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Bol. Soc. Mat. Mexicana (3) Vol. 8, 2002

THE SIZE OF MINIMUM 3-TREES: CASE 2mod 3

JORGE L. AROCHA AND JOAQUIN TEY

ABSTRACT. A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-
coloring of its vertex set there is a heterochromatic triple and the hypergraph
has the minimum possible number of triples. There is a conjecture that the
number of triples in such 3-treeis I—"‘"s‘ 2’-| for any number of vertices n. In[4]
Sterboul gave a proof that this is true when n = 2 mod 3, however his proof is
incomplete. Here we give a full proof of this case using the basic construction
and the main ideas of [4].

1. Introduction

A 3-graph is an ordered pair of sets G = (V, A). The elements of V are called
vertices. The elements of A are subsets of vertices of cardinality 3 and are
called triples. Given a 3-graph G = (V, A) and a vertex v the trace Trg (v) of v
in G is the graph with vertex set V\{v}, and a pair {x, v} is an edge of Trg (v)
if and only if {v, x, y} is a triple of G. Henceforth, the number of vertices in a
3-graph will be denoted by n.

A 3-graph is called tight (see [1]) if any proper 3-partition (3-coloring) of the
vertex set has a transversal (heterochromatic) triple. A tight 3-graph is called
a 3-tree, if whenever we delete a triple from it we obtain an untight 3-graph.
Different 3-trees on n vertices may have a different number of triples. From
the results of [3], we know that the maximum number of triples in any 3-tree s

(N 1), 1t is not difficult to show that the minimum number of triples in such

a 3-tree is not less than ["(—13—"2’-‘ . In [1] it was proved that this bound is sharp

for any n of the form ”—gl where p is a prime number, and it was conjectured
that the bound is sharp for any n. In [2] the case when n = 3,4 mod 6 was
solved.

In [4] Sterboul gave a proof that this is true when n = 2 mod 3, however his
proof is incomplete and lacks many details. Here we give a full proof of this
case using the basic construction and the main ideas of [4].

2. The construction

The remark in the introduction shows that to prove the conjecture for any n
it is sufficient to construct a 3-tree with [L";ﬂw triples. Here we are dealing

only with the case n = 2 mod 3 which has sense when n > 5. Forn =5 the
construction in [1] gives the result.

2000 Mathematics Subject Classification: 05B07, 05C65, 05D10.
Keywords and phrases: tight hypergraphs, triple systems.
Partially supported by CONACYT grant No: 400333-5-27968E .
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ON VARIETIES OF REPRESENTATIONS OF BOCSES

R. BAUTISTA, A. G. RAGGI-CARDENAS AND L. SALMERON

ABSTRACT. We continue the study of the geometry of representations of boc-
ses, started by Yu. A. Drozd about 20 years ago. We provide complete proofs
in this context of the corresponding known results for representations of
finite-dimensional algebras, such as generic decompositions, incompatibility
of tameness and wildness, number of parameters, and Voigt'’s Lemma. More-
over, we establish a geometric interpretation of the “translation” from the
representations of the Drozd bocs of an algebra A to the representations of A.

0. Introduction

The theory of bocses was initiated by the Kiev School of representation
theory as a tool for systematic study of a wide class of matrix problems ([KIRo]).
Using its technics, Yu A. Drozd proved that a finite dimensional algebra over
an algebraically closed field is either tame or wild ([Drl] and [Dr2]). This
proof was refined and exploited by W. Crawley-Boevey in [CrB1], to study
some geometrical features of the Auslander-Reiten quiver of tame algebras.
Then, again Crawley-Boevey strengthened Drozd argument and applied it to
the study of generic modules and tame algebras ((CrB2]). The importance of
these results entails the need of a better understanding of bocses and their
representations. In this paper, we continue the study of the varieties of
representations of bocses started by Drozd in [Drl]. In a broader context,
we paraphrase some of his arguments (mainly in our section 3) and emphasize
further the close resemblance with the well known case of module varieties of
finite dimensional algebras. In this way, we survey incompatibility of tameness
and wildness, generic decompositions and number of parameters. In section T
we prove a bocs version of Voigt's Lemma, which relates the tangent space at a
point M of some variety of representations with the group Ext A(M, M) of exact
pairs in the non-abelian exact category rep 4 of representations of the bocs A.
Finally, in the last part of this paper we compare the variety of d-dimensional
A-modules, where A is a finite dimensional basic k-algebra, with the variety
of representations of the Drozd bocs D, of A. We provide a sort of geometrical

interpretation of the translation functor
E ~ Coker
repp, ——Py——mod,,
which plays the central role in the translation of A-module problems to
representations of bocses problems.
We assume that our ground field % is algebraically closed, and consider only
algebraic varieties which are locally affine spaces which satisfy the Hausdorff

