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ON ESTIMATES OF THE MAXIMAL OPERATOR ASSOCIATED TO
NONDOUBLING MEASURES

ADRIÁN INFANTE AND FERNANDO SORIA

ABSTRACT. In this paper we show the boundedness of the non-centered Hardy-
Littlewood maximal operator Mµ associated to certain rotational invariant mea-
sures. We prove that this maximal operator satisfies the modular inequality

µ
({

x ∈Rn : Mµ f (x)>λ})≤ C
∫
Rn

| f |
λ

(
1+ log+ | f |

λ

)m
dµ,

for λ > 0 and m > 0. We prove the modular inequality for the maximal operator
associated to rotated squares from R2 and with a radial and decreasing measure.
The technique used in the proof for cubes suggests extending this result to cones
whose axes of symmetry pass through the origin. In both cases it is proved that
the exponent of the modular inequality is m = n, which we prove is sharp.

1. Introduction

Let µ be a non negative measure in Rn, finite on compact sets. Given a function
f ∈ L1

loc(dµ), we define the Hardy-Littlewood maximal operator

(1.1) Mµ f (x)= sup
x∈Q

1
µ(Q)

∫
Q
| f (y)|dµ(y),

where the supremum is taken over all cubes Q in Rn containing x and µ(Q)> 0.
In this paper we will state properties over measures µ so that the following

modular inequality can be satisfied

(1.2) µ
({

x ∈Rn : Mµ f (x)>λ})≤ C
∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)m
dµ,

for all λ> 0, for any exponent m that depends only on the dimension.
The first result is reminiscent of the Jessen, Marcinkiewicz and Zygmund the-

orem (see [2] and [5]) on the boundedness of the strong maximal operator.
A set in Rn defined as

I = {x : ai ≤ x ≤ ai +hi, i = 1, . . . ,n} with hi > 0,

is called an interval of Rn. When h1 = h2 = ·· · = hn, the interval I is called a cube.
Let µ be a positive Borel measure on Rn. Associated to this measure, we define
the maximal operator

Mä
µ f (x)= sup

x∈I

1
µ(I)

∫
I
| f (y)|dµ(y),

where the supremum is taken over the intervals I, containing the point x and
µ(I)> 0.
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THEOREM (1.3) (Product measures). If µ1, µ2, . . . ,µn are non-negative Borel mea-
sures on R and we define the measure

dµ(x1, x2, . . . , xn)= dµ1(x1)dµ2(x2) . . .dµn(xn),

then M�
µ satisfies the modular inequality with exponent n−1, namely

(1.4) µ
({

x ∈Rn : M�
µ f (x)>λ

})
≤ C

∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)n−1
dµ,

for all λ> 0.

The Gaussian measure is an example with this product structure, since e−|x|
2
dx

= e−|x1|2 dx1e−|x2|2 dx2 · · · e−|xn|2 dxn. Our goal is to study the behavior of the mea-
sures of the type e−|x|

δ
dx for δ 6= 2. We prove the modular inequality for the max-

imal operator defined with rotated squares of R2 (i.e. cubes whose sides are not
necessarily parallel to the coordinate axes) and associated to a radial and decreas-
ing measure. These measures are contained in a family of measures defined by P.
Sjögren and F. Soria in [4]. In fact, the authors proved that a modular inequal-

ity can be obtained on the Orlicz space L (logL)
n+1

2
µ (Rn) with sharp exponent n+1

2 ,
for the case in which the maximal operator is defined over the Euclidean balls of
Rn. In the case when the measure is doubling, the boundedness properties of the
respective operator defined with balls or cubes are the same. However, if the mea-
sure is not doubling then the geometry associated to cubes is crucial, for example
the Calderon-Zygmund decomposition or the Whitney decomposition.

Before beginning our main result, we first recall some definitions and notations
given in [4]. Set dµ(x) = γ(x)dx a measure such that γ(x) is a radial function,
where γ(x) = γ0(|x|), with γ0(t) being a continuous function, strictly decreasing
and limt→0γ0(t)<∞. We define the function φ : (0, ∞)→ (0, ∞) by

γ0(t+φ(t))= 1
2
γ0(t),

and the function

τ(t)= φ(t)
t

.

In the following theorem we consider the operator defined by equation (1.1),
but the supremum is taken over rotated cubes in R2, and we denote it by M2

µ.

THEOREM (1.5). Let dµ(x) = γ0(|x|)dx, with γ0, φ and τ as just described. If τ
is decreasing in (0,∞) and

lim
t→∞τ(t)= 0,

then there is a constant C such that the non-centered maximal operator M2
µ, de-

fined on rotated cubes in R2 and associated to the measure µ, verifies the modular
inequality

(1.6) µ
({

x ∈R2 : M2
µ f (x)>λ

})
≤ C

∫
R2

| f |
λ

(
1+ log+

| f |
λ

)2
dµ, ∀λ> 0.

A consequence of the modular inequality is the following corollary, whose proof
is a standard argument of interpolation, see Corollary 10 of [4].



ON ESTIMATES OF THE MAXIMAL OPERATOR 3

COROLLARY (1.7). Under the same conditions and notations of the Theorem
(1.5), the maximal operator M2

µ associated to the measure dµ(x)= γ(x)dx is always
bounded on Lp

µ

(
R2)

for every 1< p ≤∞.

Throughout this paper, the symbols C, c, . . . denote constants that may change
from line to line, and A ∼ B mean that A is equivalent to B, in the sense that
CB ≤ A ≤ cB, for some constants C, c.

2. Proof of Theorem (1.3) and (1.5)

Proof of Theorem (1.3). Let I be an interval of Rn. We can write I as the carte-
sian product I1 × I2 × ·· · × In for certain intervals I1, I2, . . . , In. Clearly, µ(I) =
µ1(I1)µ2(I2) · · ·µn(In) and besides

1
µ(I)

∫
I
| f |dµ = 1

µn(In)

∫
In

· · · 1
µ2(I2)

∫
I2

(
1

µ1(I1)

∫
I1

| f |dµ1

)
dµ2 · · ·dµn

≤ Tn ◦ · · · ◦T2 ◦T1 f (x),

where T j acts only over the variable x j and it is defined for each j = 1,2, . . . ,n by

T j f (x)= sup
x j∈I j

1
µ j(I j)

∫
I j

∣∣ f (x1, . . . , x j−1, t, x j+1, . . . , xn)
∣∣dµ j(t).

For n = 1, see [2] and [3], it is proved that the maximal operator on R is always of
weak type (1,1), so each T j is of weak type (1,1) respect to the measure dµ as

µ
{
x : T j f (x)>λ} =

∫
Rn−1

dµ1 · · · d̂µ j · · ·dµn
(
µ j

{
x j : T j f (x)>λ})

≤ C
∫
Rn−1

dµ1 · · · d̂µ j · · ·dµn

∫
R

| f |
λ

dµ j

= C
λ

∫
| f |dµ.

However, this does not suffice for what we are looking for.
In [1] M. de Guzmán proposed an easy proof of the Theorem of Jessen, Marcink-

iewicz and Zygmund based on induction on the dimension, which can be adapted
to our case, taking into account the following observations. To simplify, we assume
n = 2. Using that each T j is bounded on L∞, with the standard arguments of
truncation we obtain the inequality

µ2 {x2 : T2F(x1, x2)>λ}≤ C
λ

∫{
x2: |F(x1,x2)|> λ

2

} |F(x1, x2)|dµ2(x2),
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uniformly in x1. Therefore,

µ {(x1, x2) : T2 ◦T1 f (x1, x2)>λ}=
=

∫
R

dµ1(x1)µ2{x2 : T2(T1 f )(x1, x2)>λ}

≤ C
λ

∫
R

dµ1(x1)
∫

{x2:T1 f (x1,x2)>λ/2}
T1 f (x1, x2)dµ2(x2)

= C
λ

∫
R

dµ2(x2)
∫

{x1:T1 f (x1,x2)>λ/2}
T1 f (x1, x2)dµ1(x1)

= C
λ

∫
R

dµ2(x2)
(
λ

2
µ1 {x1 : T1 f (x1, x2)>λ/2}

+
∫ ∞

λ/2
µ1 {x1 : T1 f (x1, x2)> t}dt

)
≤ C

λ

∫
R

dµ2(x2)
(∫
R
| f (x1, x2)|dµ1(x1)

+
∫ ∞

λ/2

1
t

∫
{x1: | f (x1,x2)|>t/2}

| f (x1, x2)|dµ1(x1) dt
)

≤ C
λ

∫ ∫
| f |dµ1dµ2

+ C
λ

∫
R

dµ2(x2)
(∫

{| f |>λ/4}

| f (x1, x2)|
λ

dµ1(x1)
∫ 2| f |

λ/2

1
t

dt
)

≤ C
∫ | f |

λ

(
1+ log+

| f |
λ

)
dµ.

This finishes the proof of Theorem (1.3).

Basic results for the proof of Theorem (1.5). The following estimation will allow
us to prove that if the maximal operator is defined only with cubes containing the
origin, then it verifies the inequality of weak type (1,1) in any dimension.

LEMMA (2.1). Set dµ(x)= γ0(|x|)dx where γ0(t) is a decreasing function. Given
a cube Q containing the origin, consider B0 the smallest ball centered at the origin
containing Q. Then there is a constant C, which depends only on the dimension,
such that

µ(B0)≤ Cµ(Q).

Proof. Let Q be a cube containing the origin 0. We denote the side of Q by `.
Observe that if Q′ is one of the cubes with side `, such that 0 is one of its vertices,
then µ(Q′)≤µ(Q), since µ is radial and decreasing. Also, if Q0 is the smallest cube
centered at 0 containing Q, then we can cover the cube Q0 with 2n cubes Q′ of this
sort. So, we have

µ(Q0)≤ 2nµ(Q′)≤ 2nµ(Q).

Finally, if we translate 3n cubes from Q0, B0 can be covered with them, and there-
fore, of smaller measure. So, we obtain

µ(B0)≤ 2n3nµ(Q).

For the class of cubes containing the origin we may use the following result.
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LEMMA (2.2). Let µ be a Borel measure. Consider the maximal operator

A0
µ f (x)= sup

`≥|x|
1

µ(B0
`
)

∫
B0
`

| f (y)|dµ(y),

where B0
`

denotes the ball with center at the origin 0 and radius `. Then, A0
µ is of

weak type (1,1).

Proof. We use a standard argument. For every x ∈ Eλ :=
{

y : A0
µ f (y)>λ

}
there is

a ball B̃0
`
, centered at the origin and with x ∈ B̃0

`
, such that

1
λ

∫
B̃0
`

| f (y)|dµ>µ(B̃0
`).

