branched over
a knot K such that L is a sublink of the pseudo-branch cover.

An immediate corollary of this theorem, the case m = 1, is the following

COROLLARY (3.5). Let K be any knot. There is a special five to one branched
covering p : 83 — 83 branched over a knot K such that K is contained in the
pseudo-branch cover.

The above corollary also makes sense for special three to one covers, but is it
true? Or, stated differently, which knots occur as the pseudo-branch covers of
special three to one branched coverings p : S — S2 branched over knots?

Proof of Theorem (3.4). Let p : 83 — S3 be an n = 2m + 3 to 1 special
branched covering space map branched over the knot Ky, such as is described
in Lemma (3.3), so that the pseudo-branch cover has 2m + 1 components. Let
Ly be an m component sublink of the pseudo-branch cover, let My be the link
consisting of the other m + 1 components and let By be the branch cover.

Consider a regular projection of any link. This can be changed to a regular
projection of the trivial link simply by changing some of the crossings. It follows
that any link can be changed to any other link of the same number of components
by a finite number of operations that we shall describe and that are analogous
to crossing changes.

Let A be an arc connecting two points P and @ of the link in the same or
different components. Let D be a disc intersecting the link in points P and @
as in Figure 10.

Before

Figure 10.

Replace the link L by the link L where L differs from L only in a small
neighbourhood of the disc D as indicated in Figure 10.

Thus there is a sequence of links Lo, L1, ..., L;, all with m components, such
that L;,1 is obtained from L; by this operation and L is the desired link L.

In order to prove Theorem (3.4) it suffices to show there are sequences of links
By, By, ..., By and My, My, ..., M; and a sequence of special branched covering
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space maps {pj 182 —=8%.0<;5< t} branched over knots K;, 0 < j <, such
that the pseudo-branch cover for p; is L; U M; and the branch cover is Bj;.

We shall prove this theorem by induction. The initial step of the induction is
done as pg, By, Lo, My and Ky have already been defined.

Suppose, as inductive hypothesis, that p; : S — S is a special branched
covering space map branched over the knot K; with pseudo-branch cover L;UM;
where L; has m components.

Also suppose that D7 is the disc whereby L1 is obtained from Lj via the
operation illustrated in Figure 10. The operation illustrated in Figure 10 is
analogous to what happens in Figure 3 in the “above”discs when we do a type
I move. The problem is that we must also do the type I move on all the other
“above”discs and on the disc below in order to get another branched covering
pit1 : 93 — S branched over a new knot K; 1. We next show how to deal
with this problem.

Suppose that the following set of conditions, which we call Hypotheses set A,
are satisfied.

Hypotheses set A.

A.1 The disc D7 is mapped by p; homeomorphically onto its image.

A.2 The preimage of the image of the disc D7 consists of n—4 discs, DI = D{
and D}, ... , D} _, each of which is mapped homeomorphically onto its image,

together with two other discs E{ and Eg, each of which is mapped as a double
branched covering onto the disc p;(D7).

A.3 The disc D7 intersects Lj exactly in the two points P and Q.

A4 FEach disc Dg; 2 <i < n—4; intersects L; in one point and M; in one
point.

A5 The discs E] and Ej each intersects B; in one point and M; in two
points.

Under these hypotheses the type I moves on the discs D{; 2<i<n—4and
the discs E{ and Eg have no effect on the link L; although they radically alter
the pseudo-branch cover L; U M; as a whole. The move in the disc D{changes
L; to Lj41 and the type I move below changes the knot K; to a new knot K.
Thus to complete the proof it suffices to show that Hypotheses set A can be
satisfied.

By general position we can isotope the arc A7 so that it is embedded by p;
and we can shrink the disc D’ so that it too is embedded thus satisfying A.1.
We choose a point z1 on the arc A7 to serve as base point for the group 1 (5% \
p}l(Kj)). Let zp = p;(x1) so that g is the base point for m (S \ K;) below and
label the other preimages of ¢ as 2, ... , ¥,. Then w : m (53 \ Kj,z0) — Zp,
is defined by the condition w(g) : i — k if the lift of a closed curve representing
g that begins at x; ends at xg.

The subgroup of the covering space is then {g € m (S®\ K;,z0)|w(1) = 1}.

We denote the points in which arc A{ = A’ intersects L; by Plj and Q{,
and we choose meridian discs for these points which we denote 0%, and Ojél,
respectively. We denote the homeomorphic images of the points, arc, and discs
below by using the subscript 0 instead of 1. All this is illustrated in Figure 11.
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Figure 11. Notation on the discs D? and p(D?).

We label the point A{ N 80%,1 by Uy, Aé N 5‘0{;0 by Uy, A{ N 5‘0221 by V1,
Aé N 5‘0{20 by Vb, where 0O is the boundary of the disc O.

The preimage of O};O consists of n—2 discs that are mapped homeomorphically
onto O%,O by p;, including O{Dl, and one that is mapped onto O%,O as a double
branched covering. Since n = 2m + 3 and each component of L; is mapped
homeomorphically onto K; by p;, we see that exactly m of the discs in the
preimage of O{DO that are mapped homeomorphically onto O%,O intersect L;, and
m + 1 intersect M;. We label the discs intersecting L; as Oggl, U O{Dm and

~

those intersecting M; as O%,mﬂ, ey Of;zmﬂ. We label the disc that double
covers 0330 as 5};27”4_2. 4 '
The above remarks apply also to the discs Ole and %0 as well and we label

the preimages of Oé)o by 0221, .y Oé)m, Gémﬂ, vy Ofgmyy and 6222m+2 in
corresponding fashion.

The arc that goes from Uy to Vp lifts to n = 2m + 3 arcs, one of which goes
from U; on O}, to V4 on Oé)r

Suppose we could arrange that the other 2m + 2 lifts satisfy the following
conditions which we call Hypotheses set B.

Hypotheses set B.

B.1 Those lifts that begin at a point on O{Di end at a point on 6é2m+i for
2<i<m.

B.2 Those lifts that begin at a point on 5{;m+i end at a point on Oji for
2<i1<m.
~4B.3 Those lifts that begin at a point on 6{;m+1 and 6332m+1 end at points on
Oé)2m+2'
B.j‘f.The two lifts that begin at points on 5332m+2 end at the points 6{2m+1
and Ofpp i1

If we could do this then the intersection properties A.2 through A.5 would be
satisfied and we would be done. The rest of the proof consists of showing that
we can in fact do this.
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We can arrange that B.1 though B.4 are satisfied in the following way: Let o
be a fixed permutation of the numbers {2, ...,n} to be chosen shortly. By Lemma
(3.2), with M; playing the role of S, there is an element [o] in 71 (S*\p~ (K;); z1)
that is a product of meridians of S such that w(p.([e])) =0 € E,_1.

Consider the lifts of the curve v that we now define. The curve 7 consists of
the arc [Up, o] of Figure 11, followed by «, a curve representing [a], followed by
the arc [zg, Vo

The lift of the arc [Up, xo] that begins at U} ends at z; for some i. The lift of
« that begins at z; ends at z,(;). The lift of the arc [zg, V)] that begins at T (i)
ends at V}j for some [. Since we are free to choose any o € ¥,,_1 we can always
arrange that the lifts of v satisfy conditions B.1 though B.4.

Next we show that there is an isotopy of S® above that fixes the branch cover
and L7 but moves M7, and such that, after performing the isotopy, the arc
[Uo, Vo] satisfies all the conditions of Hypotheses set B.

First let o = [];_, B; where $3; is a meridian of M7. We homotope « slightly
so that the meridian discs are all disjoint, and the arcs leading from x; to the
meridian discs are all disjoint, and then we modify the new « in the manner
indicated in Figure 12 defining discs G4, ... , G, one for each meridian curve, in
the manner indicated in Figure 12 where we illustrate the case of three meridian
curves.

Before After

Figure 12. The discs G;.

The boundary of the discs G; consists of a small arc on [Up, Vp], two curves
close to and parallel to the arc leading to the meridian disc and most of the
boundary of the meridian disc.

We can assume that 7 is an embedded curve in S® above and that the set of
discs {G;} are pairwise disjoint.

Now we simply perform ambient isotopies in a small neighbourhood of each G;
so that the arc of the boundary of the disc GG; consisting of the two arcs from the
arc [Up, Vo] to the meridian disc and an arc from the boundary of the meridian
disc is pushed onto the arc of the boundary of each G; that is the intersection
of G; with [Up, Vp]. During the course of this ambient isotopy properties B.1
though B.4 are preserved.
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This concludes the proof of the theorem. O

For examples of 2-universal links we refer the reader to [13] where some sev-
enteen different 2-universal links are exhibited. One of them, with only three
components, is reproduced below in Figure 13.

Figure 13. A 2-universal link.

COROLLARY (3.6). Knots that are 2-universal exist.

Proof. Let L be a 2-universal link and apply Theorem (3.4) to find a special
branched covering space p : S — S3 branched over a knot K such that L
occurs as a sublink of the pseudo-branch cover.

Given any closed orientable 3-manifold M? there is a branched covering g :
M3 — S3 of type {1, 2} branched over L. Then poq: M? — S? is a branched
covering branched over the knot K of type {1,2}. Therefore K is a 2-universal
knot. O

In the final section we discuss the significance of Corollary (3.6)

4. Discussion of the significance of 2-universal knots

Suppose that K is a 2-universal hyperbolic knot. Then there is a one parame-
ter family of hyperbolic cone-manifolds, topologically equal to S, with singular
set the knot K. The parameter can be chosen to be the cone angle, in which case
the parameter varies from zero, corresponding to the complete hyperbolic struc-
ture on the knot complement, to the angle 8, called the limit of hyperbolicity.
For values 6, with 0 < § < 65, S® has the structure of hyperbolic cone-manifold
with singular set the knot K and cone angle 6, but no such structure exists for
6 = 6;,. (As background for the above, see [1]).

Suppose, for a knot K, that (5%, K) has spherical cone-manifold structure at
180°. Let p : M3 — S3 be a branched covering of type {1,2}. The spherical
cone manifold structure of S lifts, via p, to a spherical cone manifold structure
on M3. The induced cone manifold structure on M3 can be altered slightly
in a neighbourhood of the singular set to an actual Riemannian structure, (no
singularities), that has non negative curvature at all points. Thus M? cannot
be hyperbolic, (compare [11], [12]), and therefore K cannot be 2-universal as no
hyperbolic 3-manifolds occur as branched covering of K of type {1,2}.

Since two bridge knots have such spherical cone-manifold structure at 180°,
they cannot be 2-universal.
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We have computed the character variety for almost all knots of nine cross-
ings and many ten crossing knots in Rolfsen’s table. A short list of some of
the (necessarily three bridge) hyperbolic knots for which 6 exceeds 180 is
{818, 940, 941, 947, 949, 107123, 10161}. We do not have enough nerve to con-
jecture that one of these is 2-universal but we do point out that it is possible
and here is why that would be interesting.

A hyperbolic 2-universal knot would give rise to a hyperbolic orbifold structure
on S2 with angle 180°. This would, in turn, give rise to a discrete universal group
of hyperbolic isometries, call it Gy.

A discrete group G of hyperbolic isometries is said to be universal if, given any
closed orientable 3-manifold M3, there is a finite index subgroup H of G such
that M is homeomorphic to the orbit space H?/G. Universal groups necessarily
contain rotations as not every 3-manifold is hyperbolic. The universal group U,
defined in [10] is generated by three 90° rotations and contains only rotations of
90° and 180°. The group Gy, if it exists, would contain only 180° rotations and
this would make it an interesting group, indeed.
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SOME RESULTS ON ONE-RELATOR SURFACE GROUPS

JAMES HOWIE

To Fico Gonzdlez Acunia on his 60°th birthday

ABSTRACT. A one-relator surface group is the quotient of the fundamental
group of an orientable surface by the normal closure of a single element.
Inspired by a question from Gonzilez Acufia and by a paper of Hempel,
we extend a number of the classical theorems of one-relator group theory
to one-relator surface groups.

1. Introduction
This short note was inspired by a question from Fico Gonzilez Acuna:

Question (1.1). If a and B are two closed curves (nonsimple, in general) on an
orientable surface S, such that the normal closures of a and 8 in 71(S) coincide,
is B freely homotopic to a*'?

If S is noncompact, or has nonempty boundary, then 71 (S) is free, and the
answer to Question (1.1) is yes, by an old result of Magnus [7] on one-relator
groups. (Essentially, the defining relator in a one-relator group on a given gen-
erating set is unique up to conjugacy and inversion.)

We will show (see Theorem (3.4) below) that Question (1.1) also has an affir-
mative answer in the case of a closed surface S. In this case Question (1.1) can be
interpreted in terms of one-relator surface groups, as introduced by Hempel [3].
Among other results, Hempel proved analogues for one-relator surface groups of
two theorems from one-relator group theory: (i) a one-relator surface group is
locally indicable if and only if the relator is not a proper power in m(S); (ii) a
closed curve « in S lifts (up to homotopy) to a simple closed curve in the covering
space corresponding to the normal closure of o in 71(S). These are analogues
of results of Brodskii[l] and Weinbaum [15] respectively. (In the latter case,
the original form states that proper subwords of the defining relator represent
nontrivial elements in a one-relator group.) Hempel [3] also proved (iii) that a
power " of a simple closed curve § can belong to the normal closure in 71 (S)
of a curve « only in the obvious cases: either « is isotopic in S to ™ with m|n;
or « is a nonseparating curve in a punctured torus in S bounded by f.

The purpose of this note is to show that many other results from one-relator
group theory have natural analogues for one-relator surface groups. In most (but
not all) cases, the proofs can be obtained by using a trick from [3] to reduce us
to the classical one-relator case.

2000 Mathematics Subject Classification: Primary 20F06; Secondary 20F10, 20F32, 57M05,
57MO7.
Keywords and phrases: surface group, one-relator.
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Interest in one-relator surface groups first appeared in the work of Papakyr-
iakopoulos [12], who reduced the Poincaré conjecture to two conjectures which
can be expressed in terms of certain one-relator surface groups. (See [10, 13, 14]
for more on these conjectures).

2. One-relator surface groups

By a one-relator surface group we will mean, following Hempel [3], the quotient
of the fundamental group m1(S) of a connected, orientable surface S by the
normal closure of a single element o. We will denote this group by m1(S)/a. In
particular, any (countable) one-relator group can be regarded as a one-relator
surface group by choosing S to be noncompact (or dS to be nonempty). We will
consistently abuse notation to regard a as an immersed closed curve in S.

Since one-relator quotients of the torus group are well understood, we may
in practice restrict attention to the case where S is a closed orientable surface
of genus at least 2. The following basic trick is employed by Hempel in [3] to
reduce his analogue of Brodskii’s Theorem to the classical case. We follow [3] in
using (—, —) to denote the integer-valued algebraic intersection pairing on Hy(S)
or m1(S) as appropriate.

PROPOSITION (2.1). Let S be a closed, connected, oriented surface of genus
at least 2, and let o be a closed curve in S. Then

1. There is a non-separating simple closed curve 8 in S such that {c, B) = 0.

2. For any such (3, there are connected surfaces F, Fy, Fy and a closed curve
o' in F, such that

(a) Fh=2F,FyCF and Fy C F;

(b) m1(Fp) = m(F) /o and m1(Fy) — w1 (F)/’ are injective;

(¢) m1(S) (resp. m1(S)/a) is an HNN-extension of mi(F) (resp. m(F)/a’)
with associated subgroups w1 (Fy) and m (F1);

(d) Each of OF , 0Fy and OF; consists of two circles, each of which represents
(a conjugate of ) B € m1(S).

Proof. The first part is Lemma 2.1 of [3]. The second is implicit in the proof
of Theorem 2.2 of [3]. For completeness we repeat the argument here. Let Sy
denote the surface obtained from S by cutting along 3, let S,, be an isomorphic
copy of Sy for each integer n, and form a covering S of S from Unez Sn by joining
one of the two boundary components of S,, to the other boundary component of
Sp41, for all n. Note that S is the infinite cyclic covering of S corresponding to
the kernel of (—, 8) : m1(S) — Z.

There is a minimum n > 0 such that SoUS; U---U.S,, contains a closed curve
o’ homotopic to a lift of a. Define FF = SqU S U---US,, Fp = SqU---US,_1
and F; = S;U---US, (provided n > 0). Then property (b) follows from the
classical Freiheitssatz of Magnus for one-relator groups [6], using the fact that
o’ cannot be homotoped into Fy or F;. The remaining properties are clear from
the construction.

For the case n = 0 we adapt the construction slightly as follows: Fy and F} are
annuli which are regular neighbourhoods in S of the two boundary components
of Sy (with Fy & Fy via a covering transformation), and F = Fo U So U Fy. O
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3. Results using Hempel’s trick

In this section we list some results which follow easily from Hempel’s trick.
The first two were proved by Hempel in [3].

THEOREM (3.1). [3, Theorem 2.2] Let S be an oriented surface and o an
essential closed curve in S. Then the following are equivalent:

1. « is not homotopic to B for any curve S and any integer m > 1;

2. m(S)/« is locally indicable;

3. m(S)/a is torsion-free.

THEOREM (3.2). [3, Theorem 2.3] Let S be an oriented surface and o a closed
curve in S. Then each lift of o to the regular covering corresponding to the
normal closure of a in w1 (S) is (homotopic to) a simple closed curve.

COROLLARY (3.3). If a is homotopic to 8™ in w1 (S) for some curve B and
integer m > 1, then B has order m in w1 (S)/a.

Proof. Clearly 8™ =1 in m1(S)/c«. On the other hand, g™ lifts to a simple
closed curve (up to homotopy) in the covering corresponding to the normal
closure N of o in 71(S), so for 0 < k < m, B* does not lift to a closed curve. In
other words, 3* ¢ N. O

The next result answers Question (1.1), and generalises the result of Magnus
that was mentioned in the introduction.

THEOREM (3.4). Let S be an oriented surface and «, B two closed curves in
S whose normal closures in 71(S) coincide. Then o is freely homotopic to BF1.

Proof. For this we use the proof, as well as the statement, of Proposition (2.1).
If either of «, 8 is nullhomotopic, then clearly so is the other, so we may assume
that both a and (8 are essential. Let v be a simple closed curve in S such that
(a,y) = 0 (and hence also (8,+) = 0, since the normal closures of « and § in
m1(S) coincide, and so o and 8 are homologous). In the notation of Proposition
(2.1), suppose that F' = SpU---U S, contains a closed curve o/ homotopic to a
lift of o, and that n is minimal with this property.

Similarly, suppose that F' = SyU- - - S,/ contains a closed curve 3’ homotopic
to a lift of 8, and that n’ is minimal with respect to this property. Suppose that
n' < n. Then F' C Fy, and 7 (Fp) embeds into m1(S)/c«. Hence ', and hence
also 3, must be nullhomotopic, contrary to assumption. Hence n’ > n. By a
symmetric argument n > n’, son=n’ and F’ = F.

Moreover, o = 1 in m(F)/f’, since a« = 1 in m1(S)/B which is an HNN
extension of 71 (F)/3’. Similarly, 3/ = 1 in m;(F)/a’. Using Magnus’ original
theorem for one-relator groups [7], we see that o’ is conjugate in the free group
m1(F) to ' or its inverse. Hence « is conjugate in m1(S) to § or its inverse, as
claimed. O

The next generalises a result of Dyer and Vasquez [2] for ordinary one-relator
groups, and of Papakyriakopoulos [13] for certain one-relator surface groups.
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THEOREM (3.5). Let S be an oriented surface and o an essential closed curve
in S. Suppose that « = 8™ in w1 (S), with m mazimal. Then the space formed
by attaching a K (Zy, 1)-space X, to S by identifying 8 with a curve in X, that
generates m1 (X)) is a K(m1(S)/a, 1)-space.

(Note that, in the case m = 1 of the theorem, we may take X,, to be a disc,
whose boundary is the curve to be identified with f = «. In other words, the
theorem says that the space formed by attaching a 2-cell to S along a non-power
essential curve « is aspherical.)

Proof. By Proposition (2.1), there is a surface F' with homeomorphic sub-
surfaces Fy and Fi, such that S is homotopy equivalent to the double mapping
cylinder Y formed from F and Fy x [0, 1] by identifying Fy x {0} with Fy C F and
Fyx {1} with Fy C F. By the theorem of Dyer and Vasquez [2], Z := FUg X,, is
aspherical. Since Fy, Fy and Fy x [0, 1] are aspherical, and the inclusion-induced
maps Fy — Z, Fy — Z are m-injective, it follows from a theorem of Whitehead
[16] that Y Ug X, is aspherical, as claimed. O

Arguing as in [2], we deduce from this an analogue of Lyndon’s Identity The-
orem [5], and the resulting structure of the (co-) homology of m(5)/c.

COROLLARY (3.6). Let S, «, B and m be as in Theorem (3.5). Let G =
m1(S)/a, let N be the normal closure of o in w1 (S), and C the cyclic subgroup
of G generated by B (which has order precisely m, by Corollary (3.3)). Then
N/IN,N|=2ZG QzcZ=7Z(G/C) as a (left) Z G-module.

Proof. Let K denote the K(G, 1)-space constructed in Theorem (3.5). Then
its universal cover K is constructed from the regular cover Sy of S corresponding
to N by attaching copies of the universal cover of X,,, one for each left coset of
C in G. There is a long exact sequence

oo = Hp(Sn) = Hi(K) = Hi(K,Sy) = Hp_1(Sy) = - -
in which Hy,(K) = 0 for k > 1 by Theorem (3.5), and
Hy(K,Sy) 2 7Z(G)C) @z Hi(Xm,S*) = Z(G/C) @z Hy,_1(S*)
for k > 2 since X, is aspherical. Hence
N/[N,N] = H,(Sy) = Ho(K,Sy) = Z(G/C) ® Hi(SY) = Z(G/C)

as claimed. O

COROLLARY (3.7). Let G and C be as in Corollary (3.6), and M a left Z G-
module. Then for each g > 2 there are isomorphisms Hy(G,M) = H,(C, M)
and HY(G, M) = H1(C, M).

Combining the above corollary with a theorem of Serre [4] yields further con-

sequences:

COROLLARY (3.8). Let G and C be as in Corollary (3.6), and let H be a finite
subgroup of G. Then there is a unique double coset HgC' such that H C gCg~'.

COROLLARY (3.9). Let G and C be as in Corollary (3.6). Then every element
of finite order in G belongs to a conjugate of C.
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This last result generalises a theorem of Magnus, Karrass and Solitar [9] for
one-relator groups.

We have not yet addressed the oldest results of one-relator group theory, Mag-
nus’ Freiheitssatz [6] and his solution of the word problem [8]. The Freiheitssatz
for a one-relator group says that any proper subset of the generators, omitting
a letter which essentially occurs in the relator, freely generates a free subgroup.
Such subgroups are now known as Magnus subgroups.

The word problem is the algorithmic problem of deciding whether any given
word in the generators represents the identity element of the group. For one-
relator groups a stronger property is true: one can algorithmically decide whether
any given word represents an element of the Magnus subgroup generated by any
given recursive subset of the generators. This is called the generalized word
problem for Magnus subgroups. (In the case of a finite presentation, all subsets
of the generators are recursive.)

We will prove the analogues of both these results for one-relator surface
groups. In general, this will require some more effort than just applying Propo-
sition (2.1). However, there are special cases of both results which can be im-
mediately deduced from Proposition (2.1).

PROPOSITION (3.10). Let S be a closed oriented surface, o a closed curve in
S, and B8 a simple closed curve in S such that o is mot homotopic to a curve
disjoint from B, and that (o, B) = 0. Then 7 (S \ B) — m(S)/« is injective.

Proof. This is immediate from the proof of Proposition (2.1), since S\ 8 &
Int(So) € F (in the notation of (2.1)), and the natural maps m(So) — m1(Fp) —
m1(S)/a are injective. O

PROPOSITION (3.11). Let G = (u1,...,u2q | [u1,ug] - [ugg—1,u24]), let W
be a word in the generators of G such that uy appears in W with exponent-sum
zero, let N be the normal closure of W in G and let H be the subgroup of G
generated by {us, ..., uz.}. Then there exists an algorithm which, given a word
U in the generators of G, will determine whether or not U € NH ; and if so will
find the (unique) word V in {us, ..., us,} such that UV~—' € N.

Again this follows more or less immediately from Proposition (2.1), where
is the closed curve representing us. We omit the details, since a stronger result
will be proved in the next section.

4. Further results

In this section we complete the proofs of the Freiheitssatz and the solution of
the generalized word problem for one-relator surface groups. First we prove the
Freiheitssatz.

THEOREM (4.1). Let S be a closed oriented surface, o a closed curve in S,
and 8 a simple closed curve in S such that a is not homotopic to a curve disjoint
from B. Then m(S\ B) = m1(S)/« is injective.

Proof. The result is trivial if S is a torus, so we may assume that S has genus
g > 2. We may also assume that « is not a proper power in m(S5), since if
m1(S\ 8) = m1(5)/a is injective then so is w1 (S'\ f) = 71 (S)/a™ for all m > 1.
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We first strengthen the first part of Proposition (2.1) to obtain a simple closed
curve 7, disjoint from 3, with («, ) = 0. Choose a simple closed curve 8’ that
meets [ transversely in a single point. Then a regular neighbourhood N of fUS’
is a punctured torus, so S\ N is a punctured surface of genus g — 1 > 1. Take
to be a simple closed curve in the kernel of the restriction of («, —) to w1 (S\ N).

Now consider the cover Sk of S corresponding to the kernel K of (—,~) :
7m1(S) — Z. Let A be a small regular neighbourhood of § in S, such that each
component of A N « is an embedded arc joining the two components of JA.
Then A is an annulus. Moreover, (8,7) = 0, so the preimage of A in Sk is
the (disjoint) union of an infinite collection of annuli A, (n € Z), such that
Ang1 = 7(4,), where T is a generator of the covering transformation group. Let
T denote the preimage in Sk of S\ A, so that T'= Sk \ (U,,cz 4n)-

Since (a, ) = 0, the preimage of « in Sk is the union of an infinite collection
{an,n € Z} of closed curves, where a1 = 7(a,). Now o intersects a nonzero
finite number of the A,. Let A, u denote the least and greatest indices n such
that ap N A, # (), and assume that o has been isotoped to minimise p — .

Define Sy = TUA)\U”-UAM, S| = TUA)\U”-UAM,l, and So = T U
Axf1U---UA,. Then S; = Sy via 7, the inclusion-induced maps m1(S;) —
71(So) /a0 (i = 1,2) are injective (by Magnus’ Freiheitssatz [6]), and 71 (S)/« is
an HNN-extension of m1(Sp)/ap with associated subgroups m1(S1), m1(S2) and
isomorphism 7, : w1 (S1) — m1(S2).

It follows that m1(T') — m1(S)/c is injective. Since m(T) is the kernel of
(=) : m1(S'\ B) = Z and since {(«,v) = 0, it also follows that the inclusion-
induced map 71 (S \ 8) — m1(5)/« is injective. O

In a similar manner, we can obtain the solution of the generalized word prob-
lem for Magnus subgroups in one-relator surface groups.

THEOREM (4.2). Let G = (u1,...,uzq | [u1,uz] - [ugg—1, usg), let W be a
word in the generators of G, let N be the normal closure of W in G and let H
be the subgroup of G generated by {ua, ..., usq}. Then there exists an algorithm
which, given a word U in the generators of G, will determine whether or not
U e NH; and if so will find the (unique) word V in {ug,... ,uze} such that
Uv-lteN.

Proof. We follow the proof of Theorem (4.1), letting a be the closed curve
represented by W (up to isotopy), and /3 the simple closed curve represented by
ug.

In order to find 7 we replace the pair of generators {us, us} by another basis
{uf, u}} of (us,us), such that, on rewriting W in terms of the new generators

/ /
{Ul,UQ,U3,U4,U5, cee 7u29}7

the generator u} appears with exponent-sum zero. Then we take v to be the
simple closed curve representing uj. Note that this process can be carried out
algorithmically as follows. The exponent sums of ug and u4 in W give a vector
(a,b) in Z? that can be transformed to one of the form (0,%) by a matrix in
SL(2,7Z), where k = lcm(a, b). The Euclidean algorithm expresses this matrix as
a product of elementary matrices. Realising each elementary matrix by a Nielsen
transformation produces an automorphism o of (us, u4) such that W, written as
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aword in uq, ug, o(ug), o(ua), us, - . . , Uag, has exponent sum 0 in o(u3). Note also
that [o(u3), o (u4)] is conjugate to [uz, us]*! [11]. Indeed, using the solution of the
conjugacy problem in the free group (us, u4), we can find a word w € (ug, u4) and
e = +1 such that [o(u3),o(us)] = wlus,ujJw™t. This gives an (algorithmically
obtained) automorphism ¢ : uz — u} 1= w™lo(ug)w, ug — v} = w o (us)*w of
(us, uq) such that ¢([us, uq]) = [us, us]. Finally, we extend ¢ to an automorphism
of G by setting ¢(u;) = u; for i # 3,4.

Let us assume that the above algorithmic automorphism has been carried
out, so that us appears in W with exponent-sum zero, and we can choose 7
to be a curve representing us. The homomorphism (—,v) : G — Z can then
be interpreted as the exponent-sum of ugz, and its kernel K is generated by
conjugates of u; (i # 3) by powers of us. Since W € K, we may rewrite W
as a word W in these generators. Let A, u be the least and greatest indices n
respectively such that ug "ujuf occurs in w.

Let Gy be the one-relator group with generators

{uzg "uius; A <n < p}U{ug"ujulin € Z,j =2,4,5,...,2g}

and relator W. The proof of Theorem (4.1) then expresses G/N as an HNN-
extension of Gy, in which the associated subgroups are the Magnus subgroups
obtained by omitting uz“ujuf and uz )‘ulug‘ respectively from the generating
set. By the solutions of the generalized word problems for one-relator groups
and for HNN-extensions, it is decidable whether or not the generator u; may be
eliminated from U in G/N, as required.

[Note that, while the proof of Theorem (4.1) makes use of the assumption that
W is not a proper power in G, the HNN-construction of G/N described there
does not depend on that assumption. We may therefore use it in full generality
for the purposes of the present proof.] O

The statement of Theorem (4.2) asserts the solubility of the generalized word
problem only for one particular Magnus subgroup - that obtained by omitting u
from the generating set. A similar argument applies to the Magnus subgroup ob-
tained by omitting any other generator. For an arbitrary Magnus subgroup, one
can combine the algorithm of Theorem (4.2) with the solution to the generalized
word problem for a free factor of a finitely generated free group. One particular
case is the absolute word problem, which is the generalized word problem for the
trivial group.

COROLLARY (4.3). Let G = (u1,...,usg | [u1,ua] - [ugg—1, usgl), let W be a
word in the generators of G, and let N be the normal closure of W in G. Then
the word problem for G/N is soluble. That is, there exists an algorithm which,
giwen a word U in the generators of G, will determine whether or not U € N.
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C,-MOVES AND THE HOMFLY POLYNOMIALS OF LINKS

TAIZO KANENOBU

ABSTRACT. We consider the difference between the HOMFLY polynomi-
als of two links that are related by a C,-move. This gives the difference
between the first HOMFLY coefficient polynomials of such two knots, and
further implies the differences of some finite type invariants between such
two knots.

1. Introduction

It is known ([6], [7]) that two knots have the same finite type invariants of
order less than n ([28]) if and only if they are related by a finite sequence of
C,-moves. Here a C,,-move is a local move for oriented links involving n+ 1 arcs
as shown in Figure 1, n > 2, with a Ci-move a crossing change; in particular, a
Cy-move is equivalent to a delta mowve ([16], [19]).

The HOMFLY polynomial P(L;t, z) € Z[t*!, z%1] is an invariant of the isotopy
type of an oriented link L, which is defined, as in [9], by the following formulas:

PU;t,z)=1; (1.1)
t A P(Ly;t,2) —tP(L_;t,z) = 2P(Lo; t, 2), (1.2)

where U is the unknot and L, L_, L¢ are three links that are identical ex-
cept inside the depicted regions as shown in Figure 2; see [5], [24]. We call
(L4, L_, L) a skein triple; also, we say that L_ (resp. L4 ) is obtained from L
(resp. L_) by changing the crossing, and that Ly is obtained from Ly (or L_)
by smoothing the crossing.

A delta skein quadruple consists of four links (L, M, Lo, My) which are identical
except inside the depicted regions as shown in Figure 3; two links L and M are
related by a delta move. Nikkuni and the author ([11, Theorem 3.1]) have shown
that it holds that:

P(L;t,z) — P(M;t,z) = t*22 (P(Lo;t, z) — P(My;t, 2)). (1.3)

In this paper, we prove a formula giving the difference of the HOMFLY poly-
nomials of two links that are related by a C,-move (Theorem (2.7)), which
generalizes (1.3) above.

If K is a knot, then its HOMFLY polynomial is of the form:

P(K;t,z) =Y Pu(K;t)2%, (1.4)
i>0

2000 Mathematics Subject Classification: 57M25.

Keywords and phrases: knot, link, C,-move, delta move, HOMFLY polynomial, coefficient
polynomial, Jones polynomial, Conway polynomial, finite type invariant, Q polynomial.
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where each Py;(K;t) € Z[tT'] is called a coefficient polynomial; see [14, Proposi-
tion 22]. For a skein triple (L4, L_, Lo) with L} and L_ knots, and for a delta
skein quadruple (L, M, Lo, My) with L, M knots, each of (1.2) and (1.3) yields
a formula for the first HOMFLY coefficient polynomials (the Py polynomials);
see (3.3), (3.4). Similarly, for two knots which are related by a C,-move, from
Theorem (2.7), we may obtain a formula for their Py polynomials ((3.9), (3.10)).
These formulas are much simpler than that in Theorem (2.7). As mentioned
above, two knots that are related by a C,-move have the same finite type in-
variants of order less than n. On the other hand, there are several results on
the difference of the finite type invariants of order n between such two knots
(also, such links) ([15], [17], [20], [21], [22], [23], [27]). From (3.9) and (3.10), we
obtain that if two knots are related by a C,,-move, then the difference of the nth
derivatives of their Py polynomials at ¢ = 1, which is a finite type invariant of
order n, is either 0 or £n! - 2™ (Theorem (3.11)). Also, we obtain some results

on the Conway polynomials and the constant terms of the Q polynomials (Sect.
4).

2. C,-moves and the HOMFLY polynomials

In this section, we will prove Theorem (2.7), which gives a formula for the
HOMFLY polynomials involving two links that are related by a C,,-move. The
proof is essentially analogous to that of [22, Theorem 1.2].

We shall use the following notation: Let L be a link and C' = {e1,...,cx}
a subset of the crossings of L. If a link L’ is obtained from L by changing
the crossings in C7 and smoothing the crossings in Co, where Cy, Co C C' and
C1NCy =0, then we denote L by L, ..., and L' by Lg;.....c;, where

¢ ife¢ e C1;
;=1 ¢ if ¢ e Oy (2.1)
C; ifCi¢01 UCQ.

We will use the following lemma; cf. [22, Proposition 3.1].
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LEMMA (2.2). Let L, ., be a link having two crossings ci1, co with €(c1)e(cz) =
—1. Then

P(Le, ;) = P(Ley ;) = €(c1)tVz (P(Leyey) — P(Leyy)) - (23)
Proof. Suppose €(c1) =1 and €(c2) = —1. By (1.2), we have
t 7 P(Ley.cy) — tP(Ley ) = 2P(Liy.cy); (2.4)
t7'P(Ley zy) — tP(Ley ;) = 2P(Le, ), (2.5)
which imply
P(Ley.es) = P(Ley ) = 2 (P(Liy ) — P(Ley ) (2.6)
The case €(c1) = —1 and €(c2) = 1 is similar, and the proof is complete. O

THEOREM (2.7). Supposen > 2. Let L and L' be links such that L' is obtained
from L by a C,-move as shown in Figure 1. Then

P(L) - P(LI) = €1€2 - Ent61+€2+“~+enzn Z 62 T 5nP(L[62a ) 671])7
02y 0p==%1

where:

o ¢ =¢(c1) andej =¢€(cj1), j=2,...,n;

o L[da,...,0n] is the link obtained from L = Le¢, cpy co5,....cn1,ens DY TEDlACING
c1 to é and (cj1,cj2) to either (é1,c¢j2) or (€j1,¢52) according as §; =1 or —1,
j=2,...,n.

Proof. First notice that L' = Le, cy1 con,....cn—1.1,6n-1.2:en1,n2- We proceed by
induction on n. Let us consider the case n = 2. Suppose ¢; = 1. Then by (1.2),
we have

t7'P(Le,) — tP(Le,) = 2P(Le,); (2.9)
t™'P(L,) —tP(L}) = zP(L.,), (2.10)
Since Lg, and Lg, are isotopic, we have
P(Le,) — P(L,,) = tz (P(L¢,) — P(L;,)) - (2.11)
Similarly, if e; = —1, we have
P(L,)— P(L. )= —t"'2(P(L) — P(L})) , (2.12)
and so we obtain
P(L¢,) — P(L.,) = e1tz (P(L¢,) — P(LL,)) . (2.13)

As  noticed above, Lc'1 = Lé1,021,022 and Llc'l = Lé1,5217522a and thus by
Lemma (2.2), we have

P(Ley) = P(L;,) = €2tz (P(Léy oy ea5) = P(Ley e inn) (2.14)
= etz (P(L[1]) — P(L[-1])) .
Substituting (2.14) into (2.13), we obtain
P(Le,) — P(L.)) = ereat T 22 (P(L[1]) — P(L[-1])), (2.15)
which gives (2.8) with n = 2.
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Assume that the result holds for n — 1. By the inductive hypothesis, we have

P(L) = P(L01702170227~~~7Cn—1,1,Cn—1,270n170n2) (2'16)

= P(L01702170227~~~,5n—1,1,571—1,27071,17071,2)
+at’z"t " by 60 1 P(L[0, . O t]ensen);
02,0 —1=%1
P(L,) = P(Lcl752175227~~~7Cn71,1yC7L71,27E'rL175n2) (217)

- P(Lcl752175227“'75'”71,1167L71,27En175n2)

+ atlzm 1 Z 0o - - '5n,1P(L[52, cee (Snfl]gnhgnz),
02,.00y0n—1=%1

where a = €1e9- - €n—1, b =€ +e€+ -+ €n—1, and L[52, .. "5n71:|cnlycn2’

. . _ i
L{b2,...,0n-1]z,1,z,, are the links obtained from L(= Le¢, cy1,c09,....cn1,en2)s L' (=
Le, o1 00,801,502 )» T€SDECtively, by replacing ¢i to ¢1 and (¢j1,c¢j2) to either
(éj1,¢42) or (Ej1,¢52) according as 6; = 1 or —1, j = 2,...,n — 1. Since
L01,021,022,~~~75n71,175n71,2,0n1,an and Lcl162116221"'75’71,71,1!67L71,2167L175’71,2 are 1sotop1c, we
have

P(L) - P(L')=at’z"""Y " 82-+-6n1
Soyeebm_1=+1
(P(L[62a ) 57L—1]Cn,1,c712) - P(L[62a s ’5n_1]énl,é712)) (2'18)

By Lemma (2.2), we have

P(L[527 sy 5”71]Cn1,6n2) - P(L[527 SERE) 67171]5”1,5”2) (219)
= €ntE"Z (P(L[527 ceey 6”—1]@1170712) — P(L[ég, ey 5n_1]5ﬂ’1,é712))
= €nt6"Z (P(L[527 ceey 5n—17 1]) — P(L[527 ceey 5n—1; —1])) .