2000 Mathematics Subject Classification: 16G60, 15A21, 14R20.
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INTERCHANGING ORDERS OF SUMMATION FOR MULTIPLIER
CONVERGENT SERIES

CHARLES SWARTZ

ABSTRACT. We give sufficient conditions in terms of a gliding hump property
for an iterated series of multiplier convergent series to be a convergent double
series. As an application, we derive a version of the Orlicz-Pettis Theorem for
multiplier convergent series.

One interesting problem in analysis is to give useful conditions which are
sufficient for the interchange of the order of summation in two iterated series
generated by a double sequence. For example, in the scalar case the absolute
convergence of an iterated series guarantees that both iterated series converge
and are equal as well as the convergence of the double series. However, in
the case of series generated by double sequences with values in a normed or
locally convex space the absolute convergence of an iterated series is much
too strong a condition to be useful in many situations. P. Antosik has given a
sufficient condition involving subseries convergence of an iterated series with
values in a topological group which guarantees the convergence of the double
series and the equality of both iterated series and which has proven to be
useful in several applications ([A], [Sw1], [Sw2], see also [LS], [St2]). In this
note we observe that in the case of series with values in a topological vector
space Antosik’s sufficient condition can be interpreted as a condition involving
multiplier convergent series where the multipliers take values in the space, my,
of scalar valued sequences which take on only finitely many values. We then
show that Antosik’s Interchange Theorem can be generalized by replacing the
vector space of multipliers mo by more general sequence spaces. Actually, we
show that our methods apply to operator valued double series and vector valued
multipliers. We indicate how our result can be used to give a generalization of
Stiles’ Orlicz-Pettis Theorem to multiplier convergent series.

We begin by fixing notation and terminology. Let X and Y be real Hausdorff
topological vector spaces with L(X,Y) the space of all continuous linear
operators from X into Y. Let E be a vector space of X-valued sequences which
contains the subspace of all sequences which are eventually 0. If x € E, we
denote the kth coordinate of x by x; so x = {x;}. If {A;} € L(X,Y), we say that
the series }_;°; A; is E-multiplier convergent if the series )_;°, A;x; converges
for every x = {x;} € E; the elements of E are referred to as multipliers.
If {x;} ¢ X and E is a real valued sequence space, then each x; can be
viewed as an element of L(R, X) and E-multiplier convergence is just the usual
notion of multiplier convergence [FP]. In particular, if E = [>° , [>°-multiplier

2000 Mathematics Subject Classification: 40A05.

Keywords and phrases: multiplier convergent series, iterated series, double series, gliding
hump property.
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A NEW APPROACH TO UNCONDITIONALITY FOR POLYNOMIALS
ON BANACH SPACES

MAITE FERNANDEZ-UNZUETA

ABsTRACT. We study the behaviour of polynomial maps between Banach
spaces, acting on some sequences usually related to the (linear) uncondition-
ality. This study gives rise to a generalization of the notion of unconditionality
to the context of polynomials, which allows us to extend many of the results of
the linear case to the polynomial one. We characterize when a Banach space
contains ¢ as a subspace in terms of the class of unconditionally converging
polynomials of any degree on the space. We also study those Banach spaces
on which every unconditionally converging polynomial is weakly compact.

Introduction

In the past years much research has been done in the theory of polynomial
maps between Banach spaces as a part of the study of isomorphic properties
of Banach spaces. One of the most useful techniques has been that of studying
some classes of polynomial maps and the relations among them, generalizing
the corresponding notions for linear operators. In this paper we adopt this
point of view in the case of the notion of unconditionality. We first study the
behaviour of an m-homogeneous polynomial acting on some special classes of
sequences (the so-called weakly unconditionally Cauchy). This study leads
us to define the class of unconditionally converging polynomials in a different
manner to that previously defined in [8]. This notion of unconditonality and
some of the results in this paper were announced in [6].