Therefore

µ ({y : |y| ≤ |x|})≤µ(B̃0
`)≤ 1

λ

∫
| f |dµ.

We have,

µ
({

y : A0
µ f (y)>λ

})
≤ sup

x∈Eλ

µ ({y : |y| ≤ |x|})≤ 1
λ

∫
| f |dµ.

LEMMA (2.3). In the former conditions, the maximal operator associated to
cubes containing the origin is of weak type (1,1).

Proof. It is a consequence of the Lemmas (2.1) and (2.2).

For the proof of the theorem we need to introduce some notations. Given a cube
Q with side ` and not containing the origin there exists an unique point ∆Q in the
boundary of Q, nearest to the origin. The distance of Q to the origin is denoted
by

∣∣∆Q
∣∣ = qQ = q. Let ΓQ be the interior of the smallest cone containing Q, with

vertex at ∆Q and which central axis contains the segment
−−→
0∆Q . If ∆Q is not a

vertex of Q then ΓQ is the semi-space
{
y : 〈y−∆Q ,∆Q〉 > 0

}
. Let SQ be the interior

of the smallest cone containing Q, with vertex at the origin and which central axis
contains the segment

−−→
0∆Q . Let tq be the distance from

(
∂SQ ∩∂ΓQ

)
to the origin.

We can show that

tq ∼
√

q2 sin2θ+ q2 cos2θ+2q`cosθ+`2 ∼ (`+ q),

where θ denotes the angle of aperture of the cone ΓQ . Observe that π/4≤ θ <π/2.
We define for each t > 0

ΣQ(t)= {
ω ∈ Sn−1 : tω ∈ΓQ ∩SQ

}
.

Observe that the Lebesgue measure of ΣQ(t) on Sn−1, denoted by σ(ΣQ(t)), is 0 for
0< t < q. For q < t < tq, we have

(2.4) σ(ΣQ(t))∼

 t2 − q2

t
√

t2 − q2 sin2θ


n−1

.

For t > tq,

(2.5) σ(ΣQ(t))∼
(
`sinθ

tq

)n−1
∼

(
`

`+ q

)n−1
.
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Now we are able to establish the basic result of this section, which in principle
is valid in any dimension.

PROPOSITION (2.6). If for some m > 0 there are constants C and ε such that the
radial measure dµ(x)= γ0(|x|)dx satisfies the inequality

(2.7)
∫ ∞

q
exp

(
εσ

(
ΣQ(t)

) µ(Aq)
µ(Q)

) 1
m
γ0(t)dt ≤ Cµ(Aq),

for any cube Q not containing the origin, q = qQ and side greater than φ(q), then
the maximal operator associated to µ satisfies the modular inequality

(2.8) µ
({

x : Mµ f (x)>λ})≤ C
∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)m+1
dµ, ∀λ> 0.

Proof. The proof is similar to the proof of Proposition 6 of [4], once it is observed
that σ(ΣQ(t)) increases when t increases.

In [4] we can see a proof of the following technical lemmas.

LEMMA (2.9). Consider the infinite annulus Aq = {y : |y| > q}. If τ is decreasing
and limt→∞τ(t)= 0, then µ is finite. Besides, there exists q0 such that

µ
(
Aq

)∼ γ0(q)qn−1φ(q), q > q0.

LEMMA (2.10). Under the same conditions and notation of the Theorem (1.5), if
t > q then

γ0(t)≤ γ0(q)
(

1
2

) t− q
φ(q)

q
t .

For q > 0, we define Ψ0(q)= q, Ψ1(q)= q+φ(q) and

(2.11) Ψk+1(q)=Ψ1 (Ψk(q))=Ψk(q)+φ (Ψk(q)) , k = 1,2, . . .

For k ≥ 0, we denote ak =Ψk(q0) to define the level sets associated to γ as

S0 = {y : 0< |y| < a0} , Sk = {y : ak−1 < |y| < ak} , k = 1,2, . . .

Note that γ0 is essentially constant on each Sk. If k ≥ 1 and y ∈ Sk then

γ(ak)≤ γ(y)≤ γ(ak−1)= 2γ(ak).

In the case where y ∈ S0, γ(0+)≤ γ(y)≤ γ(a0)= 2γ(0+). The following result states
that the maximal operator associated to the class of cubes that intersect no more
than a fixed number of level sets Sk is weak type (1,1).

LEMMA (2.12). Let µ, γ0 and Sk as before. Given an integer N, we define the
class

QN = {Q cubes : card {k : Sk ∩Q 6=∅}≤ N} .
Then the respective maximal operator associated to µ and QN , denoted by M0

µ, is
weak type (1,1).

Proof. Let Q ∈QN a cube of center xQ . We know that γ(y)∼ γ(xQ) for all y ∈Q. So

µ(Q)∼ γ(xQ) |Q| ,
where |Q| is the Lebesgue measure of Q on Rn. Therefore,

1
µ(Q)

∫
Q
| f (y)|dµ(y)∼ 1

|Q|
∫

Q
| f (y)|d y.
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For k = 1, 2, . . . , we consider

S∗
k =

k+N⋃
j=k−N

S j, (S j =;, if j < 0)

and fk = f χS∗
k
. Note that if x ∈ Sk, we have

M0
µ f (x)=M0

µ fk(x).

So,

µ
{

x : M0
µ f (x)>λ

}
≤

∞∑
k=0

µ
{

x ∈ Sk : M0
µ f (x)>λ

}
∼

∞∑
k=0

γ0(ak)
∣∣∣{x ∈ Sk : M0

µ f (x)>λ
}∣∣∣

≤ C
λ

∞∑
k=0

∫
S∗

k

| f (y)|γ0(ak)d y

∼ 1
λ

∞∑
k=0

∫
S∗

k

| f (y)|γ0(y)d y

∼ 1
λ

∫
| f (y)|dµ(y).

Proof of the Theorem (1.5). The maximal operator associated to the measure µ

and defined on the class formed by cubes Q of side smaller than φ(q) is of weak
type (1,1), see Lemma (2.12). The same conclusion can be obtained for the maxi-
mal operator associated to the cubes containing the origin, see Lemma (2.3). The
cubes Q with qQ ≤ q0 satisfy µ(Q)≥ C, then the operator associated to these cubes
is majorized by the norm of the function in L1

µ. Hence, we have that it suffices to
consider the squares (from now on n = 2) in the set

Q= {
Q cubes: 0 ∉Q, q > q0, `>φ(q)

}
.

Let Q ∈Q, we have

µ(Q) ≥
∫ q+φ(q)

q

∫
S1
χQ(tω)dσ(ω)tγ0(t)dt

≥ 1
2
γ0(q)

∣∣Q∩{
y : q ≤ |y| ≤ q+φ(q)

}∣∣= γ0(q)mQ .

Observe that

(2.13) mQ ∼ (
`∧`Q

)m−1
φ(q),

where `Q denotes the length of the part of the edge of the square Q corresponding
to the angle θ and contained at the annulus centered at the origin and radius q+
φ(q). If we denote T = q+`Q cosθ, then T2 +`2

Q sin2θ = (
q−φ(q)

)2, and therefore

`Q ∼ qφ(q)√
q2 cos2θ+ qφ(q)

.

So we deduce that

mQ ∼ `Qφ(q)∼
{

q
1
2φ(q)

1
2 if qcos2θ <φ(q)

φ(q)2
(cosθ) if qcos2θ ≥φ(q)

(2.14)
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Using estimates (2.5) and (2.13), and the Lemma (2.9), we obtain

ZQ(t) ≡ σ(ΣQ(t))
µ(Aq)
µ(Q)

≤ C

 (t2 − q2)

t
√

t2 − q2 sin2θ

∧ `

`+ q

 γ0(q)qφ(q)
γ0(q)mQ

.

We will distinguish three cases.
Case 1, `∧`q = `.

ZQ(t)≤ C
(

`

`+ q

)( q
`

)
≤ C.

Case 2, `∧`Q = `Q and qcos2θ ≤φ(q).

ZQ(t)≤ C

 t2 − q2

t
√

t2 − q2 sin2θ

 q1

q
1
2φ(q)

1
2
≤ C

(
t− q
φ(q)

q
t

) 1
2

.

Case 3, `∧`Q = `Q and qcos2θ >φ(q).

ZQ(t)≤ C

 t2 − q2

t
√

t2 − q2 sin2θ

qcosθ
φ(q)

≤ C
(

t− q
φ(q)

q
t

)
,

where the last inequality is a direct calculation, first for t ≥ 2q and second for
q < t < 2q.

Reorganizing the estimates, we get

(2.15) ZQ(t)≤ C max
(
1,

(
t− q
φ(t)

q
t

))
.

Suppose Q is in the class Q. Let ε and ε′ be two positives constants to be de-
termined later (the value of ε′ will depend implicitly on ε), and set Ψ(v) = ev1/(n−1)

.
The way which we have estimated ZQ(t) suggests us considering two cases. In the
first case, when

max
(
1,

(
t− q
φ(t)

q
t

))
=

(
t− q
φ(t)

q
t

)
,

we have∫ ∞

q
Ψ

(
ε′σ(ΣQ(t))

µ(Aq)
µ(Q)

)
γ0(t)tn−1dt ≤

∫ ∞

q
exp

(
ε

t− q
φ(q)

q
t

)
tn−1γ0(t)dt

=
∫ 2q

q
. . .+

∫ ∞

2q
. . .= I + I I.

To estimate I we use Lemma (2.10), taking ε= log2
2

I ≤ 22γ0(q)q
∫ 2q

q
exp

(
−ε t− q

φ(q)

)
dt

≤ 22γ0(q)qφ(q)
∫ ∞

0
exp(−εs)ds ∼µ(Aq).
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To estimate I I we make the change of variables t = 2s, and we obtain

I I ≤
∫ ∞

2q
exp

(
ε

q
φ(q)

)
tγ0(t)dt

= 2neε
1

τ(q)

∫ ∞

q
γ0(2s)sn−1ds.

Using Lemma (2.10) with t = 2s and q = s, we have

I I ≤ 22eε
1

τ(q)

∫ ∞

q
γ0(s)exp

(
− s

2φ(s)
log2

)
s ds

≤ 22eε
1

τ(q) e−
log2

2
1

τ(q)

∫ ∞

q
2γ0(s)s ds

∼ µ(Aq).

In the second case, when

max
(
1,

(
t− q
φ(t)

q
t

))
= 1,

we have ∫ ∞

q
Ψ

(
ε′σ(ΣR(t))

µ(Aq)
µ(Q)

)
γ0(t)t dt ≤

∫ ∞

q
exp(ε)tγ0(t)dt

∼ µ(Aq).

these estimates together with Proposition (2.6) finishes the proof.