Substituting (2.19) into (2.18), we obtain (2.8), completing the proof. O

Ezample (2.20). Let us consider the knot J,, as shown in Figure (4), n > 2,
with J; the trivial knot. In particular, Js is the right-hand trefoil, Js is the
mirror image of the 7¢ knot, and Jy is the mirror image of the 1073 knot; see
Rolfsen’s table ([25]). Performing a C,-move on J,, we obtain J,_1.

We calculate P(J3) — P(J2) using (2.8). We shall use a similar notation to
that in Theorem (2.7). Since € = €2 = €3 = 1, and J3[1, 1] is the positive Hopf
link, J3[1, —1] and J3[—1, 1] are both the trivial links of two components, and
J3[—1, —1] is the trivial link of four components, we have:

P(J3) — P(J2) =
= t°2% (P(J3[1,1]) — P(Js[1,—1]) = P(Js[-1,1]) + P(Js[-1,-1]))  (2:21)
=2 (7 +t ) =) —2(( =)+ (T = 1))
= (1 —t3)3 4+ (1 = 3t% + 2t1) 22 — 122,

We may obtain this from the table of [13, p. 282].
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3. C,-moves and the P, polynomials

In this section, we will give a formula for the Py polynomials of two knots which
are related by a C,,-move. Before this, we give some properties of the coefficient
polynomials of the HOMFLY polynomial of a link. Let L = K; UK U--- UK,
be an oriented r-component link and Lk(L) be the total linking number of L;
Lk(L) = >~ Ik(K;, K;) with Ik(K;, K;) the linking number of K; and K;. By
[14, Proposition 22], the HOMFLY polynomial of L is of the form:

P(Lit,z) = Y Pon—rp1(Lit) 2", (3.1)
n>0

where each Py, _,41(L;t) € Z[t*!] is called the coefficient polynomial; the powers
of t which appear in it are all even or odd, depending on whether 2n — r + 1 is
even or odd. In particular, the first coefficient polynomial satisfies the following
relation:

Prp(Lit) = 2HB = — ) T Po(Kit). (3.2)
i=1
For Cp- and Cy-moves, the following are known: Let (Ly,L_, Ly) be a skein

triple with L, and L_ knots and Ly a 2-component link K; U K5. Then from
(1.2), we obtain:

t7 Py(Ly;t) — tPy(L_;t) = t2 M) (=1 — ) Py(K ;1) Py(Kast), (3.3)

where Lk(Lg) = 1k(K4, K2); see [12]. Further, for a delta skein quadruple
(L, M, Ly, My) with L, M, Ly knots and My a 3-component link K7 U K> U K3,
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we obtain from (1.3):
Po(Lit) — Po(M;t) = —2 L) (12 — 1)2 Py (K5 t) Py (Ko t) Po(Ks35t);  (3.4)

([11, Theorem 4.1]).

In order to give a similar formula for a C,-move, we consider the number of
the components of the link L[da, ..., d,], n > 2, given in Sect. 2, which we denote
by #L[d2,...,0,]. It is easy to see the following:

#L[62,...,0n] =n+#L (mod 2); (3.5)
HL[6a, ... 0] <+ #L. (3.6)

Furthermore, we have:

LEMMA (3.7). Suppose that L is a knot. Then in the set of links
{L[b2,...,0,])]0; = £1}, the number of links with #L[d2,...,6,] =n+1 is at
most one. In particular, for n = 2, one of the links L[£1] is a knot and the other
is a 3-component link.

Proof. We shall use a chord diagram of order n, which is an oriented circle
with n chords; cf. [1], [2]. For each link L[do,...,d,], 6; = 1, we construct
the chord diagram of order n, D[ds,...,d,], as follows: Consider the link L as
an image of an embedding h : S — S3; L = h(S'). Let o = h™ (), i = 1,

2,...,n+ 1. The preimage of each crossing point of L consists of two distinct
points. Let h='(c1) = {c}, e}, b7l (eij) = {cij, i} i =2,...,m, j = 1, 2,
where Cll € allv Clllacl2176,22 € O/Qa C;LI,IaC;L1,27021a0{£2 € a{w i = 37 RS ]-7 and
let 71, 7;; be the chords joining the two points {c},c{'}, {c};,c};}, respectively.

We define D[ds,...,8,] to be a chord diagram consisting of the circle S* and n
chords 71, 75,1 =2,...,n, j = (3 —19;)/2.

First, consider the chords 71, 21, T22. On the arc o the point ¢ lies between
chy and chy; the other endpoint ¢} lies on af, and cj;, ¢4, lie on of. Thus the
chord 7; intersects either 71 or To3. Next, consider the chords 7,11, Ti—1,2, i1,
Tiz2, ¢ = 2,...,n. Similarly, on the arc «; the four points lie in the order of ¢},
i 125 C{ 11, Cig; the other endpoints ¢;_, 5, ¢;_; ; lieon aj_;, and ¢f}, cjp lie on
ag_H. Thus the chord 7; ;, j = 1, 2, intersects either 7,411 or 7i41,2. Therefore,
in the set of all chord diagrams DId,...,d,], there exists at most one that has
no intersection among the chords; see [22, Proof of Lemma 3.2].

Add 1-handles along all the chords of D[da,...,d,], that is, change each
chord as in Figure 5. Then we obtain a set of circles whose number is just
#L[02,...,0,], the number of the components of the link L[ds,...,d,]. Hence,
if all n chords of DJ[ds,...,d,] are separated from one another, then the corre-
sponding link L[da,...,d0,] has n + 1 components. Conversely, if there exist a
pair of chords that intersect, then the corresponding link L[da,...,d,] has less
than n + 1 components, and so the result follows.

Note that for n = 2, one of D[+1] is separated, and so one of the links L[+1]
is of 3 components. O
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Figure 5

Let L and L’ be as in Theorem (2.7). Then from (2.8), we obtain:

PQ(L) —P()(LI) = 6162---6nt€1+62+m+€” Z 525nP—n(L[52;;5n]);
P
(3.8)
where n > 2. Suppose L and L’ are knots. By (3.6) and Lemma (3.7), for the
links L[d2, ..., 0n], d2,...,0, = £1, we have either;
(i) all the links have less than n + 1 components, or
(ii) only one link, say L[d5,...,d,], has n+ 1 components and the other have
less than n + 1 components.
In case (i), by (3.1) we have:

Po(L) — Py(L') = 0. (3.9)

In case (ii), let L[(52, 0] =K UKsU---UKp41 and A be its total linking
number, A = >, _ 1k(Kj;, K;). Then using (3.1) and (3.2), we have:

i<J
Py(L) — Py(L') = €162+ - €p0h - - - Shtrteettenp  (L[5),...,80]) (3.10)
n+1
= €169 €00 - - - O tertert et 2A (-l H Py (K

Moreover, we obtain:

THEOREM (3.11). Let L and L' be knots such that L' is obtained from L by
a Cy-move as shown in Figure 1. Then

+8 ifn=2;

3.12
0, £n!-2™ 4fn > 3. ( )

P (L 1) - PYP(L5 1) = {

Conversely, for each value there exist knots L, L' satisfying this formula.

Proof. In case (i), from (3.9) we have Pé") (L;1) — Pé") (L';1) = 0. Note that
if n = 2, then from Lemma (3.7) this case does not occur; see Remark (3.16)
below. In case (ii), (3.10) is written as

Po(L) = Po(L') = (t = 1)" f(t) (3.13)
with
n+1
f(t) = erea- €04+ 0 (=1)"(t + 1)"gerTeatFent2An H Po(Ki;t). (3.14)
i=1

Then since Py(K;;1) = 1, we obtain
By (Li1) = B (L5 1)) = nt | £(1)) (3.15)

=nl- 2™
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Conversely, for any knot there exists a C,-move that does not change its
knot type; see [22, Remark]. Also, in Examples (3.20) and (3.24) below, for any
integer n > 2, we shall give an example of knots L and L’ satisfying (3.12). O

Remark (3.16). (i) The case n = 2 of Theorem (3.11) is essentially Okada’s
result ([23]): She has proved that if two knots K and K’ are related by a delta
move, then

az(K) —ax(K') = £1, (3.17)
where ao(K) is the coefficient of 22 of the Conway polynomial of K. In fact, a
delta move is equivalent to a Ca-move (see Remark (3.31) below) and Péz) (K;1) =
—8a2(K) ([10, (5.6)]); cf. [11, Remark 4.8].

(ii) The case n = 3 of Theorem (3.11) is essentially Tsukamoto’s result ([27,
Corollary 3.2]): He has proved that if two knots K and K’ are related by a
clasp-pass move, then V) (K1) — VO)(K’;1) = 0 or +36, where V) (K;1) is
the third derivative of the Jones polynomial of K at t = 1. In fact, a clasp-pass
move is equivalent to a Cz-move and Pé?’) (K;1) = (4/3) VO (K;1) ([18]); cf. [10,
(5.9)].

(iii) For two knots K, K’ that are related by a C4-move, Matsuzaka [15] has
studied the difference v(K) — v(K'), where v is a finite type invariant of order
4. More explicitly, he has given this difference in terms of the v-values of certain
chord diagrams of order 4 ([15, Theorem 5.1.1]) using the result of Ohyama and
Tsukamoto ([22]). From this he has shown:

as(K) —ay(K') =0, +2; (3.18)
VO(K;1) = VI(K';1) =0, +6-4!, +12- 41, (3.19)

Conversely, he has given examples of knots K and K’ satisfying these equations.
Similarly, from Matsuzaka’s theorem, we can easily deduce Theorem (3.11) for
n=4.

Ezample (3.20). We have considered the HOMFLY polynomials of the knots
Jpn, in Example (2.20). Here, we apply (3.10) to J,. We see ¢, = 1 for all ¢,

and J,[—1,...,—1] is the trivial link of (n + 1) components, which is the only
(n + 1)-component link in J,[d2,...,d,], ; = 1. Then from (3.10), we have:
Po(Jn) = Po(Jp-1) = (=1)" " 4" P_, (Jn[-1,...,—1]) (3.21)
_ (_1)n71tn(t71 o t)n
= _(tQ - 1)n,
from which, we obtain:
P (Jni1) = P8 (J,_151) = —nl - 27 (3.22)
P (1) = PO, 1) = —(n+ 1)1 27 (3.23)

Ezample (3.24). Consider the knot K,, as shown in Figure 6, n > 2, with K
the trivial knot, which is given by H. A. Miyazawa ([17, p. 107]). In particular,
K is the figure-eight knot, K3 is the 77 knot, and K4 is the mirror image of the
1060 knot; see [25]. Performing a C,,-move on K,,, we obtain K,,_1.
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([ C2 21
(— €32 €31
([ Cn—1,2 Cn—1,1
Cn2 Cnl
J \ J — = = = J \ J \
J
Figure 6
We see €¢ = —1 and ¢; = 1 for 2 < ¢ < n. By changing the crossing ci,

we obtain the trivial knot U, and by smoothing c;, we obtain K,,_1#H, the
connected sum of K,,_1 and a positive Hopf link H. From (1.2) we have:

t1P(U) - tP(K,) = 2P(K,_1#H,),
for n > 2, and so,
P(K,)=t2P(U) -t '2P(H,)P(K,_1)
=t 72—t ((t =172 4+ t2) P(Kno1)
=t + pP(K, 1),
where ¢ = (—1+t?) — 22. Then
P(K;,) — P(Kn-1) = ¢ (P(Kn-1) — P(Kn-2))
= " ?(P(K3) — P(K1))
=",
where 1) = (t72 — 2 +t2) — 22; cf. [12, p. 282]. This implies:

Py(Kp) — Po(Kp ) =t 2(t2 = 1)" = (t = 1)" -t 2(t+1)"

and thus
Po(n)(Kn; 1) — Po(n)(Kn_l; 1) =mn!-2%

)

P (K1) = PO (K _qi1) = (n+ 1)1 271 (n — 4).

We may obtain (3.28) using (3.10).

(3.25)

(3.26)

(3.27)
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Remark (3.31). Since the delta move and the Cy-move are equivalent (cf. [26,
Sect. 2]), we can obtain (1.3) from Theorem (2.7): A tangle is a disjoint union of
finitely many properly embedded arcs in a 3-ball. We may think of the four parts
of the link diagrams in Figure 3 as four 3-string tangles, which we denote by 7L,
TM, TLg, TMy from left to right. If we put these tangles into the 3-ball D in
Figure 7, we obtain the four tangles 7L/, TM’, 7Ly, TM{ as shown in Figure 8,
which correspond to four links L, L', L[1], L[—1], respectively, in Theorem (2.7)
with n = 2, g = €3 = 1. Then from (2.8), we have:

P(L) = P(L') = 2% (P(L[1]) = P(L[-1])), (3.32)
giving (1.3).

]

| ol o

Let us consider the (n + 1)st derivative of Py. From (3.14), we have:

n+1
F1(t) = (n(t+ )" ™+ mt+ D)™™ ) ] Po(Kist) (3.33)
=1
n+1
te(t+ 1)y PyEG ) [ Po(Kist),
=1 i#]
where € = €1€2-+-€,05 -0, (=1)" and m = €1 + €2 + -+ + €, + 2A — n. Then
since Po(K;;1) =1 and Pi(K;;1) = 0, we have:
/() =e(n-2""1 +m-2m) (3.34)
= €2 12 4 265 + - - - + 26, + 4X — ).
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Therefore, we obtain:
By D(L:1) = B 1) = (n4 D1/
=(n+1)!2"1 2 + 2+ + 26, + 4\ —n|. (3.35)
which is a generalization of [11, Theorem 4.7, (4.18)].

4. C,-moves and other polynomials

In this section, we will consider the Conway and Jones polynomials, which we
may be obtained from the HOMFLY polynomial, and the constant terms of the
Q polynomials.

The Conway polynomial V,(z) € Z[z] and the Jones polynomial V(L;t) €
Z[t*'/?] of an oriented link L are given from the HOMFLY polynomial P(L;t, z)
by the following formulas; see [4], [9]:

Vi(z) = P(L;1,z2); (4.1)
V(L;t) = P(L;t, t/2 —t71/%). (4.2)
The Conway polynomial of an r-component link L is of the form
Vi(z)= Z agnyr1(L)22"T L (4.3)
n>0

where agptr—1(L) = Popyr—1(L;1) € Z.
Suppose n > 2 and let L and L’ be links as in Theorem (2.7). Then using
(4.1), we obtain immediately the following identity from (2.8):

Vi(z) = Vi(z) = €162 - €,2" Z 0200 Vis,,.. .60 (2) (4.4)
2,y =t1
This implies the following identity, which has been given by H. A. Miyazawa [17,
p. 102].

an(L) _an(L,) — €1€2 " €n Z 525710*0([/[52;;571]) (45)
Sy ==E1
Notice that for a link M, ag(M) = 1 or 0 according as if #M =1 or > 2. For
n > 3, using this formula, she has proved the following identity ([17, Theorem
1.3)):
an(L) —a,(L')=0 (mod 2). (4.6)
For the case where L and L’ are knots, this had been proved by Ohyama and
Ogushi [21]. Note that if n = #L (mod 2), then a,(L) = a, (L") = 0. Also
remember Okada’s equation (3.17).
Further, combining (4.5) and (4.6), we have the following:

PROPOSITION (4.7). Suppose n >3 and n=#L —1 (mod 2). Then
an(L) — an(L') € {£2k |k =0,1,...,2" %}, (4.8)
Proof. Put b(L) = 35, 5 _41 027 0pao(L[d2,...,6,]). If each of the links
L[ba,...,0,] with d2---0, = 1 (resp. —1) has one component and each of the
links L[da, ..., d,] with d3---d, = —1 (resp. 1) has more than one component,

then |b(L)| = 2"~2, otherwise |b(L)| < 2"~2; cf. (3.5). Therefore, using (4.6), we
obtain the result. (|
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Remark (4.9). (1) According to Matsuzaka’s result (3.18), Proposition (4.7)
with n = 4 and #L = 1 is not best possible.

(ii) H. A. Miyazawa [17] has given examples of links L and L’ such that L' is
obtained from L by a C,-move, n > 3, which satisfies a, (L) — a, (L") = 0, £2
for each value.

Suppose n > 2 and let L and L’ be links as in Theorem (2.7). Then by using
(4.2), we obtain immediately the following identity from (2.8):

V(Lit) = V(L';t) = ereg - - - eptiteatten—n/2 1y,

S a8V (Lo, 0)i0). (4.10)
02,.0y0p==%1
This implies that:
VUL 1) = VL) =eeq--en-ml Y Gy 0u VL[S, ..., 645 1).
62,...,0p==%1
(4.11)

Notice that for a link M, V/(M;1) = (—=2)#M~1. For n > 3, H. A. Miyazawa has
shown the following identity ([17, Theorem 1.5]):

V(1) = V(1) =0 (mod 6-n!). (4.12)

The Q polynomial Q(M;z) € Z[z*] is an invariant of an unoriented link M
defined by the following formulas:

QU;z) =1 (4.13)
Q(My;2) + Q(M_;z) = 2 (Q(Mo; ) + Q(Mo; 7)) , (4.14)

where U is the unknot and (M4, M_, My, M) are four links which are identical
except inside the depicted regions as illustrated in Figure 9; see [3], [8].

A X =

Figure 9

It is known that
Q(K;0) = Py(K;v/—1) =1 (mod 4) (4.15)

for a knot K; see [3, Property 7], [12, Theorem 4.12 (i)].

Suppose n > 2. Let L and L’ be knots such that L’ is obtained from L by
a Cp-move. Then as noticed before Theorem (3.11), there are two cases (i) and
(ii) to consider for the links L[da, ..., d,]. In case (i), by (3.9) we have:

Q(L;0) — Q(L';0) =0, (4.16)
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and in case (ii), from (3.10), we obtain:
n+1
Q(L;0) = QL 0) = 2" [ [ 1Q(S; 0)], (4.17)
i=1
where K1 UKy U---U K41 is the only (n + 1)-component link in L[da, ..., dy].
This is a generalization of the result for a delta move (Ca-move) in [11, Sect.
4.5).

Ezample (4.18). For the knots J,, (Example (2.20)) and K, (Example (2.24)),
from (3.21) and (3.28) we obtain:

Q(Jn;0) = Q(Jn—1;0) = Po(Jn; V=1) = Po(Jp—1;V-1) = =(=2)";  (4.19)
Q(Kp;0) — Q(K,_1;0) = Py(Kp;vV/—1) — Py(Kp_1;v/—1) = —(=2)".  (4.20)
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A TABULATION OF 3-MANIFOLDS VIA DEHN SURGERY

AKIO KAWAUCHI

ABSTRACT. We show that every well-order of the set of lattice points in-
duces an embedding from the set of closed connected orientable 3-manifolds
into the set of links which is a right inverse of the 0-surgery map, and this
embedding further induces two embeddings from the set of closed con-
nected orientable 3-manifolds into the well-ordered set of lattice points and
into the set of link groups. In particular, the set of closed connected ori-
entable 3-manifolds is a well-ordered set by a well-order inherited from the
well-ordered set of lattice points, and the homeomorphism problem on the
3-manifolds can in principle be replaced by the isomorphism problem on
the link groups. To determine the embedded images of every 3-manifold,
we propose a tabulation program on the well-ordered set of 3-manifolds
which can be carried out inductively until a concrete pair of indistinguish-
able 3-manifolds occurs (if there is such a pair). As a demonstration, we
tabulate 3-manifolds corresponding to the lattice points of lengths up to 7.

1. Introduction

There are two fundamental problems in the theory of 3-manifolds, that is,
the homeomorphism problem and the classification problem (see J. Hempel [11,
p.169]). The homeomorphism problem is the problem of giving an effective pro-
cedure for determining whether two given 3-manifolds are homeomorphic, and
the classification problem is the problem of effectively generating a list con-
taining exactly one 3-manifold from every (unoriented) type of 3-manifolds. In
this paper, we consider the classification problem on closed connected orientable
3-manifolds by establishing an embedding from the set of closed connected ori-
entable 3-manifolds into the set of links in the 3-sphere S® which is a right inverse
of the O-surgery map. For this purpose, let Z be the set of integers, and Z" the
product of n copies of Z whose elements x = (z1, 2, ...,z,) € Z" we will call
lattice points of length £(x) = n. The set X of lattice points is the disjoint union
of Z" for alln =1,2,3,.... Let Q2 be any well-order in X, although we define in
§2 the canonical order! €., a particular well-order in X such that we have x < y
for any x,y € X with £(x) < £(y). We are particularly interested in the delta set
A, a special subset of X defined in §3 such that the lattice points of A smaller
than any given x € X in €, form a finite set. The class of oriented links L’ in S3
such that there is a homeomorphism h : S3 — S® sending L to L’ is called the
unoriented link type [L] of an oriented link L in S®, and the oriented link type
(L) of L if moreover h preserves the orientation of S® and the orientations of L

2000 Mathematics Subject Classification: 57M25, 57TM27.

Keywords and phrases: braid, lattice point, link, 3-manifold, link group, tabulation.

IThe present definition is modified from the definition made in earlier research announce-
ments to make an enumeration of lattice points easier.
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—
and L'. Let I and IL be the sets of unoriented link types and oriented link types
in S3, respectively. A link type will be identified with a link belonging to the link

—
type unless confusion might occur. Thus, L and L are understood as the sets
of unoriented links and oriented links in S3, respectively. We have a canonical
surjection

.
g, X PL 5L

sending a lattice point to the closure of the associated braid (see §2 for details),
—

where ¢ : . — L denotes the forgetful surjection, which simply ignores the
orientations of S? and links. On the other hand, every well-order 2 in X induces
an injection

c:L — X

which is a right inverse of clj,, so that Q defines a well-order in L, also denoted
by Q. This construction of ¢ is done in §2. In §3, we show that in the case
of Q@ = Q. the image o(L) of a prime link L belongs to A. In §4, we define
the concept of a w-minimal link (depending on a choice of a well-order Q in X).
Let L™ be the subset of I consisting of m-minimal links. Then we see that the
restriction
ol : L™ — X

is an embedding (see Lemma 4.4). Since a m-minimal link is a prime link by
definition, we see in the case of Q@ = Q. that o(L™) C A and every initial
segment of L™ is a finite set. The link group of a link L in S2 is the fundamental
group m E(L) of the exterior E(L) = cl(S® — N(L)) of L with N(L) a tubular
neighborhood of L in S3. Let G be the set of the isomorphism types of the link
groups for links in IL. The isomorphism type of a group will be identified with a
group belonging to the isomorphism type unless confusion might occur. An Artin
presentation is a finite group presentation

(1,22, ..., Tpn |x; = wixp(i)wfl,i =1,2,...,n)
where p(1),p(2),...,p(n) are a permutation of 1,2,...,nand w; (i =1,2,...,n)
are words in x1, xs, ..., x, which satisfy the identity
n n
[Tz = [[wipywi’
i=1 i=1
in the free group F' on the letters z1,23,...,z,. Then we have a braid b € B,,

corresponding to the automorphism ¢ of F' defined by
p(xi) = wixp(i)wi_l (i=1,2,...,n),

from which we see that the set G is characterized as the set of groups with Artin
presentation (see for example [15; p.83] as well as J. S. Birman [2;p.46]). If the
closure cl(b) is prime or 7-minimal, then we say that the Artin presentation is
prime or m-minimal, respectively. For the map

L — G
sending every link L to the link group m E(L), we also see that the restriction

7wl LT — G
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is an embedding (see Lemma (4.4)). Let M and I\_A>I be the sets of unoriented
types and oriented types of closed connected oriented 3-manifolds, respectively.
The type of a closed connected oriented 3-manifold will be identified with a 3-
manifold belonging to the type unless confusion might occur. We define the map
Xo : L = M by xo(L) = x(L,0), where x(L,0) denotes the 0-surgery manifold
of L. The following result is our main theorem, which is proved in §5:

THEOREM (1.1). Every well-order Q of X induces an embedding
a:M — LT™CL
and hence two embeddings
0 = oa:M — X,
e = ma:M — G

which satisfy properties (1) and (2) below:
(1) xoa = 1.

(2) If a lattice point o, (M) € X is given, then the w-minimal link a(M) € L
with a braid presentation, the 3-manifold M € M with a 0-surgery description
along a m-minimal link and the link group no(M) € G with a m-minimal Artin
presentation are determined.

Furthermore, when Q = ., we have o,(M) C A and the properties (3) and
(4) below are obtained:

(3) If a group wo (M) with a prime Artin presentation is given, then the lattice
point o,(M) is determined assuming a solution of the following problem:

Problem. Let x € X be a lattice point induced from the prime Artin presen-
tation of 7, (M), and x; < X2 < --- < X, the lattice points in A smaller than
or equal to x. Find the smallest index ¢ such that the link clf(x;) is prime and
there is an isomorphism 71 E(clf(x;)) — mo (M).

(4) If a 3-manifold M with the 0-surgery description along a w-minimal link
L is given, then the lattice point o, (M) is determined assuming a solution of the
following problem:

Problem. Let x € X be a lattice point induced from a 7m-minimal link L, and
X] < Xo < --- < X, the lattice points in A smaller than or equal to x. Find
the smallest index ¢ such that the link clf(x;) is m-minimal and the O-surgery
manifold y(clB(x;),0) is x(L,0).

The embedding o, makes the set M a well-ordered set by a well-order inherited
from the well-order €2 of I and denoted also by Q. The length of a 3-manifold
M € M is the length of the lattice point o,(M) € X. In §6, to determine the
images a(M), 0o (M) and 7, (M) of every M € M, we take the canonical order .
and propose a classification program on M based on Theorem (1.1), which we can
carry out inductively until a concrete pair of indistinguishable 3-manifolds occurs
(if there is such a pair). As a demonstration, we carry out this classification for 3-
manifolds with lengths up to 7. The embedding 7, implies that two 3-manifolds
M; € M (i = 1,2) are homeomorphic if and only if the groups m,(M;) (i =1,2)
are isomorphic, and thus the homeomorphism problem on M can be in principle
replaced by the isomorphism problem on G (see Remark (5.5)), although it
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appears difficult to calculate the group 7, (M) of any given 3-manifold M € M
apart from the classification program. A lifting of the embedding « to the
oriented version is discussed in §7 together with an observation on a relationship
between oriented 3-manifold invariants and oriented link invariants.

This paper is a grown up version of a part of the research announcement “Link
corresponding to closed 3-manifold ”. A version of the remaining part will appear
in [16] (see http://www.sci.osaka-cu.ac.jp/ kawauchi/index.htm). The author is
grateful to Dr. Ikuo Tayama for finding errors from an earlier version of this
paper and to the referees for finding further errors and for helpful comments.

2. Representing links in the set of lattice points

For a lattice point x = (21, x2, . .., Z,) of length n, we denote the lattice points
(p,...,29,71) and (|z1],|22|,. .., |zn]) by xT and |x]|, respectively. Let |x|x be
a permutation (|z;, |, |z, .., |z;.|) of the coordinates |z;| (j = 1,2,...,n) of

|x| such that |z, | < |xj,| £ -+ £ |xj,|. For convenience, we use k" for the
lattice point of length n with k for every coordinate and —k™ for (—k)™. The
integers min; <,<,, |z;| and max, <;<,, |;| are also denoted by min |x| and max |x|,
respectively. Furthermore, we define the duallattice point 0(x) = (2}, 25, ..., z})
of x by

Defining §°(x) = x and 6"(x) = §(6"!(x)) inductively, we note that §2(x) #
x in general, but §"*2(x) = §"(x) for all n = 1. For example, taking x =
(23,3,-2,3), we have 52" 1(x) = (23,1,-2,1) and §°™(x) = (13,2, —1,2) for
all m = 1. For a lattice point y = (y1, y2,...,ym) of length m, we denote by

,_ {sign(mi)(max x| +1— |x]) x; #0

o
(x,y) the lattice point (1, Z2,...,Zn,Y1,Y2,.-.,Ym) of length n +m. Let L be
the set of oriented links. By the Alexander theorem (see J. S. Birman [2]), every
oriented link L is represented by the closure cl(b) of an s-string braid b € B,
for some s = 1. The braiding algorithm of S. Yamada [23] would be useful to
deform a link into a closed braid form. Let o; (i = 1,2,...,s—1) be the standard
generators of the s-string braid group Bs. By convention, we regard the sign of
the crossing point of the diagram o; as +1. We consider that every braid b in By
is written as a word on the letters o; (i =1,2,...,5—1). When b is not written
as 1, we write
b=oiloz. ..o, e=%1 (i=1,2,...,7).
Then we define the lattice point x(b) of the braid b by the identity
X(b) = (Elil, €219, . - ., Erir) eZ" Cc X

When b is written as 1, we understand that x(b) = 0 € Z C X. For a non-zero

lattice point x = (z1,2,...,2,) € X, let z;; (j =1,2,...,m5iy <idp < -+ <)
be the set of the non-zero integers in the coordinates x; (i = 1,2,...,n) of x.
Then the lattice point X = (x4, Zi,, .., 24, ) is called the core of x. When x

is a zero lattice point, we understand the core x = 0. We note that for every
non-zero lattice point x, there is a unique braid b € B for every s = max |x|+ 1
such that x(b) = x. The braid b is called the associated braid with index s of
x and is denoted by 3(*)(x), and in particular, for s = max |x| + 1, it is called
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the associated braid of x, denoted by 3(x). The associated braid with index
s of any zero lattice point of X is understood as 1 € By, and in particular the
associated braid as 1 € B;y. Taking the closure cl3(x) of the braid B(x), we
obtain a surjection
—
cp: X — L.
Then every well-order €2 in X defines an injection (which is a right inverse of the
map clf)
L =
c:L — X
by sending a link L to the initial element of the subset {x € X|cl3(x) = L} of X
indicated by Q. By definition, the closed braid cl3(*) (x) with s > max x| + 1 is
obtained from the closed braid clf(x) by adding a trivial link of (s —max |x| —1)
components. We introduce an equivalence relation ~ in X as follows:

Definition (2.1). Two lattice points x and y in X are related as x ~ y if
—
clf(x) = clf(y) in L modulo split additions of trivial links.

Clearly the relation ~ is an equivalence relation in X. Let X/ ~ be the
quotient set of X by ~, and (x) the equivalence class of a lattice point x € X by
~. The quotient map

—
G L — X/~
has the identity gw(cl(b)) = (x(b)) and is a bijection from the quotient set
—

of L modulo split additions of trivial links onto X/ ~. In particular, o s
independent of a choice of 2. We can describe the equivalence relation ~ only in
terms of X by using the braid group presentation and the Markov theorem (see
J. S. Birman [2]), as stated in the following lemma:

LEMMA (2.2). The relations (1)-(6) below are in the equivalence relation ~
in X. Conversely, if we have x ~y in X, then y is obtained from x by applying
the relations (1)-(6) finitely often.

1. (x,0) ~x, x ~ (x,0) for all x € X,

2. (x,y,-y) ~x, x~ (x,y,-y7) for all x,y € X,

3. (x,9) ~¥x, x~ (x,y) for all x € X and y € Z such that |y| > max |x],

4 (x,y,2z) ~ (X,2,y) for all x,y,z € X such that min|y| > max|z| + 1 or
min |z| > max|y| + 1,

5. (xyey,y+ 1,y) ~ (x,y+ 1,y,e(y+ 1)) for all x € X and y € Z such that
y(y+1) #0 and e = +1,

6. (x,y) ~ (y,x) for all x,y € X.

Proof. The relation (1) is in ~ since B(x,0) = 8(x). For (2), we take 3(*)(x)
and B8 (y) in B, for some s. Then we have
By, —y") = B8 ()87 (v) T = ()
in B and hence

cf(x,y,—y") = clB(x)

—
in . modulo split additions of trivial links, showing that the relation (2) is in
~. For (3), let s = |y| + 1. Then by the Markov theorem,

clB(x,y) = c1B) (x)
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—

in L and the last link is equal to cl3(x) modulo split additions of trivial links,
showing that the relation (3) is in ~. For (4), we take 3(*)(x), 3*)(y) and 3(*)(z)
in B, for some s. By the assumption on y and z, we have

B (x,y,2) = B (x) 8 (v) 8 (2) = B ()8 (2)8) (v) = B (x,2,y)
in By which shows that

cf(x,y,z) =clB(x,z,y)

in i modulo split additions of trivial links. Thus, the relation (4) is in ~. For
(5), consider 5(*)(x) and 0]5»' (4 = ly|, &’ = sign(y)) in B, for some s. Let ¢’ = +1.
Then

B (x,ey,y +1,y) = B (x)05 0410,
and the last braid is equal to

B (x)oj410505,, = B (x,y + 1,y,e(y + 1))

in B by a well-known braid relation. Hence we have
cdf(x,ey,y+ Ly) =cfx,y+ Ly e(y+1))

—
in I. modulo split additions of trivial links, showing that the relation (5) is in ~.
For ¢/ = —1, a similar argument gives the desired result since sign(y + 1) = —1
by assumption. For (6), let 3(*)(x) and 5(*)(y) in B; for some s. Then we have

B ()8 (y) = 8™ ()8 (x)
by the Markov theorem and hence

clB(x,y) = clB(y, x)

in E modulo split additions of trivial links, showing that the relation (6) is in ~.

Next, we assume x ~ y. By the relations (1) and (6), we assume X = x and
¥y =y. Let b = B(x) and b’ = B(y) be the associated braids. We show that
if b =V in B, for an index s, then we can change x into y by finitely many
applications of the relations (2), (4), (5) and (6). We use the group presentation
of B, with generators o; (i =1,2,...,s — 1) and relators

(1) Uiajai_laj_l (i—jl=22) and (ii) Uioi“ma;rllai_la;rll (15iss—2)

(see [2]). Let F be the free group on the letters o; (1 =1,2,...,s—1). If b=V
in F', then the solution of the word problem on F' guarantees that we can change
x into y by finitely many applications of the relations (2) and (6). If b = 4" in
By, then the word b(b')~! is written in the form

b(p') ! = ﬁ R
k=1

in F, where Ri"W" = WiR}! Wk_1 for e, = £1 and Rj, denotes a relator of the
type (i) or (ii) and Wy is a word in F written on the letters o; (1 = 1,2,...,s—1).
Thus, (x, —y’) is changed into

a = (x(R?"),x(R32"), ... x(R;"™))
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by finitely many applications of the relations (2) and (6). Since we can change x
into (x, —y”,y) = (a,y) by the relation (2), we may consider b(b')~1v' = 3(a,y)
instead of b = 5(x). We note that

X(Be) = (i,j, =i, =j), x(By") = (41, =3, =)
for the relator (i) and
x(Ry) = (4,i+1,4,—(i+1),—i,—(i+1)),
x(RpY) = (i+1d,i+1,—i,—(i+1),—)
for the relator (ii). Since
x(RH) = k(W) x(Ri), —x(Wi) "),

we see that (a,y) is changed into y by finitely many applications of the relations
(2), (4), (5) and (6). Thus, in the case that b = b’ in B, for an index s, we showed
that x can be changed into y by finitely many applications of the relations (2),
(4), (5) and (6).

Now we consider the general case of b and b’. Applying the relation (3) to x
or y, we can assume that cl(b) = cl(?/) in L. Then the Markov theorem says

that we have b = b’ in B, with a suitable index s after finitely many applications
of the Markov equivalences:

biby < babi  (b1,b2 € By,),
borl < b (b€ Bm C Bmy1)

for any m. This is equivalent to saying that b = b’ € B, after finitely many
applications of the relations (3) and (6) besides the relations (2), (4), (5) and
(6) to x and y. Thus, x is changed into y by finitely many applications of the
relations (2), (3), (4), (5) and (6). O

=
Composing the forgetful surjection ¢ : . — L with the map clf3, we obtain a
canonical surjection

cf, : X—=1L
and an injection which is a right inverse of clj,

c:L — X

sending an unoriented link L to the initial element of the subset {x|cl8,(x) = L}
of X indicated by Q. The length of a link L € LL is the length of the lattice point
o(L). By the rule that Ly < Lo if and only if 6(L;) < 0(L2), a well-order in I
is defined. Since the map o is induced from €2, we may say that this well-order
in IL is induced by ), and denote it also by 2. We also introduce an equivalence
relation ~ in X more relaxed than ~.

Definition (2.3). Two lattice points x and y in X are related as x ~ y if we
have clf(x) = clf(y) in L modulo split additions of trivial links.

It is straightforward to see that the relation = is an equivalence relation in X.
The quotient map

ox:L — X/ =
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is independent of a choice of 2 and induces a bijection from the quotient set of
L modulo split additions of trivial links onto X/ . For the natural surjection
X/ ~ = X/ =, also denoted by ¢, we have the following commutative square:

.
L —7 X/~

Ll lL

L 2 X/ =~.
In this diagram, we denote ¢(x) by [x]. Then we have the identity ox(cl(b)) =
[x(b)]. To determine the class [x] € X/ =, it is desirable to describe the equiv-

alence relation & only in terms of X. At present, what we can say about ~ is
only the following lemma:s:

LEMMA (2.4). We have the following (1) and (2):
1. For any x,y € X such that x ~y, we have x = y.