We recall that a series ), x; in a Banach space E is weakly unconditionally
Cauchy (w.u.C.) if for every x* € E*, the series ) _; |x*(x;)| is convergent, and
that a series is unconditionally convergent if every of its subseries is norm
convergent. The unconditionally converging linear operators between the
Banach spaces E and F are those which transform every w.u.C. series in £
into an unconditionally convergent series in F, or equivalently, those which
transform the sequence of partial sums associated to every w.u.C. series in £
into a norm convergent sequence in F.

In order to extend this notion of unconditionality to homogeneous polyno-
mials, it is pertinent to recall that every homogeneous polynomial of degree m
between two Banach spaces E and F transforms sequences which are Cauchy,
in the topology induced on E by the family of scalar homogeneous polynomials
of degree m on E, into weak Cauchy sequences in F (see [7, Corollary 2.3]).

2000 Mathematics Subject Classificdtion: 46B20.
Keywords and phrases: Polynomial between Banach spaces, unconditionally converging.
Partially supported by CONACyT grant 129875-E.
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COEXISTENCE OF SPECTRA IN RANK-ONE PERTURBATION
PROBLEMS

R. DEL RIO, S. FUENTES AND A. POLTORATSKI

ABSTRACT. We study the behavior of spectral functions corresponding to
selfadjoint operators of the form A + A(¢g, -)¢. The focus is on the coexistence
of absolutely continuous and singular spectra for values of the real parameter
Ain a given set B. For almost all points of B it is possible to construct a family
of rank one perturbations with mixed spectra.

1. Introduction

In this note we shall study the behavior of different parts of the spectrum
of an operator under small perturbations. Such problems became an object of
active research in recent years mostly due to the applications to differential
equations and mathematical physics. In such applications the operators are
usually unitary or self-adjoint and acting in a separable Hilbert space.

Let Ay be a cyclic self-adjoint operator, ¢ its cyclic vector and w the
corresponding spectral measure. Denote by A, the rank one perturbations
of Ap:

(1.1) A=A+ A, e, A€R

In case ¢ is not in the Hilbert space where A acts, this expression has to be
understood formally. For example, ¢ could be a generalized vector in the space
‘H_9 from the scale of Hilbert spaces associated to Ag, see [1]. We discuss this
further in the remark after the proof of Lemma (2.9).

Let w, be the spectral measures of A, corresponding to ¢. The general
problem related to such a family is to understand how the measures u, change
when one varies the parameter (the coupling constant) A.

Such problems appear in many applications. For instance, if one considers
a discrete Schrodinger operator and starts changing the potential at one of
the points of the lattice one will obtain a family of self-adjoint rank-one
perturbations. Our question then translates into the problem of predicting
the changes in the dynamical properties of the quantum system caused by
small perturbations in the potential field. Similarly, if one takes a Sturm-
Liouville differential operator on the half-axis and begins varying the boundary
condition at 0 one again obtains an example of a family A,. The same problem
appears in many other areas including self-adjoint extensions of symmetric
operators and spaces of pseudocontinuable functions in the unit disk. For
more on these connections see [9], [17] and [14].

2000 Mathematics Subject Classification: 47B15, 81Q10.
Keywords and phrases: rank one perturbations, mixed spectra.
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SEPARATION IN SEMI-CYCLIC 4-POLYTOPES

W. FINBOW AND D. OLIVEROS

ABSTRACT. Semi-cyclic 4-polytopes are introduced, and a complete facial
description is given. The Gohberg-Markus-Hadwiger Covering Conjecture
is verified for the corresponding class of dual semi-cyclic 4-polytopes.

1. Introduction

The notation and terminology in this paper follow [7]. In particular, we
assume the reader is familiar with cyclic and neighbourly polytopes.

Let X be a set of points in E*. Let conv(X) and afft.X) denote, respectively,
the convex hull and affine hull of X. Forsets X, Xo, ..., X}, let [X; UX5U- - U
Xk] = conv(Xq, Xo, ..., Xk) and (Xl uXeU---U Xk) = aff(X;, KXo, 55 Xp)
For a point x € E*, let [x] = [{x}] and (x) = ({x}).

Let P c E* be a convex 4-polytope with V(P), £(P), and F(P) denoting
respectively, the sets of vertices, edges, and facets of P. Let P C E* denote
a neighbourly 4-polytope, {x,y} € V(P) and x # y. Then P is simplicial,
E =[x, ylis an edge of P, and the quotient polytope P/E is a convex 2-polytope.
We recall that E is a universal edge of P if [E, z] = [x, y, z] is a 2-face of P for
each z € V(P)\ {x, y}. Let U(P) denote the set of universal edges of P.