3. Maximal operator defined for exterior regular cones

The first part of this work justifies the study of the maximal operator on ex-
terior regular cones, as deduced from the notation previous to Proposition (2.6),
since these are with which we compare the rotated cubes. These cones are those
that have vertex at a point P, the symmetry axis that passes through 0 and P, and
arbitrary opening. This section shows that the maximal operator defined by these
cones and associated to a radial and decreasing measure verifies the same esti-
mate as in the case of the maximal operator on cubes, with exponent n whatever
the dimension.

Given P ∈ Rn \ {0}, with |P| = qP = q, and 0 ≤ θ ≤ π
2 , we define the exterior

regular cone associated to P and θ, as the cone with vertex P, aperture θ and
symmetry axis the line that passes through 0 and P. We will denote this cone by
ΓP

q,θ, or simply by Γq,θ, this is

ΓP
q,θ =Γq,θ = {x : ang( x−P,P) ≤ θ} ,

where ang(x, y) denotes the angle between the vectors
−→
0x and

−→
0y.

Let µ be a positive Borel measure in Rn, we define the maximal operator on
exterior cones and associated to the measure µ as

M3
µ f (x)= sup

Γq,θ3x

1
µ(Γq,θ)

∫
Γq,θ

| f (y)|dµ(y),

where the supremum is taken over all exterior regular cones containing the point
x.
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THEOREM (3.1). Under the same conditions of the former section, let dµ(x) =
γ0(|x|)dx be a radial and decreasing measure. If τ(t) is decreasing in (0,∞) and

lim
t→∞τ(t)= 0,

then there is a constant C such that the maximal operator M3
µ associated to the

measure µ satisfies the inequality

(3.2) µ
({

x ∈Rn : M3
µ f (x)>λ

})
≤ C

∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)n
dµ, ∀λ> 0.

For the measures dµδ = e−|x|
δ
dx we have the following result,

THEOREM (3.3). If n ≥ 2 and δ> 0, then M3
µδ

satisfies the inequality

(3.4) µδ

{
x ∈Rn : M3

µδ
f (x)>λ

}
≤ C

(log+λ)n−1

λ

∫
Rn

| f | log | f |dµδ+
C
λ

, λ> 0.

In order to prove Theorem (3.1), we shall need the following technical results.
We begin studying the cones whose distance to the origin is smaller than q0,
where q0 is defined in Lemma (2.9).

LEMMA (3.5). Consider dµ(x)= γ0(|x|)dx with γ0 decreasing and we set q0 > 0.
Then there is a constant C, which depends only on the dimension and q0, such that
if ΓP

q,θ is an exterior regular cone with q < q0 and ΓP
0,θ is the cone with vertex at

0, aperture θ and central axis that passes through 0 and P, then ΓP
q,θ ⊂ ΓP

0,θ and
besides

µ
(
ΓP

0,θ

)
≤ Cµ

(
ΓP

q,θ

)
.

Proof. We will prove the two following equivalences:

(3.6) µ
(
Γ

p
q,θ∩ {y : |y| > 2q0}

)
∼µ

(
Γ

p
0,θ∩ {y : |y| > 2q0}

)
and

(3.7) µ
(
ΓP

q,θ∩ {y : |y| ≤ 2q0}
)
∼µ

(
ΓP

0,θ∩ {y : |y| ≤ 2q0}
)
.

In order to prove (3.6), observe that

µ
(
ΓP

j,θ∩ {y : |y| > 2q0}
)
∼

∫ ∞

2q0

σ

(
ΣΓP

j,θ
(t)

)
γ0(t)tn−1dt,

for j = 0 and j = q0. It suffices then to prove that

σ

(
ΣΓP

q,θ
(t)

)
∼σ

(
ΣΓP

0,θ
(t)

)
, t > q0.

Observe that sinθ ∼ sinθt, where θt is the aperture of the smallest cone with
vertex at the origin containing ∂(ΓP

q,θ∩Bt(0)). For t > 2q, we have

σ

(
ΣΓP

q,θ
(t)

)
∼ (sinθt)n−1 ∼ (sinθ)n−1 ∼σ

(
ΣΓP

0,θ
(t)

)
.

This proves (3.6).
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In order to prove (3.7), we observe that µ is essentially constant in {y : |y| ≤ 2q0}
and ∣∣∣Γp

q,θ∩ {y : |y| > 2q0}
∣∣∣∼ ∣∣∣Γp

0,θ∩ {y : |y| > 2q0}
∣∣∣ .

This finishes the proof.

For this class of cones we can use the following lemma.

LEMMA (3.8). For any positive Borel measure µ, the maximal operator given by

Ã0
µ f (x)= sup

x∈Γ0,θ

1
µ

(
Γ0,θ

) ∫
Γ0,θ

| f (y)|dµ(y),

is of weak type (1,1).

Proof. It suffices to observe that the Vitali lemma is satisfied, because given ΓP
0,θ

and ΓP ′
0,θ′ , such that

ΓP
0,θ∩ΓP ′

0,θ′ 6= ;,

and with θ′ > θ, then
ΓP

0,θ ⊂ΓP ′
0,3θ′ ,

where ΓP ′
0,3θ′ is a cone with the same axis that ΓP ′

0,θ′ and aperture 3θ′. Also, µ
(
ΓP ′

0,3θ

)
∼µ

(
ΓP

0,θ

)
, because µ

(
ΓP

0,θ

)
∼ (sinθ)n−1 ∼ (sin3θ)n−1 for small values of θ.

The set Eλ =
{

x ∈Rn : A0
µ f (x)>λ

}
, λ> 0, is the union of the cones with vertex

in the origin
{
Γ0,θi

}
i∈T such that

1
µ(Γ0,θ)

∫
Γ0,θ

| f |dµ>λ.

As µ is regular, then it suffices to prove that

µ(K)≤ C
λ

∫
Rn

| f (y)|dµ(y),

for any compact set K ⊂ Eλ. If K is one of these compact sets then there are finite
number of cones Γ1, Γ2, . . . , ΓN , of the class

{
Γ0,θi

}
i∈T covering K . We order them

by the size of the angle, such that, θ1 ≥ θ2 ≥ . . .≥ θN .
By induction, we proceed to choose a sequence of disjoint cones

{
Γ̃k

}
. Set Γ̃1 =

Γ1. If 1 ≤ k < N and Γ̃1, Γ̃2, . . . , Γ̃k−1 are chosen, let Γ̃k be the first cone with
the preceding order, disjoint with Γ̃1, Γ̃2, . . . , Γ̃k−1, and so on. We obtain the family{
Γ̃ j

}J
j=1. If Γα ∈ {Γi}\

{
Γ̃ j

}
then there is j0 ∈ {1,2, . . . , J} such that θ j0 ≥α, Γα∩Γ̃θ j0

6=
;, and we have Γα ⊂ Γ̃3θ j0

. Namely,

N⋃
k=1
Γk ⊂

J⋃
j=1
Γ̃3θ j .

So

µ(K)≤µ
(

N⋃
k=1
Γk

)
≤µ

(
J⋃

j=1
Γ̃3θ j

)
≤ 1
λ

∫
⋃J

j=1 Γ̃3θ j

| f |dµ≤ 1
λ

∫
| f |dµ.

This finishes the proof.

LEMMA (3.9). The maximal operator defined over the class of cones Γq,θ, with
q < q0, is of weak type (1,1).
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Proof. The Lemma (3.5) implies that if Γp
q,θ is a cone with q < q0, then

1

µ
(
Γ

p
q,θ

) ∫
Γ

p
q,θ

| f (y)|dµ(y)≤ C
1

µ
(
Γ

p
0,θ

) ∫
Γ

p
0,θ

| f (y)|dµ(y).

This and Lemma (3.8) it suffices to conclude the proof.

For the cones Γq,θ with q > 0 we want to use an analog result to the Proposition
(2.6). For this, we need to define the set ΣΓq,θ (t) as in the former section. Namely,

ΣΓq,θ (t)= {
ω ∈ Sn−1 : tω ∈Γq,θ

}
We have that σ

(
ΣΓq,θ (t)

)
= 0, if 0< t < q, and in other case

(3.10) σ
(
ΣΓq,θ (t)

)
∼

 (t2 − q2)sinθ

t
√

t2 − q2 sin2θ


n−1

.

We need a result that relates the measure of a certain given cone Γq,θ with the
measure of the infinite annulus Aq := {y : |y| > q}, q > 0.

PROPOSITION (3.11). Set γ(x) = γ0(|x|), where γ0(t) is decreasing and continu-
ous on (0,∞). If for some m > 0 there are two constants C and ε, such that the
measure dµ(x)= γ0(|x|)dx satisfies the inequality

(3.12)
∫ ∞

q
exp

(
εσ

(
Σq,θ(t)

) µ(Aq)
µ(Γq,θ)

) 1
m
γ0(t)tn−1dt ≤ Cµ(Aq)

for any exterior regular cone Γq,θ, with q > q0, then the maximal operator associ-
ated to µ, satisfies the modular inequality

µ
({

x : Mµ f (x)>λ})≤ C
∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)m+1
dµ, λ> 0.

The proof of this Proposition is similar to the proof of the Proposition 6 in [4],
if we notice that σ

(
ΣΓq,θ (t)

)
increases when t increases too.

Proof of Theorem (3.1). From Lemma (3.9) we know that the maximal operator
associated to those cones Γq,θ with q ≤ q0 is of weak type (1,1). So, it suffices to
consider the maximal operator defined over the class

Γ∗ = {
Γq,θ : q > q0

}
.

For proving the modular inequality for this class, it suffices to prove that the
hypothesis of the Proposition (3.11) are satisfied, with m = n−1. Let Γq,θ be a
cone of the class Γ∗. We have

(3.13) µ(Γq,θ)≥µ(
Γq,θ∩Bq+φ(q)(0)

)≥ 1
2
γ0(q)(`q sinθ)n−1φ(q),

where

`q ∼ qφ(q)√
qφ(q)+ q2 cos2θ

.
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For t > q we have,

σ
(
ΣΓq,θ

) µ(Aq)
µ

(
Γq,θ

) ≤
≤ C

(
t2 − q2

t
√

(t2 − q2)+ q2 cos2θ

)n−1
qn−1

`n−1
q

≤ C

(
t− q√

(t2 − q2)+ q2 cos2θ

((
q

φ(q)

) 1
2 + qcosθ

φ(q)

))n−1

≤ C

((
t− q

t

) 1
2
(

q
φ(q)

) 1
2 +

(
t− q√

(t2 − qq)+ q2 cos2θ

qcosθ
φ(q)

))n−1

≤ C
(

t− q
φ(q)

q
t

) n−1
2 +

(
t− q
φ(q)

q
t

)n−1

≤ C
(
1+ t− q

φ(q)
q
t

)n−1
.