2. For all x € X, we have x ~ xT ~ —x ~ —x".

Proof. (1) follows directly from the surjection ¢ : X/ ~— X/ ~ . For (2), let
—L denote the inverse of an oriented link L, and +L the mirror image of +L.
Then we have L = —L = L = —L in L. Taking L = cl(b) for a braid b, we have

— —

(L) = (x(b), Fo(=L) = (X)), Fo(L) = (—x(b)), Fn(~L) =
(—x(0)").

Then the commutative square preceding to Lemma (2.4) shows (2). O

The following remark means that (1) and (2) of Lemma (2.4) are sufficient to
characterize the equivalence relation = in the set of knots:

Remark (2.5). Let Xy be the subset of X consisting of lattice points x such
that clf(x) is a knot. Then every relation x ~ y for x,y € X; is generated
by the equivalence relation ~ and the relations in (2) of Lemma (2.4). In fact,
let K = clf(x) and K’ = cl3(y). If x = y, then we have [K] = [K’] modulo
split additions of trivial links. Then there is an oriented knot K", which is one

_ —
of the knots =K or £K, such that K’ = K’ in L. modulo split additions of
trivial links. Thus, we have z ~ y for a lattice point z which is one of +x,
+x7". More generally, for oriented links L, L’ in S®, we have L = L’ in . modulo

split additions of trivial links if and only if we have L = L’ in E modulo split
additions of trivial links after a suitable choice of orientations of L and S%. By
Lemma (2.4), this implies that in order to know the class o~ (L) € X/ = of an
oriented link L in S® with 7(= 2)-components K; (i = 1,2,...,r), it suffices to
know a braid presentation of the link (—L’) U (L \ L’) for every sublink L’ of
L with 1 < #L’ < % besides a braid presentation of L, where #L’ denotes the
number of components of L'.

We now define the canonical order €. in X. We define a well-order in Z by
0<l<-1<2<-2<3<-3<... and extend it to a well-order in Z" for
every n = 2 as follows: Namely, for x;,xs € Z™ we define x; < x5 if we have
one of the following conditions (1)-(3):

(1) |x1|n < |x2|n by the lexicographic order (on the natural number order).
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(2) |x1|n = |x2|n and |x1]| < |x2| by the lexicographic order (on the natural
number order).

(3) |x1] = |x2| and x; < x2 by the lexicographic order on the well-order of Z
defined above.

Finally, for any two lattice points x1,x2 € X with £(x1) < ¢(x2), we define
X1 < X2.

Then this order Q. makes X a well-ordered set. In fact, let S be any non-
empty subset of X. Let Sy be the subset of S consisting of lattice points with
the smallest length, say n. Since Z" is a well-ordered set as defined above, we
can find the initial lattice point of S, which is the initial lattice point of S by
definition. The following lemma is useful in an actual tabulation of prime links.

LEMMA (2.6). Let L be a link without a splittable component of the trivial
knot. Then in the canonical order ., the lattice point o(L) is the initial element
of the equivalence class [0(L)] € X/ ~. In particular, we have clf(c(L)) = L.

Proof. Let x be the initial element of [o(L)]. Suppose that clg(x) has a
splittable component of the trivial knot O. If a crossing point of the closed
braid diagram clf(x) is in O, then there is a shorter length lattice point x’ such
that clB(x’) is obtained from the diagram cl8(x) by removing the component O,
contradicting the minimality of x. If there are no crossing point in O, then we
see from the definition of 8 that there is a lattice point x” with x’ < x such that
clB(x’) is obtained from cl3(x) by removing the component O, contradicting the
minimality of x. Thus, we have clf(x) = L. By definition, we have o(L) = x. O

3. The range of prime links in the canonical order

In this section, we consider X ordered by the canonical order €. unless oth-
erwise stated. A lattice point x € X is minimal if x is the initial element of the
class [x] in Q.. A prime link is a link which is neither a splittable link nor a
connected sum of two non-trivial links. Let ILP be the subset of L consisting of
prime links. By Lemma (2.6), the lattice point (L) is minimal for every prime
link L. The following relations are consequences of the relations in Lemma (2.2)
and useful in finding minimal lattice points:

LEMMA (3.1).

1. (Duality relation) For any lattice point x, we have X ~ §(x).

2. (Flype relation) For any lattice points x, y with min |x| = 2, min |y| = 2,
any integer m 2 1 and €',e = £1, we have (€™,x,&’,y) ~ (e™,y,e’, x).
For any lattice points x,z, any integers m,y € Z with m 2 1, y(y + 1) # 0 and
e = *1, we have

(x,ey™y+1y2z) ~ (xy+lyely+1)", z),
(x,y,e(y—i—l)m,—y,z) ~ (X,—(y-f—l),Eym,y—f—l,Z).
Proof. For (1), we note that the lattice point §(x) is obtained by changing
the usual indices 1,2,...,m of the strings of the associated braid b = §(x) into

m,m —1,...,1 and then overturning the braid diagram, where m = max |x| + 1
by definition. Since this deformation does not change the link type of cl(b) in
X

L, we have x ~ d(x) by Definition (2.1). For (2), the closed braid diagrams of
the lattice points (y,&e™,x,¢e’) and (y,e’,x,e™) are in the braid-preserving flype
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relation (see J. S. Birman-W. W. Menasco [3]) [To understand this easier, we
number the strings of the closed braid diagram so that the innermost string is
labelled 1]. Hence they are related by the relation ~. Since these lattice points
are related to (e™,x,¢’,y) and (€™,y, €, x), respectively, by a relation in Lemma
(2.2), the desired relation is obtained. For (3), the first equivalence is proved by
induction on m using (5),(6) of Lemma (2.2). The second equivalence follows
from (2),(6) of Lemma (2.2) and the first equivalence as follows:

(X,y,e(y + 1)m7 _y,Z) ~ (Xa _(y + 1);2/ + 1ay7€(y+ 1)m’ —y,z)
~ (x,—(y+1),ey™y+ 1,y —y,2)
~ (Xa_(y+1)a€ymay+1az)'

To limit the image o(LP) C X, we introduce the delta set A as follows:
Definition (3.2). The delta set A is the subset of X consisting of
0(ez), 1"(n=2)

and all the lattice points x = (z1,22,...,2,) (n = 4) which satisfy all the
following conditions (1)-(8):

(1) z1 =1, |z,| 2 2, n/2 2 max |x| 2 2 and min |x| = 1.

(2) For every integer k with 1 < k < max |x|, there is an index i such that
|$z| =k.

(3) Every lattice point obtained from x by permuting the coordinates of x
cyclically is not of the form (x’,x”) where 1 < max [x/| < min |x"|.

(4) If |£El| > |£L'i+1|, then |(El| —1= |£L'i+1|.

(5) If |z;| = |®it1], then sign(x;) = sign(z;+1)-

(6) If |($z, Tigls--- 7xi+m+1)| = (k, (k?—l— 1)m, k), (k?m, k+1, k?) or (k, k+1, km)
for some k,m 2 1 and |z;| # k for all j < ¢ and j > i+ m + 1, then
(xi; Litls--- axierJrl) is equal to :t(ka —€(k + 1)m7 k)a i(&km, _(k + 1)7 k) or
+(k,—(k+ 1),ek™) for some ¢ = +1, respectively. Furthermore, if m = 1, then
we have ¢ = 1.

(7) I (24, i1, - - -y Titm1)| is of the form (k+1, k™, k+1) for some k,m = 1,
then (2, it1,. .., Titmy1) = £(k+1,ek™, k+1) for some e = £1. Furthermore
if m = 1, then we have ¢ = —1.

(8) x is the initial element (in the canonical order 2.) of the set of the lattice
points obtained from every lattice point of +x, +x7, £§(x) and +4(x)T by
permuting the coordinates cyclically.

See Example (6.2) for some small length lattice points in A. It follows directly
from the definition of . that the lattice points in A smaller than any given lattice
point x € X form a finite set. To analyze the image o(L) € X of a prime link
L € LP, we use the following notion:

Definition (3.3). A lattice point x = (21, x2,...,x,) is reducible if it satisfies
one of the following conditions:

1. min|x| = 0 and ¢(x) > 1.

2. There is an integer k such that min |x| < k& < max |x| and k # |z;| for all 7.

3. There is a lattice point of the form (x’,x”) obtained from x by permuting
the coordinates of x cyclically where 1 < max |x/| < min |x"|.
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Otherwise, x is irreducible.

In Definition (3.3), we note the following points: In (1), the core X of x has
a shorter length. In (2), the link L = clf(x) is split. In (3), the closed braid
diagram L = clf(x) is a connected sum of two closed braid diagrams. Thus, L
is a non-prime link or we have a shorter length lattice point x” with x’ ~ x.

Since min |x| = 0 if and only if x = 0 € Z in A, we see from (2) and (3) of
Definition (3.2) that every lattice point in A is irreducible. The following lemma
is important to our argument:

LEMMA (3.4). The lattice point o(L) € X of any prime link L € LP belongs
to A.

Proof. By Lemma (2.6), (L) = x = (21,2, ...,%,) is a minimal lattice point
and L = clf(x). If n =1, then x =0 € A (and hence L is a trivial knot). In
fact, if x # 0, then

x ~ (x,0) ~ (0,x) ~ 0

by (1),(3) and (6) of Lemma (2.2), contradicting that x is minimal. Assume
that n > 1. If x is reducible, then we see from the remarks following Definition
(3.3) that we have a shorter length lattice point x’ with x’ ~ x because L is a
prime link except for the trivial knot, a contradiction. Hence x is irreducible.
By the duality relation, we have x’ < x with x’ ~ x and min |[x/| = 1. Since x is
minimal, we have x’ = x and min |x| = 1. By Lemmas (2.2) and (2.4), we must
have z; = 1. If max |x| = 1, then a; = 1 for all 4, since otherwise x has a shorter
length lattice point x’ with x’ ~ x, a contradiction. Let max|x| > 1. We show
that x has the properties (1)-(8) of Definition (3.2). Using that x is irreducible,
we see that x has (1), (2), (3) except that |z,| = 2. Suppose |z,| = 1. Then
by Lemma (2.2), there is a smaller lattice point x’ with x’ ~ x, a contradiction.
Thus, the condition |z,| 2 2 is also satisfied. If |x;| — 1 > |z;41], then the lattice
point x’ obtained from x by interchanging x; and x;4; has x’ < x and x’ ~ x
by Lemma (2.2), a contradiction. Hence we have (4). We have also (5) since
otherwise x has a shorter lattice point x’ with x’ ~ x by Lemma (2.2). For (6),
first let (4, Tig1, .. Tigma1) = (k™' (k +1),"k). When ¢” = ¢/, we obtain
from (3) of Lemma (3.1)

x ~x = (2,25, ...,2))
where (27,20, 1, Tiypq1) = (€'k,e'k,e(k + 1)) and 2} = x; for all j < i
and j > i+ m+ 1. Since [2}| # k for all j < i and j > i +m + 1, we see
that x" is reducible, contradicting the minimality of x. Hence ¢’ = —&’. For
(TiyTit1y - oy Tigmy1) = (E'k, e’ (k +1),ek™) or ("k,e(k + 1)™, —€'k), we see
that €/ = —&’ by a similar argument using (3) of Lemma (3.1). In particu-

lar when m = 1, we have also ¢’ = e. Thus, we have (6). For (7), we take
(@i, Tit1y -+ s Tigme1) = (' (kK +1),ek™,e”(k 4+ 1)). When ¢ = —¢’, we obtain
from (3) of Lemma (3.1)

x~x = (24,75, ...,2))

where (2}, 2} 1, ..., Ty, 41) = (—€'k,e(k + 1), e'k) and 2, = z; for all j < i
and 7 > i+ m + 1. Then x’ < x, a contradiction. Hence €’ = &/. When m = 1
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and £’ = ¢’ = ¢, we have

x~x = (2, 25,...,2)),

where (2}, 2}, 1,7} 5) = e(k,k + 1,k) and 2, = x; for j # 4,i+ 1,3+ 2. Then
x' < x, a contradiction. Hence ¢/ = ¢’ = —e and we have (7). Since x is
minimal, we have (8). Thus, x = ¢(L) is in A. O

We see from Lemma (2.6) that the length of a prime link (or more generally,
a link without a splittable component of the trivial knot) L in Q. is nothing but
the minimal crossing number among the crossing numbers of the closed braid
diagrams representing L, so that there are only finitely many prime links with
the same length. This property also holds for every well-order 2 of X such
that £(x) < £(y) means x < y for any x,y € X. There are long histories on
making a table of knots and links, for example, by C. F. Gauss, T. P. Kirkman,
P. G. Tait, C. N. Little, M. G. Haseman, J. W. Alexander-B. G. Briggs, K.
Reidemeister for earlier studies (see [15] for references) and by J. H. Conway
[5], D. Rolfsen [21], G. H. Dowker-M. B. Thistlethwaite [7], H. H. Doll- M. J.
Hoste [6] and Y. Nakagawa [20] for relatively recent studies. In comparison with
these tabulations, our tabulation method has three points which may be noted.
The first point is that every prime link has a unique expression in canonically
ordered lattice points, because ILP is canonically identified with a subset of the
well-ordered set A by o. J. H. Conway’s expression in [5] using basic polyhedra
and algebraic tangles is excellent for enumerating knots and links together with
some global features except for ordering them in a canonical way. C. H. Dowker
and M. B. Thistlethwaite in [7] (for knots) and H. H. Doll- M. J. Hoste in [6] (for
links) assigned integer sequences to oriented, ordered knot and link diagrams for
a tabulation via computer use. As the second point, we can state in the context
of their works that we can specify a unique integer sequence among lots of integer
sequences representing every prime link, because our method specifies a unique
closed braid diagram for every prime link. Using a result of R. W. Ghrist [9],
Y. Nakagawa [20] defined an injection ¢ from the set of oriented knots into the
set of positive integers so that the value ¢(K) reconstructs K. Then the third
point is that we can have a similar result for LP by our argument. In fact, in the
forthcoming paper [17] (see [18]), we establish an embedding ¢ from A into the
set Q4 of positive rational numbers so that the value ((x) reconstructs x. Thus,
we can identify LP with a subset of Q4 in the sense that the value (o(L) € Q4
reconstructs L. In §6, we explain how to make the table of prime links graded
by the canonical order (), and, as a demonstration, we make the table for the
prime links with lengths up to 7.

4. m-minimal links

Let K;(i = 1,2,...,r) be the components of an oriented link L in S%. A
coloring f of L is a function

fAK|li=1,2,...,r} — QU {o0}.

By a meridian-longitude system of L on N(L), we mean a pair of a meridian
system m(L) = {m;|i = 1,2,...,r} and a longitude system ¢(L) = {{;|i =
1,2,...,7} on N(L) such that (m;,¥;) is the meridian-longitude pair of K; on
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N(K;) for every i. We can specify the orientations of m(L) and ¢(L) from those
of L and S3 uniquely. Let f(K;) = ‘;— for coprime integers a;, b; for every i where
we take a; = +1 and b; = 0 when f(K;) = co. Then we have a (unique up to
isotopies) simple loop s; on ON (K;) with [s;] = a;[m;]+b;[¢;] in the first integral
homology Hi(ON(K;)). We note that if the different choice f(K;) = =& is

made, then only the orientation of s; is changed. The Dehn surgery manifold of
a colored link (L, f) is the oriented 3-manifold

T

X(L, f) = B(L) | s,=1x0p25" x D}

i=1

with the orientation induced from E(L) C S, where |J, _,, 4p> denotes a past-

ing of S x dD? to ON(K;) so that s; is identified with 1 x 9D2. In this construc-
tion, the 3-manifold x(L, f) € M is uniquely determined from the colored link
(L, f). In this paper, we are particularly interested in the O-surgery manifolds
that are obtained, that is, in x(L, f) with f = 0. For every link L € L, we
consider the subset

{L}, ={L' eL| mE(L')=mE(L)}
of L. Here are some examples on {L},.

Ezample (4.1). (1) For every prime knot K € L, we have {K}, = {K} by
the Gordon-Luecke theorem [10] and W. Whitten [22]. However, for example,
if K is the trefoil knot, then {K# K}, = {K#K, K#K}, where K denotes the
mirror image of K.

(2) Let L be the Whitehead link obtained from the Hopf link O U O’ by
replacing O" with the untwisted double D of O’: L = O U D. Furthermore, let
L,, be the link obtained by replacing D with the m-full twist D,,, of D along O
for every m € Z where we take Ly = L. Then we have

{L}r ={Lm | m € Z}.

To see this, let L' € {L},. Since E(L) is a hyperbolic 3-manifold and hence
m E(L) =m E(L") means E(L) = E(L’) (see W. Jaco [12]), the meridian system
on L’ indicates a coloring f of L. Since the linking number of O and D is 0,
we have f(O) = L and f(D) = L for some integers m,n € Z. If m or n is
not 0, then we can assume that m # 0 since the components O and D are
interchangeable. If m # 0, then we obtain L,, by taking m full twists along O.
Since any twisted doubled knot K’ is non-trivial and x (K, %) £ 83 for n # 0,
we must have n = 0, giving the desired result. On this example, one may note
that since the linking number of L,, is 0, the longitude system of L,,, coincides
with the longitude system of L in 0E(L), so that x(L,,0) = x(L,0) for every
m.

We consider L as a well-ordered set by the well-order €2 (defined from the
well-order Q of X in §2). The following definition is needed to choose exactly
one link in the set {L} for a link L € L:

Definition (4.2). A link L € L is m-minimal if L is the initial element of the
set {L}r NLLP in the well-order €.

The following remark gives a reason why we restrict ourselves to a link in S3:
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Remark (4.3). For a certain torus knot L € L, there are homotopy torus knot
spaces E’, not the exterior of any knot in S, such that 71 (E’) = m E(L) (see J.
Hempel [11], p.152).

Let L™ be the subset of L consisting of m-minimal links. We note that
L™ CcLP C L.

For the map 7 : L. = G sending a link to the link group, we have the following
lemma:

LEMMA (4.4). The restriction |~ : L™ — G is injective.

Proof. For L,L’ € L™, assume that m F(L) = m E(L’). Since both L and
L’ are m-minimal in {L}, = {L'},, we have L < L/ and L = L' by definition.
Hence L = L'. O

The following question is related to determining when a given prime link is
m-minimal:

Question (4.5). For L,L'€LLP, does m E(L)=m1E(L') mean E(L)=E(L') ?

The answer to this question is known to be yes for a large class of prime links,
including all prime knots by W. Whitten [22], and prime links L such that E(L)
does not contain any essential embedded annulus, in particular, hyperbolic links,
by the Johannson Theorem (see W. Jaco [12]). Here is another class of links.

PROPOSITION (4.6). For links L, L’ € L, assume that E(L) is a special Seifert
manifold (that is, a Seifert manifold without essential embedded tori) and that
there is an isomorphism m E(L) — m E(L'). Then there is a homeomorphism
E(L)— E(L).

Proof. By a classification result of G. Burde-K. Murasugi [4], the Seifert struc-
ture of E(L) comes from a Seifert structure on S®. By [12], the orbit surface of
the Seifert manifold E(L) is

(i) the disk with at most two exceptional fibers,

(ii) the annulus with at most one exceptional fiber, or

(iii) the disk with two holes and no exceptional fibers.

In particular, 71 E(L), and hence 71 E(L'), are groups with non-trivial centers,
so that F(L’) is also a special Seifert fibered manifold with the same orbit data
as F(L). In the case (i), both L and L’ are torus knots and m E(L) = m E(L’)
implies L = L’ (confirmed for example by the Alexander polynomials) and hence
E(L) = E(L'). In the cases of (ii) without exceptional fiber and (iii), we have
E(L) = E(L') = 5§ x C for C the annulus or the disk with two holes. Assume
that E(L) and E(L') have, in the case of (ii), one exceptional fiber. Let (p,q)
and (r, s) be the types of the exceptional fibers of E(L) and E(L'), respectively,
where p,r 2 2, (p,q) =1, (r,s) = 1. Let

mE(L) = (ta,blta =at,tb="0bt,t9 =a”) and
mE(L) = (t,a,blta=at, tb=>0btt°=a")

be the fundamental group presentations of E(L) and FE(L'), respectively, ob-
tained from S' x C' with C the disk with two holes by adjoining a fibered solid
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torus around the exceptional fiber. Let ¢ : m E(L) — m E(L’) be an isomor-
phism. Considering the central group which is the infinite cyclic group generated
by t, we see that ¢(t) = t*1. Replacing —s with s if necessary, we may have
¥(t) = t. In the quotient groups, ¢ induces an isomorphism

P : (ala” = 1) % (b]—) = (ala” = 1) * (b]-).
Hence p = r and ¢(a) = t™a® for some integer m and ¢ = +1. Then

td = w(ap) — $MPGEP — $MPET — tmp—i—ss

and hence ¢ = +s (mod p), which shows the types (p, ¢) and (r, s) are equivalent.
Thus, there is a fiber-preserving homeomorphism E(L) — E(L’). O

Here is a remark on 7m-minimal links.

Remark (4.7). Let L be the 2-fold connected sum of the Hopf link, and L'
the (3, 3)-torus link. Then we have (L) = (12,22) and o(L') = (1%,2,12,2) in
the canonical order Q. (cf. §6). Although F(L) = E(L’) and L < L', the link
L' is a m-minimal link. We note that y(L,0) = S' x S? and x(L’,0) = P? (the
projective 3-space).

5. Proof of Theorem (1.1)

The following lemma is a folklore result obtained by the Kirby calculus (see
R. Kirby [19]):

LEMMA (5.1). The map xo : L — M defined by xo(L) = x(L,0) is a surjec-
tion.

Proof. For every M € M, we have a colored link (L, f) with components K;
(i = 1,2,...,r) such that x(L,f) = M and f(K;) = m; is an even integer
for all ¢ (see S. J. Kaplan [13]). We show that there is a link L} with r + 2
components such that x(L5,0) = x(L, f). Let Ly = LU Ly be the split union
of the oriented link L and an oriented Hopf link Ly = O; U Oy with linking
number Link(O1,02) = —1. Let f2 be the coloring of Ly obtained from f and
the 0-coloring of L. If m; # 0, then we take a fusion knot K| of K; and @
parallels of sign(m,;)O; and one parallel copy of Oz in the 0-framings. If m; = 0,
then we take K| = K. Doing these operations for all ¢, we obtain from (Lq, f2)
a colored link (L5, f3) with Ly = (U]_; K7) U Ly, a link with r 4+ 2 components
and a coloring f4 such that

FUED) = fo(Ki) +2 Lmk(%ol, Os) = m; — m; = 0.

Since fi|r, = felr, = 0, we have fi = 0. By the Kirby calculus on handle
slides ([19], [15,p.245]), we have x(L5,0) = x(Lz2, f2) = M . O

Let L™(M) be the subset of L™ consisting of w-minimal links L such that
x(L,0) = M. When we consider a prime link L € L with x(L,0) = M to find
a m-minimal link in L™ (M) for a given M € M, the following points should be
noted: If we take the initial element Lo of the set {L},, then the link Ly need
not be a prime link, as it is noted in Remark (4.7). If Lo is the initial element of
the prime link subset of {L}, then L¢ is a 7-minimal link in L7 (x(Lg,0)), but
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in general we cannot guarantee that x(Lg,0) = M, as we note in the following
example:

Remark (5.2). There are hyperbolic links L, L’ € L such that E(L) = E(L'),
X(L,0) # x(L',0) and {L}r = {L'}» = {L,L'}. Thus, if L < L’ in the well-
order €, then the link L is m-minimal, but L is not in L(x(L’,0)). To obtain
this example, let Ly = O; U Oz be the Hopf link with coloring f such that
f(O1) =0, f(O2) = 1. Then x(Lg, f) = S® and the dual colored link (LY, f/)
of (L, f)isgivenby Ly = Ly and f'(O1) = —1and f/(O2) = 0. By Remark 4.7
of [16], we have a normal imitation ¢ : (S3, L}) — (53, Ly) with x(L, fq) = S3
and a dual normal imitation ¢’ : (S3, L%) — (S3, L;), that is a normal imitation
such that E(L};) = E(L), d'|ews,) = dlews,) and (L, f'q’) is the dual colored
link of (L%, fq). As it is stated in Remark 4.7 of [16], we can impose on these
normal imitations the following additional properties: namely, L}, and L} are
totally hyperbolic, componentwise distinct links, and every homeomorphism h :
E(L") — E(L%) extends to a homeomorphism h* : (83, L") — (S, L%) or
R o (S3, L") — (S, L%). On the other hand, we see that x(L’,0) = S®
and the dual colored link (Lg, f”) of (L’4,0) is given by f”(01) = —1 and
f/(O2) = co. Furthermore, we can assume from Theorem 4.1(2) of [16] that
x(L%,0) and x (L%, fq) = x(L%,0) are distinct because 0 and f” are distinct
from oo, f. Thus, we can take L%, and L% as L and L', respectively. (We note
that x(L%,0) and x(L%,0) are homology 3-spheres, because they are normal
imitations of x(Lg,0) = x(L,0) = S3.)

In spite of Example (5.2), we can show the following lemma:
LEMMA (5.3). For every M € M, the set L™ (M) is an infinite set.

Proof. By Lemma (5.1), we can take a disconnected link L in S? such that
X(L,0)= M. Let M # S3. By a result of [16], there are infinitely many normal
imitations

qi: (S35 L) — (S% L) (i=1,2,3,...)
such that

L. X(L:,O) =x(L,0)= M,

2. L7 is (totally) hyperbolic, and

3. every homeomorphism h : E(L}) — E(L’) for a link L’ in S3 extends to a
homeomorphism h* : (S3, L) — (53, L').

Then L is m-minimal by (2) and (3), so that L} € L™(M), i = 1,2,3,....
For M = S3, let L be a Hopf link. Then x(L,0) = S and the dual link L’ of the
Dehn surgery is also the Hopf link. By Remark 4.7 of [16], there are infinitely
many pairs of normal imitations

q:(S% L) — (S L),
g (83 L) — (S L) (i=1,2,3,...)
such that
L x(L7,0) = x(L,0) = 8% = x(L', 0) = x(L;",0),
2. E(L}) = E(L}"),
3. L? and L* are (totally) hyperbolic,
4. every homeomorphism h : E(L}) — E(L") for a link L” in S® extends to
a homeomorphism h* : (S3, L) — (S3, L") or W'+ : (83, LI*) — (S3,L").
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Thus, {L}}» = {L}, L}*} for every i, and we can take a m-minimal link, say
Ly in {L}}, for every i, so that L} € L™(S3),i=1,2,3,.... O

We are in a position to prove the first half of Theorem (1.1).

Proof of Theorem (1.1). Since L™ (M) # 0 by Lemma (5.3), we can take the
initial element Lps of L™ (M) for every M € M. Using the fact that the set
L™ (M) is uniquely determined by M and §2, we see that the well-order 2 of X
induces a map

a:M — L"CL

sending a 3-manifold M to the link Lj;. This map a must be injective, because
the O-surgery manifold x(a(M),0) = M. Combining this result with Lemma
(4.4), we obtain the embeddings o, and 7,,. If a lattice point x = o, (M) is given,
then we obtain the link a(M) = cl(x) with braid presentation, the 3-manifold
M = x(clp(x),0) with O-surgery description, and the link group m E(clf(x))
with Artin presentation associated with the braid (o, (M)), completing the
proof of the first half of the theorem. If a link group G = m,(M) with a prime
Artin presentation is given, then we have a braid b such that G is the link
group of the prime link cl(b). Let x; € A (i = 1,2,...,n) be the lattice points
smaller than or equal to the lattice point x(b). By Lemma (3.4), there is a
lattice point x; with x; = x(b). By using a solution of the problem in (3), let
X;, be the smallest lattice point such that clf(x;,) is a prime link and there
is an isomorphism m E(clf(x;,)) — G among x; (i = 1,2,...,n). Then the
link clB(x;,) is m-minimal by this construction. Thus, the desired lattice point
oa(M) = x;, is obtained, proving (3). If a m-minimal link L with x(L,0) = M
is given, we take a braid b representing L. Let x; € A (i = 1,2,...,n) be the
lattice points smaller than or equal to x(b). By Lemma (3.4), there is a lattice
point x; with x; ~ x(b). By using a solution of the problem in (4), we take
the smallest lattice point x;, such that the link cl3(x;,) is a 7-minimal link and
x(clB(xi,),0) = M. Thus, the desired lattice point o, (M) = x;, is obtained,
proving (4). O

As a matter of fact, we can construct many variants of the embedding « :
M — L. Here are some remarks on constructing other embeddings a.

Remark (5.4). Let L® C L be the subset consisting of hyperbolic links L
(possibly with infinite volume) such that L is determined by its exterior E(L)
(that is, B(L) = E(L') for a link L' means L = L’), and L}M) = {L €
LM | x(L,0) = M}. Then we still have an embedding o : M — L® C L with
Xoo = 1 such that o, and 7, are embeddings by the proof of Theorem (1.1),
using L' (M) instead of L™ (M). (For this proof, we use that L"(S%) contains the
Hopf link and the set L(M) for M # S® is infinite by Lemma (5.3).) In this
case, the links a(S* x S2), a(S?) and (M) for every M # S x S2, 53 are the
trivial knot, the Hopf link, and a hyperbolic link of finite volume, respectively.
If we take the subset L(M) C L consisting of all links L with x(L,0) = M, then
the proof of Theorem (1.1), using L(M) instead of L™ (M), shows the existence
of an embedding @ : M — L with yga = 1. However, in this case, the map
To is no longer injective in the canonical order .. In fact, if K#K is the
granny knot and K#K is the square knot, where K is a trefoil knot, then we



296 AKIO KAWAUCHI

see that a(x(K#K,0)) = K#K and a(x(K#K,0)) = K#K. Then we have
o (K H#K,0)) = no(\(K#K.0)), althongh x (K #K. 0) £ x(K#K,0) (sce [14,
Example 3.2]).

Remark (5.5). The subsets LP(M) c L™(M) C L(M) of L are defined up
to automorphisms of M, but the Kirby calculus of [19] enables us to make
“automorphism-free” definitions of them. In fact, for a given link L, let IL(L) the
set of links L’ such that the 0-colored link (L’,0) is obtained from the 0-colored
link (L,0) or (L,0) by a finite number of Kirby moves, and then define L"(L)
and L™(L) to be the restrictions of L(L) to the hyperbolic links determined by
the exteriors and the m-minimal links, respectively. R. Kirby’s theorem in [19]
shows that for a link L with x(L,0) = M we have the identities

L(L) =L(M), LML)=L"(M) and L™(L)=L"(M),

where the right hand sides are the sets defined before for M. Thus, the embed-
ding a is defined “automorphism-freely”. In particular, in any use of L"(M) or
L™ (M), the embedding 7, is defined “automorphism-freely”. This is the precise
meaning of the statement that the homeomorphism problem on M can be in
principle replaced by the isomorphism problem on G, stated in the introduction.

6. A classification program

In this section we take the canonical order €. unless otherwise stated. We
consider the following mutually related three embeddings already established in
Theorem (1.1):

a:M — L,
o0 M — X
o : M — G.

Since 0, (M) C A and every initial segment of A is a finite set, we can attach
(without overlapping) to every 3-manifold M in M a label (n, i) where n denotes
the length of M and i denotes that M appears as the ith 3-manifold of length
n, so that we have

Mn,l < Mmg << Mmmn
for a positive integer m,, < oo. Let

a(Mn,i) = Ln,i € L, Wa(Mn,i) = Gn,i eG and Ua(Mn,i) = Xn,i € A

Our classification program is to enumerate the 3-manifolds M, ; for all n =
1,2,... and ¢ = 1,2,..., m,, together with the data L, ;, G, ; and x, ;, but by
(2) of Theorem (1.1) it is sufficient to give the lattice point x, ;, because we can
easily construct L, ;, My ; and G, ; by Ly, ; = clB(xy.i), Mp,i = x(Ln,i,0) and
Gn,i = mE(Ly,;). We proceed with the argument by induction on the length
n of the lattice points. Since the lattice points of lengths 1,2,3 in A are 0, 12
and 12, we can do the classification of M with lengths 1,2,3 as follows (where
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T? x 4 S! denotes the torus bundle over S with monodromy matrix A):
length 1: my =1, My1= St x §2, L1,1 = O (the trivial knot),
Gi1=27Z, x1, =0.
length 2: mo =1, My = S3, Loy = 2% (the Hopf link),
Go1 =ZSL, x21 = 12,

-1 0
L3z = 34 (the trefoil knot), G31 = (x,y|zyx = yry), x31 = 1°.

length 3: mg=1, Ms1 =T>x, 5", A= ( : 1>’

To explain our classification of M with any length n = 4, we assume that
the classification of M with lengths < n — 1 is done. Let A, be the subset of
A consisting of lattice points of length n. The first step of our classification
program is as follows:

Step 1. Make an ordered list AY C A, containing all the minimal lattice
points in A,,.

If we take a list smaller than A}, then our work will be simpler. It is recom-
mended to make first the ordered list |AY| = {|x||x € A}} taking into account
the property of €2, that x < y if we have one of the following three conditions: (i)
£(x) < £(y), (i) £(x) = £(y) and [x| < |y v, and (iii) [x| = [y and [x] < [yl:
To establish Step 1, we use the following notion:

Definition (6.1). A lattice point x € X is locally-minimal if it is the initial
element of the subset of [x] consisting of the lattice points obtained from x by
the duality relation, the flype relation, and the moves in Lemmas (2.2) and (2.4)
except the length-increasing moves.

Every minimal lattice point is locally-minimal, but the converse is not true.
It is realistic to take as A} a list containing all the locally-minimal lattice points
of A,,. The following list is such a list for Step 1.

Ezample (6.2). The following list contains all the minimal lattice points of
lengths < 7 in A:

Al: 0,

Ay 12

Ay 13,

AL 14 (1,-2,1,-2),

A 15,(1%,2,-1,2), (1%, -2,1, —2),

)

Ay 1%(13,2,-1,2), (13, —2,1,—2)

) 27 (_1)27 2)) (125 _25 12) _2)5 (127 _27 1) (_2)2)5
1) _25 17 _2)7 (15 _25 17 37 _2) 3))

(1
(1
Ax: 17,(142,-1,2), (1%, =2,1, —2),
(1°
(1

,(12,2,1%,2),

527 12) 2)7 (135 27 (_1)25 2)7 (135 _25 127 _2)7
5 -2,(-1)% -2),(1%,2,-1,2%), (1%, -2, 1, (~2)?),
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(125 _25 127 (_2)2)7 (125 _25 17 _27 1) _2)5
(12, 27 _17 _37 2; _3)’ (12, _2a ]-7 3; _2’ 3)7 (1a _2a ]-7 _2737 _2’ 3);
(1,-2,1,3,2%3),(1,-2,1,3,(-2)% 3).

Let LP be the subset of LP consisting of prime links of length n. Let D}
be the set consisting of the link diagrams clf(x) for all x € A¥. By Lemma
(3.4), we observe that if L = clf(x) € LE for a lattice point x € X, then there is
a minimal lattice point x' € A,, with x' < x such that L = cl3(x"). This implies
that the set LP consists of the prime links represented by link diagrams of D}
not belonging to IL? (j =1,2,...,n — 1) (which are assumed to have already
constructed by our inductive hypothesis). Step 2 is the following procedure:

Step 2. Construct LP from Dy, .

The link cl3(x) of a lattice point x of length n such that X = x admits a
braided link diagram with crossing number n. Thus, if a list of prime links with
crossing numbers up to n is available, then this procedure will not be so difficult.
In the following example, our main work is only to identify the lattice points of
length n = 7 in Example (6.2) with the prime links in Rolfsen’s table [21].

Ezample (6.3). The following list gives the elements of the sets LP for n < 7
together with the corresponding lattice points.
LY: O o(0) =0.
LY: 22 o(23) =12
LY: 3, o(31) = 13.
Li : 4% < 41
o(47) =14,
0(41) = (1a _2a ]-7 _2)
LE: 5 <52
0'(51) = 15,
o(53) = (12,-2,1,-2).
LP: 62 <5y <6y <63<63<63<63 <63

o(67) = 1°,

o(52) = (13,2, -1,2),

o(62) = (13,-2,1,-2),

a(63) = (1%2,2,12,2),

0(6%) = (127 _27 127 _2)7

0(63) = (127 -2,1, (_2)2)7

o(63) = (1,-2,1,-2,1, —2),

o(63) =(1,-2,1,3,-2,3).
LY 71 <63 <TI<TB<TE<TI<TE<TE<TE<SGI <Tg<T7 <T3

0'(71) = 17,

0(63) = (1472a _1a 2)7

0(7%) = (147 _27 1; _2);

a(72) = (13,2,12,2),

U(7§) = (13725 (_1)2a 2)7

o(73) = (13,-2,12, -2),

0(7%) = (137 _27 1; (_2)2)7

0(73) = (127 _27 127 (_2)2)a
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o(73) = (1%2,-2,1,-2,1,-2),
o(61) = (12,2, -1,-3,2,-3),
o(76) = (12,-2,1,3,-2,3),

0(77) (17 271a 2a37_273)
0(7%) (1 271a37(_2)2a3)'

The following lattice points of Example (6.2):

(12,2,-1,2), (12,2,(-1)%,2), (13,-2,(-1)%,-2), (13,2,-1,22), (1,-2, 1, 3
22 3), are removed from the list, since these links are seen to be 4%, 63, 72, 63,
respectively. The links 72, 73, 74, 75, 72 in Rolfsen’s table of [21] are also excluded
from the list since these links turn out to have lengths greater than 7. In Steps
3 and 4, powers of low dimensional topology techniques will be seriously tested.

Step 3. Construct the subset LT C LP by removing every link L € LP such
that there is a link L' € LY (j = ) with I/ < L and mFE(L) =m E(L").