Let E = [x,y] e U(P), F =[x, y, z,w] € F(P), and set

F(E,F,P)={Fc FP)ECF #F}.

In [8], I. Shemer showed that there is a point ¥ € E* with the property that ¥
is beyond each facet of P in F(E, F, P) and beneath each facet of P that is not
in F(E, F, P). Furthermore, P = [P, x| is a neighbourly 4-polytope with the
property that V(P) = V(P)U {x} and

(1.1) UP) = {[x,x], [y, X1} UU°(P),

where
U(P) = {E° eU(P)|E°NF = for |E° N {z,w}| =1}.
The polytope 7P is said to be obtained from P by sewing % through F(E, F, P).
Let |V(P)| = n > 6. Then P is totally-sewn if there is a sequence {P,}7, g of
subpolytopes of P = P, such that [V(P,,_1)| = m — 1 and P, is obtained from
Pn—1 by the sewing construction. We note that Ps and P; are always cyclic
4-polytopes, and that cyclic 4-polytopes are known to be totally-sewn.

2000 Mathematics Subject Classification: 52B11, 52B12, 52C35.

Keywords and phrases: covering by smaller homothetic copies, neighbourly 4-polytopes, pro-
jection, separation by hyperplanes, sewing construction.
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The second author was supported by the University of Calgary and by Consejo Nacional de
Ciencia y Tecnologia (México).
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COMPLETE LIFTS OF DERIVATIONS TO TENSOR BUNDLES

NEJMI CENGIZ AND A.A. SALIMOV

ABSTRACT. The main purpose of this paper is to study the complete lifts of
derivations and their some geometrical applications in the tensor bundle.

1. Introduction

Let M, be an n-dimensional manifold of class C*°. Consider the tensor

bundle T/(M,) = |J T;(P)and denote the natural projection 7/ (M,) — M,
PeMn

by 7. Letx/, j = 1,..., n be local coordinates in a neighborhood U of a point P
of M,,. Then a tensor ¢ oftype (p, @) at P € M, which is an element of T (M,,) is

o i RN e
expressible in the form (x/, ¢, Jj") = (o), /), %/ = ¢}, ‘Jf’ ,J=n+1...,n+nPte,
e wda

whose £ are components of ¢ with respect to the natural frame 9;. We may

jlqu
consider (x/, x/) as local coordinates in a neighborhood 7~ 1(U) of TS (M,,).
To a transformation of local coordinates of M, : x/' = x/'(x/), there corre-

sponds in 77 (M,,) the coordinates transformation

) x) = x (x/),
(1_1 = il i, . i, . s 2. = < > -
T e Ay » A% Jagh-te . AG) AQ) o

Gon = AL APAS L AR = ADAD S,

where ) _
axt J (pr
P

A AW _ Aii A‘:;Ajl Al AV —
@ TGN T SRt e

The Jacobian of (1.1) is given by the matrix

' ox) ax) i
ap  (Z) (% ) 4 o

g (k) (1) @ “7G")

where J = (j, j),J = 1,...,n + nPq, t&)) = t;ll':_'_i,f,’q.

We denote by F7(M,) the module over F(M,) of C* tensor fields of type
(p, @) (F(M,,) is ring of real-valued C* functions on M,,).

If « € FJ(M,), it is regarded, in a natural way, by contraction, as a
function in Ty (M,), which we denote by 1. If @ has the local expression

a=a"3j,® - @8 j, ® dx" ® --- ® dx' in a coordinate neighborhood

l1...lp

U(x') C M,, then 1 = a(t) has the local expression

. .1....]',, il...ip
la = a‘l’]...l,, t_[l_]q

2000 Mathematics Subject Classification: 53A45, 53B05, 55R10, 57R25.
Keywords and phrases: lift, derivation, vector field, tensor bundle, curvature tensor.
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INVERSE LIMITS AND A PROPERTY OF J. L. KELLEY I

W. T. INGRAM

ABSTRACT. In this paper we use inverse limit techniques to prove certain
continua have the Property of Kelley. These include all the continua in
the uncountable collection of atriodic tree-like continua constructed in [An
uncountable collection of mutually exclusive planar atriodic tree-like continua
with positive span, Fund. Math. 85 (1974), 73-78], certain chainable continua
obtained as inverse limits on [0, 1] using a single bonding map chosen from a
collection of bonding maps determined by permutations and certain chainable
continua obtained as inverse limits on intervals using a single unimodal
bonding map.