Reorganizing the inequality, we have

σ
(
ΣΓq,θ

) µ(Aq)
µ

(
Γq,θ

) ≤ C
(
max

{
1,

t− q
φ(q)

q
t

})n−1
.

Let ε and ε′ be two constants to be determined later, and set Ψ(v) = ev1/(n−1)
.

According to the previous maximum value, in the case when

max
{

1,
t− q
φ(q)

q
t

}
=

(
t− q
φ(q)

q
t

)
,

we have∫ ∞

q
Ψ

(
ε′σ(ΣΓq,θ (t))

µ(Aq)
µ(Γq,θ)

)
γ0(t)tn−1dt ≤

∫ ∞

q
exp

(
ε

t− q
φ(q)

q
t

)
tn−1γ0(t)dt

=
∫ 2q

q
. . .+

∫ ∞

2q
. . .= I + I I.

To estimate I we use Lemma (2.10), with ε= log2
2

I ≤ 2nγ0(q)qn−1
∫ 2q

q
exp

(
−ε t− q

φ(q)

)
dt

≤ 2nγ0(q)qn−1φ(q)
∫ ∞

0
exp(−εs)ds ∼µ(Aq).

To estimate I I we make the change of variables t = 2s,

I I ≤
∫ ∞

2q
exp

(
ε

q
φ(q)

)
tn−1γ0(t)dt

= 2neε
1

τ(q)

∫ ∞

q
γ0(2s)sn−1ds.
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From Lemma (2.10) with t = 2s and q = s, we have

I I ≤ 2neε
1

τ(q)

∫ ∞

q
γ0(s)exp

(
− s

2φ(s)
log2

)
sn−1ds

≤ 2neε
1

τ(q) e−
log2

2
1

τ(q)

∫ ∞

q
2γ0(s)sn−1ds

∼ µ(Aq).

In the case when (
max

{
1,

t− q
φ(q)

q
t

})
= 1,

we have∫ ∞

q
Ψ

(
ε′σ(ΣΓq,θ )(t)

µ(Aq)
µ(Γq,θ)

)
γ0(t)tn−1dt ≤

∫ ∞

q
exp(ε)tn−1γ0(t)dt

∼ µ(Aq).

This estimation shows that we can apply Proposition (3.11) to the class Γ∗ with
m = n−1 and obtain the modular inequality, which is the conclusion of Theorem
(3.1).

Proof of the Theorem (3.3). To prove the inequality (3.4) it suffices to study the
operator associated to the class

Γ∗ = {
Γq,θ : q > q0

}
.

So, as we have seen, the maximal operator out of this set is of weak type (1,1) (see
Lemma (3.8)).

Consider the operator

M̃µδ f (x)= sup
q<ρ;0<θ

1
µ(Aq)

∫ ∞

q

(
1

θn−1

∫
|x′−ω|<θ

| f (tω)|dσ(ω)
)

dµ0(t),

where x = ρx′ ∈ R+×Sn−1. So, M̃µ is majorized by the composition of two operators,
one of them acting upon the angular variable and the second acting on the radial
variable, both of the weak type (1,1). So, we have that M̃µ satisfies the inequality
L logL, namely

µ
{
x : M̃µ f (x)>λ}≤ C0

∫
Rn

| f |
λ

(
1+ log+

| f |
λ

)
dµ,

for any λ> 0.
If Γq,θ ∈Γ∗, we know from (3.13) that

µ(Γq,θ)≥ Cγ0(q)φ(q)
(
φ(q)sinθ

)n−1 ,

and µ(Aq)∼ γ0(q)qn−1φ(q) (see Lemma (2.9)). Besides, if tω, ρx′ ∈Γq,θ, with t, ρ ∈
R+ and ω, x′ ∈ Sn−1, then ∣∣x′−ω∣∣< θ ∼ sinθ.
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Therefore, if x = ρx′ ∈Γq,θ we have,

1
µ

(
Γq,θ

) ∫
Γq,θ

| f |dµ≤

≤ 1
µ

(
Γq,θ

) ∫ ∞

q

∫
Sn−1

χΓq,θ (tω) | f (tω)|dσ(ω)dµ0(t)

≤ 1
µ(Aq)

∫ ∞

q

(
µ(Aq)(sinθ)n−1

µ
(
Γq,θ

) )∫
ΣΓq,θ (t)

1
|x′−ω|n−1 | f (tω)|dσ(ω)dµ0(t)

≤ C
(

q
φ(q)

)n−1
M̃µ f (x)= C(τ̃(q))n−1M̃µ f (x)

≤ C(τ̃(|x|))n−1M̃µ f (x),

where τ̃(q)= 1/τ(q) is an increasing function. So we obtain,

(3.14) M3
µδ

f (x)≡ sup
x∈Γq,θ∈Γ∗

1
µ

(
Γq,θ

) ∫
Γq,θ

| f |dµδ ≤ C(τ̃(|x|))n−1M̃µδ f (x).

As the measure is µδ = e−|x|
δ
, we know that φ(q)∼ q1−δ and τ̃(q)∼ qδ.

Set Φ = Φn−1(u) = u(1+ log+ u)n−1, u > 0 and Ψ(v) = ev
1

n−1 . Using the Young
inequality, uv ≤ C(Φ(u)+Ψ(v)), in the right side of (3.14), we obtain

M3
µδ

f (x)≤ C
(
M̃µδ f (x)

)+Ce
|x|δ

2 .

We have,

µδ

{
x : M3

µδ
f (x)>λ

}
≤µδ

{
x : M̃3

µδ
f (x)>Φ−1

(
λ

2C

)}
+ C
λ

.

Using that Φ−1(λ)∼ λ
(logλ)n−1 for λÀ 1, we finally obtain

µδ

{
x : M3

µδ
f (x)>λ

}
≤ C

(log+λ)n−1

λ

∫
Rn

| f | |log | f ||dµδ+
C
λ

.

4. Counterexample: the exponent n of the modular inequality for M3
µ is

sharp

In this part we will prove the sharpness of the exponent of the modular in-
equality for the Gaussian case.

THEOREM (4.1). Let M3
µ2

be the maximal operator associated to the Gaussian

measure, dµ2(x)dx = e−|x|
2
dx, and defined over exterior regular cones. Let Φ(u) be

an increasing function with Φ(0)= 0 and such that Φ(u)= uG(u), where G satisfies
that

lim
u→∞

G(u)
(log+ u)n = 0.

Then, given any constant C, it is always possible to find out a function f and λ> 0
such that

µδ

{
x : M3

µ2
f (x)>λ

}
> C

∫
Rn
Φ

( | f |
λ

)
dµ2.

For proving this theorem, we will need the following lemma.
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LEMMA (4.2). If µ is a measure that verifies the hypothesis of the Theorem (3.1),
and Γq,θ is an exterior regular cone with q > q0, then

µ(Γq,θ)∼ γ0(q)

(
q sinθ√

qφ(q)+ q2 cos2θ

)n−1

(φ(q))n.

Proof. Using the definition of ΣΓq,θ we have

µ(Γq,θ) ∼
∫ ∞

q

∫
Sn−1

χΓq,θ (tω)dσ(ω)tn−1γ0(t)dt

∼
∫ ∞

q
σ

(
ΣΓq,θ

)
tn−1γ0(t)dt,

where, as we already said,

σ
(
ΣΓq,θ

)
∼

 (t2 − q2)sinθ

t
√

t2 − q2 sin2θ


n−1

.

Therefore, we have

µ(Γq,θ) = C
∫ ∞

q

 (t2 − q2)sinθ

t
√

t2 − q2 sin2θ


n−1

tn−1γ0(t)dt

=
(

sinθ√
qφ(q)+ q2 cos2θ

)n−1

∫ ∞

q
(t− q)n−1

√
qφ(q)+ q2 cos2θ√

t2 − q2 sin2θ


n−1

tn−1γ0(t)dt

≤ C

(
φ(q) sinθ√

qφ(q)+ q2 cos2θ

)n−1 ∫ ∞

q

(
1+

(
t− q
φ(q)

q
t

)n−1)
tn−1γ0(t)dt

≤ C

(
sinθ√

qφ(q)+ q2 cos2θ

)n−1

(φ(q))n−1µ(Aq)

≤ Cγ0(q)

(
qsinθ√

qφ(q)+ q2 cos2θ

)n−1

(φ(q))n.

This inequality together with the equation (3.13) finishes the proof.

Proof of the Theorem (4.1). Let R > 0 be a number given later. We denote B∗ as a
ball of center (R,0, . . . ,0) and radius φ(R). We define the function f by

f (x)= χB∗ (x)
µ2(B∗)

.

We take ε > 0 and let Γ0 be an exterior regular cone with aperture θ = π/4,
whose closer point to the origin is Q0 = (R0,0, . . . ,0), where R0 = R −`0 cosθ, and
`0 = εφ(R) logR. Observe that φ(q)¿ `0 ¿ R and R ∼ R0.

For j = 0,1, . . . ,k, set R j =ψ j(R0) (see (2.11)), where k is given by

ψk(R0)< R0 + `0 cosθ
2

<ψk+1(R0).
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From this inequality we can deduce

ψk(R0)−R0 ≤ `0 cosθ
2

≤ψk+1(R0)−R0.

Using the definition of ψk(R0) we know that ψk(R0) = R0 +∑k−1
j=0 φ(R j) ∼ R0 +

kφ(R0), the last equivalence is obtained since R j ∼ R0 implies φ(R j) ∼ φ(R) ∼ 1
R .

Hence,
`0

2
∼ kφ(R),

namely, k ∼ `0
φ(R) = ε logR.

We denote the exterior regular cone by Γ j, j = 0,1, . . . ,k, whose vertex is Q j =
∆ j = (R j,R j, . . . ,R j), and its aperture angle θ j is given by

` j sinθ j =
(
2

2
n−1

) j
`0 sinθ.

Set λ=min
{

1
µ2(Γ j)

: j = 0,1, . . . ,k
}
. As B∗ ⊂Γ j, for every j, we have

1
µ2(Γ j)

∫
Γ j

| f (y)|dµ2(y)= 1
µ2(Γ j)

≥λ.

For every j = 1,2, . . . ,k, T j denotes the biggest number that satisfies

S j

{
tω ∈R×Sn−1 :

R+R j

2
< t < R j, |ω− (1,0, . . . ,0)| < T j

}
⊂⋃

α
Γαj ,

where Γαj form the class of exterior regular cones containing B∗, with the same
distance respect to the origin and the same aperture that the cone Γ j.