By construction, we see that ‘the set LT consists of m-minimal links of length n.
Among the links in Example (6.3), we see that E(43) = E(7%) and E(5%) = E(73)
by taking one full twist along a component and that except these identities, all
the links have mutually distinct link groups by using the following lemma on the
Alexander polynomials:

LEMMA (6.4). Let A(t1,ta,...,t,) and A'(t1,ta,...,t,) be the Alexander poly-
nomials of oriented links L and L' with r components. If there is a homeomor-
phism E(L) — E(L'), then there is an automorphism ¢ of the multiplicative free

abelian group (t1,ta,...,t.) with basist; (i =1,2,...,7) such that
Al(ty,tay .o ty) = £E752 5 A(Y(t), Y(ta), - . ., (L)
for some integers s; (i =1,2,...,r).

The proof of this lemma is direct from the definition of the Alexander poly-
nomial(see [15]). Thus, we obtain the following example:

Ezample (6.5). We have LT =1LP for n < 6 and
LT: T1<63<T?<Ta<Ti<6,<Te<Ti<Ts<Tr<Ts.

Let M, be the subset of M consisting of 3-manifolds of length n, and LY the
subset of L by removing a 7-minimal link L € L7 such that there is a 7-minimal
link L' € IL” (j £n) with L' < L and x(L,0) = x(L’,0). The following step is
the final step of our classification program:

Step 4. Construct the set LM.

Let L; (i =1,2,...,r) be the 7-minimal links in the set LM ordered by 2.
Then we have M, ; = X(Lz,O)7 a(M,;) = L; (i =1,2,...,7). An important
observation is that every 3-manifold in Ml appears once as M, ; without overlaps.
As we shall show later, the 0-surgery manifolds of the m-minimal links in Example
(6.5) are mutually non-homeomorphic, so that we have the complete list of 3-
manifolds in M with length < 7 as stated in Example (6.6).

Ezample (6.6).

M1 = x(0,0), x1,1 =0,
My = (2%, 0), x2,1 = 1%,
M3, = x(31,0), x3,1 = 13,
M4 1= (41a )7 X411 = 14;
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M472 ZX(41,O), X472 = (1,—2,1,—2),

M571 = X(51,0), X571 = 15,

Ms o = x(5%,0), x50 = (12,-2,1,-2),

MG,I = X(G%ao)v X6,1 = 16;

Me,2 = x(52,0), xg,2 = (1%,2,-1,2),

MG,?) = X(62a 0)7 X6,3 = (13 2; ]-7 _2)

Mg,4 = x(63,0), x64 = (12,2,1%,2),

Mg5 = x(63,0), x6,5 = (12, —2, 12, —2),

Ms,6 = x(63,0), x6,6 = (12,-2,1, (—2)?),
MG,? *X(Ggao)v X6,7 (17_271a_2a17_2)7
MG,S :X(Ggao)v X6,8 = (17 271a37 73)
M771 = X(71,0), X771 = 17,

Mrz2 = x(63,0), x72 = (1%,2,-1,2),

Mz 5 = x(73,0), x73 = (1%,-2,1,-2),

M7,4 - X(7421a0)7 X7.4 = (]- 2; ]- 5 2)7
M7,5 = X(7§a0)7 X7.5 = (]- 2; 1 ( 2)2)a
M7,6 = X(7§a0)7 X7.6 = (]- 2; ]- 7( 2)2)a
Mz 7 = x(72,0), x7,7 = (12, 2, 1,-2,1,-2),
M778 = )((61,0)7 X778 = (1 1, 3,2, 3)
M779 = X(76, 0)7 X77g = (1 2, 1, 3, 2, 3)
M7,10 - (77; 0)7 X7,10 = (1 2; ]-7 27 3 -2 3)
Mz =x(73,0),  x711=(1,-2,1,3,(=2)%3).

To see that the 3-manifolds in Example (6.6) are mutually non-homeomorphic,
we first check their first integral homology. It is computed as follows:

(1) Hi(M) = Z for M = My 1, Ms1, Mao, Ms1, Mg o, Ms3s, Msg, Mr1,
My g, Mz, My 10.

(2) Hl(M) Z@Z for M = M572, M774, M7’7.
( ) ( ) ZQ for M = M6’4, M675, M7’11.

(4) H{(M) =Z & Z® Z for M = Mg 7.

(5) Hi(M) = Zy & Zs for M = My 1, Mg g, My .
(6) Hl(M) = Zg @Zg for M = ngl, M772.

(7) Hl(M) =0 for M = M271, M7’3, M775.

For (1), since the Alexander polynomial of a knot K is an invariant of the
homology handle x(K,0), we see that the homology handles of (1) are mutually
distinct. For (2), since the Alexander polynomial of an oriented link L with
all the linking numbers 0 is also an invariant of x(L,0) in the sense of Lemma
(6.4), these 3-manifolds are mutually distinct. For (3), we note that Mg4 =
P3 the projective 3-space, Mg 5 = x(31,—2) (where we take 31 as the positive
trefoil knot) and M7 11 = x(41,—2). We take the connected double covering
spaces M of M = Me.4, Mg 5 and M7 11. The homology Hl(M) for M = Mg 4,
Ms 5 or My 11 is, respectively, computed as 0, Zs, Zs, showing that these 3-
manifolds are mutually distinct. For (4), we have nothing to prove. Note that
Mg,z = T3. For (5), we compare the first integral homologies of the three kinds
of connected double coverings of every M = M4,1, Mg g, M7g. For M = My 1, it
is the quaternion space () and we have H; (M ) = Z4 for every connected double
covering space M of M. For M = Ms.s, we have Hy (M Zs3) = Zs for every
connected double covering space M of M. On the other hand, for M = Mz s,
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we have Hy(M) = Zyo and H;(M;Zs3) = 0 for some connected double covering
space M of M. Thus, these 3-manifolds are mutually distinct. For (6), we use
the following lemma:

LEMMA (6.7). Let H = Z, ® Z,, for an odd prime p > 1. If the linking form
¢: Hx H — QJZ is hyperbolic, then the hyperbolic Z,-basis e1,eq of H is
unique up to unit multiplications of Z,.

Proof. Let €}, e5 be another hyperbolic Z,-basis of H. Let e} = a;1e1 + azea.
Then
_ 2a5104

0= t(ele) = 2192 (unod 1),

1 a11a92 + a12a

= =/{(e],eh) = 122 T T12721 (mod 1).

p p
By these identities, we have either ] = aj1e; and €, = agees with ajjage =1 in
Zy or €} = aizeg and e, = asie1 with ai2a21 = 1 in Z,,. O

By Lemma (6.7), there are just two connected Zsz-coverings M of every M =
Mg 1, M7 2 associated with a hyperbolic direct summand Zgz of Hy (M) = Z3DZs.
In other words, the covering M is associated with a Zs-covering covering of the
exterior F(L) lifting one torus boundary component trivially, where L = 6%, 63.
Since the link L is interchangeable, it is sufficient to check one covering for

each M. For M = Mg, we have Hi(M) = Zg & Z3 and for M = M7, we
have Hy(M) = 7Z @ 7. Thus, these 3-manifolds are distinct. For (7), the Dehn
surgery manifolds x(7%,0) and x(7%,0) are the boundaries of Mazur manifolds
(which are normal imitations of S®) and identified with the Brieskorn homology
3-spheres %(2,3,13), ¥(2,5,7) by S. Akbult and R. Kirby [1]. Hence, we have
My = 83 M7;s = %(2,3,13), and M;5 = %(2,5,7), and these 3-manifolds
are mutually distinct. Thus, we see that the 3-manifolds of Example (6.6) are
mutually distinct.

For the Poincaré homology 3-sphere ¥ = %(2, 3,5), the prime link a/(X3) must
have at least 10 components. [To see this, assume that «(¥) has r components.
Using that ¥ is a homology 3-sphere and ¥ = x(«(X),0), we see that ¥ bounds
a simply connected 4-manifold W with an r X r non-singular intersection matrix
whose diagonal entries are all 0. Since the Rochlin invariant of ¥ is non-trivial,
it follows that the signature of W is an odd multiple of 8 and r is even. Hence
r 2 8. If r = 8, then the intersection matrix is a positive or negative definite
matrix, which is not the case. Thus, we have r = 10.] Since x(31,1) = ¥ for the
positive trefoil knot 31, an answer to the following question on Kirby calculus
(see [13], [19], [21]) will help in understanding the link a(%):

Question (6.8). How is Q. understood among colored links?

We note that the cardinal numbers [,, = #LP and m,, = #M,, are indepen-
dent of a choice of any well-order 2 of X with the condition that any lattice
points x,y with £(x) < {(y) has the order x < y. A sequence of non-negative
integers ky, (n =1,2,...) is a polynomial growth sequence if there is an integral
polynomial f(z) in one variable x such that k,, < f(n) for all n. Concerning the
classifications of LP and M, the following question may be of interest:
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Question (6.9). Are the sequences I, and m, (n = 1,2,...) polynomial
growth sequences?

Let p,, be the number of prime links with the crossing number n. C. Ernst
and D.W. Sumners [8] showed that the sequence p,, (n =0,1,2,...) is not any
polynomial growth sequence by counting the numbers of 2-bridge knots and links.

7. Notes on the oriented version and oriented 3-manifold invariants

—
Let M be the set of closed connected oriented 3-manifolds. Using the injection
— —
oL — X, we have a well-order in IL induced from a well-order 2 in X and also
denoted by 2. Writing
— —
L™ =.,'L" c L,
we can show that the embedding o : M — L in Theorem (1.1) lifts to an
embedding

N

—
a:M — L
—
such that XoOé =1and a(—M) = —a(M) for every M € M, where the map

L — M denotes the oriented version of the 0-surgery map xo : L — M. To

see thls7 for every M € M, we note that the link Ly = clBo, (M) is canonically
oriented and x(Lg,0) = £M, where —M denotes M with opposite orientation.
If M = —M, then we define a(M) = Lo. If M # —M, then we define o(M) so
as to satisfy

{a(M), a(=M)} = {Lo,~Lo} and x(a(M),0) = M.
As a related questlon it would be interesting to know whether or not there s

an oriented link L € IL with L = —L and x(L,0) = M for every M € M with
M=-M.
For an algebraic system A, an oriented 3-manifold invariant in A is a map

— — —
M — A and an oriented link invariant in A is a map L — A. Let Inv(M, A)

=
and Inv(IL, A) be the sets of oriented 3-manifold invariants and oriented link
invariants in A, respectively. Then we have XOE = 1. We consider the following
sequence

— x# — o —
Inv(M,A) == Inv(L,A) — Inv(M, A)
of the dual maps 8# and X# of a and Xo- Since the composite E#X# =1, we

see that X# is injective and o s surjective, both of which imply that every
oriented 3-manifold invariant can be obtained from an oriented link invariant.
More precisely, if I is an oriented 3-manifold invariant, then XZ?E (I) is an oriented

—
link invariant which takes the same value I(M) on the subset L(M) = {L €
— —

L|x(L,0) = M} for every M € M. Conversely, if .J is an oriented link invariant,

then 3#(J ) is an oriented 3-manifold invariant and every oriented 3-manifold
invariant is obtained in this way. Here is an example creating an oriented 3-
manifold invariant from an oriented link invariant when we use the right inverse
a of X0, defined by the canonical order €.
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Ezample (7.1). We denote by V a Seifert matrix associated with a connected
Seifert surface of the link (see [15]). Then the signature sign(V + V') and
the determinant det(tV — V') give oriented link invariants, that is, the sig-

—
nature invariant A € Inv(L,Z) and the (one variable) Alexander polynomial

—
A € Tnv(L, Z[t,t™']) (an oriented link invariant up to multiples of +t™, m € Z).

For the right inverse a of X0 using the canonical order €2., we have the oriented
3-manifold invariants

— —
Ao =o€ Iv(M,Z) and A- =o' (A) € Inu(M,Z).
(03 (03
For some 3-manifolds, these invariants are calculated as follows:

(7.12)  AL(S%) =-1,A,(5%) =t—1.

(7.1.3) A (+Q) = F3, A, (£Q) = (t — 1)(t* + 1) (we note that Q # —Q).
(T.14) AL (P?) = —4,A,(P°) = (t—1)*.
(7.15) AL (T%)=0,A_(T%) = (t—1)*.
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ABSTRACT. It is shown that any two groups, with isomorphic abelianisa-
tions and finite balanced presentations, can be achieved as the fundamental
groups of the two sides of a splitting of the 4-sphere by a 3-manifold. Fur-
thermore here the two sides have handle presentations that produce the
given group presentations up to Andrews-Curtis equivalence.

1. Introduction

In a previous paper [4] a method was developed of constructing, in the 4-
sphere S*, contractible bounded 4-manifolds for which the complement had a
given perfect balanced fundamental group. It was noted that the contractible
manifold so formed consisted of 1-handles and 2-handles added to a 4-ball so that
the resulting presentation of the trivial group could be trivialised by Andrews-
Curtis moves. Thus the contractible manifold could also be doubled to form
S*, so giving another distinct embedding of the manifold in S*. The method
is here explored for groups other than the trivial group. Any pair of groups
with balanced presentations, that give isomorphic groups when abelianised, are
obtained as the fundamental groups of the two halves of some splitting of S*
by a 3-manifold. These two 4-manifolds have handle structures consisting of
1-handles and 2-handles added to a 4-ball and the resulting group presentations
are Andrews-Curtis equivalent (but not in general equal to) the original pre-
sentations. If one reverts to the consideration of the trivial group one can for
example achieve, up to Andrews-Curtis equivalence, the same presentation of
the trivial group on either side of a splitting of S*. Doubling would also show
this to be the case if the Andrews-Curtis conjecture were true. In one particular
example, of a presentation which might be a counter example to this conjecture,
the same manifold can be achieved on each of the two sides of a splitting. This
will be explained below. If, as in this example, an embedding of a contractible
manifold in S* has a contractible complement, it is not easy to prove that there
is any other inequivalent embedding (that is, that the manifold knots in S*).
C.Livingston has one isolated example [5] of two such embeddings. When the
complement is not simply connected he can, for carefully chosen groups, con-
struct infinite sequences of embeddings. His method is to regard the 4-manifold
as a regular neighbourhood of a contractible 2-complex in S* and then change
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Keywords and phrases: 4-manifold in the 4-sphere, group presentation, Andrews-Curtis
conjecture, matrix moves.
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the embedding of that complex by taking its connected sum, in the middle of
a 2-cell, with a knotted S? in S*. After taking due care with the construction,
distinct fundamental groups for the complement result. If the complement is
simply connected no change can ever occur in the fundamental group of the
complement by this method. In a final remark in this paper it is shown that for
certain knots of S? in S* the ‘new’ embedding so constructed is actually isotopic
to the original one.

The author thanks the Department of Mathematics and Statistics at the Uni-
versity of Melbourne for its hospitality whilst this paper was being written.

2. Group presentations

Firstly a few simple remarks, comparing matrix presentations of abelian groups
with arbitrary presentations of (probably) non-abelian groups, will be recorded.
Suppose a free abelian group E, with additive notation, is freely generated by
€1,€2,...,€em. The quotient group E/{ Z;nzl Ajje; i=1,2,...,n } is said to
be presented by the n x m integer matrix A = {A4;;}. If A is changed, by a
sequence of matriz moves of the following types, it is easy to see that there is no
change, up to isomorphism, in the group presented by A.

Matrix moves:

(a) Add the ith row (or column) to the jth row (or column).
(b) Change the sign of the ¢th row (or column).
(¢) Permute the rows (or columns).
(

d) Enlarge the matrix A to the matrix (61 ?)

Note that (b) and (c) are self inverse, that the inverse of (a) is just a com-
bination of moves of types (a) and (b), but that the inverse of (d) cannot be
achieved by a combination of these matrix moves.

Suppose now that (a1, as,...,am : r1,72,...,7,) is a presentation of a (not
necessarily abelian) group in terms of generators and relators. There are various
sorts of moves that can be performed on the presentation which do not change the
group presented. Amongst these are the moves of J.J. Andrews and M.L. Curtis
(sometimes called ‘extended Nielsen transformations’ or ‘@Q-transformations’ or
‘Markov operations’) that are moves of the following types and their inverses.

Andrews-Curtis moves:

(1) Change r; to r;r; where j # 4.

(ii) Change r; to r; .

(iii) Add a new generator a,,+1 and a new relator a,,+1w where w is a word
in ai,ag,...,0m;m.

(iv) Change r; to riajaj_l or ria; aj.

(v) Change 7; to a cyclic permutation of ;.
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A presentation P of any group G, with multiplicative notation, obviously
induces a presentation of the abelianisation of G. This is obtained by allowing
the symbols to commute, cancelling all occurrences of a generator and its inverse
in the same relator, and then recording the generators’ exponents in each relator
as a matrix A.

LEMMA (2.1). Suppose that P is a finite presentation of group G and A is
the corresponding presentation matriz of its abelianisation G/|G,G]. If A is
changed to B by a matriz move (as described above) then P can be changed by
Andrews-Curtis moves to a presentation Q) so that B is the matriz corresponding

to Q.

Proof. Adding the ith row to the jth row corresponds to the Andrews-Curtis
move of changing 7; to r;7;. The analogue for columns is a little harder to
describe but it just corresponds to the geometric idea of sliding a 1-handle over
a l-handle: Use (iii) to add a new generator a,,+1 and relator am“ajai_l. Then
use (i) and (v) to change every occurrence of a; in 71, 72,...,7, to an occurrence
of am41aj, then remove a; and relator amﬂaja;l using the inverse of (iii) and
finally relabel a,,11 as a;. The corresponding matrix move is that of adding the
ith column to the jth column. Any relabelling of the generators throughout the
presentation can be achieved by using the same idea, with the new relator being
amﬂafl, to change every occurrence of a; to one of a,,4+1 and then to remove
a;. Thus moves inducing permutation of matrix columns and the sign change
of a column can be created. Consideration of the remaining matrix moves is
straightforward. O

The classification theorem for finitely generated abelian groups asserts that
if an abelian group is presented by a square matrix A, then A can be changed
by a sequence of the above matrix moves to a ‘canonical’ diagonal matrix A
which has only prime powers, ones or zeros on the diagonal. Furthermore, up
to a reordering, the non-unit elements on the diagonal of such a A are uniquely
determined by the isomorphism class of the group presented.

COROLLARY (2.2). Suppose that P is a balanced finite presentation of a group
G and B is some square presentation matriz of its abelianisation G/[|G,G]. Then
P can be changed by Andrews-Curtis moves to a presentation @Q for which the

B
corresponding matrizc is <0 IO) for some r > 0, where I, is the identity r X r
T

matriz.

Proof. The word ‘balanced’ means that P has the same number of generators
as relators. Let the matrix A correspond to P. By the above mentioned classi-
fication theorem, each of A and B can be changed by matrix moves to become
the same diagonal matrix A. Thus, by matrix moves, A can be changed to A

which can be changed to (ﬁ IO ) , for some r > 0, by inverting the moves that

change B to A but refusing to implement an inverse of a type (d) move. Then
each move can, by lemma (2.1), be imitated in the presentation P. O
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Note that Andrews-Curtis moves of type (iv) have not so far actually been
used in any proof. Of course they could be regarded as intimately related to the
process of producing the matrix A from a presentation P.

3. 4-manifolds corresponding to group presentations

Next is the main result about splitting S* into two handlebodies each of a
0-handle, 1-handles and 2-handles to obtain designated fundamental groups for
these two parts.

THEOREM (3.1). Let P1 and P» be balanced presentations of groups G1 and Ga
having the property that G1/|G1,G1] = G2/[G2,G2]. Then S* can be separated
(by a closed connected 3-manifold) into 4-manifolds My and My with m (M) =
G1 and 7 (M3) & Go. Each of My and My has a handle structure consisting
of one 0-handle, n 1-handles and n 2-handles, for some n, with the associated
group presentation for My being Andrews-Curtis equivalent to Py and that for
Ms being Andrews-Curtis equivalent to Ps.

Proof. Let P, = (a1,az2,...,an : 71,72,...,7T). Let P; correspond to the
n X n matrix C presenting the abelian group G1/[G1,G1]. The transpose ma-
trix C7 also presents this group as, for example, follows from the symmetry
with respect to rows and columns of the above mentioned classification theo-
rem. Regard C7 as a presentation matrix for Ga/[G2, G2]. By corollary (2.2)
there is, for some r > 0, a presentation IT = (a1, g, ..., Qpgr © P1,025 -« « s Prtr)s
CT
0

of G2/[G2, 3] corresponding to II. Let A = <

. . 0\ . . .
Andrews-Curtis equivalent to Ps, so that ( I ) is the presentation matrix
T

cC 0
0 I
Grt1s @ng2y -« oy Gppr and relators rpp1 = apg1, Tnge2 = Gnt2, -« Tnpr = Apgr
so that now A is the matrix corresponding to this new P;. Suppose that in the

relator 7; there are n’’ occurrences of the symbol a; and n’” of a;l. Similarly
i,

suppose that in p; there are v}’ occurrences of the symbol o; and v of o; L

>. Add to P; generators

Then n:_j - nz_’J = A = l/ij SV Ui n:_j > l/ij alter II by changing pj to
pj(oziafl)":h”jr’]. If nf < Vij alter P; by changing r; to m(aja;l)”f*”r
These are, of course, Andrews-Curtis moves. By repeating this for every pair
(1,7), it may be assumed that n:_J = I/ij and hence n*/ = "7 for all (1,7).

Let S* = B; U Bs, the union of two 4-balls intersecting in their common
boundary S3. In S® construct a link as follows. Let Dy, Ds,...,D,., and
Ay, Ag, ..., Aptr be mutually disjoint oriented discs. For each pair (i,j) for
1 <14,j5 < n+r take a collection Hij of nfﬂ copies of the positive Hopf link
of two ordered, oriented components and a collection H b of ptd copies of the
negative, ordered, oriented Hopf link. Each of these Hopf links is to be in a
(small) ball in which each of the two components bounds an oriented disc meeting
the other component in one point. These balls are to be all mutually disjoint
and disjoint from the original discs. Now join the boundary of A; once to the
first component of each link in (J;(Hy’ UH"’) with (long thin) bands. Do this in
the order around 9A; specified by the relator r;. When a; occurs in the relator

; occurs in the

connect to the first component of one of the links in H>?, when a
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relator connect to the first component of one of the links in H*’. Similarly when
+1
a;

occurs in p; connect the boundary of D; to the second components of H. Zij .
For an occurrence of «; any unused second component of any Hopf link in Hj_’j
may be selected and similarly for o ! It can easily be ensured that all the bands
used are mutually disjoint and that they respect all orientations (but there is
enormous scope for varying the route taken by a band). Note that the numbers
of links in the Hlij have been chosen so that each link in each Hft] has its first
component banded to A; and its second component banded to D;. This banding
process changes the original discs to two new collections D', D5, ..., D; .. and
AL AL, AL, each of mutually disjoint discs, by adding to the original discs
the bands and the discs spanning the components of the Hopf links.

Now let S® be embedded in a standard way in S*, separating S* into two 4-
balls By and Bs. From the 4-ball B; remove neighbourhoods of n + r standard
properly embedded discs with boundaries 0D7,0Dj,...,0D; ., and add them
to Bg. Take these discs to be the D} pushed a little into By. This creates from
B a ball with (n + r) 1-handles added (a technique fully described in [3]) and
changes B into a 4-ball with 2-handles added. Next, similarly, remove from Bs
neighbourhoods of (n + r) standard properly embedded discs with boundaries
OAL,0AY,...,0A}, . and add them to B;. Then each of B; and B; has been
changed into a ball with (n + r) 1-handles and (n + r) 2-handles; the resulting
manifolds are to be denoted M; and Ms.

The presentation of 71 (M7) coming from the handle decomposition is obtained
by labelling each 1-handle with a generator and taking a relator for each 2-handle.
Thus, allocate the symbol a; to the 1-handle of My corresponding to D and let
7; be the relator from the 2-handle corresponding to A’. Then 7; has an entry
a*! for every signed point of OA’; N Dj taken in order along JA}. Of course the
construction has been engineered so that this r; is indeed the jth relator of the
presentation P;. Similarly the presentation for m;(Msz) coming from the handle
structure is indeed the presentation II. O

4. The trivial group

The general idea of the above proof was used in [4] to show that the 4-sphere
can be split so that m (M) is any given perfect group G with a balanced presen-
tation and Ms is contractible. Of course G/[G, G] is then the trivial group so the
trivial presentation could be used for P». This allowed the proof in [4] to be, in
several ways, simpler than that given above. In this context, when 71 (M3) is to
be trivial, the present theorem allows things to be chosen so that the presentation
of 71 (Mz) coming from its handle structure belongs to any given Andrews-Curtis
equivalence class of presentations of the trivial group. Of course, Andrews and
Curtis conjectured there to be only one such class although R.E.Gompf [2] makes
the conjecture (based on much experience but little evidence) that there are in-
finitely many such classes.

Ezample (4.1). (a1,a9: ay*aj %aza?, aytay?a1ad). This is a famous presen-
tation of the trivial group which is often conjectured to be inequivalent to the
trivial presentation by Andrews-Curtis moves. In the notation of the above proof,
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the n I and n™/ are the terms of the symmetric matrices (il)) ;) and % ;

If this presentation is taken for P; and P the theorem can be applied to split
S* into two contractible manifolds M; and M,. However the symmetry of the
matrices means that none of the Andrews-Curtis moves used in the proof is nec-
essary. Thus M; and M> will have handle presentations that correspond exactly
to the the given (unmoved) group presentation. After a little experimentation
it can be seen that, in this case, M7 and M> can be taken to be homeomorphic
manifolds.

Consider for example the four simple closed curves, labelled a1, as, a7 and
ag, shown in the diagram. These bound the discs D}, D}, A} and A} of the
proof of the theorem. Reading off the word in a; and as from the boundaries of

1 and A} does give the required presentation. However, there is a m-rotation of
S3, about the ‘horizontal” bisector of the diagram, which sends a; to a; and as
to ag. There is then an orientation reversing involution of S* which interchanges
M, and Ms. (Of course, the other obvious symmetry, from a rotation about an
axis perpendicular to the diagram, gives an involution preserving M; and Mo,
setwise.) It is not known whether M; x I is the 5-ball (it is if the presentation is
Andrews-Curtis equivalent to a trivial presentation). If it is, then S* = 9(M; x I)
has an orientation reversing involution that interchanges M; x0 and M7 x 1 and is
fixed on 9 (M 1 X ) It does not seem likely that the involution of S* constructed
in the example is equivalent to such a homeomorphism, but it does show that
M, can be glued to a copy of itself to give S*.

Ezample (4.2). In [5] examples were given in which a contractible 4-manifold
M was embedded in S* in infinitely many different knotted ways as distinguished
by the fundamental group of the complement of the embeddings. The idea was
to add to the interior of a disc core of a 2-handle of M a knotted S? in S*
in the manner of connected sums. Careful choices enabled the examples to be
valid. It is easy to see, using the Van Kampen theorem that, if this is done
when S* — M is simply connected, the fundamental group of the complement
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of the embedding remains trivial. However, does that mean that the modified
embedding is isotopic to the original one? Can the M; of the above example be
embedded in S* in an inequivalent way? The next diagram is meant to indicate,
in the following way, that the embedding does not change if the connected sum
technique is used with certain types of knotted S? in S*.

SZ

An S* and S? link in a standard (homological) way in S*. This S! can just be
considered as the boundary of a meridional disc of an unknotted S2. Now take
in S* two copies of S? that are unknotted and unlinked and pipe them together
by a tube. The tube is a copy of S' x I that is contained in the boundary of an
arc joining the two spheres. The arc is to be chosen so that it follows the path of
an S' that links each S? as indicated schematically in the diagram. It if easy to
ensure (see [7] for example) that the resulting 2-sphere is knotted. However in the
case of a 4-manifold M; in S* with contractible complement, the S meridional
to a 2-handle is isotopic to a trivial S'. That is because simple connectivity
and general position ensure that it bounds a disc in the complement of M; with
but isolated point self-intersections. In moving S' across the disc ensure that it
passes through a self-intersection twice at two different times. Thus if to the core
of the 2-handle a connected sum is taken with the above knotted S?, the tube
can be isotopped so that it becomes a standard tube (not linking the original
pair of S§2s). Thus, up to isotopy, the construction has created no change in the
embedding.

Questions (4.3). Does every contractible 4-manifold, other than the 4-ball,
that embeds in S* always knot in S*? If a 4-manifold knots in S* does it always
have infinitely many knots in S*? If unbalanced presentations of groups G and
Go are given, still with G3/[G2,G2] & G1/[G1,G1], the above theorem could
be applied after balancing the presentations with extra generators (so changing
the groups by free products with free groups) and empty relators (a change
not possible with Andrews-Curtis moves). That adds no deep understanding.
However Livingston [6] has shown that certain perfect groups without balanced
presentations are the fundamental groups of (S* — M*) for some contractible
4-manifolds M*. In what way does his technique generalise to splitting S* into
two parts with prescribed fundamental groups without balanced presentations?
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TOROIDAL DEHN FILLINGS AND GENERALIZED
SCHARLEMANN CYCLES

DANIEL MATIGNON AND ELSA MAYRAND!

ABSTRACT. This paper concerns Dehn fillings on 3-manifolds which pro-
duce an essential 2-torus. Let M be an irreducible and atoroidal 3-manifold,
and T be an essential 2-torus created by a Dehn filling on M. Generically
in M, the intersection of the punctured 2-torus 7' N M with an arbitrary
surface F', is a 1-complex which can be viewed as a graph in either T" or F'.
A good way to get obstructions to the existence of Dehn fillings producing
essential 2-spheres, or projective planes (T is switched with an essential
2-sphere or a projective plane) is to find generalized Scharlemann cycles in
the graph in F' (see [10, 4] respectively). This paper is devoted to find sim-
ilar obstructions concerning the creation of essential tori. This obstruction
is considered as a step towards bounding the finite number of exceptional
Dehn fillings.

1. Introduction

Let M be a connected, compact and orientable 3-manifold such that a bound-
ary component 01 M is a 2-torus. We assume that M is irreducible (i.e. all
2-spheres bound a 3-ball) and atoroidal (i.e. all 2-tori bound a solid torus or are
boundary parallel).

A slope on 01 M is an isotopy class of essential unoriented simple closed curves

on 01 M. To each slope r on 91 M we associate the unique closed manifold M (r)
obtained by attaching a solid torus to M along 9y M in such a way that the
gluing homeomorphism identifies the meridional slope of the solid torus with 7.
The core of the solid torus is a knot in M(r), called the core of the Dehn filling,
denoted by K.
If M(r) contains an essential 2-torus, we say that r is a toroidal slope and that
the r-Dehn filling is toroidal. Toroidal Dehn fillings are the topics of a large
amount of investigations, see the nice surveys of Gordon [6, 7]. Let us say a
few words about this. Since M has a non-empty boundary, it is clearly a Haken
manifold (irreducible 3-manifold containing an essential surface). Therefore, by
[15, 16], M satisfies the Thurston Geometrisation Conjecture. Thus either

M is hyperbolic, i.e. intM admits a complete Riemannian metric of constant
sectional curvature —1; or

M is a Seifert fibered space, i.e. an S'-bundle over a surface, such that the
tubular neighbourhood of the circle fibers are trivial fibered solid tori, except for

2000 Mathematics Subject Classification: 57N10, 57M25, 57M15.

Keywords and phrases: essential 2-torus, Dehn filling, Scharlemann cycle, generalized
Scharlemann cycle .

1 Supported by the Chair of Research of Canada grant.

313



314 DANIEL MATIGNON AND ELSA MAYRAND

a finite number of fibers, whose tubular neighbourhood are non-trivial fibered
solid tori; or

M contains an essential surface (i.e. an incompressible, properly embedded
surface, non-parallel to the boundary of M) of non-negative Euler characteristic.

Moreover by [15, 16], if M is hyperbolic then only a finite number of Dehn
fillings can produce a non-hyperbolic 3-manifold. Such Dehn fillings are called
exceptional Dehn fillings, and the toroidal family is a special class among them.
So as to bound the finite number of exceptional slopes (slopes which correspond
to exceptional Dehn fillings) we refer to the distance between distinct slopes. Let
« and S be two distinct slopes on 9y M. The distance A(a, §) between the slopes
« and [ is the minimal geometric intersection number between two simple closed
curves representing respectively « and 5. Gordon has shown [5] that the distance
between two toroidal slopes is bounded by 8, and has given explicitely the four
3-manifolds which admit two distinct toroidal slopes with distance apart 6, 7 and
8. Therefore, generically the distance between two toroidal slopes is bounded by
5. Moreover, Gordon has conjectured [6, 7] that if M is not one of these four
special 3-manifolds, and M is hyperbolic, then the distance between two distinct
exceptional slopes is bounded by 5. Until now, the bound 5 is reached only by
the distance between two toroidal slopes.

So far, one of the best way to bound the distance between two slopes r, s that
produce small surfaces (i.e. essential surfaces of non-negative Euler characteris-
tic) P and @ respectively, is to study the intersection graphs which come from
the intersection PN Q, where P = PN M and Q= @ N M are assumed to be in
general position. We can see the graph Gp (respectively Gg) in P (respectively
@) considering the arc-components of P N @ as edges and the components of
P-P (respectively @ — Q) as “fat”vertices. The Scharlemann cycles, which
are particular disk-faces in these graphs (see later in Section 2, for a precise
definition) play a key-role in the study of intersection graphs. For example,
Scharlemann has shown ([14]) that if Gp contains a Scharlemann cycle and if
the corresponding edges of G are in a disk in @ then M(s) contains a non-
trivial lens space. An efficient way to get obstructions to the existence of small
surfaces, in order to bound A(r,s), is to find generalized Scharlemann cycles,
which is a special subgraph in a disk, containing a Scharlemann cycle. They
lead to the construction of small surfaces intersecting the core of the correspond-
ing Dehn filling (K, or K respectively) less than the original surfaces (ﬁ or Q
respectively). They have first appeared in [4], where @ was a projective plane.
The authors proved that if Gp contains a generalized Scharlemann cycle, then
@ is not a minimal projective plane. A surface F in M (r) is minimal if the
number of intersections between F and the core of the Dehn filling is minimal
amongst all the surfaces isotopic to Fin M (r). Similar constructions are used
by Hoffman in [10] to prove the following : if @ is a minimal essential 2-sphere,
then Gp cannot contain a generalized Scharlemann cycle (called closed cluster).
Other recent works (see [3, 11, 12, 13]) concern generalized Scharlemann cycles
and “minimal constructions”.

The goal of the present paper is to discuss the existence of generalized Scharle-
mann cycles when one of P or @ is a minimal essential 2-torus. We may note
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that the edges of a Scharlemann cycle are not necessarily in a disk in the 2-torus.
Let us fix the notations for the following.

Let a, 8 be two distinct slopes in 91 M, such that M(S) is irreducible and
contains an essential 2-torus 7. Let F' be an embedded surface in M (), and
denote by F = FNAM and T = TNM , the punctured surfaces properly embedded
in M. After isotopy, we may assume that 7" and F' are in general position.

We define the intersection graphs, which come from F'NT, in the usual way
(for more details, see [8] for example). Let G (respectively Gr) be the graph
in P (respectively f) obtained by taking the arc components of T'N F' as edges
and taking the components of F-F (respectively T - T) as fat vertices.

One important property of the intersection graphs is that the edges are labelled
by a numeration of the boundary-components of F' and T in 91 M (see the next
section for more details). This gives a label set to Scharlemann cycles and
generalized Scharlemann cycles. Notice that a generalized Scharlemann cycle
contains a Scharlemann cycle. We shall say that two generalized Scharlemann
cycles 31 and Yo are quasi-disjoint if the label set of 37 is disjoint from the label
set of a Scharlemann cycle in ¥5. We may note that the definition is symmetric
and that the Scharlemann cycles in a generalized Scharlemann cycle all have the
same label set. Now, we can formulate the main result of the paper.

THEOREM (1.1). Assume that no arc-component of FNT is boundary parallel
in either ' or T. If Gp contains two quasi-disjoint generalized Scharlemann
cycles, then T is not minimal.

The remaining of the paper is organized as follows.

In the next section, we recall the basic definitions and constructions about
intersection graphs. Then, we will give preliminary results.

In Section 3, we look at the topological effects of the existence of generalized
Scharlemann cycles. First, we focus on the existence of a single generalized
Scharlemann cycle. Then, we add a Scharlemann cycle whose label set is disjoint
from the label set of the generalized Scharlemann cycle. And finally, we give the
proof of Theorem (1.1).

2. Classical combinatorics on intersection graphs

Let t = |T N K| be the number of intersections between T and K 3, and
f =|F N K,| be the number of intersections between F and K.

Recall that the vertices of Gr are the meridian disks of the a-Dehn filling
that cap off the boundary-components of F' in 01 M, to obtain F. Similarly,
the vertices of G are the meridian disks of the $-Dehn filling that cap off the
boundary-components of T', to obtain T. Thus, if v is a vertex of G (respectively
Gr), v corresponds to a component of F N N(K,) (respectively T N N (Kg)),
and Qv is a boundary component of F' N 91 M (respectively of T'). After giving
an orientation to K, and Kg, we number the vertices of G : v1, v, . . . , v
so that they correspond to consecutive meridian discs of N(Kjg) in Tn N(Kp).

o~

Similarly, we number the vertices of Gr : wq, w2, . . . , wy in the order that F
cuts N(K,).
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Each component dv; of 9T intersects each component dw; in exactly A(a, 3)
points. The endpoints of the edges of G (respectively Gr) can be labelled by an
integer ¢ € {1,2,...,t} (respectively j € {1,2, ..., f}) as follows. Each endpoint of
an edge corresponds to a point in 9T N JF N d1 M. Consider one endpoint of an
edge e, corresponding to the point * € 9v; N Ow;. If e is seen as lying in G, the
endpoint * is labelled j, and if e is seen in G, then x has the label . Thus when
travelling around dv;, we see the labels 1,2, .., f appearing in cyclic order, and
around dw; we see the labels 1,2,...,¢ ; these sequences being repeated A(cw, §)
times.