0. Introduction

In a conversation several years ago, Sam Nadler asked the author if the
example of [2] has the property that J. L. Kelley labeled in [9] as property 3.2
(now known as Kelley’s Property or as Property « [1, p.167] or, popularly, as the
Property of Kelley). In turn the author asked Dorothy Sherling this question
and her work on the question led to her dissertation [11]. In her dissertation,
Sherling did not settle Nadler’s original question however she constructed a
C-H continuum which is neither chainable nor circle-like and which has the
Property of Kelley. In a subsequent joint paper [8], Sherling and the author
showed that the original example has the Property of Kelley by showing that
it is a confluent image of an example of Sherling [11]. In this paper, we provide
an argument that the author’s original example has the Property of Kelley
by a direct argument using only inverse limit techniques. The techniques of
the proof also may be used to show that all of the uncountable collection of
mutually exclusive non-chainable tree-like continua in the plane constructed
in [3] and later shown to have no model [4] also have the Property of Kelley. In
addition, the techniques developed may be used to show that some of the maps
determined by permutations as discussed in [7] produce chainable continua
with the Property of Kelley. This provides a partial answer to a question of
W. J. Charatonik who asked the author in a seminar whether all the continua
studied in [7] have the Property of Kelley.

By acontinuum we mean a compact, connected subset of a metric space. By a
mapping we mean a continuous function. If M is a continuum, a subcontinuum
H of M is said to be irreducible about a closed subset E of M if H contains E
but no proper subcontinuum of H contains E. If M is a continuum, and E is a
subset of M, we denote the diameter of E by diam(E). If M is a continuum, we
denote by C(M) the space of all subcontinua of M with the Hausdorff metric
H [1, p. 11]. A continuum M with metric d is said to have the Property of

2000 Mathematics Subject Classification: 54B20, 54H20, 54F15.
Keywords and phrases: property of Kelley, inverse limit.
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A NOTE ON «-MODIFICATION AND COMPLETENESS CONCEPTS

CONSTANCIO HERNANDEZ AND MICHAEL TKACHENKO

ABSTRACT. In this note the relation between the w-modification of a topo-
logical space and completeness concepts is analysed: we prove that the
w-modification of a Dieudonné-complete (realcompact) space is Dieudonné-
complete (realcompact). We also prove that the w-modification of a complete
topological group is complete.

Completeness of spaces and topological groups is a non-trivial generalization
of compactness which shares many features of the latter but can substantially
differ from it on occasion. For example, every continuous homomorphic image
of a compact group is clearly compact, but even continuous open homomorphic
images of complete topological groups can fail to be complete. In fact, every
Abelian topological group is a quotient of a complete Abelian topological group
[RD, Chapter 11].

On the other hand, refining the topology of a compact Hausdorff space we
immediately lose compactness, while any uniformity V compatible with the
topology of a space X and finer than a given complete uniformity U on X is
also complete.

In this note we show that the w-modification of a complete uniform space
as well as of a complete topological group is again complete. It is worth to
mention that the w-modification changes both the topology and uniformity of
a uniform space (topological group). Here we explain the terminology.

Definition (1). Let X be a space with topology 7. The family of all Gs-sets in
X forms a base for a topology T, on X. This topology is called the w-modification
of the topology T. The w-modification (X, 7, ) of the space X is abbreviated to
(X)-

Suppose that {X; :i € I} is a family of topological spaces. If @ # U, C X;
foreachi € I and U = [];_, U; is a box in the product space II = [[;.; X;, we
set

coordU) = {i e I: U; # X;}.
For an infinite cardinal «, the x-box topology on the product IT is the topology
generated by the sets of the form Hie 1 Ui, where U; is open in X for each i € [
and | coord(U)| < k. The product space IT with the x-box topology is denoted
by I(x).
We omit a standard proof of the following lemma.

2000 Mathematics Subject Classification: Primary 54H11, 22A05; Secondary 22D05, 54C50.

Keywords and phrases: Dieudonné complete space; realcompact space; w-modification of a
space; complete group.
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ON THE WIENER INTEGRAL WITH RESPECT TO THE
FRACTIONAL BROWNIAN MOTION

CONSTANTIN TUDOR

ABsTRACT. We consider inner product spaces of functions defined on a finite
interval which are isometric with some subspaces of the Gaussian space
generated by a fractional Brownian motion. Such pre-Hilbert spaces represent
classes of integrands for the Wiener fractional integral. Also, the operators
used for defining the fractional Wiener integral via a transfer from the Wiener
integral are characterized.