So, it can be deduced that

µ2(S j)≥ Cγ0(R j)φ(R j)Rn−1
j

(R−R j

R

)n−1
.

For the junction, it is verified

µ2

(
k⋃

j=0
S j

)
=

k∑
j=1

µ2(S j −S j−1)+µ2(S0)∼
k∑

j=1
µ2(S j),

and
⋃k

j=0 S j ⊂
{

x : M3
µ2

f (x)≥λ
}
. So we obtain

µ2
{
x : Mµ2 f (x)≥λ} ≥ c

k∑
j=0

γ0(R j)(φ(R j))n
(R−R j

φ(R j)

)n−1

∼
k∑

j=0
γ0(R j)(φ(R j))n

(
`0

φ(R)

)n−1

∼
k∑

j=0
µ2(Q j)(logR)n−1

≥ 1
λ

k(logR)n−1 ≥ c
1
λ

(logR)n.

As ∫
Φ

(
f (x)
λ

)
dµ2 = 1

λ
G

(
µ2(Qk)
µ2(Q∗)

)
,
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we only need to prove that, for sufficiently large R, it is verified

C
1
λ

G
(
µ2(Qk)
µ2(Q∗)

)
< 1
λ

(logR)n.

Observe that

u(R)≡ 1
λµ2(Q∗)

∼ µ2(Qk)
µ2(Q∗)

∼ γ0(Rk)(φ(Rk))n

γ0(R)(φ(R)n ∼ eR2−R2
k ,

and that

logu(R)∼ (R2 −R2
k)∼ R(R−R0)∼ `0

φ(R)
∼ logR.

From the hypothesis on G, from limR→∞ u(R)=∞ and

lim
R→∞

G
(

1
λµ2(B∗)

)
(logR)−n ≤ C lim

R→∞
G(u(R))(logu(R))−n = 0.

finishes the proof.

5. Counterexample: the exponent n−1 for the estimation of M3
µ in

quasinorm is sharp

In this section we will prove that for measures of type e−|x|
δ
dx, δ > 0, the in-

equality in quasinorm (3.4) can not be improved.

THEOREM (5.1). For δ > 0 fixed, we define dµδ(x) = e−|x|
δ
dx. Let Φ(u) be an

increasing function with Φ(0)= 0 such that Φ(u)= uG(u) where G verifies

lim
u→∞

G(u)
(logu)n−1 = 0.

Then, for every constant C there exists a function f and λ> 0 such that

µδ

{
x : M3

µδ
f (x)>λ

}
> C
λ

(∫
Rn
Φ(| f |)dµδ+1

)
.

Proof. For sufficiently large R > 0, whose value will be given later we define

fR(x)= 1
µδ(A2R)

χA2R (x).

For |x| > R we denote ΓR,θ(x) as the regular exterior cone containing x and whose
distance of ΓR,θ(x) to the origin is R. If θ = π

4 and x = (R,0, . . . ,0) we simply denote
it by ΓR . For |x| ≥ R we have

M3
µδ

f (x) ≥ 1
µδ(ΓR,θ(x))

∫
ΓR,θ

| fR(y)|dµδ(y)

= 1
µδ(ΓR,θ)

∫
ΓR,θ

| fR(y)|dµδ(y)≡λR .

Therefore, µδ
{

x : M3
µδ

fR(x)≥λR

}
≥ µδ(AR). It is clear that λR ∼ 1

µδ(ΓR ) . On the
other hand, as

1
λR

(∫
Φ( fR)dµδ

)
∼ µδ(ΓR)Φ

(
1

µδ(A2R)

)
µδ(A2R)

= µδ(ΓR)G
(

1
µδ(A2R)

)
,
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it suffices to prove that

µδ(AR)≥ Cµδ(ΓR)G
(

1
µδ(A2R)

)
,

for sufficiently large R. The measure of the cone ΓR is

µδ(ΓR) ∼ γ0(R)

 R sin π
4√

Rφ(R)+R2 cos2 π
4


n−1

(φ(R))n

∼ γ0(R)Rn−1φ(R)τ(R)n−1 ∼µδ(AR)τn−1.

Therefore, it suffices to prove that

lim
R→∞

G
(

1
µδ(A2R)

)
τ(R)n−1 = 0.

As (
log

1
µδ(A2R)

)n−1
∼

(
log

1
γ0(2R)

)n−1
∼ Rδ(n−1) ∼

(
1

τ(R)

)n−1
,

we obtain

lim
R→∞

G
(

1
µδ(A2R)

)
τ(R)n−1 ≤

≤ C lim
R→∞

G
(

1
µδ(A2R)

)(
log

1
µδ(A2R)

)−(n−1)
= 0,

this concludes the proof.
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PROPER LATTICES AND SPECTRALLY INVARIANT SUBSPACES OF
A LINEAR OPERATOR

SLAVIŠA V. DJORDJEVIĆ

ABSTRACT. A proper lattice of X is a pair (A,L) composed of a bounded linear
operator A on X and its invariant finite-dimensional subspace L. The set of all
proper lattices of X is denoted by P l(X ). For (A,L) ∈P l(X ), the operator A in-
duces two operators, the restriction operator A|L and the operator ÂL from the
quotient X /L into itself, i.e. ÂL(π(y)) = π(A(y)), where π is the natural homoeo-
morphism between X and the quotient space X /L.

In this note its shown that (A,L) is a proper lattice if and only if there are a
finite sequence of eigenvalues {λ1, . . . ,λn} ∈ σp(A) and an appropriate set of lin-
early independent eigenvectors {x1, . . . , xn} such that L =L(x1, . . . , xn). Moreover,
λi is a simple pole of A if and only if λi ∉σ(ÂL).

Following this concept we can define a spectrally invariant (finite dimen-
sional) subspace of linear operator T as an invariant subspace E such that σ(T|E )
∩σ(T̂E )=;. Also, we give some properties of stability of spectrally invariant sub-
spaces.

1. Introduction

Let X be a Banach space, and B(X ) denotes the space of all bounded linear
operators from X to X . For T ∈ B(X ), let N(T), R(T), σ(T) and σp(T) denote
respectively the null space, the range, the spectrum and the point spectrum of T.
Let n(T) and d(T) denote the nullity and the deficiency of T defined by

n(T)= dimN(T), and d(T)= codimR(T).

Let π0(T) denote the set of Riesz points of T (i.e., the set of isolated eigenvalues
of T of finite algebraic multiplicity). Then λ ∈ π0(T) is called a simple eigenvalue
(pole) of T if its algebraic multiplicity is 1. Let π00(T) denote the set of all isolated
eigenvalues of T of finite geometric multiplicity (i.e. 0< n(T −λ)<∞).

The ascent, notated by asc(T), and the descent, notated by dsc(T), of T are
given by

asc(T)= inf{n : N(Tn)= N(Tn+1)}, dsc(T)= inf{n : R(Tn)= R(Tn+1)};

if no such n exists, then asc(T)=∞, respectively dsc(T)=∞.
An operator T ∈ B(X ) is said to be Drazin invertible if there exists an operator

D ∈ B(X ) such that

Td+1D = Td , DTD = D and TD = DT

for some nonnegative integer d. It is known that T is Drazin invertible if and only
if T has finite ascent and descent.

2010 Mathematics Subject Classification: Primary 47A15; Secondary 47A25, 47A75.
Keywords and phrases: eigenvalues, eigenvectors, invariant subspaces.
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Let Λ be an n× n complex matrix. Following [7], we say that Λ is an eigen-
matrix for T ∈B(X ) if there exists an n-tuple h = (h1, . . . ,hn)T (which we call the
corresponding eigenvector) of independent vectors in X such that

(T ⊕·· ·⊕T)h=Λh.

It easy to see that for every eigenmatrix Λ of T ∈ B(X ) we have σ(Λ) = σp(Λ) ⊂
σp(T). Moreover, for any invertible n×n matrix Γ, the matrix Γ−1ΛΓ is an eigen-
matrix of T as well.

2. Manifold of proper lattices and pols of a linear operator

Let P0(X ) denote the collection of all finite dimensional subspaces of X . The
manifold of proper lattices of X is the set

P l(X )= {(A,L) ∈B(X )×P0(X ) : A(L)⊂ L}.

In another words, a proper lattice of X is a pair (A,L) composed of a bounded
linear operator A on X and its invariant finite-dimensional subspace L.

Let S ⊂ X be an arbitrary subset. Then L(S) denotes the subspace of X gener-
ated by the set S.

PROPOSITION (2.1). Let (A,L) ∈ P l(X ). Then there are a finite sequence of
eigenvalues {λ1, . . . ,λn} ∈ σp(A) and an appropriate set of linearly independent
eigenvectors {x1, . . . , xn} such that L = L(x1, . . . , xn). Moreover, every sequence of
linearly independent eigenvectors {x1, . . . , xn} corresponding to a sequence of eigen-
values of an operator A ∈B(X ) generates an invariant subspace L such that (A,L) ∈
P l(X ).

Proof. Let dim(L) = n. By [7], p. 740, the existence of an invariant subspace of
dimension n is equivalent to the existence of an of n×n eigenmatrix Λ of A. More-
over, every eigenvalue of the matrix Λ is an eigenvalue of A (see ([7]) Proposition
(2.8)). Let {λ1, . . . ,λn} = σp(Λ) ⊂ σp(A) and {x1, . . . , xn} be sequences of linearly
independent appropriate eigenvectors. Obviously, L =L(x1, . . . , xn).

For the second part of the proof it is easy to see that for every x ∈ L =L(x1, . . .,
xn), Ax ∈ L.

Let (A,L) ∈ P l(X ), where L = L({x1, . . . , xn}), {x1, . . . , xn} is a set of linearly in-
dependent eigenvectors for the sequence of eigenvalues {λ1, . . . ,λn} ∈σp(A). Then
the operator A induces two operators, the restriction operator A|L and the opera-
tor ÂL from the quotient X /L into itself, i.e. ÂL is the operator ÂL(π(y))=π(A(y))
where π is the natural homoeomorphism between X and X /L. It is known that
the spectrum of any of the operators A, A|L and ÂL is contained in the union of
the spectrum of rest of them (see [4]). The special interest is when equality holds
and Theorem (2.9) give us an answer for it.

In the following, we will always connect the finite dimensional invariant sub-
space L for an operator A ∈B(X ) with the sets of eigenvalues {λ1, . . . ,λn} ∈ σp(A)
and with the set of linearly independent corresponding eigenvectors {x1, . . . , xn}
that generate L.