In the following, we assume for convenience, that F' is orientable. We fix an
orientation on 7" and F', and let the components of T and O0F N 01 M have
the induced orientations. So we can assign a sign + or — to each component
of 0F N 91 M and each component of 0T according to the orientation on 0; M.
Then we refer to a vertex of sign 4+ or — according to whether the corresponding
boundary component is of sign + or —.

Let G be either the graph GF or the graph Gp. Two vertices of G are parallel
if they have the same sign, otherwise they are called antiparallel. Since M, F
and T are orientable, we have the well known property :

Parity rule. An edge joining parallel vertices or the same vertex in Gr, joins
antiparallel vertices in Gg and vice versa.

Now let G be either the graph G or G ; and @ (resp. q) be either the surface
F or ZA“, (resp. ¢ = f or ¢ =t) according to whether G = G or G = Gr. Then
Q= @ N M. The graph G has the label set {1,2,...,7} where {q,7} = {f,t}.

If D is a disc-face of G, then 9D consists of an alternating sequence of edges
and corners, where corners are arcs between consecutive labels on the bound-
ary of a vertex of G. An (4,7 + 1)-corner of G is an arc on 9Q between two
consecutively labelled components i, i + 1 (modulo r) of OR N 01 M, where R is
the other surface. The corners of G (respectively Gr) are called the T-corners
(respectively F'-corners).

An n-sided disc-face of G is a disc-face whose boundary is the union of n edges
and n corners. A trivial loop in G is a one-sided disc-face of G. Note that, if no
arc-component of F' N T is boundary parallel in either F' or T, then the graphs
Gr and Gp contain no trivial loop.

A {z,y}-edge is an edge with one endpoint labelled x, and the other labelled
Y.

A cycle in G is a subgraph homeomorphic to a circle when shrinking its ver-
tices to points. The length of a cycle is the number of edges which it contains.

An z-cycle in G is a cycle ¥ bounding a disk Dy in @, such that all the
vertices of ¥ are parallel and which can be oriented so that the tail of each edge
has label . A great z-cycle (see Figure 1a) is an a-cycle, such that all the
vertices in the closed disc Dy are parallel.

A Scharlemann cycle (see Figure 1b) is an z-cycle o that bounds a disc-face
D, of G. Note that 9D, is an alternating sequence of {z,x + 1}-edges and
(x 4+ 1, z)-corners, so we assign the set of labels {z,z + 1} to o, and o is called
an {z,x + 1}-Scharlemann cycle. We can note that a Scharlemann cycle is a
great cycle. A strict great cycle (see Figure 2a) is a great cycle which is not a
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x+1

Figure 1

Scharlemann cycle. We shall say that a strict great cycle X is innermost if Dy
contains no other strict great cycle.

Remark (2.1). Since an z-cycle ¥ of Gp is defined in a disk Dy in ﬁ, it is
not necessary to assume that F' is orientable. Indeed, we can attribute a sign
to vertices in Dy, and define parallel or antiparallel vertices in Dx. Therefore,

x-cycles, great cycles and Scharlemann cycles are well defined, even zfﬁ is mot
orientable. But the parity rule is thus satisfied only in Dsy.

The existence of great cycles guarantees the existence of Scharlemann cycles,
by the following result.

LEMMA (2.2) ([2, Lemma 2.6.2]). If G contains a strict great cycle ¥, then G
contains a Scharlemann cycle in Dx;.
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A generalized Scharlemann cycle in G (see Figure 2) is a subgraph A of G in
a disk in @, such that :

(i) A contains {z,z + 1}-Scharlemann cycles;

(ii) all the Scharlemann cycles in A have the same label set;

(iii) if D is an adjacent face to a Scharlemann cycle in A then D is a disk-face,
and its corners are exactly (x — 1, x)-corners and (x + 1,z + 2)-corners;

(iv) A consists of its Scharlemann cycles and all their adjacent faces;

(v) every {x,x + 1}-edge of A belongs to a Scharlemann cycle;

(vi) A is connected.

(vii) A has no cut vertex.

Note that in [10, 12], generalized Scharlemann cycles are called (closed) clus-
ters and the faces defined in (iii) 2-cornered faces. The condition (v) implies
that the subgraph in Figure 3 is not a generalized Scharlemann cycle, since its
boundary contains a {1,2}-edge.

Figure 3

The label set {x — 1,2z, + 1,2 4+ 2} is called the label set of A. Note that
each edge in A has its both endpoints in {x — 1,2,z + 1,z + 2}, and that for
each y € {x — 1,z,2 + 1,2 + 2}, there exists an y-edge in A. Let Ay, Ay be
two generalized Scharlemann cycles of label sets {z — 1,2,z + 1,2 + 2} and
{y—1,y,y+1,y+2} respectively. Then A, A, are quasi-disjoint if {x—1,2,x+
L,z +2}N{y,y+ 1} = 0. Note that {z — L,z,z+ 1L,z + 2} N{y,y+1} =0 if
and only if {y — 1,y,y+ 1,y +2} N {z,z +1} = 0.

If A is a generalized Scharlemann cycle, then Dy denotes the union of the disk
faces bounded by the Scharlemann cycles in A with their adjacent faces. Thus
(by (vii)) Dy is a disk such that A = G'N Dy. For convenience, we sometimes
refer to 9D, to be A; in this case, we would rather note 3 (as a cycle) instead
of A to avoid confusion.

Remark (2.3). As in the previous remark, generalized Scharlemann cycles are
well defined even if Q = F is non-orientable.
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An z-face in G is a disk D in @ bounded by a cycle of G, such that all the
vertices in D are parallel, and all the edges in 0D are x-edges. A strict x-face
is an x-face which is not a Scharlemann cycle. Actually, the existence of strict
great cycles or strict z-faces guarantees the existence of generalized Scharlemann
cycles, by the following result.

LEMMA (2.4) ([10, Lemma 4.1], [12, Lemma 3.1]). Assume that the Scharle-
mann cycles in G all have the same label set. If G contains a strict great cycle or
a strict x-face, bounding a disk D, then G contains a generalized Scharlemann
cycle in IntD.

3. Generalized Scharlemann cycles

This section is devoted to general results concerning the effects of the existence
of both Scharlemann cycle and generalized Scharlemann cycle with disjoint labels
sets on the minimality of T. There are three subsections. The first one is focused
on the effects of the existence of the generalized Scharlemann cycle. The second
one is interested in the obstructions given by the existence of both of them. Last
subsection is the proof of Theorem 1.

In the following, we assume that G contains a generalized Scharlemann cycle
Y and a Scharlemann cycle o, with disjoint label sets. Then ¢ > 6. After
changing the labelling if necessary, we may assume that the label set of ¥ is
{t,1,2,3} and the label set of o, is {z,z + 1}, with {z,z+ 1} N {¢,1,2,3} = 0.
We keep the previous notations. Recall that the vertices of Gr(o,) are v, and
Vp+1-

Let L be a subgraph of Gp. We denote by Gr(L) the subgraph of G whose
edges correspond to the edges of L, and whose vertices are the vertices of G
incident to these edges. As example, Gr(X) is the subgraph of G whose edges
correspond to the edges of ¥, and whose vertices are the vertices vy, v1, vy and
V3.

Two edges are said to be parallel if they cobound a 2-sided disk-face. The
reduced graph G of a graph G is obtained from G by replacing each family of
parallel edges by a single edge. -

Figures 4 or 5 give examples of possible graphs for G (X), after some home-
omorphism of 7. Note that G7(3) always contain {t,3}-edges.

LEMMA (3.1) ([1, Lemma 2.8], [9, Lemma 3.1]). If Gr contains a Scharlemann

cycle, then its edges cannot lie in a disc in T. Furthermore, T is separating, and
then t is even.

LEMMA (3.2). If Gp(X) has neither a {2,3}-edge nor a {t,1}-edge, then the
{3,t}-edges of Gp(X) form an essential loop on T.

Proof. Assume that Gp(X) has neither a {2,3}-edge nor a {t,1}-edge. In
this case, the edges of ¥ are all {1,2}-edges or {t,3}-edges. So the boundary
of Dy is a 3-cycle ¥* such that all its edges are {t,3}-edges. By Lemma (3.1),
these edges lie in an annulus on 7', which is disjoint from Gr(0), where o is
a Scharlemann cycle on X. Now, suppose for a contradiction that there is a
disk D in this annulus, which contains the vertices v, v3 and all the {¢, 3}-edges
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Figure 4

Figure 5

of Gr(X). Let H be the 3-ball in N(Kj3) between v; and vs, and containing
v1. Then N(D U H U Dy) is a punctured lens space. Therefore, since M (8) is
irreducible, it is a lens space, and then M (3) is atoroidal; a contradiction. O

By Lemma (3.1), the existence of o, implies that Gy (%) lies in an essential
annulus A7 in T.

Moreover, T is separating. So we may color the faces of ¥ black and white,
so that the Scharlemann cycle faces are colored black, and all the others are
white. Let Xp, X\ be respectively the black and white sides of M (5) — T, ie.
M(ﬁ) =Xp Uz Xw.

In the remainder of the paper, let H; ;11 be the 3-ball which is the portion of
N(Kp) between the vertices v; and v;11 that contains no other vertex.

Let V4 be the solid torus N(A;) and Y = N(A; UH, 3U H, 1), pushed slightly
inside Xy so that A; lies in JY. Then Y is a genus three handlebody in Xy .

(3.3) Construction from ¥. A white face g of ¥ is said to be interior if g is
adjacent to at least two black faces (i.e., {1,2}-Scharlemann cycles); otherwise
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we say that g is a boundary face. We say that a black face o in X is outermost
if all the faces adjacent to o are boundary faces, except at most one.

LEMMA (3.3.1). The subgraph ¥ contains an outermost black face in Dsy..

Proof. We construct a dual graph, in the following way. For each black face
and interior white face g, we attribute a dual vertex v in Intg. For each {1,2}-
edge common to a black face and an interior white face, we fix a transversal dual
edge joining the corresponding dual vertices. The dual graph I' consists in the
dual vertices and the dual edges. Assume that all the black faces have at least
two edges adjacent to white faces in Dy. Then I' clearly contains a cycle, i.e.
a subgraph homeomorphic to a circle. Thus, this cycle bounds a disk in Dy.
Since ¥ = G N Dy, all the F-corners occur in ¥, in contradiction with ¢ > 6.
Therefore, I' cannot contain a cycle, and so Gp contains an outermost black face
in DE. O

Let o be an outermost black face in Dy;. We have made the confusion between
the disk-face o and its boundary denoted also by o, which is a {1, 2}-Scharlemann
cycle. By Lemma (3.1), there are two edges ey, e5 in the cycle o so that the simple
closed curve v = e; U eg, obtained by shrinking the vertices v; and v2 to points,
is essential on T. Let f1, fo be the white faces adjacent to o along the edges
e; and ey respectively. As in the proof of Lemma (3.3.1), since ¥ = G N Dx,
t > 6 and there are only four corners that occur in ¥ : f; # fo. Note that o is
outermost, so at least one face among f1, fo is a boundary face, say fi.

LEMMA (3.3.2). If g is a white face of ¥ then Og is an essential and non-
separating simple closed curve in 0Y .

Proof. Let g be a white face of 3. Orient arbitrarily its boundary dg. There-
fore, the meridians of 0H; 1 are always intersected by Jg in the same direction
(and similarly for the meridians of 9Hs 3). That implies that dg is essential and
non-separating on 9Y. O

PROPOSITION (3.3.3). The annulus Ay lies in a 2-torus component of ON (Y U

fiU fa).

Proof. Let G = Gr(o U f1 U fa) be the graph consisting of the edges of
o U Jdfy Udfs and the vertices vy, v1,v2 and vz. One can note that each white
face has {1,2}-edges and {t¢,3}-edges on its boundary. More precisely, in the
boundary of a white face, the number of {1, 2}-edges is the same as the number
of {t,3}-edges (for more details, see [4, Lemma 2.1]). Thus G has {1, 2}-edges
and {t,3}-edges, and possibly {2, 3}-edges and {t, 1}-edges.

Recall that the F-corners correspond to arcs on 0H; ;41 and the T-corners
are the arcs on the components dv; of T. An n-gon (respectively, a bigon) in G
is a disc-face with n sides (respectively, with 2 sides) . We shall call again bigon
a disc on 0H; ;41 whose boundary is the union of two F-corners on 0H; ;y1, a
T-corner on dv;, and a T-corner on dv;4+1 (note that ¢ =t or 2).

Let v1 = df1, and 72 = Of2. Then 7; and 72 are essential circles on 9Y’, by
Lemma (3.3.2). A circle «; is a union of edges and F-corners. Each connected
component of Y — {71,72} is a union of faces of G, bigons on 0Hy,; and bigons
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on 0Hs 3. For convenience, in the following we call n-gon an n-gon for which
n > 2; otherwise we explicitely say ‘bigon’.

Claim (3.3.4). An annulus component of 0Y — {v1,72} is a union of bigons.

Proof. Let C' be an annulus component of dY — {v1,72}. Each boundary
component of C' is a union of consecutive F-corners and edges.

Assume that C' is not a union of bigons. It is easy to see that C' cannot be
obtained by gluing n-gons (n > 2) and bigons together, since each T-corner of
each n-gon must be glued to a bigon in dH; ;41 (for ¢ = ¢ or 2). Similarly, C
cannot contain an annulus face or a punctured annulus face. (Claim (8.5.4))

O

Claim (3.3.5). The simple closed curves v, and 2 are not parallel on JY .

Proof. Assume for contradiction that 7, and ~9 are parallel on dY. Then
they cobound an annulus component of Y — {v1,72}. Thus by Claim (3.3.4),
it is an union of bigons. Then v; and 72 have the same number of {1, 2}-edges;
consequently exactly one (as 1, since f is a boundary face). Recall that e; C 1
and ey C 7. Therefore, e; and ey cobound a bigon on G; a contradiction.
(Claim (3.3.5)) O

Note that this claim can be proved by using the fundamental group of Y'; such
an argument was used in [11].

By Lemma (3.3.2), each component of 9Y —{v1, v2} has at least two boundary
components. By Claim (3.3.5), that implies the components of 9Y — {y1,72}
are punctured tori. Then each boundary component of W =Y U fi U fy is a
2-torus, in particular there exists a 2-torus 7" which contains the annulus face
A1. (Proposition (3.3.3)) O

Recall that W =Y U f1 U fo. Let :
fo be the disk-face bounded by ¢ in Gp;
M1 = N(Al U HLQ U f0)7 T1 = 8M1 (Z-tOI'US)
T5 be the 2-torus component of ON (Y U f1 U f3) that contains Aq;
M3 be the component of W whose boundary is the torus T3s;
By =T; — Ay and Bs = T3 — A; (see Figure 6).
If S is a surface in M(f), we define n(S) to be the number of intersections
between S and the knot Kg. As an example, we have n(f)zt.
Let Ay be the annulus 7 — A;. Then ¢ = n(A1) + n(As). Moreover, since
n(T1) = 2n(A1) — 2 and n(0OW) = 2n(A;) — 4, then we have
n(B1) = n(A1) — 2 and n(B3) < n(4;) — 4.
Let Z1 = X — My and Z3 = Xw — M3. Then
071 = B1 UAg and 073 = B3 U As.

LEMMA (3.3.6). If T is an essential minimal 2-torus in M(B), then Zy and
Z3 are solid tori.

Proof. Since n(0Z1) = n(B1) + n(Az) = n(A41) — 2+ n(Az2) < t, then 07,
compresses in M(8). But M(p) is irreducible, implying that 0Z; bounds a
solid torus. Since T is essential, Z; must bound a solid torus in the side that
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Figure 6

does not contain 7. This means Z; is a solid torus. Similarly, since n(0Z3) <
n(A1) —4 4 n(As), Zs is a solid torus. O

Applying the same argument, we can prove the following.
LEMMA (3.3.7). If n(T;) <t then M; is a solid torus, where i =1 or 3.

LEMMA (3.3.8). If T is an essential minimal 2-torus in M(B) then the two
following assertions are true :
ii) if My is a solid torus then n(Aq) > n(Az) + 4.

Proof. 1) Suppose that n(41) < n(As) + 2, then n(7y) < t; therefore, M; is
a solid torus (Lemma (3.3.7)). Moreover, we have also that n(T3) < ¢, which
implies that M3 is also a solid torus (Lemma (3.3.7)). We have

Xp =M Ug, Z1, and
Xw = M3 Up, Zs.

It follows that Xy and Xp are both the union of two solid tori along an
annulus. Since T is essential, Xp and Xy must be Seifert fibered spaces which
are not solid tori. Thus the core of B; turns at least twice around the cores of
M; and Z; respectively, for : = 1 and 3.

Let 7' = B; UB3. Then T” is an essential 2-torus. Indeed, we can decompose
M(3) along T" in the following way :

M(B) = (M1 Ua, Ms)| J(Z1 Ua, Zs).
o
The core of By turns at least twice around the core of M;, and the core of B3
turns at least twice around the core of M3; thus the core of A; turns at least twice
around the cores of M3 and M; respectively. Therefore, M1 Us, Ms is a Seifert
fibered space over a disc, with two exceptional fibers, which are respectively the
core of My and the core of M3. In the same way, Z; Ua, Z3 is a Seifert fibered
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space over a disc, with two exceptional fibers, which are the cores of Z; and Z3
respectively. Thus 7" is essential in M (/). Since n(T") = 2n(A;) — 6 < t, then
T is not a minimal essential 2-torus in M(B).

ii) Now, if M; is a solid torus and n(A;) < n(Az)+4, then M3 is again a solid
torus; we can repeat the same argument as above, and n(7") = 2n(A;) -6 <t
gives the same conclusion. O

(3.4) Constructions from ¥ and o,. We keep the previous notations.

LEMMA (3.4.1). The graph Gp(X) lies in an essential annulus Ay in T, and

A~

Gr(oy) lies in the annulus As =T — A;.

Proof. Let o be a Scharlemann cycle in Dy. By Lemma (3.1), the edges of o
do not lie in a disc of f; and similarly for the edges of .

Recall that the edges of o join v; to ve. Let e, es be two edges in the cycle o
so that the simple closed curve v = e; Ueg, obtained by shrinking the vertices vy
and vy to points, is essential on T. If we do the same with the Scharlemann cycle
0., we obtain v/, an essential simple closed curve on f, disjoint from ~y. Thus
and ' are parallel on T.T herefore, we may assume that the graph Gp(X) lies in
an essential annulus A in f, and Gr(o,) lies in the annulus Ay = T - A, O

Recall that W =Y U f1 U fo. Let :

fo. be the disk-face bounded by o, in GF;
My = N(A2 @] HI’IJFI @] fgw), Ty = OMs (Q—tOI'US);
BQ = T2 — AQ.
Note that :
n(Tz) = 2n(Az2) — 2 and n(Bz) = n(As) — 2.
Let Z5 = X — My, where X is the side Xy or Xp which contains M>. Then
8Z2 = BQ U Al.

LEMMA (3.4.2). If My and Ms are both solid tori, then T is not an essential
minimal 2-torus in M(B).

Proof. Assume that M; and M3 are both solid tori. Thus,
Xp =M Ug, Z1, and
Xw = M3 Up, Z3,
meaning Xy and Xp are both the union of two solid tori along an annulus.
Since T is essential, Xp and Xy are Seifert fibered spaces. The core of B; turns
at least twice around the cores of M; and Z; respectively, for i = 1 and 3.

We consider two cases according to whether Ms lies in Xy or Xp. Then M,
lies in Z3 or Z; respectively, which implies M5 is a solid torus.

First, assume that Ms C Xy, so My lies in Z3. Following the proof of
Lemma (3.3.8) we obtain that the 2-torus 7" = By U By is an essential 2-torus,
which satisfies n(T") < t.

Now, assume that My C Xp, then it lies in Z;. Following the proof of
Lemma (3.3.8), we obtain that the 2-torus 7" = B3 U By is an essential 2-torus,
which satisfies n(T") < t.

In both cases T is not a minimal essential 2-torus in M (). O
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LEMMA (3.4.3). If My is a solid torus and f,, lies in Xw, then T is not an
essential minimal 2-torus in M(B).

Proof. Assume that T is an essential minimal 2-torus in M(8). If f,, lies in
Xy, then the 2-torus TV = By U A; bounds a solid torus V'’ in Xy, because
n(T'") < t. Since M3 C V', we obtain that M3 is also a solid torus. The result
follows by Lemma (3.4.2). O

LEMMA (3.4.4). If Ms is a solid torus and f,, lies in Xp, then T is not an
essential minimal 2-torus in M(f).

Proof. Tt is the same argument, by symmetry. Assume that T is an essential
minimal 2-torus in M (). If f,, lies in Xp, then the 2-torus 77 = By U A,
bounds a solid torus V' in Xp, because n(T') < t. Since M; C V', we obtain
that M; is also a solid torus. The result follows by Lemma (3.4.2). O

PROPOSITION (3.4.5). Let T be a minimal essential 2-torus. Assume that t =
6 and thet Gg contains a generalized Scharlemann cycle ¥ and a Scharlemann
cycle with disjoint label sets. Let o be a Scharlemann cycle of X2, and A be an
annulus in T such that Gr(o) lies in A, then n(A) > 2 (see Figure 5).

Proof. Assume that T is a minimal essential 2-torus. We keep the previous
notations.

By Lemma (3.3.8), n(A4z) < 2. But Ay contains v, and v,y1, thus n(A4s) =
2. Tt follows that n(A4;) = 4, and n(T5) = 4. Then Mj is a solid torus
(Lemma (3.3.7)). Let C; be a minimal annulus in A; which contains Gr(o),
and N1 = N(Cl U HLQ U fg')~

If n(Cy = 2) then n(0N1) = 2 and so N; is a solid torus. But M; =
N7 UN(A; — C1) is isotopic to Ni. Therefore, M; is also a solid torus, which
contradicts Lemma (3.4.2). O

COROLLARY (3.4.6). Ift =6 and T is a minimal essential 2-torus, then Gp
cannot contain two quasi-disjoint generalized Scharlemann cycles.

Proof. We assume that G contains two quasi-disjoint generalized Scharle-
mann cycles ¥ and ¥,. After changing the labelling if necessary, we may assume
that the label set of ¥ is {6, 1, 2, 3} and the label set of ¥, is {z—1,z,2+1, z+2},
with {z,2 +1}N{6,1,2,3} =0 so z = 4.

Let o (resp. o4) be a Scharlemann cycle of ¥ (resp. X4). Let Cp (resp.
C4) be a minimal annulus which contains Gr (o) (resp. Gr(o4)). By Lemma
(3.2), n(Cy) = 2 or n(Cy) = 2. Therefore, the contradiction follows by Proposi-
tion (3.4.5). O

(3.5) Proof of Theorem (1.1). We assume that Gy contains two quasi-
disjoint generalized Scharlemann cycles Y. and ¥,. After changing the labelling
if necessary, we may assume that the label set of ¥ is {¢,1,2,3} and the label
set of ¥p is {z — 1,z,z + 1,z + 2}, with {z,z + 1} N {¢,1,2,3} = 0.

We keep the previous notations. Let o, be a Scharlemann cycle of G in Dy, .
Let Gp(X,) be the subgraph of G whose edges correspond to the edges of ¥,
and whose vertices are the vertices vy_1, vy, Vp41 and vyqo.
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Figure 7

By Corollary (3.4.6), we may assume that ¢ > 8. We want to prove that T is
not a minimal essential 2-torus in M (f).

By Lemma (3.2) Gr(X) lies in an annulus A, in T} similarly G7(,) lies in
an annulus A4, , in T. Note that the if o (resp. o) is a Scharlemann cycle of ¥
(resp. ;) then Gr(o) (resp. Gr(oy)) is disjoint to Aj , (resp. A1).

There are three cases. One is the case where the interior of A; and A; , are
disjoint; the second is that A; N Ay, is a disk with one vertex; the last is the
case as in Figure 7.

First, we consider the two former cases. Then A; , = A U E, where E is
the empty set or a disc in A; which contains exactly one vertex. So, changing
the labelling if necessary, we may assume that n(A;) < n(As) + 1. Indeed, since
t > 8, the label sets have at most one common label. Thus T is not a minimal
essential 2-torus, by Lemma (3.3.8).

To complete the proof of Theorem (1.1), we have to consider the case where the
reduced graph of Gp(X)UGr(X,;) corresponds to one of the graphs on Figure 7.
We assume for contradiction that 7' is minimal.

We choose for A; a minimal annulus containing G (%) and disjoint from the
edges of any Scharlemann cycle in Dy, (see Figure 8a).
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Figure 8

Similarly, let A;, be a minimal annulus containing Gr(%,) and disjoint from
the edges of any Scharlemann cycle in Dy. Let Az, = T - Ay,

Now, let C' be an annulus in A; containing Gr (o) and disjoint from the {t, 3}-
edges. Similarly, let C, be an annulus in Ay, containing Gr(o,) and disjoint
from the {x — 1,2 + 2}-edges (see Figure 8b).

Let M;c = N(Alx U Hx,x-{-l U fgw). Let MQIC = N(Cx U Hx,x—i—l U fam) and
M{=N(CUH2U f,); see Figure 9.

Note that C, is disjoint from Aj.

If f,, liesin Xp (see Figure 9a) then M, C Xp. But M/, is disjoint from M,
thus M, C Z;. If f,, lies in Xy (see Figure 9b) then M, C Xw ; but M, is
disjoint from M3, so M. C Zs. Therefore, in both cases M, is a solid torus, by
Lemma (3.3.6).

By symmetry, we obtain that M; is also a solid torus, which implies that
M is a solid torus, since it is isotopic to M;. Therefore, f,, lies in Xp by
Lemma (3.4.3). Let A be a minimal annulus in T (see Figure 8c) containing
both Gr (o) and Gr(o,). We have A C Ay, Uy B, where B is a small annulus
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Figure 9

containing v, and vy41. Then n(A4) < n(As,)+2. By Lemma (3.3.8), n(A;,) >
n(As,) + 4, so n(Aa,) <t/2—2. Then n(A) <t/2.

Let Z=N(AUH; 2UHg; 441U fs U fo,). Then Z is a Seifert fibered space
over a disk with two exceptional fibers (the cores of M{ and M).

Therefore 0Z is an essential 2-torus, since M(8) — Z contains T. Since
n(0Z) <t — 4, it contradicts the fact that the essential 2-torus 7' is minimal in
M (). This completes the proof of Theorem (1.1).
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SPLITTING OF CERTAIN SINGULAR FIBERS
OF GENUS TWO
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Dedicated to Professor Francisco Javier Gonzdles Acuna on his siztieth birthday.

ABSTRACT. This is a detailed account of the results announced in our pre-
vious paper [Y.Matsumoto, Lefschetz fibrations of genus two - a topological
approach, in the Proceedings of the 37th Taniguchi Symposium on Topol-
ogy and Teichmiiller spaces, World Scientific (1996)]. Via computer cal-
culations, we will observe how certain genus two singular fibers of specific
types split into Lefschetz type singular fibers, which are atomic in the sense
of G. Xiao and M. Reid [14]. Also, we will give explicitly the positions of
the vanishing cycles corresponding to the atomic fibers.

1. Introduction

By the splitting of a singular fiber we mean the phenomenon that a singu-
lar fiber in a holomorphic one-parameter family of Riemann surfaces splits into
several less complicated singular fibers when the family is modified by a certain
perturbation. Following G. Xiao and M. Reid [14], we will call a singular fiber
that does not split any further an atomic fiber. In the case of genus two, atomic
fibers are now completely understood thanks to the work of Horikawa [7], Xiao
[18], Reid [14], Persson [13], and Arakawa and Ashikaga [1]. Arakawa and Ashik-
aga [1] extended the investigation to hyperelliptic families of genus > 2. More
recently, Takamura [15, 16, 17] has started a systematic study on splitting of
more general singular fibers, not necessarily hyperelliptic.

Our study in this paper, however, is very restricted. We will be confined to
two concrete examples of singular fibers. We will take up two specific types of
genus two singular fibers and, via computer calculations, observe concretely how
they split into atomic fibers.

We are interested not only in splittability of these singular fibers but also in
the precise positions of the vanishing cycles corresponding to those atomic fibers
that occur at the splitting. Since the topological monodromy of the original
singular fiber is decomposed into a product of the right-handed Dehn twists [6]
along the vanishing cycles of the atomic fibers, the knowledge of the precise
positions of the vanishing cycles will give a precise decomposition formula of the
original monodromy homeomorphism. Thus, the splitting of singular fibers is
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expected to provide a heuristic method to find relations in the mapping class
group.

In the case of genus two, it is known ([1]) that there are precisely two topo-
logical types of atomic fibers. Both of them are Lefschetz type singular fibers
shown in Figure (1). We will call them an atomic fiber of type I, and of type
I1, respectively. (This notation is different from that in [7] or in [1].) An atomic
fiber of type I is obtained by pinching a non-separating simple closed curve on a
genus two Riemann surface into a point, and that of type II is obtained by pinch-
ing a separating simple closed curve. The singular point of these fibers is a node.
Thus a singular fiber of type II consists of two tori intersecting transversely in a
point.

The precise statements of our main results will be given in the next section.

" O

Figure 1. Genus two atomic fibers of types | (left) and Il (right)

The author was informed by L. Balke [2] that our splitting in Theorem (2.1)
below can be neatly reconstructed by an algebraic-geometric method. The author
is grateful to him for communicating his construction. All the figures in this
paper were drawn by I. Hasegawa, K. Tanaka and K. Yoshida. The author
thanks them for their beautiful work and kind help. Finally but not at all least,
the author greatly appreciates the referees’ careful reading and useful comments,
which improved the paper very much.

2. Main results

First we will describe the singular fibers which we want to study.

Let 32 denote an oriented closed surface of genus two, and consider an invo-
lution w : Y9 — X9 shown in Figure 2. Given a complex structure on ¥o, we
may assume that w is holomorphic. Let A = {£||¢] < 1} be the unit disk on the
complex plane. To obtain a singular fiber having the topological monodromy w,
consider the quotient A x ¥5/(—1) x w and blow up the two singular points. The
resulting complex manifold V fibers over a disk D = A/(—1) with the projection
f:V — D induced by the first projection A x ¥o/(—1) x w — A/(—=1). The
family f : V — D has a single singular fiber f~1(0) and its topological mon-
odromy is w. According to [11], the topological monodromy around a singular
fiber determines the topological type of (the fibered neighborhood of) the singu-
lar fiber. We denote the singular fiber f~%(0) (or rather its topological type) by
Fe.
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<l 1500

Figure 2. The involution w : 3o — 35

1

Figure 3. Singular fiber F“

The singular fiber F*“ consists of a torus of multiplicity 2 and two 2-spheres
of multiplicity 1. Each 2-sphere intersects the torus transversely in a point (see
Figure (3)). This is the first singular fiber we shall study.

The second one is the singular fiber F'* shown in Figure (4). This fiber con-
sists of seven 2-spheres intersecting transversely as shown in the figure. The
monodromy corresponding to this singular fiber is the hyperelliptic involution
t: Yo — X (see Figure (5)). The construction of F* is similar to that of F“.

Figure 4. Singular fiber F*

O)— 180°

Figure 5. The hyperelliptic involution ¢
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The following theorem is our first main result. In this theorem the family
¢ : N — D is topologically equivalent to the family f : V — D constructed
above, but their complex structures are not necessarily the same.

THEOREM (2.1). There exists a holomorphic family of compact genus two
Riemann surfaces over a disk, ¢ : N — D, having a single singular fiber over the
origin 0 € D whose topological type is F“, such that if one perturbs the family in
a certain way by a real parameter € then, in the perturbed family ¢. : N. — D,
the singular fiber F“ disappears, and in place of it four atomic fibers occur. The
positions of their vanishing cycles B, P2, B3, Ba are as shown in Figure (6).

b1 B2 B3 B4
G

Figure 6. Vanishing cycles (31, 52, 83, B4

As a corollary, the monodromy w is decomposed as follows:

(2.2) w = B1P2304.

Note that here we use identical notation for a simple closed curve on ¥, and
the right-handed Dehn twist along the curve. Also note that the mapping class
group Moy is assumed to act on ¥y from the right: the composition (182083084
means that first we apply £; and then 2, and so on. Among these vanishing
cycles, only (2 is separating. Thus the atomic fiber corresponding to (S5 is of
type II. The other three atomic fibers are of type I, and the splitting of Theorem
(2.1) is simply written as

(2.3) F“ =3I+ 11I.

This splitting seems to be known to specialists except for the precise positions
of vanishing cycles (cf. [13]).

Although Theorem (2.1) is merely an experimental observation (and the au-
thor has a little hesitation about calling it “a theorem”), it has turned out to be
quite useful. For example, in [10], we made use of this splitting to construct a
Lefschetz fibration of genus two

(2.4) S? x T?#4CP2? — S?

whose singular fibers are of types 6/ + 2/ and whose total monodromy is
(B1B2/384)% = 1. With this fibration, we were able to calculate the local signa-
ture (1) of a type II atomic fiber [10]. That is, substituting the known values

o(I) = —2 (which was known from another example) and Sign(S? x T?#4CP?) =
—4 in the local signature formula

(2.5) Sign(S? x T?#4CP?) = 60(I) + 20(I1)

we obtained

o(Il) = —%.
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Figure 7. Standard curves on Yo

Using algebraic methods, Endo [5] extended this result and calculated local
signature of singular fibers in hyperelliptic Lefschetz fibrations of genus g >
3. Arakawa and Ashikaga [1] studied the local signature from an algebraic-
geometric viewpoint using the Horikawa index. Moreover, Ozbagci and Stipsicz
[12], starting from the fibration (2.4) and applying Gompf’s theorem (see [6])
on the existence of symplectic structures on Lefschetz fibrations, constructed
infinitely many examples of closed symplectic 4-manifolds which do not have the
homotopy type of any complex surface. The decomposition (2.2) was extended
to higher genera by Cadavid [4] and Korkmaz [9].

Our second main result is the following

THEOREM (2.6). There exists a holomorphic family of compact genus two
Riemann surfaces over a disk, ¢ : M — D, having a single singular fiber over
the origin 0 € D whose topological type is F*, such that if one perturbs the family
in a certain way by a real parameter €, then in the perturbed family ¢, : M — D
the singular fiber F'* disappears, and in its place 10 atomic fibers of type I occur.
Their vanishing cycles are

(ClvC27C3a<4a<5a<57§47€3;<2;<1)

where (;, 1 = 1,2,...,5, are the standard simple closed curves on Yo given in
Figure (7).

Both in Theorems 1 and 2, we tacitly assume that a general fiber Fj, is
fixed as a reference fiber in the family of Riemann surfaces, and that a set
of loops {l1,l2,...,ls} on D — {critical values} corresponding to the occurring
atomic fibers {Fy, Fs, ..., Fs} are chosen as follows (see Figure (8)): The loop
l; corresponding to an atomic fiber F; starts from the locus ty of the reference
fiber Fy,, follows a path ~;, and reaches a point on the boundary of a small
disk containing the critical value b; of F;, then moves counter-clockwise along
the boundary of this small circle, and finally comes back to ¢y along ;- 1 We

assume that the loops I; (i = 1,2,...,s) are mutually disjoint except at the base
point tg, and taking a small disk Dy centered at ty, we assume that the paths
V1,72, - - -, 7s intersect the boundary 0Dy counter-clockwise in this order.

The vanishing cycle corresponding to an atomic fiber F; is considered to be
a simple closed curve C; on the reference fiber Fj,. This cycle C; shrinks to
the nodal point on the atomic fiber F; as one “moves” the reference fiber F},
along the path ~; to F;. The corresponding monodromy, which is the Dehn twist
along Cj, is the returning diffeomorphism obtained by moving the fiber F;, along
the loop I;. The order and the positions of the vanishing cycles (51, 2, 83, 84) in
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b1 bo bs

Figure 8. Loops I1,1ls, ...,

Theorem 1 and (¢, €2, (3, 4, 5 G5, Ca, €3, (2, €1) in Theorem (2.6) assume certain
choices for the loops [;, as indicated above.

By Theorem (2.6), the topological monodromy ¢ of the singular fiber F* de-
composes into

(2.7) L= (162¢3C1(5¢5C4¢3C2C1-

This is of course a well-known relation in the mapping class group of genus two
(see [3]). Tto [8] extended Theorem (2.6) to higher genera.

3. Construction of a fibered neighborhood of the singular fiber F'“

The construction of the family f : V' — D given in §2 is simple, but for
the purpose of computer calculation it is not necessarily adequate, because the
complex structure of V' is not explicitly described. Thus we must construct a
family ¢ : N — D which is topologically equivalent to f : V' — D using concrete
equations.

We will start with a torus in the complex projective plane CP?2, defined by
the following cubic homogeneous polynomial

(3.1) 22z —yP — 23 =0.

The affine space CP? — {z = 0} will be identified with the (complex) zy-plane.
Define a polynomial f(z,y) as follows:

(3-2) flay) =2 —y* ~ 1.

Then in the zy-plane the torus (3.1) is given by f(x,y) = 0. This is actually a
punctured torus.

Let N’ be a tubular neighborhood of the punctured torus f = 0 in the zy-
plane with “constant thickness”:

(3-3) [f(z,y)| <9,

where § is a positive constant. Note that in the projective plane CP%, N’ is no
longer of constant thickness: it becomes thinner and thinner as it approaches
the point (1:0:0) at infinity.

f is a well-defined function on N’.

We introduce another well-defined function ¢ on N’ by setting as

(3.4) o(z,y) = yf(z,y)>.
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The punctured torus f = 0 and the z-axis (y = 0) intersect in the two points
x = =£1 (cf. (3.2)). Thus the divisor ¢ = 0 in N’ is a union of a punctured torus
and two disks Dy, Da, as shown in Figure (9).

A - %
; 7 D
/

Figure 9. The divisor ¢ =0

We attach two 2-handles H; and Hs to N’ along the boundaries of the 2-disks
D1, Ds so that ¢ : N’ — C extends to a well-defined function N'UH; UHy — C.
This is explained more precisely as follows. Let p; be the intersection point of
the disk D; and the punctured torus f = 0. Introduce local coordinates (s,t)
whose origin is p;. We assume that D; is locally defined by ¢t = 0, and f = 0 by
s = 0. In these coordinates, ¢ is locally given by

(3.5) ¢ = s°t.