1. Introduction

Let {Bf} te[0.T] be a fractional Brownian motion of Hurst parameter H €
(0, 1), defined on a probability space (€2, F, P). Recall that B is a continuous

centered Gaussian process with BY = 0 and covariance
1
Ry(t, s) = 5 (tZH 427 _ [t — slw) , Ste [O, T] .

We denote by Hy (resp. H(Rp)) the Gaussian space (resp. the Reproducing
Kernel Hilbert Space) associated to Bf. Recall that if H = % then B? is the
standard Brownian motion.

It is well known that Hy and H(Ry) are isometric and moreover the Wiener
integral is a isometry between L? ([0, T]) and 3(;. Therefore if H = j then

L% ([0, T]) is the class of integrands for the Wiener integral.

In the present paper we are interested in a similar problem for the fractional
Brownian motion { BfY)}, e[0T

An equivalent formulation of the problem is to characterize the largest
inner product spaces of functions on [0, T'| (integrands) Ay which contain the
elementary functions and are isometric with subspaces of Hy. The situation
is different in the cases 0 < H < §, § < H < 1. When 0 < H < 1 there exists
a Hilbert space of integrands Ay and thus Ay is isometric with H(Rg), while
if % < H < 1 the space Ay is not complete and consequently it is not isometric

with H(Rp). For f € Ay the Wiener fractional integral jOT f(t)dBH is defined
in the usual manner by setting

T k—1
(1.1) / fedBf =" fi(Bf, - BY),
0 i=0

2000 Mathematics Subject Classification: 60HO05.
Keywords and phrases: fractional Brownian motion, Wiener integral, inner product spaces.
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LEY DEL LOGARITMO ITERADO EN EL ESTUDIO DE CIERTAS
SERIES DE DIRICHLET ALEATORIAS

JAIME LOBO S.

RESUMEN. Por medio de la ley del logaritmo iterado se establecen propie-
dades para ciertas series de Dirichlet aleatorias: el valor de las abscisas de
convergencia simple y absoluta, el orden de decrecimiento de los restos de la
serie en los puntos de convergencia, el comportamiento de las sumas parciales
de la serie en la frontera del semiplano de convergencia, y el comportamiento
limite de la serie en el punto frontera del eje real.

Sea una sucesion X = (X, ),en de variables aleatorias, definidas en cierto
espacio de probabilidades (), A, P). Llamamos serie aleatoria de Dirichlet
o0
asociada a X a la serie funcional aleatoria de variable compleja z: n—:’
n=1
y que en lo sucesivo sera denominada por las siglas SAD. De la misma
manera, dado un valor fijo de z, la serie aleatoria de numeros complejos
= Xn(w)
w —
n=1 n?
sucesiones X compuestas de variables independientes, es un hecho inmediato
de la ley 0-1 de Kolmogorov y de las propiedades generales de las series de
Dirichlet, que con probabilidad uno, en un semiplano de la forma {z € C :
Ind(2) > a}, la serie SAD converge a una funcion analitica compleja aleatoria
D(w, z), cuyas realizaciones son series de Dirichlet de mismas abscisas de
convergencia simple y absoluta (ver Kahane [2], principal referencia acerca
series de funciones aleatorias). Este proceso es también llamado serie aleatoria
de Dirichlet, definida por la sucesion aleatoria X, sin riesgo de confusion con
la nocién anterior.

En el estudio de las series aleatorias es de uso comun el criterio dado por el
teorema de las tres series de Kolmogorov para establecer la convergencia casi
segura o divergencia casi segura de la serie. En un caso como el de la series
SAD, que depende de un parametro, este estudio se debe realizar para cada
valor del parametro complejo z, aunque en realidad, segun la teoria general
sobre las SAD, basta considerar los complejos z en el eje real. El teorema
anterior no brinda sin embargo mayor informaciéon acerca del caracter de
la convergencia o divergencia segun el caso. En este trabajo se establecen
propiedades mads finas para las series de SAD mediante la ley del logaritmo
iterado, en varias de sus versiones, y bajo condiciones que seran precisadas
mads adelante. Se calculan los valores de las abscisas de convergencia simple
o absoluta de la funcién analitica D, y se obtienen resultado asintéticos para

serd denominada también por el término SAD. En el caso de
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