PROPOSITION (2.2). Let (A,L) ∈ Pl(X ). Then, for any i ∈ {1,2, . . . ,n}, λi ∉σp(ÂL)
if and only if n(A−λi)= n(A|L −λi) and asc(A−λi)= 1.
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Proof. (⇒:) Let λi ∉ σp(ÂL). Suppose that n(A −λi) > n(A|L −λi). Then there
exists x ∉ L such that (A−λi)x = 0 implies

(ÂL −λi)[x+L]= [(A−λi)x]= [0].

Hence, λi ∈σp(ÂL).
Next, suppose that there exists x ∈ N(A−λi)2 \ N(A−λi). Then (A−λi)2(x)= 0

and (A−λi)x 6= 0. Clearly, (ÂL−λi)2[x+L]= [0]. If we suppose that (ÂL−λi)[x+L] 6=
[0], then λi ∈σp(ÂL). Hence, suppose that (ÂL −λi)[x+L]= [0].

If we suppose that [x+L] 6= [0], we have again that λi ∈ σp(ÂL). Let [x+L] =
[0], or equivalently x ∈ L, so x is a linear combination of linearly independent
eigenvectors x j (corresponding to eigenvalues λ j). Let x =∑n

j=1α j x j. Then

0= (A−λi)2(x)=
n∑

j=1
α j(λ j −λi)2x j

and, by linear independence of the vectors x1, . . . , xn, we have α j = 0, for i 6= j.
Hence, x = αixi and, in this case, we have (A −λi)x = 0. This last contradiction
implies that N(A−λi)2 = N(A−λi).

(⇐:) First, we will show that (A −λi)−1(L) = N(A −λi)+L. Since N(A −λi)+
L ⊂ (A−λi)−1(L), we have to show only the opposite inclusion. Fix i = n and let
x ∈ (A−λn)−1(L). Then there exists x ∈ X such that L 3 (A−λn)x =∑n

i=1αixi and
(A −λn)2x = ∑n−1

i=1 αi(λi −λn)xi. Then for w = ∑n−1
i=1 βixi ∈ L, where βi = αi

λi−λn
, if

λi−λn 6= 0, and βi = 0 if λi−λn = 0, we have (A−λn)2(x−w)= 0. Since asc(A−λi)=
1, it follows that x−w = n ∈ N(A−λn). Hence, x ∈ L+N(A−λn).

By [2], Proposition 7, we have

n(A−λn)= n(A|L −λn)+n(ÂL −λn)

and, since n(A−λn)= n(A|L −λn), we have n(ÂL −λn)= 0 and λn ∉σp(ÂL).

For many practical reasons, it is important that the eigenvalues connected with
chosen proper lattices be (simple) poles of A. For example, it is known that if
λ0 ∈π0(A), then for any sequence {An} in B(X ) that converges in norm to A, there
exists a sequence {λn} such that λn ∈ π0(An) and λn → λ0. Moreover, if λ0 is a
simple pole, then for almost all positive integers n, λn is a simple pole of An,
and the corresponding eigenvectors xn converge to x0. (For the previous see [1],
Theorem (2.17)). Following this, our interest is that λi are simple poles, and we
will give necessary and sufficient conditions to obtain that λi are such points in
σp(A).

THEOREM (2.3). Let (A,L) ∈P l(X ). Then λi ∉σ(ÂL) if and only if the following
conditions hold:

(i) n(A−λi)= n(A|L −λi);
(ii) asc(A−λi)= dsc(A−λi)= 1.

Proof. (⇐:) Using the proof of the previous proposition, if asc(A−λi)= 1, then

(A−λi)−1(L)= N(A−λi)+L.

By [2], Proposition 7, we have

(2.4) n(A−λi)= n(A|L −λi)+n(ÂL −λi).
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and

(2.5) d(A−λi)= d(A|L −λi)+d(ÂL −λi).

Then by applying the condition (ii) we have that A−λi is Drazin invertible and,
consequently, A−λi is a Fredholm operator with λi ∈ iso σ(A). The continuity of
the index implies

(2.6) n(A−λi)= d(A−λi).

Since any finite dimensional operator is a Fredholm operator with index zero,
we have

(2.7) n(A−λi)= n(A|L −λi)= d(A|L −λi).

Now, by the equations (2.4) to (2.7) we have d(Â0 −λ0) = n(Â0 −λ0) = 0, i.e.
λ0 ∉σ(Â0).

(⇒:) Let λi ∉σ(ÂL), then by Proposition (2.2) the conditions (i) and (ii) hold and
by [5], Proposition 2.2,

asc(A−λi)= asc(A|L −λi)= 1 and dsc(A−λi)= dsc(A|L −λi).

Since A|L−λi is a finite-dimensional operator, then asc(A|L−λi)= dsc(A|L−λi)
and the proof is completed.

COROLLARY (2.8). Let (A,L) ∈ P l(X ). Then λi ∉ σ(ÂL) if and only if λi is a
simple pole of A and n(A−λi)= n(A|L −λi).

THEOREM (2.9). Let (A,L) ∈ P l(X ). Then σ(A|L)∩σ(ÂL) = ; if and only if
L = ∨n

i=1 N(A −λi), where λi is a simple pole of A, i = 1, . . . ,n. Moreover, σ(A) =
σ(A|L)∪σ(ÂL).

Proof. Let the finite dimensional invariant subspace L of A ∈ B(X ) be generated
by a finite sequence of eigenvectors connected with an appropriate sequence of
eigenvalues {λ1, . . . ,λn}. Then σ(A|L) = {λ1, . . . ,λn} and {λ1, . . . ,λn}∩σ(ÂL) = ;.
Then, by Theorem (2.3) and Corollary (2.8), we have that L =∨n

i=1 N(A−λi), where
λi is a simple pole of A, for every i = 1, . . . ,n. The opposite implication is a direct
consequence of Theorem (2.3).

In the case when σ(A|L)∩σ(ÂL) =;, Corollary (2.2) of [4] implies that σ(A) =
σ(A|L)∪σ(ÂL).

3. Spectrally invariant subspaces of a linear operator

Following notations from [6], we say that the closed T-invariant subspace E ⊂
X is spectrally invariant if σ(T|E)∩σ(T̂E)=;. By [6], Theorem 2, every spectrally
invariant subspace is a reducing subspace in the sense that there exists a projec-
tion P ∈ B(X ) commuting with T such that P(X ) = E. In this case there exists a
subset F such that (E,F) is a spectrally invariant pair satisfying X = E⊕F,

T =
(

T11 0
0 T22

)
:
(

E
F

)
→

(
E
F

)
with σ(T11)=σ(T|E), σ(T22)=σ(T̂E) and σ(T)=σ(T11)∪σ(T22).

THEOREM (3.1). Let (A,L) ∈P l(X ) where L is spectrally invariant for A. Then
there exists a δ > 0 such that for any operator B ∈ B(X ), with ∥ A −B ∥< δ, there
exists a spectrally invariant finite dimensional subspace M and (B, M) ∈P l(X ).
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Proof. By Theorem (2.9) there exists a finite tuple of distinct simple poles (λ1, . . . ,
λn), such that L = ∨n

i=1 N(A −λi). Then, by [1], Theorem 2.18, for any B ∈ B(X )
close enough to A there exists a finite tuple of distinct simple poles (µ1, . . . ,µn) of
B close to (λ1, . . . ,λn) (in Cn) such that

dim
n∨

i=1
N(A−λi)= dim

n∨
i=1

N(B−µi).

It is easy to see that M =∨n
i=1 N(B−µi) is a spectrally invariant finite dimensional

subspace of B.

Let (A,L) ∈ P l(X ), where L is spectrally invariant for A. Then the proof of
Theorem (3.1) and the proof of [1], Theorem 2.18, (c), claim that for any sequence
{A j}⊂ B(X ) that converge in norm to A there exists a sequence {L j}⊂ P0(X ) such
that (A j,L j) ∈P l(X ) and L j → L. Of course, the sense of L j → L we take is taken
from P l(X ); let dimL = dimL j(= n) and let {µi, j : i = 1, . . .n} be a set of eigenvalues
of A j such that its appropriate vectors xi, j generate L j and µi, j → λi together
with xi, j → xi, j →∞ (for more details see [1], p. 98). Hence, in the particular case
when L is spectrally invariant for A, we can claim that there exists a sequence
{(A j,L j)}⊂P l(X ) such that (A j,L j)→ (A,L). In the general case, for an arbitrary
(A,L) ∈P l(X ) we cannot claim that for every sequence of operators that converges
to A we will find a sequence of eigenvalues and eigenvectors such that (A j,L j)→
(A,L). Moreover, the following theorems give us a method to construct a sequence
of proper lattices that converges to (A,L).

THEOREM (3.2). Let (A0,L0) ∈ P l(X ) with dimL0 = n. Then A ∈ B(X ) has an
n×n eigenmatrix Λ with eigenvector x1 ∈ X n if and only if the following system of
equations

(A12 ⊕·· ·⊕ A12)h1 = (Λ− (A11 ⊕·· ·⊕ A11))x0

(A21 ⊕·· ·⊕ A21)x0 = (Λ− (A22 ⊕·· ·⊕ A22))h1

holds, where

A =
[

A11 A12
A21 A22

]
is the matrix representation of the operator A with respect to the direct sum L0 ⊕
X0 = X where L0 = L({x0

1, . . . , x0
n}), x0 = (x0

1 · · ·x0
n)T , h1 = (h1 · · ·hn)T and x1 = x0 +

h1.

Proof. Let L0 =L({x0
1, . . . , x0

n}). Since dimL0 = n, there exists a closed subspace X0

of X such that X = L0⊕X0. Let A =
[

A11 A12
A21 A22

]
∈ B(L0⊕X0) have eigenmatrix Λ

and eigenvector x1 = x0 +h1. Then

Λ(x0 +h1)= (A⊕·· ·⊕ A)(x0 +h1)=
= ((A11⊕·· ·⊕A11)x0+ (A12⊕·· ·⊕A12)h1)+ ((A21⊕·· ·⊕A21)x0+ (A22⊕·· ·⊕A22)h1)

⇐⇒
(A12 ⊕·· ·⊕ A12)h1 = (Λ− (A11 ⊕·· ·⊕ A11))x0

(A21 ⊕·· ·⊕ A21)x0 = (Λ− (A22 ⊕·· ·⊕ A22))h1.

For the opposite implication, suppose that the equations hold for some h1 ∈ X n
0

and an n× n complex matrix Λ. It is easy to see that Λ is an eigenmatrix of A
with eigenvector x0 +h1.
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REMARK (3.3). If dimL0 = 1, using that the 1×1 matrix Λ= (λ) is an eigenma-
trix of A if and only if λ is an eigenvalue of A, the previous theorem becomes a
more general case of [3], Theorem 6. Moreover, in [3] the case is excluded when
h1 = 0, but we can to see that then A21 = 0, or L0 is an invariant subspace of A.
This implies that x0 is an eigenvector for the eigenvalue λ1 of A.