Take a polydisk A? = {(0,7) € C?||o| < &,|7| < §"}, and glue A? to N’ by
setting

(3.6) o=s"1 1=3s".

Then the polydisk A? is attached to N’ as a 2-handle Hy, and ¢ : N’ — C
extends to N’ U H; — C. The 2-disk D; together with the core disk (7 = 0) of
the 2-handle H; make a 2-sphere S2.

We perform the same construction at the intersection point ps of the other
disk D5 and the punctured torus f = 0, that is, we attach a 2-handle Hy to N’
using another polydisk A2. Then the 2-disk Ds closes up to a 2-sphere.

We have attached two 2-handles Hy, Hs to N'. Let us denote the resulting
manifold by N”:

(3.7) N" = N"UH; UH,.
Then the map ¢ : N’ — C extends to N — C. This extended map is denoted
again by ¢.

Observe that N is an open complex manifold, but no longer an open set in
(C2

We have almost finished the construction of a fibered neighborhood of the
singular fiber F“. But, at this stage, the singular fiber is a punctured torus
(rather than a torus) of multiplicity 2 stuck with two 2-spheres, and it only lacks
the point (1:0:0) € CP? to become F¥.
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A general fiber ¢ = k (k a non-zero constant) of ¢ : N” — C is obtained by
closing the surface N’ N {¢ = k} with two 2-disks, each being defined by 7 = k
in each polydisk A? (i.e., a disk parallel to the core of the 2-handle H; or Hs).
This general fiber is essentially a 2-fold branched covering of the punctured torus
f = 0 branched at the two points p; and ps. Over the point at infinity (1: 0 : 0)
the covering is unbranched, and the general fiber ¢ = k is a twice punctured
surface of genus two (twice punctured since it lacks two points over (1:0 : 0)).

Now we will look at a neighborhood of the point (1:0:0) more closely.

The affine space CP? — {x = 0} has complex coordinates (u,v), where

(3.8) u==, v=-=.

The origin of this coordinate system is the point (1 : 0 : 0). Since the polynomial
function f (defined on the zy-plane) is given in homogeneous coordinates by
flx:y:2)= (%)2 — (%)3 — 1, f is given in the uv-plane by the formula

(3.9) w2 —u30d —1=u3(u— v —u?)

which we denote by g(u,v). In the intersection N’ N uv-plane, the function ¢ is
equal to

(3.10) 6u,v) = =g(u,v)”.
From (3.3) we have that, on N’ N (a neighborhood of (1: 0 : 0)),
(3.11) lg(u,v)| < 0.

The function g(u,v) is not defined at the point (1 : 0 : 0). But the complex
curve g = 0 (& u —v3 — u3 = 0) is becoming tangent to the v-axis (u = 0) as it
approaches to (1 :0:0) and, in the neighborhood of (1: 0 : 0), the curve g =0
does not intersect neither the w-axis nor the v-axis. (Since the domain of the
function g(u,v) does not contain the origin (u,v) = (0,0), the curve g = 0 does
not contain this point either.) Since N’ becomes thinner and thinner near the
origin and it has ¢ = 0 as “core”, we have u # 0 and v # 0 on N’. See Figure
(10).

Figure 10. Situation near (1:0:0)

In order to extend the function g(u, v) over the point at infinity, (u,v) = (0,0),
we paste a new coordinate neighborhood U = {(£,7n)} to N’ by assuming that
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UN N’ = N'nN (a neighborhood of (1:0:0)) and by defining the pasting map
as follows:

(312) e=v, o YUl )

Recall that in the intersection of N’ and a small neighborhood of (u,v) =
(0,0), we have |g(u,v)| < ¢ and (u,v) = (0,0). Thus, in the same intersection,
u?(14g(u,v)) is close to 0, and /1 — (1 + g(u, v))u? in (3.12) may be considered
to be a well-defined complex number close to 1. The manifold N’ does not contain
the point (1 : 0 : 0) € CP?, but the coordinate neighborhood U contains this
point, namely, (¢, ) = (0,0).

Note that we do not regard U as an open set of CP?: we paste the two open
manifolds U and N, abstractly. In this pasting, N”, which was infinitely thin
near (1: 0 :0), recovers its finite thickness. Thus the pasting N” U U may be
considered to be a kind of blow up process.

We have that

1— (14 g(u,v))u?

(3.13) I = g(u,v)?

1—(1+u3(u—0v2—u3))u?

- e D 2
1—(u2+1-—2 g2

- g, v)?

_ v 2

- ug(u7v)

= yf(z,y)’

= ¢.

Thus, if we denote the manifold N” UU = N’ U H; U H, UU by N, then ¢
extends to a well-defined function on N, denoted by the same symbol ¢ : N — C.
From (3.13), we have

(3.14) o | U =n

The divisor ¢ = 0 in N is obtained from the divisor ¢ = 0 in N” (which was
a punctured torus of multiplicity 2 stuck with two 2-spheres) by capping off the
puncture with the 2-disk in U of multiplicity 2 defined by 7? = 0. Thus we have
obtained a torus of multiplicity 2 stuck with 2 spheres, that is, a singular fiber
of type F“ (see Figure (11)).

A general fiber of ¢ : N — C is obtained from a general fiber ¢ = ¢ (¢t a
non-zero constant) in N” (which was a twice punctured surface of genus 2 as we
remarked above) by capping off the punctures with two 2-disks in U defined by
n = £/t (see (3.13)). The resulting general fiber is a closed surface of genus 2.

Taking a small open disk D centered at 0 of C, and denoting ¢~*(D) again by
N, we have a holomorphic family of Riemann surfaces of genus 2, ¢ : N — D,
which has a unique singular fiber of type F“ over 0. The construction is now
complete.
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torus ———>

Figure 11. Divisor ¢ =0 in N

4. Perturbation of the projection ¢ : N — D

Recall that N = U U N” and N’ = N’ U H; U Hy. The attaching maps
of the 2-handles H;, Hy are automatically determined by the requirement that
the projection map ¢ : N’ — C should extend to N’ U H; U Hy — C. Thus
the main body of the information on the projection ¢ : N — C is contained in
¢ : UUN' — C. In what follows, we will study this part of the projection closely.

The projection ¢ is given on U U N’ as follows:

(4.1) ¢(z,y) = yf(r,y)®> on N’
¢(&mn) = n*  on U

We perturb ¢ : N’ — C to ¢ as follows:

(4.2) be(x,y) = (yf(z,y) — ) f(z,y)

where ¢ is the parameter of perturbation, and is a non-zero small real number.
Let us examine the divisor ¢ =0 on U U N'.
On N’, the divisor ¢ = 0 has two irreducible components:

(4.3) yf(x,y)—e=0 and f(x,y)=0.

These components do not intersect each other in N'.
On U, the perturbed map ¢.|U is automatically determined by ¢.|N':

(4.4) b = (yf(z,y)—e)f(z,y)
= (=g(u.v) = )g(u,v)
= —g(u.v) — eglu,v)
V- (tgwoe
_ €€ )
\/1 — (14 g(u,v))u?
= n(n—¢€).

= n

= n(n
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In the above, we used the fact that the /= in (4.4) is close to 1. Thus, in U,
the divisor ¢ = 0 consists approximately of the two (complex) lines n = 0 and
1 — £ = 0, which intersect transversely at the point (£,7) = (0,0).

Deforming the projection ¢ : N — C to ¢. : N’ — C necessarily changes the
attaching maps of the 2-handles Hy, Hs, because we require that the projection
¢c : N’ — C should extend on N’ U H; U Hs.

We look at the attaching map of a 2-handle more closely. Previously the
2-handle H; was attached by the pasting map (3.6). Now we attach it by the
following map:

(4.5) oc=s5"' T=(ts—e)s.

(Recall that the 2-handle H; is a polydisk A2 = {(o,7)||o] < &, |7| < "}
glued to N'.) Then the projection ¢.|N' is extended on the polydisk by setting
¢. = 7, and the component yf(z,y) — e = 0 of the divisor ¢.|N' = 0 is capped
off by the disk 7 = 0 in A?. The same thing happens in the other 2-handle Hy,
where the component yf(z,y) — € = 0 is capped off again to make a punctured
torus. The other component of f(z,y) = 0 was already a punctured torus. Thus,
if we denote the extended projection by the same symbol ¢, the divisor ¢, = 0
in N/ (:= N'"U. H; U Hs) is a union of two punctured tori. We denote the
perturbed manifold by N.(:= UUN/). Of course, if € = 0, the N, coincides with
the original manifold N: Ny = N. We are assuming, however, that ¢ > 0, and
in this case N, and N are diffeomorphic, but have different complex structures.

The divisor ¢ = 0 in N was a disjoint union of two punctured tori. In U, the
punctures are capped off by the two disks 7 = 0 and (approximately speaking)
17— €€ = 0. Thus the divisor ¢. = 0 in N, consists of two 2-tori intersecting each
other transversely at the point (£,7) = (0,0). This is the “central” singular fiber
of ¢c : Ne — D over 0.

We will now look for the other singular fibers of ¢.. For this purpose, we will
study the critical points of ¢.

We compute on N’.

Recall that

(4.6) b = (yf(z,y) —e)f(z,y)
= (W@ —y’—1)—e) (= —y* - 1).

Thus
9¢e

(4.7) 5 22(2y(z* —y® — 1) —¢)
and

Obe _ 2 3 2 3(,2 _ .3 2
(4.8) 8y7(x -y’ —1)" —6y°(z* —y° — 1) + 3ey”.
Solving 88(1; = 0 we have
(4.9) x=0 or xQ—yB—lzi.

2y

Substituting = 0 in 88(26 = 0 we have

(4.10) 7yS + 8% + 3ey? +1 =0,
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9,

while substituting 22 —y> — 1 = £ in ai;; = 0 we have

€2

4.11 — =0.

The latter is clearly impossible, for € > 0.
Therefore, every critical point is on the line x = 0.
If we put € = 0, then the equation (4.10) has six solutions y = —1, (1/2)

(1+ \/_) —/1/7, (1/297)(1 £ vV/=3). Among them, the three solutions
y = —1, (1/2)(1 4 /=3) satisfy ¢(0,y) = 0, while the solutions y = —{/1/7,
(1 /2\/_)(1:|:\/_) do not.

Now we look for new-born singular fibers. Since e is a sufficiently small positive
real number in this case, we look for three solutions y of (4.10) which are close
to —1, and (1/2)(1 £ +/-3).

Put € = 0.1. Solving 7y® + 832 + 0.3y? + 1 = 0 with Mathematica we obtain
six solutions

= —0.982582
= —0.540281

= 0.245133 — 0.452077v/—1
0.245133 + 0.452077+/—1
0.516298 — 0.866582v/—1
= 0.516298 + 0.8665821/—1.

(4.12)

oo QA Qe
|

Among them, the three solutions A, D, D are close to —1, (1/2)(1 + v/=3).
Thus we see that the critical points A, D, and D are on the new-born singular
fibers at the splitting of the original singular fiber F* (besides the singular fiber
¢ 1(0) which is a bouquet of two tori).

5. New-born singular fibers and their monodromies

It is well known that any family of genus two Riemann surfaces is hyperelliptic
in the sense that it is obtained by taking a double branched covering of a sphere
bundle along a branch locus which meets a general sphere-fiber in 6 points. In
the concrete situation which we are dealing with, we are very naturally led to
such a branched covering. In this section, we will explain this. Balke [2] explains
the appearance of the double branched covering in our situation more clearly.

In what follows, we will distinguish several complex planes C by the symbol
used for the variable in the plane, as in C;, C,, etc.

Since ¢, is equal to (y(2% —y® —1) —€)(z? —y> — 1), we may think of ¢.(x,y) :
C? — C; as the pull-back of

(5.1) Pe(X,y) = (WX —¢y* —1) —e)(X =3 —1): C* = C,

under the branched-covering map I : C2 — C? defined by Il(x,y) = (22,y) =
(X,y). The branch locus of II is the y-axis: X = 0.
In other words, we consider the following commutative diagram:
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ez %, ¢
nl lidentity

C? —— C;.
Let us prove that any fiber ff(:= {(X,y)[vc(X,y) = t}) of ¢ : C* — C; has
no singular points.
In fact, from

Ote
(5.2) (;ﬁ( =2y(X —y*—1)—e=0
we haveX—y3—1=ﬁ. Substituting this into
(5.3) wﬁ—(x 4y —1)(X —y® =1 X —y3-1 3y%) =0
: oy ~ X DX =y =D+ (X =y = 1) =9 (=3y7) =
we have the equation
€ € €
.4 = —_— 3_ _—— J— 2
(5:4) 0 = (5~ 8"y + (53
— (L2
(5;)

which is clearly impossible, because € # 0. Thus each fiber ff of the projection
1 is a smooth curve in the Xy-plane.

II: (C%a:,y) — (C%X’y) is a double branched covering branched along the y-axis.
Thus, if a fiber ff of 9. is tangent to the y-axis, the preimage Ff = II71(ff)
is a singular fiber of ¢. = 1. oIl. A point of f; tangent to the y-axis lifts to a
singular point of F¥. Since ff is always nonsingular, a singular fiber Ff occurs
only in this way. Thus, let us look for points of the fibers ff tangent to the
y-axis.

For this, we solve the equation

e
dy

Note that this is the same equation as (4.10). For ¢ = 0.1 this equation had
six roots, and among them the three roots denoted by A, D, D (see (4.12)) were
related to the new-born singular fibers of the splitting of F“.

For simplicity, we denote the values of 1. on these tangent points (0, A),
(0, D), and (0, D) by t(A), t(D), and t(D), respectively. The fibers ff(A), ff(D),
and f;@) of ¥, are non-singular, and are tangent to the y-axis at the above

(5.5) lx=0 = Ty® +8y> +3ey® + 1 =0.

tangency points. As is easily seen, these tangency points are double tangencies,
and they split into two points in corresponding nearby fibers, ff(A)H, ftE(D)-i-é’
and f;@)Jr s In other words, these nearby fibers intersect the y-axis in two points

which are close to the corresponding tangency points.

The tangency points (0, 4), (0, D), (0, D) lift (under II) to the nodes on the
singular fibers Fte(A), Ff(D), F:(B). Short arcs aa, ap, a5 in the nearby fibers,
fte( A)+80 fte( D)6 f;@) s respectively, joining the two “split” intersection points
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FE

H(D)+6" F:(B)M, corresponding to

will lift to the vanishing cycles in F; te( A)te)
the nodes.
Thus, our first task will be to draw these short arcs, a4, ap and ag, on the

fibers ff(A)H, ff(D)+5 and f;@Hé, respectively, and our second task will be to
move each of these fibers along a curve on the “base space” C; to the common
reference fiber f over the base point o, and then to see the final positions of the
translated arcs, o%, a9, and a%, on the reference fiber ff . From this last piece
of information, we will see the global monodromy associated with the new-born
singular fibers, Fte(A), Fte(D), and Fte(ﬁ), at the splitting of the original singular
fiber F*.

Our first task encounters a little unexpected complication.

To explain this, we consider the projection po : (C%Xy) — C, of the Xy-
plane onto the y-axis, defined by p2(X,y) = y, and represent each fiber ff as a
double branched covering over the y-axis. The projection of this double branched
covering is the restriction of the projection ps:

(5.6) palff: ff = Cy

This makes sense, because the equation 1. = ¢ which gives the fiber ff is
(5.7) WX -y~ 1) —(X —y*—1) =t

(see (5.1)), or, equivalently

(5.8) yX2— 2t 2y + )X+ (VT + 2 e +y+e—1)=0

This is a quadratic equation for X, provided that y # 0. Thus, given a generic
point y # 0, there are two simple roots X; and X5 of the equation, yielding two
points (X1,y) and (X2,y) on ff projected to y under ps. This means that the
fiber ff spreads over the y-axis as a double branched covering.

The case when y = 0 seems to cause a problem, for then the equation (5.8)
becomes linear. But what we really want to know is not f; itself but a fiber
of ¢ : N. — C;. And, near the point y = 0, the fiber ¢. = ¢t is “absorbed”
into the 2-handles attached to N’, in such a way that the intersection of the
fiber and each attached 2-handle is a 2-disk parallel to the core of the handle.
Therefore, near the point y = 0, the topology of the fiber ff or that of the fiber
of ¢ : No = C; does not suffer so big a change. So we may think of ff as a
“double branched cover” of the y-axis.

The branch locus of the branched covering ps|ff : ff — C, is found by solving
the equation A = 0, where A is the discriminant of the quadratic equation (5.8).

In fact,

(5.9) A = 2y+2y+e’—dyly"+2y + ey’ +y+e—t)
€2 + 4dty.

Thus, for ¢ # 0, the branch locus is a single point on the y-axis

62

5.10 -
(5.10) y=-7
Since the fiber ff is a double branched covering of the y-axis branched at this
point, ff is diffeomorphic to the 2-plane. If it is compactified by adding oo,

the compactified fiber ff is a 2-sphere. The general fiber of ¢. : No — C; is
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obtained by taking the double branched covering (under II : C(, ,y — C(x ) of
the 2-sphere ff branched at certain six points.

Remark. Recall that the double branched covering II : C, )y — C(x
branches along the y-axis X = 0. Putting X = 0 in (5.8), we get a 7th de-
gree equation for y, which has seven roots if ¢ is generic. But one root is related
to the part absorbed into the 2-handle, and may be neglected. Taking the double
covering of the 2-sphere ff branched at the remaining six roots, we get a closed
surface of genus 2, that is Fy°. The details are left to the reader.

The unexpected phenomenon. The unexpected phenomenon alluded to above
is the following: Let us for instance consider the fiber fte( D)+6° This fiber has two
intersection points with the y-axis, say (0, D1) and (0, D3), near (0, D). ((0, D) is
the tangent point of the fiber f;py to the y-axis.) The unexpected phenomenon
is that these split points (0, D1) and (0, D2) are on the different sheets of the
double branched covering p2|ff(D)+5 : ftE(D)-‘r(S — C,. (Here we talk about the
sheets of the double branched covering ps| ff( D)+5° In the concrete case below
where e = 0.1 and 6 = 0.0001, the sheets are defined, for example, by making the
“slit” along the lifted curve of the half-line whose terminal point is the branch
locus (5.13) and which is parallel to the imaginary axis of the y-plane C,.) At
first the author could not believe this, because the tangency point (0, D) cer-
tainly lies on a sheet of the branched covering. If the deviation § of the fiber
ff( D)+6 from ff( D) is very small, it seemed reasonable to expect that the split
points (0, D1) and (0, D3), both of which were born from (0, D), should be on
the same sheet.

However, the points (0, D1) and (0, D2) are already on different sheets, even
if § takes a quite small value. To see this, let us make a numerical calculation,
setting e = 0.1 and 6 = 0.0001.

For ¢ = 0.1, we have already calculated

D =0.516298 — 0.866582v/—1,
and
#(D) = (0, D) = —0.00126867 — 0.00212911v/—1.

To find Dy and D for 6 = 0.0001, we solve the following equation:
(5.11) Y +2y* +0.1y° + y + 0.1 = ¢(D) + 0.0001
Among the roots, there are two which are close to D, namely

Dy =0.513563 — 0.864834v—1, Dy = 0.519003 — 0.868327+/—1.

The points (0, D7) and (0, D) are two intersection points of ftE(D)+0.0001 and
the y-axis. Let c(s) be a line segment on the y-axis C, joining Dy and Ds and
parametrised by s (0 < s < 1). More explicitly, c¢(s) is given by
(5.12) ¢(s)=(1—s)D1+ sDs

= (1 — 5)(0.513563 — 0.864834y/—1) + 5(0.519003 — 0.868327/—1)
The branch locus of the double branched covering po |ft6(D)+0.0001 : ff(D)+0.0001 —
C, is calculated from (5.10) by setting e = 0.1 and ¢ = ¢(D)+0.0001. The result
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is
(5.13) 0.495292 — 0.902334v/—1

Note that this branch locus is not on the segment ¢(s), (0 <s <1).
Now, in order to check whether or not (0, D1) and (0, D3) are on the same sheet
of the double covering pa|f{ )1 ¢.0001> let us lift this segment ¢(s) (0 < s < 1) to

ftE(D)+O.0001 under the double covering map p2|ft6(D)+O.0001 : frpy+0.0001 =~ Cy.
If ¢(s) lifts to two arcs, and one of them joins (0, Dy) and (0, D3), then (0, D;)
and (0, D2) are on the same sheet. But if (0, D1) and (0, D2) belong to different
components of the lifted arcs, then the two points (0, D7) and (0,Ds) are on
different sheets. To lift the segment c(s), we successively solve the following
quadratic equations for X, by putting y = ¢(0.1¢), ¢ =0,1,...,10 (cf. equation

(5.8)):
(5.14) yX? — (2y* + 2y +0.1)X + (y" +2y* + 0.1y +y +0.1) = (D) + 0.0001

Let X1 (s) and X2(s) denote the two roots of (5.14) with y = ¢(s). In Figure (12),
we plot the lines {(R(X1(s)),s)}o<s<1 and {(R(X2(s)),s)} o<s<1i- These lines
should be conceptually the same as the lifted arcs.

[ ] 108
[ ] [ ]
[ ] 8 [ ]
[ ] [ ]
[ ] 6 [ ]
[ ] [ ]
[ ] 4 [ ]
[ ] [ ]
[ ] 2 [ ]
[ ] [ ]
-0.015 -0.01 -0.005 0.005 0.01 0.015e

Figure 12. Lines {(R(X1(s)),s)}o<s<1 and {(R(X2(s)),s)}o<s<1

Each line of Figure (12) has a terminal point on (X ) = 0 which corresponds
to the point (0, Dy) or (0, D3). Thus we see that one of the lifted arcs of ¢(s) has
(0, D1) as a terminal point, and the other has (0, D3). This implies that (0, D1)
and (0, Dy) are on different sheets of the branched covering ps| fte( D)-+0.0001°

The author has not yet clearly seen the geometric process by which the two
points (0, D) and (0, D2), which were simultaneously born from the same tan-
gency point (0, D), move so fast onto the different sheets of the double branched
covering p2|ff(D)+0.0001 : ff(D)JrO'OOOl — C,. But this is surely related to the fact
that the tangency point (0, D) of ff(D) to the y-axis C, and the branch point

(Xp, —ﬁ;)) of the double branched covering p2|f§(D) : fipy — Cy are very
close to each other.
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In fact, we have that, for e = 0.1,

(5.15) D = 0.516298 — 0.866582v/—1 and

- = 0.516338 — 0.866530v/—1.

K. Ahara personally communicated to the author that, if we take a very small
value of § such as § = 0.00000001, then the corresponding points (0, D;) and
(0, D2) are on the same sheet of the branched covering p2|ff(D)+5 as we expected.
Then the arguments below must be quite different, but the final conclusion on the
splitting of the singular fiber F* should be the same. The author would like to
see how the same conclusion is obtained through different geometric arguments,
which will be left to the interested readers.

Arcs joining the split points. Now we work with the original value § =
0.0001, and want to connect the points (0,D;) and (0, D2) by an arc ap on
the fiber ft€(D)+0.0001' The projected image p2(ap) on C, cannot be a segment,
because as we saw above the two points are not on the same sheet of the double
branched covering pg|ft€(D)+0'0001 : fupy+0.0000 = C,. We can take instead
the line D1bpDy of Figure (13) having a bend at the point bp, where bp is
the branch locus of the double branched covering fte( D)+0.0001 Cy, that is,
bp = 0.495292 —0.902334y/—1 (see (5.13)) . Then we can construct a connecting
arc ap on ff(D)+0.0001 as the union of the lifts of D1bp and bp Do, which contain
(0, D7) and (0, D3), respectively. Thus obviously pa(ap) = D1bp D5 holds.

Similarly, we can draw an arc a4 on g( A)—s (resp._an arc ap on ftE(B)Jr 5)
connecting (0, A1) and (0, A3) (resp. (0,D1) and (0,D2)). Here (0,A;) and
(0, A) are the two intersection points of ff( A)—s and the y-axis into which the
tangency point (0, A) splits. The explanation is similar for the points (0, Dy)
and (0,D3). (Note that we take ff(a)—s instead of ff 4 5. This is for later
convenience.)

D,

S

Dy
ba Aq As

bp

Figure 13. The images of the connecting arcs, pa(aa), p2(ap) and pa(ag).
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Observation of local movements of the connecting arcs. We continue
the explanation taking fte( D)+0.0001 35 @ typical example. We drew an arc ap
on the fiber ff(D)JrO'OOOl connecting (0,D;) and (0, D2). Next we will move
this fiber ftE(D)+0.0001 around ff(D), and will see the movement of the arc ap
inside ftE(D)JrO.OOOl' For this purpose, we put d(s) = 0.0001 exp(2wy/—1s), where
0 < s <1, and solve the equation

(5.16) Y+ 2y +0.1y° +y + 0.1 = t(D) + 5(s).

Let D1(s) and Da2(s) be the two solutions of (5.16) nearest to D = 0.516298 —
0.8665621/—1. Changing the parameter s from 0 to 1, we observe the movements
of Dy(s) and Ds(s) in C,.

Also, we observe the movement of the branch locus bp(s) of the double
branched covering p2|ff(D)+5(s) : ft6(D)+(5(s) — C,. In fact, putting ¢ = 0.1

and t = (D) + 0.0001 exp(2my/—1s) in (5.10), we have

0.01
4(t(D) + 0.0001 exp(27v/—15))

(5.17) bp(s) = —

We have calculated these movements with Mathematica. We will describe the
results conceptually. The two points Di(s) and Ds(s) are in opposite positions
on a circle whose center is D and whose radius is about 0.003. As the parameter
s changes from 0 to 1, the points D1 (s) and Dz(s) move on this circle starting
from D1(0) = Dy, and D2(0) = D, through 180° counterclockwise until they
exchange their positions, D1(1) = Dy and D2(1) = D;.

The movement of bp(s) is as follows: The point bp(s) starts from bp(0) =
bp = 0.495292 — 0.902334+/—1 (see (5.13)) and goes around once counterclock-
wise on a circle whose center is D and whose radius is about 0.045. Note that
the radius of this circle is more than ten times that of the circle on which are
Dy and D lie.

Figure (14) shows these movements conceptually, neglecting the precise pro-
portion of the figures.

Figure 14. Movements of D1(s), Da(s) and bp(s)
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From Figure (14), we can also see the movement of the line with a bend
D1(8)bp(s)Da(s), too. Tracing this movement from above in ff(D)M(S) via the
branched covering map p2|f§(D)+5(8) : ff(D)M(S) — C,, we can see the movement
of the connecting arc ap: it rotates 180° counterclockwise inside a disk neigh-
borhood of itself until it exchanges its terminal points (0, D) and (0, D2) (see

Figure (15)).

Do Do
bD bD
= = D
D1
D1 Do

Figure 15. Movement of ap

Lifting ap further to the fiber Ft€(D)+5 under the branched covering H|Ft€(D)+5 :
Ff( Dy+s ff( D)+s0 WE obtain the vanishing cycle corresponding to the node of
the singular fiber F; tf( D)’ (Recall the commutative diagram at the beginning of
§5.) And by lifting the movement of the connecting arc ap to the fiber Fte( D)+6>
we obtain the right-handed Dehn twist along the vanishing cycle.

By similar arguments we can see that, if we move the fiber Fy ) s (or FE@H 5)

around the singular fiber F, ta) (or F¢—), then the corresponding monodromy is

t(D)
the right-hand Dehn twist along the vanishing cycle which is obtained as the lift
of as (or ay) under the double branched covering H|Ft6( A5 Ftﬁ( A)—s ff( A)—s
(or Fy 5 s * Fypy s = Tipy1s)-

6. Positions of the vanishing cycles on the reference fiber

We come to the second task mentioned in §5. We choose a base point ¢y on
C; as
(6.1) to = —0.001

and consider the fiber Fy, as the reference fiber. Take § = 0.0001 as before. We
draw the following three paths on C; which connect t(A) — 4§, t(D) +6, t(D) + 9,
and tg, respectively:

(6.2)  la(s) = (1— 28)(E(A) — §) + 0.002s 0<s< %)

— 0.001 exp(mv/—T(2s — 1)) (% <s<1)
(6.3)  Ip(s) = (1 — s)(t(D) + ) — 0.001s 0<s<1)
(6.4) I5(s) = (1 — s)(¢(D) + 6) — 0.001s (0<s<1)
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These curves are conceptually shown in Figure (16). Using this figure, it will
become self-evident why we have chosen t(A) — ¢ instead of t(A4) 4 § as a generic
locus near the singular locus t(A).

Figure 16. Paths [4, Ip, and I

Putting X = 0, e = 0.1 in (5.8) and moving the parameter ¢t along the path
Ip, from ¢(D) + 0 to ty, we successively solve the equation (5.8) for y with
Mathematica, and observe the movements of Dy, D» in C,. Also we observe the
movement of bp using the formula (5.10). Then we see how the line D1bp Dy with
a bend moves and to what position it finally comes. Figure (17) (conceptually)
shows the final position, which is nothing but the image p2(a%) of the arc af,
under the projection pa|ff : ff — C,. Note that here a9, denotes the final
position in ff of the arc ap. The branch locus bp has come to the position by =

2.5. This is the branch locus of the double branched covering po| ff, : ff, — C,.

bo =25

DY
Figure 17. The final position of D1bp D3 in C,

Similarly, using Mathematica, we can calculate how the arcs ap (in ft(ﬁ) n s)
and a4 (in fya)—s) move as we change the parameter ¢ along the paths /5 and

la from t(D) 4 6 to to and from t(A) — 6 to to, respectively, and find their final
positions a% and o in ff.

Figure (18) shows the projected images in C, of the arcs a%, ol

= and a4
under the projection py : ff — C,. These are three lines with a bend which

meet at the point bg.
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Incidentally, the dotted half line in this figure (denoted by a) corresponds
to the vanishing cycle of the central fiber F§ of type II. This is explained as
follows. The point by is the branch locus of the double branched covering ps :
If, — Cy. If we let t approach from tg to 0, from the negative side, the branch

point b(= —¢;) of the branched covering ps : ff — C, moves along the dotted
line a in the positive direction. And if we imagine the extreme case where
t = 0, the branch locus b would disappear from our eyesight. Then the double
covering po : f§ — C, is no longer a branched covering but just a trivial covering
consisting of two sheets of planes. The compactification fg of the two planes is
a bouquet of two 2-spheres. We obtain the fiber Fj by further taking a double
branched cover of these 2-spheres (each branched along 3 points together with
the point o). The result is a bouquet of two tori, which is nothing but F§. The
arc oo connecting ¢y and oo (in the compactified Cy) lifts to a simple closed
curve vy in f}o, and is further doubly covered by a simple closed curve 7 in Ff .
When t moves from tg to 0, the curve 4 shrinks to the node of Fjj. Thus 7 is
the vanishing cycle for the singular point of F{j. This explains the relationship
of as and the vanishing cycle for Fj.

Figure 18. The three lines with a bend, p2(a%), p2(a?), pg(a%)
and oo

Recall that the compactification f;eo of ff is a 2-sphere, and that the fiber

Fy of genus two is obtained by taking a double branched cover of f}o branched
at certain six points. In fact, the six branch points are solutions to the equation
(5.8) for y with X =0, e = 0.1 and ¢t = tp = —0.001. Using Mathematica, we
calculate the following seven solutions:

AY = —1.00304

AY = —0.960718

DY =0.501424 — 0.869172/—1
D) = 0.501424 + 0.869172/—1
DY = 0.531010 — 0.864630/—1

Dy = 0.531010 + 0.864630/— 1
extra = —0.101106 = —e¢
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The solution denoted by “extra” is the “negligible” solution (see the Remark
in §5). The remaining six solutions Ay, A3, DY, E(l), DS, ﬁg are the six branch
points. They also coincide with (the ps-image of) the terminal points of the
three arcs o, a%, o%. It will be evident from the notation which points are
the terminal points of which arc. In what follows, we will use the same notation
for the terminal points (in ff ) and their ps-images (in C,).

The 2-sphere f;eo is divided into two hemispheres by the simple closed curve
~ which is the lift of the dotted line ao (of Figure (18)).

LEMMA (6.5). The points AY, DY, E(l) are on one hemisphere bounded by -y,

and A9, DS, Eg are on the other hemisphere.

Proof. 1If we move t from ty to 0 then, as we saw above, the branch point b
moves from by to co on the line ay and finally disappears. We can see, using
Mathematica, that the points A¢, DY, E(l) meanwhile converge to the solutions

=
2 2
of the equation y3 + 1 = 0, which is one factor of the equation (5.7) (with X = 0
and t = 0), and the points A9, DS, 5(2), and the “extra” one, converge to the
solutions of the other factor y* +y + € = 0 of (5.7). During the movements,
these points do not cross the dotted line a. The two factors of (5.7) in the
extreme case t = 0 correspond to the two sheets of the trivial double covering
p2 @ f5 — C,, which is compactified to a bouquet of two 2-spheres fg. The
three points {AY, D?,ﬁ?} and the four points {A9, Dg,ﬁg, “extra”} belong to
the different sheets of f§, and thus lie on different components of the bouquet of
two 2-spheres fg . On the other hand, as ¢ moves from ¢, to 0, the simple closed
curve 7 is pinched to a point and f;eo becomes the bouquet of two 2-spheres fg .

Thus, in f;ﬁo the three points and the four points lie on different sides of v. O

Regard Figure (18) as a picture drawn on (@y Taking a double branched cover
of @y branched at the two points {bgy, 00}, we obtain f:fo. The picture on Cy is
doubly covered by the picture on f;eo of the three arcs a4, ap, o and the simple
closed curve 7. By Lemma (6.5), the picture must be as shown in Figure (19).

The reference fiber Fy is obtained by taking a double branched cover of f;ﬁo

branched at the six points { A}, A9, DY, DY, 3(1), Eg}. To see this, we continuously
change the picture of the three arcs and « as shown in Figure (20). Note that in
the changed picture, we preserve the same notations A9, A9, etc., as before.

Cut open the sphere ff along the three segments Af A9, 5(1)D(1), Dgﬁg. The
result is a 2-disk with two holes. See Figure (21).

We deform the disk with two holes into a surface as shown in Figure (22).

Take two copies of the deformed surface of Figure (22), and glue them together
along their boundaries. We then obtain a closed surface of genus two, which may
be considered as the reference fiber Fy, . See Figure (23).

The deformed surface contains the arcs a4, ap, ap and an arc which is v cut
open to a segment (we denote this arc by v again). When gluing the two copies of
the deformed surface, we at the same time glue the copies of these arcs to obtain
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D3

Figure 20. Continuously changed picture

2
ol TIN5 4y

oo

Figure 21. The disk with two holes

on Fy four simple closed curves f1, 82, 83, and B4, which doubly cover ap, v,
a4 and ap, respectively. (The curve f; is nothing but 4.) See Figure (23). By
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Figure 22. The deformed surface

Figure 23. The closed surface F

construction, these curves are the vanishing cycles for the singular fibers F’ te( Dy’

L, Ff( A Fte(ﬁ), respectively.

On the parameter plane C;, the paths Ip, %50, 4 and I arrive at the points
to in this cyclic order (counterclockwise). See Figure (16). Since the vanishing
cycle near each singular fiber is carried to the reference fiber F along these
paths, composing the right-handed Dehn twists about the simple closed curves

Bla 62) 637 54

in this cyclic order, we obtain the monodromy w around the singular fiber F'.
This completes the proof of Theorem (2.1).

7. On the proof of Theorem (2.6)

Our original proof of Theorem (2.6) followed a line similar to the one used for
Theorem (2.1), and it also used computer calculations. Ito [8] extended our proof
to the general case of arbitrary genus. His proof does not depend on the use of
computers. As an application, he constructed a Lefchetz fibration CP?#(4g +

E))(C_P2 — 82 of genus g, for each g > 1, which extends our previous construction
in the case of genus two [10]. His Lefschetz fibration has the total monodromy
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(Ci1Ca ... Cog+1Cags1---C2€1)? = 1. Since Ito’s paper [8] is now available, the
author would like to refer the reader to that paper for the detailed argument.
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ABSTRACT. We consider two families of hyperbolic polyhedra. With one
set of face pairings, these polyhedra give the convex core of certain quasi-
Fuchsian punctured torus groups. With additional face pairings, they are
related to hyperbolic cone manifolds with singularities over certain links.
For both families we derive formulae relating the dihedral angles, side
lengths and the volume of the polyhedron.

1. Introduction

A Kleinian group G is a discrete subgroup of PSL(2,C), the isometry group
of hyperbolic space H?. Such a group also acts by conformal automorphisms on
the Riemann sphere C = OH3. The action on C decomposes into the reqular set
Q(G) on which the action is properly discontinuous, and the limit set A(G) on
which the action is minimal, that is every orbit is dense. The limit set A(G) is
the set of accumulation points of the fixed points of G. A Kleinian group G is
Fuchsian if A(G) is a round circle.

Let S be an oriented surface of negative Euler characteristic, homeomorphic to
a closed surface with at most a finite number of punctures. A finitely generated
Kleinian group G is quasi-Fuchsian if H? /G is homeomorphic to the product of
such a surface with the open interval (0, 1), and if Q(G) has exactly two simply
connected G-invariant components Q1 and Q™. Equivalently, G = 71(S) and
A(G) is topological circle. In this situation, the quotients Q' /G and Q= /G are
Riemann surfaces, both homeomorphic to S.

Let M = H?/G be the 3-manifold uniformized by the Kleinian group G. The
convex core C/G of M is the smallest closed convex set containing all closed
geodesics of M. This means that C can be defined in the universal cover H? as
the hyperbolic convez hull of the limit set A(G), also called the Nielsen region
of G. If G is quasi-Fuchsian, then A€ has exactly two components 9CT and
OC~ which “face” the components Q% and Q~ of . The quotients €T /G and
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9€~ /G are homeomorphic to Q1 /G and Q™ /G, respectively, and, hence, to S.
In the case where G is Fuchsian, € is contained in a single flat plane.

The convex hull boundary 9C is made up of convex pieces of flat hyperbolic
planes which meet along a disjoint set of complete geodesics called pleating or
bending lines (see [2] and [3] for more discussions).

