CONVERGENCIA DIFUSA I

Autor: José Raúl Montes de Oca Machorro
Coautor(es): Heliodoro Daniel Cruz-Suárez
Estas pláticas (Convergencia Difusa I y Convergencia Difusa II) tratan con la convergencia de números difusos. Se propone una nueva estructura algebraica y una métrica para el conjunto de números difusos. La finalidad de esta nueva teoría es establecer resultados de convergencia de sucesiones y series de números difusos con el fin de resolver problemas de optimización difusa, en particular Procesos de Decisión de Markov con recompensa o costo difusos y con espacio de estados discreto. Estos problemas no se pueden resolver con la estructura algebraica clásica. Se presentarán ejemplos para ilustrar la teoría desarrollada.