THEOREM (3.4). Let (A0,L0) ∈ P l(X ) with L0 = L({x0
1, . . . , x0

n}). Then there ex-
ists a transformation F : Mn×n × X n → B(X ) defined in a neighborhood U of
(Λ0, (x0

1, . . . , x0
n)) such that

F(Λ0, (x0
1, . . . , x0

n))= A0, (F(Λ,L(x1, . . . , xn)),L(x1, . . . , xn)) ∈P l(X )

for every (Λ, (x1, . . . , xn)) ∈U , and F is continuous at (Λ0, (x0
1, . . . , x0

n)).

Proof. Let X = L0⊕X0, L0 =L({x0
1, . . . , x0

n}), x0 = (x0
1 · · ·x0

n)T and let A0 have matrix
representation

A0 =
[

A0
11 A0

12
0 A0

22

]
with respect to the decomposition of the space X . Let (Λ̃, (x̃1, . . . , x̃n)) ∈ U , L̃ =
L({x̃1, . . . , x̃n}) and Λ̃= (λ̃i j)n

i, j=1. Using the decomposition of X and appropriate no-
tation, let x̃= x0 + h̃0 (x̃= (x̃1 · · · x̃n)T , h̃0 = (h̃1 · · · h̃n)T ), we define F(Λ̃, (x̃1 · · · x̃n)) ∈
B(X ) by the operator matrix

F(Λ̃, (x̃1, . . . , x̃n))=
[

Ã11 A0
12

Ã21 A0
22

]
: L0 ⊕ X0 → L0 ⊕ X0,

with

(3.5)
Ã11(x0) = Λ̃x0 −A0

12h̃0 and
Ã21(x0) = Λ̃h̃0 −A0

22h̃0,

where for T ∈B(K), K ∈ {L0, X0, X }, we use the notation T= T⊕·· ·⊕T ∈B(Kn). By
Theorem 3.4, it is easy to see that F(Λ̃, (x̃1, . . . , x̃n))(L̃)⊆ L̃, i.e. (F(Λ̃, (x̃1, . . . , x̃n)), L̃)
∈P l(X ).

Let x = lx +hx ∈ X (= L0 ⊕ X0) be an arbitrary norm one vector. Then

F(Λ̃, (x̃1, . . . , x̃n))x− A0x = (Ã11 − A0
11)lx + Ã21lx = ( by (3.5))

= (Λ̃−Λ0)lx +Z(h̃0),

where Z is defined using Λ̃, A0
12 and A0

22. Now it easy to see that ‖F(Λ̃, (x̃1, . . . , x̃n))−
A0‖ converge to zero when Λ̃→Λ0 and h̃0 → 0.
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CLASSIFICATION OF CONSTANT ANGLE HYPERSURFACES IN
WARPED PRODUCTS VIA EIKONAL FUNCTIONS

EUGENIO GARNICA, OSCAR PALMAS, AND GABRIEL RUIZ-HERNÁNDEZ

ABSTRACT. Given a warped product of the real line with a Riemannian manifold
of arbitrary dimension, we classify the hypersurfaces whose tangent spaces make
a constant angle with the vector field tangent to the real direction. We show that
this is a natural setting in which to extend previous results in this direction made
by several authors. Moreover, when the constant angle hypersurface is a graph
over the Riemannian manifold, we show that the function involved satisfies a
generalized eikonal equation, which we solve via a geometric method. In the
final part of this paper we prove that minimal constant angle hypersurfaces are
cylinders over minimal submanifolds.

Introduction

Several classical, well-known geometric objects are defined in terms of making
a constant angle with a given, distinguished direction. Firstly, classical helices are
curves making a constant angle with a fixed direction. A second example is the
logarithmic spiral, the spira mirabilis studied by Jacob Bernoulli, which makes
a constant angle with the radial direction. In a third famous example which had
applications to navigation, the loxodromes or rhumb lines are those curves in the
sphere making a constant angle with the sphere meridians.

Recently, several authors had established and investigated some generaliza-
tions of the above situation. In 2007, F. Dillen et al. characterized those surfaces
M in S2 ×R whose normal vector ξ makes a constant angle θ with the direction
tangent to R (see [7]). Two years later, F. Dillen and M. I. Munteanu gave in [8] a
similar characterization theorem for constant angle surfaces in the product H2×R,
using the hyperboloid model for the hyperbolic plane H2. In the final part of the
paper they classified the constant angle surfaces with constant mean curvature
in this Riemannian product.

Another nice paper in this direction is [13], where M. I. Munteanu made a
review of some applications of constant angle surfaces and gave a complete clas-
sification of the so-called constant slope surfaces in R3, that is, those surfaces
making a constant angle with the radial position vector field. He showed that a
surface S ⊂ R3 is a constant slope surface iff either it is an Euclidean 2-sphere
centered at the origin or it can be parameterized by

r(u,v)= usinθ(cosξ f (v)+sinξ f (v)× f ′(v)),
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where θ is a constant different from 0, ξ = ξ(u) = cotθ logu and f is a unit speed
curve on the Euclidean sphere S2.

It is also worth mentioning the recent paper [10], where Dillen, Munteanu,
Van der Veken and Vrancken classified the constant angle surfaces in the warped
product I ×ρ R2. We will discuss the relation of this and other works with ours in
Section 3. This class of surfaces or curves making a constant angle with respect
to some direction have been also investigated in Minkowski space, see [1] and [12]
for details.

Using another approach, A. Di Scala and the third named author studied in [4]
the helix submanifolds of Euclidean spaces, i. e., submanifolds making a constant
angle with a constant direction. They builded constant angle hypersurfaces of
Rn+1, as follows: Given an orientable hypersurface L of Rn with a unit normal
vector field η, let r : L×R→Rn+1 be defined by

r(x, s)= x+ s
(
(sinθ)η(x)+ (cosθ)d

)
,

where θ is constant and d = (0, . . . ,0,1). Then f parameterize a hypersurface mak-
ing a constant angle θ with the fixed direction determined by d. Moreover, they
showed that, except for some trivial cases, any helix hypersurface admits locally
such a parametrization. They also showed that these non-trivial constant angle
submanifolds are given locally as graphs of functions whose gradient has constant
length (that is, solutions of the so-called eikonal equation). In [5], they showed
further that any function satisfying the eikonal equation may be characterized as
a distance function relative to an embedded hypersurface in the ambient space.

All of the above results suggest the existence of a general framework in which
it is natural to consider the study of constant angle submanifolds. As it will turn
out along this paper, a natural choice for that purpose is an ambient space M̄
given as a warped product of the form I ×ρ Pn, where I is an open interval and
ρ : I → R+ is a smooth positive function. We consider those submanifolds making
a constant angle with the vector field ∂t tangent to the R-direction. Of course, the
case of the Euclidean ambient space is obtained by considering Pn = Rn and the
constant warping function ρ ≡ 1.

The plan of this paper is the following. Section 1 gives the basic geometric
properties of constant angle hypersurfaces in a warped product, showing that
they have a rich extrinsic and intrinsic geometry. In Theorem (1.5) we prove
that if the projection of ∂t to the tangent space of a constant angle hypersurface
does not vanish, it determines a principal direction on the hypersurface. In the
terminology of the recent works [6], [9] and [14], the hypersurface has a canonical
principal direction relative to the distinguished vector field ∂t. Also, we prove
that the integral lines of this tangential component are lines of curvature and
geodesics of the hypersurface.

In Section 2 we state our main result giving a complete characterization of
constant angle hypersurfaces in I ×ρ Pn (see Theorem (2.3)):

Let M
n+1

be the warped product I×ρ Pn. A connected hypersurface M of M is a
constant angle hypersurface in M̄ if and only if it is an open subset of either

• A cylinder of the form I ×Ln−1, where L is a hypersurface of P; or
• The graph of a function f :P→R satisfying the generalized eikonal equation

(0.1) |∇ f | = C · (ρ ◦ f ),
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where C is a constant, ρ stands for the warping function and the graph of f
is defined as the set of points ( f (p), p) with p ∈P.

We also give a geometric method to build the solutions of the generalized eikon-
al equation, by generalizing the technique given in [5] for the case of the classical
eikonal equation. Our result in the context of constant angle hypersurfaces is the
following (see Corollary (2.8)):

Let M
n+1

be the warped product I ×ρ Pn. A connected hypersurface in M̄ is
a constant angle hypersurface with θ ∈ (0,π/2) if and only if it is the graph of a
function f : P→ R of the form f = h ◦d, where d measures the distance to a fixed
orientable hypersurface L ⊂P and h satisfies

h−1(s)=
∫ s

s0

dσ
Cρ(σ)

,

with C = tanθ.

In Section 3 we show the relation between the parametrizations of constant
angle surfaces obtained by the authors already mentioned in this Introduction
and our language. Note that our setting includes all codimension 1 cases, and in
particular, the case of surfaces in every 3-dimensional warped product of the form
I ×ρ P2.

Finally, in Section 4 we prove that minimal constant angle hypersurfaces are
cylinders over a minimal submanifold of codimension two. We deduce this result
from the following nice property:
Let f :Ω ⊂ Rn −→ R be a smooth function with connected open domain Ω. If f is
harmonic and eikonal then f is linear in Ω.

1. A canonical principal direction

Throughout this paper, we will use the following notations:

• M
n+1

will denote a warped product of the form I ×ρ Pn, where I is an open
interval, P is a Riemannian manifold and ρ : I →R+.

• ∇ is the Riemannian connection on M relative to the warped product metric.
• ∂t will denote the unit vector field tangent to the R-direction in M.
• M will be a connected orientable hypersurface in M.
• ∇ will denote the induced Riemannian connection on M.
• ξ ∈X(M) will be a unit vector field, everywhere normal to M.
• θ will denote the function on M measuring the angle between ∂t and ξ.

Definition (1.1). We say that M is a constant angle hypersurface iff the angle
function θ is constant along M.

Remark (1.2). Given a constant angle hypersurface, we may choose the orien-
tation of M so that θ ∈ [0,π/2], as we will do.