It is well known that a Kleinian group is geometrically finite if and only if
its convex core has finite volume. Moreover, it is also well known that finitely
generated quasi-Fuchsian groups are geometrically finite.

In the present paper we are interested in the case where S is homeomorphic
to a punctured torus. So, G = (X,Y | [X,Y] is parabolic), where X and Y
are isometries of H3. We will be interested in cases where certain elements of
(X,Y) are purely hyperbolic. An isometry X of H? is called purely hyperbolic
if its associated matrix X in SL(2,C) has trace tr(X) that is real and either
greater than 2 or less than —2. Geometrically such an isometry is a hyperbolic
translation along a geodesic with no twisting.

We find hyperbolic polyhedra which are fundamental domains for the con-
vex cores of certain quasi-Fuchsian punctured torus groups. In particular, we
consider the two cases of punctured torus groups (X,Y") for which:

(i) the isometries X and Y are purely hyperbolic;
(ii) the isometries XY and XY ! are purely hyperbolic.

These quasi-Fuchsian punctured torus groups are such that the pleating locus
on each component of the convex hull boundary is a simple closed geodesic and
either these geodesics are a pair of neighbours or else they are next-but-one
neighbours. For each of these two types of group we find a polyhedron and face
pairings so that identifying the faces of the polyhedron gives the convex core
of the quasi-Fuchsian manifold (see Sections 2.1 and 3.1). These polyhedra will
have all their dihedral angles equal to 7/2 except for the dihedral angles along
the pleating curves. We demonstrate two approaches to find relations between
the lengths of these curves and the dihedral angles. In Sections 2.2 and 3.2
we use the bending formulae due to Parker and Series [12]. In Sections 2.3
and 3.3 we derive these and other formulae (which will be necessary to obtain
expressions for volumes) from the Gram matrix of the polyhedra. We then go
to use Schlafli’s formula (see [1, 9, 14]) to obtain volumes of these polyhedra in
Sections 2.4 and 3.4. In particular, we give expressions for volumes in terms of
the Lobachevsky function A(x), which is traditionally used to express volumes
of hyperbolic 3-polyhedra and 3-manifolds. In Sections 2.5 and 3.5 we discuss
links and cone-manifolds naturally associated with our polyhedra. For the first
case the singular set of the cone manifold is the Borromean rings, a well known
three component link, and for the second case it is a six-component link.

2. The case where X and Y are purely hyperbolic

(2.1) Constructing the polyhedron. Let matrices X, Y € SL(2,C),
tr[X,Y] = —2, represent isometries X and Y of H® which generate a punc-
tured torus group. For the rest of this section we suppose that tr(X) and tr(Y)
are both real and greater than 2. (We remark that one may choose the signs of
the traces of X and Y when lifting from PSL(2,C) to SL(2,C).) We define the
multiplier of a matrix M, A(M) by tr(M) = 2cosh A(M) (see [12] for details).



ON HYPERBOLIC POLYHEDRA 359

We denote = = cosh A(X) = 3tr(X) and y = cosh A(Y) = $tr(Y). Thus, z and
y are real and greater than 1 in our case. In Theorem 6.3 of [12] it is shown that
either (X,Y") is Fuchsian or else the axes of X and Y are the pleating loci of the

convex hull boundary of (X,Y). Specifically this theorem states that

PROPOSITION (2.1.1) ([12], Theorem 6.3). Suppose that (X,Y) is a punctured
torus group with x = coshA(X) > 1 and y = cosh A(Y) > 1.

(i) If 2% + y? < 2%y? then (X,Y) is Fuchsian.

(ii) If 2% +y% > 2%y? then (X,Y) is quasi-Fuchsian and the azes of X and Y
are the pleating loci.

From now on we suppose that z2 + y? > 22y?, that is the non-Fuchsian case.

We want to construct a fundamental polyhedron for the convex hull of the limit
set (Nielsen region) of (X,Y). This will be P = P(a, 8). Since X, YX1Y~!
and their product YX 1Y !X all have real trace, the corresponding isometries
X and YX 'Y ! generate a Fuchsian group. Similarly, since Y, X 'YX
and their product YX 1Y !X all have real trace, the corresponding isometries
Y and X 'Y !X also generate a Fuchsian group.

e Let I1; denote the plane preserved by the group (X, Y X 1Y ~1);

e Let IT_ denote the plane preserved by the group (Y, X 1Y ~1X).
It will follow from our construction that II; and II_ are support planes for the
convex hull boundary of (X,Y). In [12] this was shown using a different method.

We define geodesics vx, vy and 7y by:

e 7x is the axis of X and vy is the axis of Y

e g is the common perpendicular of yx and vy .
A halfturn is an elliptic isometry of order 2 fixing a geodesic pointwise. We
define halfturns Iy, I; and Iy as follows.

e Let Iy to be the halfturn fixing ~.

e Define I; by I; = IpX. Then I; is a halfturn fixing a geodesic ;.

e Define Iy by Is = Y. Then I, is a halfturn fixing a geodesic v,.
Then we have

InXIyp=X"1, LXI =X, LXL =YX 'Y 1
LYl = Y_l, LY = X_1Y_1X, LY, = Yy-1.

LEMMA (2.1.2). The halfturn Iy preserves the plane 114 and the halfturn Iy
preserves the plane I1_.

Proof. Since I XI, = YX 'Y 1 it is clear that I, swaps the axes of X and
Y XY~ These geodesics span the plane II, and so I preserves this plane.
Similarly, since I; swaps the axes of Y and X 'Y X, it preserves II_. O

We now define reflections Ry and Ry, in planes Il and IIj, as follows:
e Let Ry be reflection in the plane Iy containing =y and vx.
e Let R{ be reflection in the plane IIj, containing 7o and 7y .
Then we have
RoXRo=X, R)YR),=Y.

LEMMA (2.1.3). The plane Ily is orthogonal to vy and the plane 11} is or-
thogonal to vx .
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Proof. In order to show this, we calculate the complex distance §(X,Y) be-
tween vx and 7y and show that cosh§(X,Y") is purely imaginary.

We find cosh §(X,Y") by constructing a right angled hexagon and using Fenchel’s
generalised cosine rule (see [4]). Doing this we obtain the following formula
(which is (1.3) of [12]).
cosh A(XY) — cosh A(X) cosh A\(Y)

sinh A(X) sinh A(Y)
From the well known expression for the trace of the commutator
(2.1.5)  tr[X, Y] = tr*(X) + tr?(Y) + tr*(XY) — tr(X) tr(Y) tr(XY) — 2,
we see that the traces of X, Y, XY satisfy the Markov equation [12]:

(2.1.4) coshd(X,Y) =

(2.1.6) tr?(X) + tr?(Y) + tr2(XY) = tr(X) tr(Y) tr(XY).
Therefore

(2.1.7) 2% + 4% 4 cosh? \(XY) = 2y cosh A(XY).
Hence

hA(XY) — zy)? 22y? — 2% —y?

B 5(x,¥) = (& = <0

oM =T ) @

where we have used x > 1, y > 1 and 22 + y? > 2232, Thus the imaginary part
of the complex distance between the axes of X and Y is 7/2 (it also can be seen
by the arguments of [7]). O

A consequence of this lemma is
ROR6 =1y, RoYRy= Yﬁl, RéXR, = X1
Moreover, define

e Ry = R\ X, a reflection fixing a plane II; and
e Ry =Y Ry, a reflection fixing a plane Ils.

Then vx is the common orthogonal of II; and IIj,. The distance between these
planes is A(X), the multiplier of X. Also II; contains vy and ;. Similarly, vy is
the common orthogonal of Iy and Ilp; the distance between them is A\(Y); and
I, contains vy and ~s.

LEMMA (2.1.8). The planes 1y and Iy are each orthogonal to both of the
planes 111 and I1_.

Proof. We have
Ri(X)Ry = (R)X)X(X 'R)) = RoXRy = X .

Also
R(YX 'Y ' X)R,

(RyX)YX 'YX (X'R))
(Ro X R)(RoY Ry)(Ro X~ Ro)(RoY ™" Ry)
= Xy 'x'v
(YXty—tx)t
Therefore R; preserves the plane IT, preserved by X and Y X 1Y L
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Y - Yy

Figure 2.1. The polyhedron P'(«, ).

Moreover
RiYV)Ry = (RyX)Y (X 'RY)) = X'V X = (X 'y 1x)~L.

Therefore R, swaps the axes of Y and X ~'Y X, which both lie in II_. Therefore
R, also preserves the plane II_ preserved by Y and X 'Y~ 'X. Since II; is
distinct from II; and II_ we see that it must be orthogonal to them both.

A similar argument shows Il5 is orthogonal to both 11, and II_. O

Summarising we have:

The planes IIy and IIj; meet at right angles along ~;

the planes 1y and II; meet at right angles along v1;

the planes IIj, and II; meet at right angles along 7s;

the planes IT; and IIp meet along yx at dihedral angle say «/2;
the planes II_ and II}) meet along vy at dihedral angle say 3/2;
the planes IT; and IIj, meet at right angles;

the planes I1_ and Il meet at right angles;

the planes I and IT; meet at right angles;

the planes I1_ and II; meet at right angles;

the planes IT; and II; meet at right angles;

the planes II_ and Il meet at right angles.

Therefore, the intersection of halfspaces bounded by I, TI_, Iy, IIj, II; and
I, is a polyhedron, which we denote by P’ = P’(«, 3), with six faces and eleven
edges, having one vertex at infinity (ideal vertex) (see Figure 2.1). We remark
that the polyhedron P'(a, 3) presented in Figure 2.1 can be regarded as a de-
generate Lambert cube L£(a/2,3/2,0).

In this polyhedron, and all subsequent polyhedra we shall consider, the 3-
valent vertices are interior points of H? and the 4-valent vertices are ideal vertices
on OH®. We denote these vertices by the symbol co in the figures.

We are now in a position to construct the polyhedron P = P(«, ). The
polyhedron P will be the common intersection of halfspaces bounded by II;,
II_, II;, I and their images under Iy. This consists of four copies of P'(a, )
glued together along the planes IIy and IIj,. For i = 1,2 let F;, F;;2 be the faces
of P contained in II;, I (II;) respectively. We claim that P has the combinatorial
structure shown in Figure 2.2. In particular:
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o

8
8

B l,(ID)
Figure 2.2. The polyhedron P(«, 3).

PROPOSITION (2.1.9). The polyhedron P has eight vertices. Four of these
vertices are the fized points of the parabolic maps YX 'Y 71X, X 'Y~ 1XY,
Y IXYX ™ and XYX 'Y 1. The other four are the intersection of the azes
of the following pairs of transformations X, Iy; X, Iglily; Y, I; Y, Iyla1y.
Every edge with (at least) one ideal endpoint has dihedral angle /2.

Proof. We will sketch the reason for this to be true. For example, I1; intersects
II, along the geodesic with one endpoint the fixed point of Y X 'Y !X and
passing through the intersection of the axes of X and I;. We have already
seen these two planes intersect orthogonally. Likewise, II; intersects II_ along
the geodesic with endpoints the fixed points of Y X 'Y ~1X and X 'Y 1 XY.
Again, we have seen that these planes intersect orthogonally. The other edges
and vertices may be found similarly. O

PROPOSITION (2.1.10). The polyhedron P with the side pairings X : F; — F3
andY : Fy — F5 is a fundamental polyhedron for the convex core of the group
(X,Y).

Proof. Define
N= ] T(@).

Te(X,Y)

We show that N is the smallest group invariant convex subset of H? and so is the
Nielsen region (convex hull of the limit set) of (X,Y"). This means that N/(X,Y)
is the convex core.

It is clear that P is convex. Now consider P and X (P). These two polyhedra
share a face F3 = Io(Fy) = X (F1) (since F} is sent to itself by I; and X = Iply).
The dihedral angles along the three edges of P bounding Fj are all 7/2. Similarly,
the dihedral angles along the three edges of X (P) bounding X (F) are all 7/2.
Thus gluing these two polyhedra along their common face gives another convex
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polyhedron. Proceeding by induction, we see that N itself is convex. Thus N
contains the smallest (X,Y) invariant convex set, the Nielsen region.

The intersection of II. with ON is formed by removing from II; infinitely
many hyperbolic halfspaces bounded by the axes of X, Y XY ™! and all their
images under (X,Y XY ~!). This is the Nielsen region of this subgroup and so
is contained in the Nielsen region of (X,Y). Similarly, every other face of P is
contained in the Nielsen region of (X,Y"). If the boundary of N is contained in
the Nielsen region then, by convexity, the whole of N must be as well. Thus N
both contains and is contained in the Nielsen region. This proves the result. [

(2.2) The trigonometry from bending formulae. In this section we use
the bending formulae of [12] to show that the polyhedron P only depends on the
dihedral angles across vx and vy

The only free parameters of P are the lengths and dihedral angles in the sides
of P contained in the axes of X and Y. According to the above notation, « is
the dihedral angle between I, and Ip(Il;) along the axis of X and we define
£, to be length of the corresponding side of P. (We choose the convention that
« is the interior angle of P and remark that this is the opposite convention to
that used in [12].) Similarly, as above, 8 is the dihedral angle between II_ and
Ip(II_) along the axis of Y and we define £3 to be length of the corresponding
side of P.

In [12] formulae were developed that relate the lengths and complex shear
along the pleating locus of convex hull boundaries. As indicated above, the
bending angles of [12] are related to our angles by § = 7 — «, ¢ = 7@ — .
Similarly, the length ¢, is the length of the geodesic represented by X and so is
twice A(X). Similarly for £3. That is A(X) = £,/2 and AN(Y) = £g/2. In the
proof of Theorem 6.1 of [12], it was shown that

sinh A(X) = sin(¢/2) cot(6/2), sinh A(Y) = sin(6/2) cot(¢/2).
In our notation, these formulae give us

PROPOSITION (2.2.1). The (essential) angles o, 5 and edge lengths {y, £g of
P(w, B) are related by

(2.2.2)  sinh(¢,/2) = cos(5/2) tan(a/2), sinh(£g/2) = cos(a/2) tan(B/2).

These formulae indicate that the polyhedron P only depends on the angles «
and 3, where «, 8 € (0, 7). This justifies our notation P = P(a, ).
It is easy to see that formulae (2.2.2) imply the following:

PROPOSITION (2.2.3) (Tangent Rule). The (essential) angles o, S and the
edge lengths Ly, £g of the polyhedron P(a, B) are related by
tan(a/2) tan(3/2)

(2.2.4) tanh((a/2)  tanh((s/2) s

where T is a positive number given by

(2.2.5) T? = tan*(a/2) + tan?(8/2) + 1.
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Figure 2.3. The projection of P(«, ).

(2.3) The trigonometry from the Gram matrix. In this section we use
the Gram matrix of the polyhedron to re-derive the formulae of the previous
section.

Consider the numbering of faces of P(a, ) as shown in its projection in
Figure 2.3. Let p(j,k) be the hyperbolic distance between the faces j and
k. Then we write A = cosh{, = coshp(3,4), B = cosh{g = coshp(7,8),
u = cosh p(1,7) = cosh p(2,8), v = cosh p(3,6) = cosh p(4, 5).

Denote by G g the Gram matrix of the polyhedron P(c, §):

1 —cosa 0 0 -1 -1 —u 0

—cos« 1 0 0 -1 -1 0 —u

0 0 1 A 0 —-v -1 -1

G .= 0 0 —-A 1 —v 0o -1 -1
ap = -1 -1 0 —w 1 —cosp 0 0
-1 -1 —w 0 —cosp 1 0 0

—U 0 -1 -1 0 0 1 —-B

0 —u -1 -1 0 0 —-B 1

Denote by G(i1, 12, ...,ix), k < 8, the diagonal minor of G4 g, formed by rows
and columns with numbers 71,42, ...,4,. Since the rank of G, g is equal to 4 the
determinants of each of its 5 x 5—minors detG/(i1, 2, i3, 14, i5) vanishes. This gives
equations relating the entries of G, g. More precisely, taking (i1, 42,43, 14, 95) to
be (1,2,3,4,5), (1,2,3,4,8), (2,5,6,7,8), (4,5,6,7,8), respectively, we will get
following four equations.

1+ cosa
2.3.1 2 (A2 o)==
( ) v ( )1—cosa’
A+1

2.3.2 2 = (1-cos?
(23.2) @ = (1-coa) o
1+ cosp
2.3.3 2 = (B2-1)—&
(2.3.3) u ( )1_608/8,
B+1
(2.3.4) v = (1—00526);

B-1
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Recall that values A, B,u,v are greater than 1 in these equations. Taking
t = wv and calculating it in two ways using (2.3.1), (2.3.2) and using (2.3.3),
(2.3.4) we obtain:

(2.3.5) t=(1+cosa)(A+1)=(1+cosB)(B+1).
Therefore

t t
2.3. A=—" 1 B—=— " 1
(2:36) 1+cosa ' 1+ cos 3

It is easy to see from (2.3.1), (2.3.4) and (2.3.6) that ¢ satisfies the equation
(t—2—2cosa)(t —2—2cosB) = (1 — cos® a)(1 — cos? B).
This is equivalent to:
(t —2 —cosa — cos B)* = (1 — cosacos B)%.
Therefore there are two possibilities. Either
t—2—cosa—cosf=—14 cosacosf

or
t—2—cosa—cosfB=1-—cosacospf.
In the first case
t = (1+ cosa)(l+ cosf),
which contradicts (2.3.5) since A > 1 and B > 1. In the second case

t=4—(1—-cosa)(l—cosp).

Hence
5 A+l t ~ 1—sin®(a/2)sin®*(8/2)
cosh™(la/2) = —5—= =3 +2cosa cos?(a/2)
and B 2( / ) 2(6/ )
) _B+1 t _ 1 —sin"(a/2)sin 2
cosh™(€s/2) = 2 2+42cosf cos?(8/2)

It easy to see that simplifying and taking square roots we will get the formulae
(2.2.2) obtained earlier using the methods of [12]. Also, Proposition (2.2.3)
follows immediately.

(2.4) Volume formulae. In this section we use the Schlafli formula and the
computations of the previous sections to find the volume of P(«, ).

Define V = V (o, 8) = Vol P(a, 8) to be the hyperbolic volume of P(«, ).
To find V' we use the Schléfli formula (see [9] and [14] for details):

la Ly

2dM
Set M = tan(a/2), N = tan(8/2) for 0 < a, 8 < m. Then da = T
2dN
and df = T Ne Using equation (2.2.4), we obtain ¢, = 2arctanh(M/T) and

¢ = 2arctanh(N/T'). We have to integrate the differential form

dM dN
1 n M2 + arctanh(N/T) W,

w= —% = arctanh(M/T)
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where T2 = M? + N2 4 1. In order to do so, consider the extended differential
form Q = Q(M, N, T) of three independent variables M, N, T":

dM dN
W + arctanh(N/T) 1 T N2

(T% — M?)(T? — N?) dTr
(14 M?)(1+ N?) 1472
Note that 2 satisfies the following properties:

Q = arctanh(M/T)

+ log

e 2 is smooth and exact in the region
G={(M,N,T)eR*>: M >0,N>0,T>0};
e O =wforall (M,N,T) € G satisfying equation T? = M? + N? + 1.

Let us consider

oo (t? — M?)(t> = N?)] dt

1+ M2)(1+N?) | 142

where T is a positive root of the equation T? = M?2 4+ N2 + 1. Straightforward
calculations give

oW _ 2arctanh(M/T) OW _ 2arctanh(N/T)

oM 1+72 ’ ON 1+72

and W(M,N) — 0as M, N — oo.
Using M = tan(a/2) and N = tan(8/2), we see that the volume function
V =V(a, ) = V(M, N) satisfies the following conditions:

W:W(M,N):/

log [
T

oV OV da L, 2 2arctanh (M/T)
oM~ 9a M 2 1+M?2 1+ M?2
ov. oV 9B g 2 2arctanh (N/T)
ON — 98 ON 2 1+N* 14+ NZ

and V(M,N) — 0 as M, N — oco. The last follows from the fact that P(c, §)
collapses to be flat as a (or ) tends to w. Hence, we conclude that V(M,N) =
W(M,N) for all M, N > 0.

THEOREM (2.4.1). Let o and 8 be angles in the interval (0,m). The volume
of the polyhedron P(a, B) is given by the formula
°°1 (t? — M?)(t? = N?)] dt
(1+M?)(1+N2?) | 14t

where M = tan(a/2), N = tan(8/2) and T is a positive root of the equation
T? = M? 4+ N?+1.

(2.4.2) Vol P(a, B) :/

T

Recall that the Lobachevsky function A(x) is defined by the formula (see [9]
and [14]):
Alz) = —/ log | 2sin¢ | d¢.
0

To represent the volume of P(«, ) in terms of the Lobachevsky function, we will
use the following observation.
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LEMMA (2.4.3). Consider
CQ _ L2 d(:

+oo
I(L,S) = 1 5
@9 = [ g | e
where L = tanpu, S =tano, and 0 < p, 0 < w. Then
I(L,S) = A, o) — A7 /2, o),
where A(p, o) = Alp + o) — Alp — o).

1+ L2 | 1+¢2
/2
/ log ‘dT
/2

Proof. Set ( =tant, 0 <7 < 7/2. We have

+oo 2 _ 12
I(L,S) = / log ¢-L de

5

sin(7 — p) sin(7 + p)
sin(r — 7/2) sin(r 4+ 7/2)
/2
= / 10g|2sin(7—u)|d7+/ log |2sin(7 + p)| dr

/2

/2
—/ 10g|251n(7’—7r/2)|d7—/ log |2 sin(7 + 7/2)| dr

g

/24 T/2—p
/ log |2 sinn)| d77+/ log|2sinn| dn
o+p o—p

L 0
—/ log |2sinn| dn — / log 2 |sinn| dn
o+m/2 o—m/2
= —An/2+p)+ Ao +p)—A(r/2 —p)+ Ao — p)
+A(m) —A(c+7/2) + A(0) — A(oc — 7/2)
A+ 0) = A — o) — (A(=/2 + o) — A(x/2 — 0))
= Ay, o) — A(n/2, o),
where we used well-known properties of the Lobachevsky function (see [14] for
details). 0

From Theorem (2.4.1) and Lemma (2.4.3) we immediately get the following
expression for the volume.

COROLLARY (2.4.4). The volume of a convex hull P(a, 8), where 0 < «, 8 <
w, is given by the formula

(2.4.5) Vol P(a, B) = Ala/2, 0) + A(B/2, 0) — 2A(w/2, 6),

where A(u, 0) = Ap+0) — Al —0), and 0, with 0 < § < /2, is the principal
parameter defined by tan? 0 = tan?(a/2) + tan?(5/2) + 1.

As observed above, the polyhedron P(«, 3) is four copies of the degenerate
Lambert cube £(a/2,5/2,0). Moreover, the parameter 6, 0 < 6 < /2, such
that T = tan 6 for T defined by (2.2.5), is the principal parameter of the Lambert
cube L(a/2,3/2,0) introduced in [6]. Thus, the expression for the volume from
(2.4.5) is, naturally, four times more than the expression for the volume of the
Lambert cube L£(a/2,3/2,0) given by R. Kellerhals in [6].
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N

Figure 2.4. The Borromean rings.

(2.5) The associated cone manifolds. It is interesting remark that volumes
of convex hulls coincide or are commensurable with volumes of well-known cone-
manifolds.

For the case § = a we have

COROLLARY (2.5.1). The volume of a convex hull P(o, o), 0 < oo < 7 is given
by the formula

(2.5.2) Vol P(a,a) = 2/ arcsinh (sin(¢/2)) d¢.
Proof. We have LV (a,a) = 29Y = —/(,, tanh({y/2) = %, and T? =
2tan?(a/2) + 1 = 2M? + 1. Hence
tanh? (£, /2) M? M?
inh2(¢,, /2) = o = = = sin?(a/2
s (o /2) = T () TR a1 S (/)
that is sinh(¢,/2) = sin(a/2). Since V (7, 7) = 0 the result follows. O

The formula we have obtained coincides with the volume formula for the
Whitehead cone-manifold W(c, 0) whose singular set is the Whitehead link with
the cone angle o on one cusp and the complete hyperbolic structure on the other
(see [11]).

Denote by B(«, §,0) a Borromean cone-manifold whose singular set are Bor-
romean rings with cone angles @ and 8 on two components and a complete
hyperbolic cusp on the third one (see Figure 2.4).

Recall that the fundamental set of B(«, 3,0) consists of eight copies of the
Lambert cube L(a/2,5/2,0) (see, for example [5]). Hence we immediately get
the following

PROPOSITION (2.5.3). The volume of the convex hull P(a, o) coincides with
the volume of the Whitehead link cone-manifold W(«,0). The volume of the

convex hull P(a, B) is equal to one half of the volume of the Borromean cone-
manifold B(a, 5,0).
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3. The case where XY and XY ! are purely hyperbolic

(3.1) Constructing the polyhedron. Let matrices X,Y € SL(2,C) with
tr[X,Y] = —2 represent isometries X and Y of H? which generate a punctured
torus group. For the rest of this section we suppose that tr(XY) and tr(XY 1)
are both real and greater than 2. Thus both XY and XY ! are purely hyper-
bolic. We will show that either (X,Y’) is Fuchsian or else the axes of XY and
XY ! are the pleating loci of the convex hull boundary.

From the expression for the trace of the commutator given above (2.1.5), we
see that the traces of X, Y, XY and the traces of X, Y, XY ! satisfy the
Markov equations (see [12]):

tr2(X) + tr?(Y) + tr2(XY) = tr(X) tr(Y) tr(XY)
tr2(X) + tr2(Y) + tr* (XYY = tr(X) tr(Y) tr(XY 1)
As above, to simplify the notation, we define
x = coshA(X) = %tr(X),

y = coshA(Y)= %tr(Y),

A = cosh\(XY) = %tr(XY),

B

coshA(XY ™) = %tr(XY_l).
From the Markov equations we see that A and B are the two roots of the equation
t2 —2zyt+ 22 +y? = 0.
Therefore, by the Vietta theorem,
2xy A+B>2
?+y? = AB>1.

In particular, both of these quantities are real. We obtain the following analogue
of Proposition (2.1.1).

PROPOSITION (3.1.1). Suppose that (X,Y) is a punctured torus group for
which A = cosh \(XY) > 1 and B = cosh A\(XY 1) > 1.
(i) If (A+ B) < AB then (X,Y) is Fuchsian.
(ii) If (A+ B) > AB then cosh A(Y) = cosh A\(X), which is not real.

Proof. (i) In this case we have, by hypothesis, that
0<AB—-A—B=2>+y*—2zy = (z —y)?,
0<AB+ A+ B =2z +y>+ 22y = (z +y)*

Therefore x — y and x + y are real, and so z and y are both real. Thus we have
tr(X) = 2z, tr(Y) = 2y and tr(XY) = 24 all being real. Therefore (X,Y") maps
a hyperplane in H? to itself. Thus (X,Y) is a two generator group of isometrics
of the hyperbolic plane for which the commutator of the generators is parabolic.

Hence this group is discrete [8].
(ii) In this case, by hypothesis, we have

0>AB—-A—B=2a+y>—2zy = (z — y)*
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Therefore x — y is purely imaginary. Together with the fact that x + y is real we
see that cosh A(X) = z and cosh A(Y) = y are (non-real) complex conjugates of
one another. O

In what follows we will be interested in the case where AB < A + B, that is
the non-Fuchsian case. Unless we indicate otherwise we always assume that we
are in this case.

LEMMA (3.1.2). Let (X,Y) be a punctured torus group where A = cosh A\(XY)
and B = cosh \(XY 1) are both real and greater than 1. Then the azes of X
and Y intersect with angle 6(X,Y") where

(4 B)?

290(X)Y) = ————.
cos“0(X,Y) A-Br+d

Proof. Calculating the complex distance §(X,Y) as before, we obtain equation
(2.1.4). Squaring this expression and substituting for 2oy = A+ B and 22 +y? =
AB we find that

(A-B)

(A-—B)2+4
As this is real and less than 1 we see that R4(X,Y) = 0. In other words, the axes
of X and Y intersect with angle 3§(X,Y) = 6(X,Y). This gives the result. O

cosh?6(X,Y) =

Now we will construct the fundamental polyhedron for the convex core of
(X,Y). This will be Q = Q(a, B).

Since XY, (YX)™! and their product XYX 1Y ™! all have real trace, the
corresponding isometries XY, (YX)™! and XY X 1Y ~! generate a Fuchsian
group. Likewise, since XY !, (Y71X)~! and XY 'X~1Y all have real trace,
the corresponding isometries XY =1, (Y ~'X)~! and XY !X ~'Y too generate
a Fuchsian group.

e Let II; be the plane preserved by the group (XY, Y X);

e Let IT_ be the plane preserved by the group (XY 1, Y~1X).

Following the construction in Section 2.1, we define geodesics vx, vy and -y by

e vx is the axis of X

e 7y is the axis of Y

e g is the common perpendicular of yx and vy .

We define the following halfturns:

e Let Iy denote the halfturn fixing .

e Define I; by I; = IpX. Then I; is a halfturn fixing a geodesic ;.

e Define Iy by Is = Y. Then I5 is a halfturn fixing a geodesic 7a.

Thus 7, is orthogonal to vx and the complex distance along vx between 7y and
~1 is A(X). Similarly, 2 is orthogonal to vy and the complex distance between
7o and 1 is A(Y) = A(X). Moreover, we have

IbXIy, = X', LXL=X"' LXL=YX 'Y !
ILwl, = Y ', LYL=X"'Y"'X, LYL=Y%L
We claim that

LEMMA (3.1.3). The geodesic ~yg is orthogonal to 114 and TI_.
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Proof. We have
Ly(XY)Ih=(YX)™', L(XY YHI="'x)"

In other words Ij interchanges the axes of XY and Y X and so preserves I1;.
Likewise, Iy interchanges the axes of XY ! and Y !X and so preserves II_.
Moreover,

Ly (XYX 'Y NI =(yXxy'x—1H)

L (XY ' X 'V)Ih = (YX 'y X)L
Thus Iy swaps the fixed points of XY X 'Y ! and Y XY ' X ~! which lie on the
boundary of II,. Since these two fixed points are not separated by the axes of
XY and Y X, elementary plane hyperbolic geometry shows that Iy acts on I as
a rotation. Similarly, Iy swaps the fixed points of XY !X 1Y and Y X 'YX
and so acts on II_ as a rotation. This gives the result. O

Consider a plane 11 containing g so that the angle between 11 and yx is the
same as the angle between IIy and vy . There are two planes with this property.
Let Iy be the plane separating vx N~ and vy N~2. Let II; be the other such
plane.

Let Ry be reflection in Ily;
Let Ry be reflection in Ily;
Then Ro(yx) = Ri(vx) = v
Ro(v1) = 723

RoRy = Ip.

For the penultimate line we used cosh A(Y) = cosh A(X). Furthermore, we have

RoloRy =1y, RoliRo =15, RoloRy=1.

Hence
RoX Ry = Rolol1 Ry = Ipl> = Yﬁl, RoY Ry = RoloIgRy = 111 = XL

Because Iy = RgR1, we see that II; contains g and that Il and II; are orthog-
onal.

Ry XRy =RolpXIgRy =Y, RiYR) =RolpyYIyRy=X.

LEMMA (3.1.4). The planes Iy and 11 satisfy:

(i) o 4s orthogonal to the azes of XY and YX, and hence to Iy ;
(ii) IIg 4s orthogonal to II_ and contains the fized points of parabolic isometries
XY ' XY and YX'YLX;
(iii) Iy is orthogonal to the azes of XY ' and Y ~'X, and hence to 11_;
(iv) IIy is orthogonal to I and contains the fized points of parabolic isometries
XYX 'Y land YXY1X~1.

Proof. We prove (i) and (ii). Parts (iii) and (iv) will follow similarly.
Ro(XY)Ry = (XY)™ 1, Ro(YX)Ry = (YX)!

and so Ry preserves the axes of XY and Y X. Hence Il is orthogonal to II,.
Similarly,

Ro(XY DRy =YX, Ro(Y 'X)Ry = XY !
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Figure 3.1. The polyhedron Q(a, B).

and so Ry swaps the axes of XY ! and Y ~'X. Hence it preserves II_ and so
Iy is orthogonal to I1_. Furthermore,

Ro(XY'X7'Y)Ry = (XY 'X7'y)™!,
Ry YX 'W'X)Ry, = (YX'v'x)™L
Thus Ry fixes their fixed points, which must lie in IIj. O

Let Q be the hyperbolic polyhedron formed by the common intersection of
halfspaces bounded by 11, I1_, Iy, IT; and their images under I;. For i = 0,1
let F;, Fi12 be the face of Q contained in II;, I (II;) respectively (see Figure 3.1).

The intersection of the faces I1; and I (I ) is the segment of the axis of Y X
with length ¢, = A(XY). Let us denote the dihedral angle at this edge by «.
(This is twice the angle between the axis of I; and the plane II;.) Similarly, the
intersection of the faces IT_ and I;(IT_) is the segment of the axis of Y "' X with
length £5 = A(XY~!). We denote the dihedral angle at this edge by 3. (This is
twice the angle between the axis of I and the plane II_.) By the construction,
all other dihedral angles of Q are right angles.

We see that planes IT; and I;(Ily) meet at the fixed point of the parabolic
isometry X 'Y ~1XY. This point is also on I, and I (IT_). Therefore faces
Fy and F; have a common point at infinity. Likewise, Iy and I (II;) meet at
the fixed point of the isometry ¥ X ~'Y =1 X which also lies on II_ and I (I1y).
Similarly, Fy and F3 have a common point at infinity too. All other vertices of
Q are ordinary. To summarise:

PROPOSITION (3.1.5). The polyhedron Q has ten vertices. Two of these are
ideal vertices and are the fized points of X 'Y 1XY and YX 'Y 'X. The
other eight vertices are finite and correspond to the intersection of the azes of
YX, Y 'X, Iy and I IoI; with the common perpendiculars of the azes of I,
YX; Iy, Y'X; I I, YX; L1 IoI;, Y7 'X.
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Let Q' be the hyperbolic polyhedron formed by the common intersection of
halfspaces bounded by 11, II_, IIy, II; and their images under I». For i = 0,1
let Fj, F},, be the face of Q" contained in II;, Io(IL;) respectively. Clearly Rg

swaps Q and Q’. Denote Q=QuQ.

PROPOSITION (3.1.6). The polyhedron Q = QU Q" with the side pairings
Id:Fy—F), Y:F,—F), YX:F,—F, X:F3—F|
is a fundamental domain for the convex core of the group (X,Y).

Proof. The proof is similar to the proof of Proposition (2.1.10). Again, it is

clear that
N= [J T@QuY)
Te(X,Y)

is invariant under (X,Y) and is convex.

The fact that the boundary of N consists of the orbit of Nielsen regions of the
Fuchsian subgroups (XY, Y X) and (XY 1, Y 1X) means that it is contained
in the Nielsen region of (X,Y’). This gives the result. O

(3.2) The trigonometry from bending formulae. In this section we use
the bending formulae of [12] to show that Q only depends on the dihedral angles
across the axes of XY and XY 1.

The only free parameters for Q are the lengths and dihedral angles in the sides
of Q contained in the axes of XY and Y ' X. According to the above notation,
« is the dihedral angle between II; and I;(II}) along the axis of Y X and we
define /4, to be length of the corresponding side of Q. According to the above
notation, 3 is the dihedral angle between I1_ and I7 (IT_) along the axis of Y =1 X
and we define /g to be length of the corresponding side of Q.

We now show how to relate «, 3, ., {3 using the formulae of Parker and
Series [12]. Now the pleating loci are next-but-one neighbours with common
neighbour X. It is easy to see that the real part of the translation along XY is
half the length of this curve, that is A(XY). Also, from the way the polyhedron
is constructed, we see that £, is A(XY). Likewise for the other face. Therefore,
using the formula (I) of [12] (with U = X)) first with A(W) = £y, T = o +i(m—a)
and then with A(W) = €3, 7 = {3 + i(m — B) we obtain

cosh?(ly /2 +i(m — ) /2) B cosh?(€g/2 +i(m — B)/2)

cosh? \(X) = = .
X) tanh? £,, tanh? /4
Taking square roots and equating the real and imaginary parts we obtain
cosh({,/2) sin(«/2) cosh(€3/2)sin(5/2)
— :l: ,
tanh(4,,) tanh(¢g)
sinh({,/2) cos(a/2) " sinh(¢5/2) cos(3/2)
tanh(¢,,) N tanh(¢g)

Squaring and using the duplication formula for cos and cosh we obtain

PROPOSITION (3.2.1). The (essential) angles o, 5 and the edge lengths ly, (g
of Q= 9(«, B) are related by

A2%(1 —cosa)  B?*(1—cosp) A?(1+cosa)  B?(1+cosf3)

A—-1 o B-1 A+1 o B+1 7
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Figure 3.2. The polyhedron Q(a, B).

where A = cosh{, and B = cosh(g.

These formulae indicate that the polyhedron Q only depends on the angles
a and B, where a,8 € (0,7). This justifies our notation Q = Q(a, 8) and
Q = 9(a, ). In the next section we will see how to write A and B in terms of
cos« and cos 3.
It easy to see from proposition (3.2.1) that the following relation follows:
tan(a/2)  tan(B/2)
tanh({,/2)  tanh(fg/2)
for some parameter T', but to find it we need to know more relations between

essential angles and lengths. The effective way to obtain these relations is to
consider the Gram matrix.

=T

(3.3) The trigonometry from the Gram matrix. In this section we con-
sider the Gram matrix of Q and re-derive the formulae from the previous section.

Consider the numbering of faces of Q(a, §), for 0 < «, 5 < 7, as shown on its
projection in Figure 3.2. Let p(i, j) be the distance between faces of Q(«, 8) with
numbers ¢ and j. Denote A = cosh?,, B = cosh{g, u = coshd = coshp(2,5) =
cosh p(4,7), v = cosh p(2,8) = cosh p(1,7), w = cosh p(3,5) = cosh p(4, 6).

Remark that the edges marked by d (which also denotes their lengths) are
common perpendiculars to faces 2 and 5, and faces 4 and 7. As we see from the
construction, d is distance between planes I1 and II_.

Let G4 g be the Gram matrix of the polyhedron Q(«, 5):

1 0o -1 0 0 0 —v —A

0 1 0 -1 - 0 —cosfB —w

-1 0 1 0 —w —B 0 0

a 0 -1 0 1 —cosa —w —u 0
p = 0 —u —w —Ccosu 1 0 -1 0

0 0 -B —w 0 1 0 -1

—v  —cosf 0 —u -1 0 1 0

—A —v 0 0 0 -1 0 1



ON HYPERBOLIC POLYHEDRA 375

Denote by G(i1,i2,...,i), k < 8, the diagonal minor of G4, g, formed by rows
and columns with numbers 7;, 42, ...,4,. Since the rank of G g is equal to 4 the
determinants of each of its 5 x 5—minors detG (i1, i2, i3, 14, i5) will vanish. Again,
this gives relations between the entries of G4 g. Taking the minors corresponding
to the columns (1,2,4,5,6), (1,2,5,6,7), (1,2,4,5,8), (2,3,4,6,8), (1,2,5,6,8),
(1,2,3,5,6) respectively, we obtain following six equations.

(3.3.1) w?(u®> —1) = (u+cosa)?,
(3.3.2) v (u? —1) = (u+cosp)?
(3.3.3) (A2 =) (u+cosa)® = v?(1—cos ),
(3.3.4) (B —1)(u+cosB)? = w*(l—cos®p),
(3.3.5) v o= A*(u? - 1),
(3.3.6) w?* = B*u?-1).

Recall that quantities A, B, u, v and w are greater than 1 in these equations.
From equations (3.3.1) and (3.3.6) we get
(3.3.7) B(u? —1) = (u+ cosa).
Substituting (3.3.6) into (3.3.4) we have
B%(1 +ucos B)* — (u+cos B)? = 0.

Factorising this equation and substituting for B from (3.3.7) we obtain

fo5(1) gap(u) =0,
where
(3.3.8) fap(u) = u® —u(2 + cosacos ) — cos a — cos 3
and
o5 () = u® 4+ 2u? cos B + ucos a cos B + cos a — cos .
Analogously, from (3.3.2) and (3.3.5) we get
(3.3.9) A(u? — 1) = (u + cos B),
and substituting (3.3.5) into (3.3.3), we obtain
A%(1 +ucosa)® — (u+cosa)? =0,
which gives
fo5(u) gg.a(u) = 0.
Therefore, u is a root of the equation
fo5(w) ha p(u) =0,
where
ha.p(t) = ga.s(w) — gs.a(u) = 2(u® — 1)(cos B — cosa).
We remark that equations hqe g(u) = 0 and ga,o(w) = 0 have no roots with
u > 1. Therefore, fq 5(u) = 0. It is easy to see that if & # 7 and § # 7 then
fa,p(1) < 0. Furthermore, fqo g(u) is strictly increasing on the interval (1, c0),

and so has only one root v with u > 1. Using (3.3.7) and (3.3.9) to substitute
for cos(a) and cos(f) in (3.3.8) we find that for such a root v we have

A+B
AB

(3.3.10) u=
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Therefore we obtain

A+ B - A’B A+ B — AB?
(3.3.11) cosa = +T, cosff = +T
These equations are equivalent to the formulae in Proposition (3.2.1).

From this it is easy to see that the following four conditions are equivalent: (i)
u=1; (ii) cosax = —1; (iii) cos f = —1; (iv) A+ B = AB. They correspond to
the case when the polyhedron Q(«, ) has collapsed. As we saw in Proposition
(3.1.1), the polyhedron Q(«, ) is non-degenerate if and only if A+ B > AB.

Substituting for B = A/(Au — 1) and A = B/(Bu — 1) into the expressions
for cosa and cos 8 in (3.3.11) gives

u— A P u— B
cosqu = ——— cosff = .
Au—1’ Bu -1
Rearranging gives
(3.3.12) e U + cos a 7 _ u + cos 3 .
1+ ucosa 1+ wcosp

Combining these with the expression for u given in (3.3.8) we obtain:

PROPOSITION (3.3.13). For a non-degenerate polyhedron Q(«, 3), the param-
eters A = coshl, and B = coshlg can be found by

. U + cos a B u—l—cos,b’7
1+ ucosa 1+ wcosp
where w > 1 is the root of the equation
(3.3.14) u® —u(2 + cosacos 3) — cosa — cos f = 0.

Recall that by definition v = coshd, where d is distance between planes I
and IT_. Set T' = coth(d/2), and note that T2 = (u+1)/(u—1). Using standard
relations
1 —tan?(v/2) 1+ tanh?(1/2)

1 +tan?(v/2)’ 1 —tanh®(u/2)’
we are able to rewrite the above proposition in the following way:

cosv = cosh

PROPOSITION (3.3.15) (Tangent Rule). The (essential) angles o, 5 and the
edge lengths Lo, L3 of the polyhedron Q(«, B) are related by
tan(a/2)  tan(B/2)
tanh(f,/2)  tanh({s/2)
where T is a positive number given by T? = (u+1)/(u — 1), and u is a root of
the equation (3.3.14).

Remark that u = (T%+41)/(T?—1), and it follows from (3.3.14) that u satisfies
the equation

(3.3.16) =T,

(u? = 1)? = (ucosa + 1)(ucos B + 1).
By direct computations, we see that T satisfies the equation
T2 — M2 T? — N2 [T2-1]°
1+M2 1+N?2 [ 2772 ] =1
where M = tan(a/2) and N = tan(8/2).
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(3.4) Volume formulae. In this section we use Schléfli’s formula to find the
volume of Q(a, B).

By the construction, the volume of the convex hull 5(04, B) is twice the volume
of the polyhedron Q(c, 8). To find the volume of the latter polyhedron, we will
use the method of the extended Schléfli differential form. Consider Schlafli’s
differential form

w = dVol Q(a, B) = —% (tudar+ £3dB)

defined for 0 < «, 8 < 7. Let us extend it to a differential form Q = Q(a, S, u)
of three independent variables a, 3, u:

Q= —% (Lodo + Lgdf + Cydu) ,

where u plays a role of the principal parameter. We have to choose € in such a
way that following properties are satisfied:

e (2 is smooth and exact in the region
G={(a,pu) eER®: 0<a<m0<f<mu>1}
e O =w for all (o, 8,u) € G satisfying equation (3.3.14).
Since 2 is supposed to be exact, we have

% = %— 2 arccosh
da  Ou  Ou

U+ cos o > sin o

1+ ucosa (1+ucosa)m.

So

sin a do

b, =
/ (I1+ucosa)vu? —1

1
T log(1 4+ ucosa) + C(u, B)

1 (1 4+ ucosa)(l + ucosf)
uvu? — 1 & (u? —1)2 '

We note that for u > 1 the equation (3.3.14) is equivalent to

(14 ucosa)(l + ucosf)

) —1.

If this condition is satisfied, we have ¢,, = 0 and consequently Q = w.
Applying the same arguments as in Theorem (2.4.1), we find

THEOREM (3.4.1). The volume of the convex hull 5(0[,6) is given by
(14 ¢cosa)(l + (cosfB) d¢

Vol Q(«a, ) :/1 log { (2 —1)2 ' C\/@—_f

where u > 1 is the root of the equation (3.3.14).




378 MEDNYKH, PARKER, AND VESNIN

Figure 3.3. The polyhedron O(«, 8,7, 4, ¢,v).

If « = 3, then u = %(cosa + V8 + cos? ), and
1+ (cosa d¢

Vol Q(av, o) = 2/ log
1

C-1 /e
g V8 + cos? o — cos o
=2 arccosh 5 dox.
(6%

Now we want to express Vol 5(04, B) in term of the Lobachevsky function.
To do this we write M = tan(a/2) and N = tan(5/2) and make the following
substitutions in the integral of Theorem (3.4.1): ¢ = (#* +1)/(t*> — 1), cosa =
(1—M?)/(1+ M?), and cos 8 = (1 — N?)(1 + N?). As a result we obtain:

COROLLARY (3.4.2). The volume of the convex hull é(a,ﬁ) is given by

(2 — M2)(£2 = N?) (2 —1\°
(1+ M?2)(1+ N?2) (2# )

—+oo

Volé(oz,/a’) =2 / log

T

dt
14 t2’

where M = tan(«/2), N = tan(8/2) and T = coth(d/2) is the variable from the
tangent rule.

Using this result and Lemma (2.4.3) we have
COROLLARY (3.4.3). The volume of the conver hull 5(0(,,6’) is given by
Vol Q(a, B) = 2A(a/2,0) +2A(3/2,0) +
4A(m/4,0) — 4A(0,60) — 4A(/2,0),

where A, o) = A+ 0) — A(p — o), and 6 is a principal parameter such that
T =tan6.

In particular, Vol Q(0,0) = 2.53735. .., which is the maximal volume for the
family Q(«, ). Moreover, Vol Q(w/2,7/2) = 1.83193 ... which is one-half of the
volume of the ideal right-angled octahedron.
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Figure 3.4. Two representations of the singular set of the orbifold
Qr.

(3.5) The associated cone manifolds. In this section we will determine a
link which is naturally related with the polyhedron Q(«, 8) in the same manner
as the Lambert cube is related with the Borromean rings.

In order to do this we consider Q(a, §) as a particular case of a more general
polyhedron O = O(a, 8,7,0,¢,v) (see Figure 3.3). The dihedral angles of O
are equal to a, B8, v, 0, €, v on edges labelled by these letters, and are 7/2
on the other edges. We allow for angles «, 3, v, d, €, v to be zero. In this
case the corresponding edges become ideal vertices of polyhedra with a complete
hyperbolic structure. Note that for « = § =+ = § = ¢ = v = 0 the polyhedron
O is a regular right angled octahedron. The existence of O in the hyperbolic
space H? for all 0 < «, 3,7,6,&,v < 7 follows from Rivin’s theorem [13]. We
remark that Q(«, 8) = O(«, 8,7/2,7/2,0,0).

Consider a hyperbolic cone-manifold {2 whose underlying space is the polyhe-
dron © and whose singular set consists of faces, edges and vertices of O. Let QF
be an orientable double of 2. Then Q% can be obtained by gluing together © and
its mirror image along their common boundary. As a result, QT can be recog-
nised as a hyperbolic cone-manifold with the 3-sphere as its underlying space
and whose singular set is formed by the edges of O with cone angles twice the
dihedral ones (see Figure 3.4, where unlabelled edges correspond to cone angles
).

To construct the two-fold covering we will use the approach from [10] based
on the properties of the Hamiltonian circuit. Note that unbranched edges form
a Hamiltonian circuit A\ passing through all vertices of the singular set of QF.
Consider a two-fold covering ¥ — QT of QT branched over the cycle A. Since
X is unknotted in Q%, the underlying space of ¥ is the 3-sphere again. The
singular set of X is a six component link L formed by lifting the labelled edges.
To recognise this link we represent A as a circle with 12 vertices as in the right
hand figure of Figure 3.4. After taking the two-fold covering branched along A
we obtain the link L (see Figure 3.5).
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Figure 3.5. The link L.

Hence ¥ = (20, 23, 27, 26, 2¢, 2v) is a hyperbolic cone-manifold with singular
set illustrated in Figure 3.5. By the construction we have

1
(3.5.1) Vol O(a, B8,7,0,e,v) = 1 Vol X(2a, 28, 27, 24, 2¢, 2v).
In particular, we obtain

PROPOSITION (3.5.2). The volume of the convex hull é(a,ﬂ) is equal to one
half of the volume of cone-manifold ¥(2a,, 28, m,7,0,0).

This statement gives us a convenient way to calculate the volume of 5(04, B)
using J. Weeks’ computer program SnapPea [15].
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HOPF CONSTRUCTION MAP IN HIGHER DIMENSIONS

GUILLERMO MORENO

ABSTRACT. We study the zero set of the Hopf construction map Fy, : Ay, X
Ap — Ay x Ag given by F(z,y) = (2zy, ||y]|? — ||z||?) for n > 4, where
Ay, is the Cayley-Dickson algebra of dimension 2™ on R.

0. Introduction

Let fi : S3 = S2,f, : ST — S* and f3 : S' — S® be the classical Hopf
maps; these can be defined using the Hopf construction. Let A; = C,As = H
and Az = O be the complex, quaternion and octonion numbers respectively, and
let F,, : A, x A, — A,, X R be given by

Fola,y) = 22y, ||yl]* — [l][*)
for n = 1,2,3. Write §2""' 1 = {(z,y) € A, x A, = ||z]* + ||yl|> = 1}. By
definition,
F s =
are the Hopf maps. Since A,, is a normed real algebra of dimension 2", for
n =1,2,3 we have

1y, [yl* = ||=[*)]?

Ayl + (lyl1* = [12]*)?
Al Pyl + llyl1* + ll* = 2012 |1y][?
(=[1? + llyl1*)?,
s if [l2l[? + [lyll2 = 1, then [Pz, )| = I|2oy, Iyl — ll2l?)]| = 1.
Using the Cayley-Dickson doubling process ([D]) define
A=A, x A,
with
(a,b)(z,y) = (ax — b, ya + bx) for a,b,xz and y in A,
and
T = (T1,—w2)if & = (x1,22) isin A1 X A, 1.
Thus if Ag = R with T = x for z a real number, then A; = C,A, = H and

A3 = O, which are normed algebras; i.e., ||zy|| = ||=||||y|| for all z,y in A,,.

For n >4, A, is no longer normed and has zero divisors as well (see [K-Y]
and [Mol)).

Let us define X3° = {(z,y) € A,, x A,|F,(z,y) = (0,0)} and, for any non-
negative real number 7, (x,y) € X} if and only if xy = 0 and ||z|| = ||y|| =r. Tt

2000 Mathematics Subject Classification: 17A99, 55Q25.
Keywords and phrases: Cayley-Dickson algebras, alternative algebras, zero divisors, flexible
algebra, normed algebra.
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is clear that for real numbers » > 0 and s > 0, X is homeomorphic to X . Let
us further define X,, := X!.

The set X,, appears in some important problems in algebraic topology:
(1) Cohen’s approach to the Arf invariant one problem (see [C1] and [C2]).
(2) The Adem-Lam construction of normed and non-singular bilinear maps (see
[A] and [L]).

In this paper we will show that for n > 4, X,, is related to certain Stiefel
manifolds; using the algebra structure in A, ;; we will construct a chain of
inclusions

Xn CWan1_19 CVan 92 CVon_12
(see section 2) where V,, o and W, o denote the real and complex Stiefel mani-
folds of 2-frames in R™ and C™, respectively.

In section 3 we show that we can attach to every element in Wyn-1 4, in a
canonical way, an eight dimensional vector subspace of A,,1, and that, only for
the elements in X,,, this vector subspace is isomorphic, as an algebra, to Az = Q.

In section 4 we describe X, as a certain type of algebra monomorphisms from
A3 =0 to A,y for n > 4.

This paper is a sequel to [Mol] and we use freely the results of [Sch]. We
acknowledge with gratitude the hard work done by the reviewer.

1. Pure and doubly pure elements in A, ;

Throughout this paper we use the following notational conventions:
(1) Elements in A,, will be denoted by Latin characters a,b,c,...,x,y,z. and
elements in A, 7 will be denoted by Greek characters «, 3,7, ... For example,

a=(a,b) € A, x A,.
(2) When we need to represent elements in A,, as elements in A,,_1 X A,,_1 we use
subscripts, for instance, a = (a1,a2), b= (b1,b2), and so on, with as, az,by, ba
in An—l-

Let {eg,e1,...,ean_1} denote the canonical basis in A,,. Then by the doubling
process,

{(60, 0), (61, 0), ey (6271,_1, 0), (0, 60), ey (O, egn_l)}

is the canonical basis in A, 11 = A,, X A,,. By standard abuse of notation we also
denote eg=(eg,0),e1=(e1,0),...,e2n_1 =(ean_1,0),ean =(0,€0),...,Eon+1_1 =
(O, €2n_1) in An-{-l-

For a = (a,b) € A, x A, = A1 we write @ = (—b,a) (the complexification of
a), s0 €g = (0,e0) and aey = (a,b)(0,e9) = (—b,a) = a. Notice that a = —a.

The trace on A, 11 is the linear map ¢p4+1 : Apy1 — R given by tp41(a) =
a+ @ =2 (real part of @), s0 ty11() = tn(a) when o = (a,b) € A, X A,,.
Definition (1.1). a = (a,b) in A,11 is pure if
tnt1(a) =tp(a) =0.

Furthermore, o = (a,b) in A, 11 is doubly pure if it is pure and also ¢,,(b) = 0;
i.e., a is pure in A, 1.
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Note that 2(a,b) = t,(ab) when (—, —) is the inner product in R?" (see [A]).
Also, for pure elements a and b, a 1 b if and only if ab = —ba.

Notation (1.2). ,A, = {e,}+ C A, is the vector subspace consisting of pure
elements in A,; i.e., (A, = Ker(t,) = R =1 A1 = oAy X oA, = {eg, €0}t =
R2""' =2 ig the vector subspace consisting of doubly pure elements in A, ;.

LEMMA (1.3). For a and b in A, we have that

(1) aep = a and egpa = —a;

(2) aa = —||a||*€y and aa = ||a||*€y so a L a;
(3) @b = —ab with a a pure element;

(4) a L b if and only if ab —|—g~a =0;

()

(6)

Proof. Note that a is pure if and only if @ = —a; and if a = (a1, a2) is doubly

pure, then a; = —a; and as = —as. Then

(1) €oa = (0,€0)(a1, a2) = (=@2,a1) = (az, —a1) = —(—az,a1) = —a.

(2) aa = (a1,a2)(~az,a1) = (—aia2 + araz,a? + a3) = (0,—[lal|*e0) =
—~|lal[*€.

Similarly @a = (—axg,ay)(a1,a2) = (—aza; + aza1, —a3 — a3) = ||a||*eo.

Now, since —2(a, a) = aa + aa = 0 we have a L a.
(3) ab = (—ag, al)(bl, b2) = (—agbl + boay, —boas — albl).
So gb = (a161 + boas, boay — agbl) = (al, ag)(bl, bg) = ab and then —ab = a~b
Note that in this proof we only use that @; = —as; i.e., a is pure and b doubly
pure.
(4)a Lbeab+ba=0< ab=—ba < ab= —ba.
& —ab = ba < ab+ ba = 0 by (3).
(5) @ Lb<ab+ba=0 (by (4)) < —ab+ ba = 0.
(6) If @ L b and a L b, then by (3) and (4) @b = —ab = ba = —ba = ab.
Conversely, put a = (a1, a2) and b = (by,b2) in A,—1 X A,_1 and define
¢ := (a1b1 + baaz) and d := (baay — azby) in A, 1.
Then ab = (a1,a2)(=ba,b1) = (—a1bs + braz, bras + azbs) so ab = (—d,?).
Now ab = (a1, az2)(b1,b2) = (a1b1 + baasg, baa; — azb1) = (¢, d), so ab = (—=d,c)
and then ab = (d, —c). Thus if ab = ab, then ¢ = —c and d = —d, and then
tn(ab) = tn_1(c)=c+¢=0 and a LD
tn(@) = tp_1(d)=d+d=0 and @ Lb.
O

COROLLARY (1.4). For each a # 0 in A,, the four dimensional vector sub-
space generated by {eg,a,a, e} is a copy of Ao = H. We denote it by H,.

Proof. We suppose that ||a|| = 1, otherwise we consider 2. Construct the

following multiplication table.
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€o a a €o
€o | €0 a a g()
a|a —e +e —a
ala —e —e a
g() go a —a —€p
By lemma (1.3), aéy = @; éoa = —a; Geo = @ = —a; €94 = —a = a; ad = — &g

and aa = €p.
Identifying eq <> eqg, @ <> €1, a <> e and €y <> ez we have the multiplication
table for Ay = HL. O

2. The Stiefel manifold V5n_1 5 in A, 1 and a T?-action

Let {(a,b), denote the standard inner product of a and b in A, = R*". Now
by [A] and [Moq],
2{(a,b),, = (ab + ba) = t,(ab).
It is also well known that for « = (a,b) and x = (z,y) in A, x A, = A,11 we
have
<aa X>n+1 = <a7x>n + <Z_)7 y>n .

In particular, if o and x are doubly pure elements in A, 11, then y and b are
pure elements in A,,, and therefore

<aa X>n+1 = <a7x>n + <b7 y>n

LEMMA (2.1). For o = (a,b) in Aniy define & := (b,a). For o € Ay iy we
have that

(i) (@, &)ny1 =0 de. a L & in Apyq if and only if (a,b), =0, i.e. a L b in
An;

(ii) (@, &)pt1 =0, i.e. @ L & in Ay if and only if ||al| = ||b]] in A,.

PT‘OO.E (1) <a7 CA“>n+1 = <(aa b)v (ba a)>n+1 = 2<a7 b>n
(i) (@ &)1 = (=0, a), (b, @))nt1 = =(b,b)n + (@, a)n = —[[b* + [lal[*. O

By §1 we know that, for each a # 0 in z&n_H, H, = Span {eg, @, o, €0} is
a copy of Ay, and that, if H} denotes the orthogonal complement of H,,, then
A1 =H, o HL.

Since « is doubly pure, & is also doubly pure; i.e., & € {eg,é}t. If & L «
and & L @, then & € H:. Let SV2(A,41) = S2"7' =3 denote the sphere of radius
V2 in of :&H_l. Thus we have a description of the real Stiefel manifold of 2-
orthonormal frames in R2" ! as follows:

Var_1.9 = {(a,b) € oAn X oAp = Apyq :|lal| = ||b]] = 1,a L b}

and
Van 10 ={a € 8V2(Any1) : & € HEY.

LEMMA (2.2). Ifr and s are in R with r* + s> = 1 and (a,b) € Van_12 then
(ra — sb,sa +1b) € Van_1 .
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Proof. Suppose that ||a|| = ||b]| = 1 and @ L b in A,. Then ||ra — sb||? =
r2||al|? + s2||b||? — 2rs{a,b),, and ||sa + rb||* = s2||al|? + r?||b||? + 2rs(a, b),, so
l[ra — sb||? = ||sa + 7b]|?> = r? + s* = 1. Hence,

(ra — sb,sa +1b), = rsla,a), — sr(b,b), — s*(b,a), +1{a,b),

= rsllal]* —rs||b]|]* +0=1rs —sr = 0.

COROLLARY (2.3). The map S x Van_1 9—Van_19 given by
((r,s),a) — ra+ sa = (ra — sb, sa + rb)

defines a smooth, free S*-action on Van_1 3.

Proof. Clearly (1,0) -« = « and (1, 9)[(¢,t) - o] = ((r,8)(q,t)) - @ = (rq —
st,rt+ sq) - a, so the map defines an action. It is a smooth action because it is a
restriction of a linear action of GLy(R) on A,y = R2"" =2, Finally, the map is
a free action: if ra 4+ s& = o then r = 1 and s = 0, because o L & in Ay, 41, O

Next we identify Von_g o, the real Stiefel manifold of 2-orthonormal frames on
R%"~2, as a submanifold of Van_1 2 as follows:

Van_22 = {(a,b) € Van_12[(a,b) € Ay x Ay}

ie., (a,b) € Van_1 2 belongs to Van_s o whenever a and b are doubly pure elements
in A,,. We have the known fibration [Wh]

St 5 Van_gs — S(A,)=52""3
(a,b) — b

Thus Von_o 9 has dimension 2" —3 42" —4 = ontl _ 7.

Since (ra — sb) and (sa + rb) are doubly pure elements in A,, when a and b
are doubly pure elements, we have that Von_5 9 is a S L invariant submanifold of
Van_1 95 i.e., if @ € Van_o 9 then (r,s) - a € Van_g 5 for all (r,s) € S*.

We note that A, 1 becomes a complex vector space by defining i&=a; thus, as
a complex vector space,

An-i—l = OAn X OAn %JC@]R OAn

The isomorphism takes 1 ® x to (z,0) and i ® y to (0,y), and St (the set of
modulo 1 complex numbers) acts naturally by multiplication on C, hence on
An-‘,—l-

Now we identify the complex Stiefel manifold Wyn-1_; 5 of 2-orthonormal
frames in C2" '~ as a submanifold of Van_29 in terms of the Cayley-Dickson
algebra A, for n > 3.

It is known that for a,b, and x in A,,, (az,b), = (a, bT), (see [A]). Thus if x
is a pure element, i.e., T = —z, then (ax,b),, = —{a, bx),. In other words, right
multiplication by a pure non-zero element is a skew-symmetric linear map. In
particular (@, b), = —(a, b)y.
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PROPOSITION (2.4). For n > 3, the map 3, : &n X A&n — C given by
Hn(a,b) = 2(a,b), — 2i{a, b),
defines a Hermitian inner product in an

Proof. Clearly H,, is R-linear and
Hn(a,b) = 2{a,b), + 2i(a,b),
= 2(a,b), — 2i(a,b),
= H,(b,a).
On the other hand,
Ho(a@,b) = 2(a,b), — 2i(@, b,
2(a,b),, + 2i{a,b)p
2i{a,b), — 2i%(a, by,
= iH,(a,b).

PROPOSITION (2.5). Forn > 3,
Wan-1_15 ={(a,b) € Van_5[b € H }.

Proof. First we observe that b € H* for a and b in A,, if and only if b L a and
bla,ie Hy(a,b)=0.1If [|a]| = ||b]| = 1 and H,,(a,b) = 0, then (a,b) € Wy, 2,
where m = (2" —2) =271 — 1. O

PROPOSITION (2.6). Wan-1_1 5 is S*-invariant.

Proof. Suppose (a,b) € A, x A, with ||a|| = ||b|| =1 and b € HL. From this

we have b L a, and b L a (equivalently a L b).
Now r(a,b)+s(=b,a) = (ra—sb, rb+sa) and we know that (ra—sb) L (rb+sa).

To finish, we need to show that (ra — sb) L (rb + sa). But

—_~—

(ra — sb,rb+ sa), = (rd— sb,rb+ sa)n
= 7%(a,b), — s%(b, a)n + rs{a,a), — rs(b, a)n
0,
and therefore (ra — sb) € Hyp4sa- O

Note that we have a fibration

S Wona1s & S(A,) =827
a,b — b
(a,b)

and 7=1(b) = S(H}) = 52"~ since dim Hj- = 2" — 4. Thus dim Wan-1_; 5 =
2" — 542" —3=2nTl _§

In [Mos] it is shown that for a and b in A,, with n > 4 and ||a|| = ||b]| = 1, if
ab =0 then (i) (a,b) € A,, x A,, and (ii) b € H (or equivalently a € Hj"). Thus
Xpn i ={(a,b) € A, x Ay, ||a|]|] =|0]] =1 and ab=0}
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is a subset of Wyn-1_; 5. This gives a chain of inclusions for n > 3,
X, C WQn—l_LQ C ‘/v2n_272 C ‘/271,_172 .

We show that X, and Wan-1_; o admit a T := S1 x ST action.

LEMMA (2.7). For (a,b) € Van_s9 and r,s,q,p in R with r*> + s> = 1 and
p? + ¢% =1, define

(a,b) > (ra + sa,pb + qb).

Then ~

(i) if (a,b) € Wan—1_1 o then (ra + sa,pb+ gb) € Wan-1_1 o;

(ii) if (a,b) € X,, then (ra+ sa,pb+ gb) € X,;

(iii) 7 defines a free T-action on Won-1_4 5 and X,, respectively.

Proof. By direct calculations. If ¢ L b and @ L b, then

(ra+ sa,pb+qbyn, = p(a,b)n + 5q(@, b)n + rq(a,b)y + sp(a, b
= 040+0+0
0.
Similarly,
(ra + sb, (pb+ qb)éo)n = (ra+ sa,pb— qb)n
= rp{a,b), + sp(a,b), — rq{a,b), — sq{(a, by,
= 040+0+0
0.
If ab = 0, then
(ra+ sa)(pb+qb) = rp(ab) + sqab + spab + rqab
= 0.
Also
llra+sall> = r*|lall* +s%|lal|* = (* + s*)[al|* =1 and
llpb+abl[> = p?|[bl* + ¢*[1Bl1* = (0* + *)|bl]* = 1

Thus we have proved (i) and (ii). Finally (ra + sa, pb + gb) = (a,b) if and only
ifr=1,s=0,p=1and ¢ =0. Clearly this action is smooth and free (see
Corollary (2.3)). O

3. X,, Octonions and an S® action

In this section we show that we can attach to every element in X,, a copy
of Ag = O, the octonions inside of A, ;1 for n > 3. This allows us to identify
X, with a subset of algebra monomorphisms of Ag into A,,;1, which will be our
main goal in §4. We recall some notation from section 1. Let eg € A, _1 be
the unit, so (eg,0) = eg is the unit in A,, and €y = (0,ep) in A,. For & in A,
we denote ¢ = (€p,0) in A,41. For example, for n = 4, ¢y = es in A4, and
e = (es,0) in As. In general €y = egn in A1 and &€ = egn—1 in A, ;. Since € is
a doubly pure element of norm one, we have that H. = Span{eq, ,¢,¢0} C A,11
is a copy of Ay and a direct sum decomposition A, ;1 = H. @ HL. By definition
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a = (a,b) € A, x A, = A, 41 is doubly pure in A, ; with doubly pure entries
in A, if and only if o € HZ.
In section 2 we constructed the chain

X, C Wgn—1,1,2 C ‘/2'”7272 C ‘@va1,2 CAL
for n > 3 with X3 = ®, the empty set. Therefore by definition, Von_g2 =
Von_120 Hé‘

LEMMA (3.1). For a € HL C Apy1 with o = (a,b) € A, x A,

1) (ag) € HE and as = (a, —b). )

2) af € HE and of = ae = —ae = (=b, —a).

Proof. By direct calculation,

ae = (a,b)(€0,0) = (aéo, —béo) = (@, —b) € Ay, x A, = HF
and 3
ag = (a,b)(0,€) = (éod, é0a) = (—b, —a)

by Lemma (1.3) (1). Finally, using Lemma (1.3) (6) and (3), respectively, we
get o = e = —az € HL. O

COROLLARY (3.2). For a non-zero a in HX C A, 41 and n > 3,

Oy := Span{ey, &, €, €9, &, ag,Ea,a} C Apyq

. . . n+1
is an 8-dimensional vector subspace of A, 11 = R?" .

Proof. By definition {eg, £,¢,é0},{€o, &, a, €0}, {e,a, &, a} are an orthogonal
set of vectors and ae € HX NHL. Also by Lemma (3.1). fa = —aé € HX NHL.
Thus {eo, €, €, €9, &, ae, £a, a} is an orthogonal set of vectors in Ay, 41. O

Remark (3.3). In particular, for o € Van_g.9, we have that O, = R® C A, 41
and O, ® @i =A,41.

LEMMA (3.4). For o € Van_g2, a € Wan-1_4 5 if and only if & € 0.
Proof. Recall that by definition & = (b,a) if a = (a,b), so
ae (Span(({e()a 5, g, €0, d}))L

(see Lemma (2.1). above). Now

(&, éa)ns1 = ((b,a), (67 a))n+1 = (b, 6>n +(a,a)n =0

(q,ae)nt1 = ((b,a), (@, =b))ny1 = (b,a)n — (a,b)n = 2(b, @),
so & L (ag) in Ay,1q if and only if @ L b in A, i.e. b € H-. Therefore & € Q2 if
and only if b € H. O

From this we see that Wan—1_1 9 = {a € Van_s )& € O }.

THEOREM (3.5). For a € Wan-1_1 5 and n > 4, the following statements are
equivalent.

(i) a € Xy

(i) « alternates with € i.e., (o, a,e) = 0;

(iii) the vector subspace of Ay, 41

V(a;e) := Span{eq, a, &, ae}.
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is multiplicatively closed and isomorphic to Ay = H;
(iv) Q4 is multiplicatively closed and isomorphic to Az = Q;
(v) & € KerL, C QF, where Ly, is left multiplication by «.

Proof. First of all we calculate
alag) = (a,b)[(a,b)(,0)] = (a,b)(a,—b) = (ad — bb, —ba — ba)
(—Ial|?€o — ||b||*€0, —ba — ba) (by Lemma 1.1 (2) and (5))
= —||%e + 2(0, ba).

Therefore a(ae) = a’e = —||a||?¢ if and only if ba = 0; i.e., « € X,, and we have
()& (iD).

Clearly if &« € Wan-1_; 5 then {eg, a, €, ae} form an orthonormal set of vectors,
dimg(V (a;¢€)) = 4 so —||a|]* = a? = (ae)? and a(ae) = —||a||?¢ if and only if
V(a;e) = H, and we have proved (ii)<(iii).

To prove (ili)<(iv) we establish the following correspondence between the
canonical basis in A3 and the orthonormal basis of Q.

e1 — & ea €563 = €0 ||alles — &; ||alles — ag;||alles = Ea; ||aller = «

Using ii) it is a routine calculation to see that this correspondence defines an
algebra isomorphism. (See also Lemma (4.8) (1) below). Finally, from Lemma
(3.4) we know that & € O2 and

ad = (a,b)(b,a) = (ab + ab,a® — b*) = (2ab, ||b]|* — |a][*)

is the Hopf construction. Thus a& = 0 in A, 41 if and only if & € X,,. Recall
that As =2 O, does not admit zero divisors. O

THEOREM (3.6). H admits a left H.-module structure for n > 3.

Proof. For a = (a,b) in H: = Ap x A, and u = reg + sE+ qe + péo with 7, 8, ¢
and p in R. Define

U= qu = ra+ sag + qae + pa.

Trivially @ € HZ and (a€) and (ag) are in HX by Lemma (3.1) (2) and (1),
respectively. Since £,¢ and €y are alternative elements in A, 1 (actually they
belong to the canonical basis) we have that - a = (ag)g = a(8)? = —||a||?eq =
£+« and similarly ¢ - (- a) =% -« and €y - (€ - ) = €3 - .

Now e (ep-a) =¢- (aey) =€ -a = ae and (¢€p) -« =€+ a = a€ = ae by
Lemma (3.1) (2). Similarly,

g- (e a) (Eep) - =ea
e (E-a) = (€f) - a=ae
e-(p-a) = (g€) - a=ae
e -(e-a) = (€e) a=—ac
Finally - (¢ - a) = £ (ae) = (ae)f = (ag)e = —(ag)e = —a = (Z¢) -  and

N
Il

e-(E-a)=¢c-(ag) = (a€)e = (ae)e = ¢ (¢a). Apply Lemma (3.1) and
Lemma (1.3). and we are done. O
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We now define a S® action on X,,. Consider the unit sphere in H. C A,, 1,
S3 = S(H.) = {reg + s& + qc + péo|r? + s> + ¢* + p* =1} .
For a € HY with a = (a,b) € A, x A, define HX x §3 — HZX by
alreg + s€ + qe + péy) = ra+ saé + qae + paéy = ra + sae + que + pa
= r(a,b) + s(=b, —a) + q(a@, —b) + p(—b, a)
= (ra—sB—i—qd—pb,rb—sd—qE—l—pa).
By definition this is a group action which is smooth and free of fixed points.

COROLLARY (3.7). The above action of S* = S(H.) on HL is a group action
which is smooth, orthogonal, and free of fized points.

Proof. By Theorem (3.6) this is a smooth group action because it is a re-
striction of a linear action. Since right multiplication by ep,e and € are or-
thogonal linear transformations, we have that the action is orthogonal. Finally
this action is free of fixed points because {eg, &,&,¢} is an orthonormal basis, so
afreg + s€ +ge +peg) =aif and only if r =1,s =q=p=0. O

THEOREM (3.8). i) The subsets X,, and Won-1_1 5 of HE are S®-equivariant;
ii) for o and B in Won-1_1 5 Qo = Qg as vector spaces if and only if o and
B lie in the same S3-orbit.

Proof. For a € Ht with o = (a,b) € A, x A, and r, s,¢,p in R with 72 4+ s2 +
¢*> + p? = 1 we have that

a(reg + s€ + ge + séy) = (m—sB—i—qd—pb,rb—sd—qE—l—pa).

Suppose that a € Wan-1_1 ; then (a,b), = —(a,E)n = 0;{a,b), = (&,E)n =0
and, by definition, (a,a), = <§,B>n = 0 with ||a|| = ||a|]| = |[b]| = |]b]] = 1, so
(ra — sb+ qa — pb,rb — sa — qb + pa) = p||al|*> + sql|b||* — ¢s||a||* — pr|b]|*> = 0
and (a(reg + s€ + qe + s€p)) € V2~n_272.

Similarly, (ra — sb+ qa — pb, b+ sa + ¢b + pa) = 0 and

a(reg + s€ +qe + s€g) € Wan-1_1 5.
A direct calculation shows that if ab = 0 then
ab=ab=ab=ab=0
(ra — sb+ qa — pb)(rb — sa — gb + pa) =
—rsaa + rpa® — srbb + sqb® — qsa® + qpaa — prb® + quB =

—rs(—||al[*Eo + [[b]|*€0) + pa(—|la|*Eo + [[b]|*€0) + rp(a® — b*) + s¢(b” =) = 0
since ||a||? = ||b]|> = 1 and a? = b? = —ey, so we have (i).

To prove (ii) we note that O, = H, & Span{a, ae, Ea, a}. Thus, if 8 = ra +

sae + qae + pa (recall that ae = —&a by Lemma (3.1)) and ||f]|] = 1, then
2+ 52+ ¢ +p?=1and a = mod S? if and only if O C Q,, but

dim Og = dim O, = 8 and Og = O, .
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Remark (3.9). Note that T = S! x S! as in Lemma (2 7) and $3 = S(H.)
intersect in a copy of S*. Suppose that r2 + s? —|—p +¢?2=1,u>+v?>=1and
t?+m?=1inR. If(ra—sb—l—qa—pb rb — si — qb+ pa) = (ua—i—va tb+mb)
thenr =u,q=v,s=0,p=0,r =t,—q = m, so

SH)NT = 8" = {(r,—q)|r* +¢* =1} .
4. X,, and monomorphisms from Az to A, ;;

In this section we will assume that 1 < m < n.

Definition (4.1). An algebra monomorphism from A,, to A,, is a linear mon-
omorphism ¢ : A,, — A,, such that

i) p(eg) = ep (the first eg is in A,, and the seco