Our aim here is to classify all constant angle hypersurfaces M of the warped
product I ×ρ Pn. A trivial case occurs when θ ≡ 0. In the language of the warped
product structure, ξ = ∂t and then a connected constant angle hypersurface is
contained in a slice {t0}×P. So, we suppose in this section that θ ∈ (0,π/2].
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Let us fix some additional notation. As usual, we have the Gauss and Wein-
garten equations for hypersurfaces:

∇Y Z =∇Y Z+ I I(Y , Z), ∇Y ξ=−AξY ,

where Y , Z ∈X(M), I I is the second fundamental form of M and Aξ is the shape
operator associated to ξ. Recall also that I I and Aξ are related by the formula

〈I I(Y , Z),ξ〉 = 〈AξY , Z〉.
Let ∂>t be the component of ∂t tangent to M, that is,

∂>t = ∂t −〈∂t,ξ〉ξ,
Note that θ ∈ (0,π/2] implies ∂>t 6= 0 and we may define

(1.3) T = ∂>t
|∂>t |

.

Hence we may write

(1.4) ∂t = (sinθ)T + (cosθ)ξ.

Now we are ready to give some basic geometric properties of the constant angle
hypersurfaces.

THEOREM (1.5). Let M be a constant angle hypersurface of M
n+1

such that
θ ∈ (0,π/2]. Then the integral lines of the vector field T defined in (1.3) are lines of
curvature of M; in fact,

AξT =−cosθ
ρ′

ρ
T.

In other words, T is a principal direction of M. Moreover, these lines are
geodesics of M, that is, ∇T T = 0.

Additionally, the integral lines of T are geodesics of M iff either ∂t is parallel or
θ =π/2.

Proof. Suppose first that θ ∈ (0,π/2), which implies cosθ 6= 0. Differentiating (1.4)
with respect to a vector field W ∈X(M), we obtain

(1.6) ∇W∂t = (sinθ)∇W T + (cosθ)∇Wξ.

Suppose additionally that 〈W ,T〉 = 0 or, equivalently, 〈W ,∂t〉 = 0. To calculate
∇W∂t, we may suppose that W is given as a lifting of a vector field on P and use
standard derivation formulas in warped products (see [15], p. 296, Prop. 35,
for example) to obtain that ∇W∂t = (ρ′/ρ)W . Taking the components tangent and
normal to M in the above formula and using that cosθ 6= 0, we have

AξW =− ρ′

ρ cosθ
W + (tanθ)∇W T,

and I I(W ,T)= 0, which implies that

〈AξT,W〉 = 〈AξW ,T〉 = 〈I I(W ,T),ξ〉 = 0

for every W ∈X(M) such that 〈W ,T〉 = 0. In turn, this fact implies that AξT is a
scalar multiple of T, i.e., T is a principal direction of M.
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We return to the general expression (1.6) and take W = T. In order to use the
derivation formulas for warped products again, we write

T = (sinθ)∂t + (cosθ) [(cosθ)T − (sinθ)ξ] ,

and note that the vector field (cosθ)T − (sinθ)ξ is orthogonal to ∂t. Hence,

∇T∂t = (sinθ)∇∂t∂t + (cosθ)∇[(cosθ)T−(sinθ)ξ]∂t

= (cosθ)
ρ′

ρ
[(cosθ)T − (sinθ)ξ] ;

so that the tangent and normal components of (1.6) are

cos2θ
ρ′

ρ
T = (sinθ)∇T T − (cosθ)AξT

and

−sinθ cosθ
ρ′

ρ
ξ= (sinθ)I I(T,T).

From the first of these expressions, since AξT is a scalar multiple of T (and
sinθ 6= 0), we deduce that the same happens with ∇T T; but as T is a unit vector
field, we have ∇T T = 0; i.e., the integral lines of T are geodesics in M. Also,

AξT =−cosθ
ρ′

ρ
T,

meaning that T is a principal direction. In the case of the second fundamental
form, we have

I I(T,T)=−cosθ
ρ′

ρ
ξ.

Since we are analyzing the case cosθ 6= 0, I I(T,T) = 0 if and only if ρ′ = 0; i.e.,
ρ is constant. In this case, ∇W∂t = 0 for every vector field W ∈X(M). That is, the
integral lines of T are geodesics of M if and only if ∂t is parallel.

The analysis in the case θ =π/2 is similar, but easier, since in this case equation
(1.4) reduces to T = ∂t. We have that ∇T T =∇∂t∂t = 0 and then the integral lines of
T are geodesics of M̄, thus they also are geodesics of M. If W ∈X(M) is orthogonal
to T we have on one hand

∇W T =∇W∂t = ρ′

ρ
W ,

and on the other hand, ∇W T = ∇W T + I I(W ,T), which implies that I I(W ,T) = 0.
As in the previous case, this in turn implies that AξT is a scalar multiple of T and
T is a principal direction. In fact, since ∇T T =∇T T + I I(T,T)= 0, we have

〈AξT,T〉 = 〈I I(T,T),ξ〉 = 0,

and then AξT = 0 and T is a principal direction.

Theorem 1.5 says that the constant angle hypersurfaces with θ ∈ (0,π/2] are
examples of hypersurfaces with a canonical principal direction, which means that
there exists a vector field in the ambient such that the component of this vector
field tangent to the surface is a principal direction for the shape operator of the
surface. This notion has been studied recently by several authors; see, for example
[6], [9] and [14], where the authors classify surfaces with a canonical principal
direction in H2 ×R, S2 ×R and R2 ×R, respectively.
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2. Construction and characterization of constant angle hypersurfaces

In this section we prove our main results, classifying the constant angle hyper-
surfaces in any warped product of the form I ×ρ Pn. First we consider the case of
θ =π/2:

PROPOSITION (2.1). Let M be a connected hypersurface of I ×ρ Pn. M is a con-
stant angle hypersurface with θ =π/2 if and only if M is an open subset of a cylin-
der I ×Ln−1, where L is a (n−1)-dimensional hypersurface of P.

Proof. Suppose M is a constant angle hypersurface with θ = π/2. By transversal-
ity, the intersection of M with a fixed slice {t0}×Pn is (isometric to) a hypersurface
L of Pn. Since ∂t is everywhere tangent to M in this case, we reconstruct M by
departing from this intersection and following the flow of ∂t, obtaining the afore-
mentioned cylinder. The converse is clear.

In view of this result, we may suppose from now on that θ ∈ [0,π/2). Using
transversality, we may suppose additionally that M is given locally as a graph
of a real function f : P→ I. We will prove that such a graph is a constant angle
hypersurface if and only if f satisfies a condition on the norm of its gradient (see
equation (0.1)). In the following definition we fix the classical terminology for this
kind of functions.

Definition (2.2). Let Pn be a Riemannian manifold and f :P→ I a differentiable
function, where I is a real interval. We say that f is eikonal if it is a solution of
the eikonal equation

|∇ f | = C,

where ∇ f denotes the gradient of f and C is a given constant. More generally, let
ρ : I → R+ be a differentiable positive function. We say that f is a transnormal
function if it satisfies the generalized eikonal equation (0.1), namely,

|∇ f | = C · (ρ ◦ f ).

The concept of transnormal function is related to the class of submanifolds
called isoparametric submanifolds which are level hypersurfaces of isoparametric
functions. According to [18], a transnormal function is a smooth function f satis-
fiying the equation |∇ f |2 = b◦ f , where b is a smooth function which can be zero at
some points. In our case b = Cρ > 0. An isoparametric function is a transnormal
function that also satisfies the condition ∆ f = a◦ f , where a is a smooth function.
It is well known that Cartan investigated such functions on space forms; see [2]
and [18] for more details. An interesting result in [18], is that a transnormal
function in Sn or in Rn is isoparametric.

The next theorem is our main result, giving the precise relation between the
transnormal functions and the constant angle hypersurfaces.

THEOREM (2.3). Let M
n+1

be the warped product I ×ρ Pn. A connected hyper-
surface M of M is a constant angle hypersurface in M̄ if and only if it is an open
subset of either

• A cylinder of the form I ×Ln−1, where L is a hypersurface of P; or
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• The graph of a transnormal function f : P→ I satisfying equation (0.1) for
the warping function ρ. Here the graph of f is defined as the set of points
( f (p), p) with p ∈P.

Proof. Let M be a constant angle hypersurface in M. By Proposition (2.1), we
may suppose that θ ∈ [0,π/2) and that M is a graph of a function f . Let us denote
by ∇ f the lift to M of the gradient of f . Then it is easy to see that a vector field ξ

everywhere normal to the graph of f may be chosen as

ξ= (ρ ◦ f )2∂t −∇ f .

Using the definition of the warped product metric and the fact that ∂t and ∇ f
are orthogonal, we have that the square of the norm of ξ is given by

〈ξ,ξ〉 = (ρ ◦ f )4 + (ρ ◦ f )2 |∇ f |2 = (ρ ◦ f )2((ρ ◦ f )2 +|∇ f |2),

and consequently the angle θ between ξ and ∂t satisfies

cosθ =
〈
ξ

|ξ| ,∂t

〉
= ρ ◦ f√

(ρ ◦ f )2 +|∇ f |2
.

Note that cosθ 6= 0 for θ ∈ [0,π/2). Hence we may express |∇ f | in terms of ρ ◦ f as

|∇ f | = (tanθ)(ρ ◦ f ),

which means that f is transnormal with C = tanθ.
Conversely, if we consider the graph of a transnormal function satisfying equa-

tion (0.1), the angle θ between its normal ξ and ∂t is such that

(2.4) cosθ =
〈
ξ

|ξ| ,∂t

〉
= ρ ◦ f√

(ρ ◦ f )2 +|∇ f |2
= 1p

1+C2
;

meaning that the graph of f is a constant angle hypersurface.

In short, Theorem 2.3 proves that every constant angle hypersurface is locally
the graph of a function satisfying a partial differential equation on a Riemann-
ian manifold Pn, the generalized eikonal equation (0.1). In the final part of this
section we will solve this equation explicitly by a geometric method using the
distance function to an arbitrary hypersurface in Pn.

As a first step, in our next Proposition we prove the (local) existence of solutions
using a constructive method.

PROPOSITION (2.5). Let Pn be a Riemannian manifold and ρ : I → R+ a dif-
ferentiable positive function. Fix an orientable hypersurface L ⊂ P and a tubular
neighborhood Lε of L such that the distance function d to L is well-defined in Lε

and is differentiable in Lε \ L. Also, define a real valued and invertible function
h : I →R+ by

(2.6) h−1(s)=
∫ s

s0

dσ
Cρ(σ)

,

where C 6= 0. Then f = h◦d is transnormal in Lε \ L.

Proof. It is well-known that |∇d| = 1 in Lε \ L; then,

|∇ f | = |∇(h◦d)| = (h′ ◦d)|∇d| = h′ ◦d

= 1
(h−1)′(h◦d)

= C · (ρ ◦h◦d)= C · (ρ ◦ f ),
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which proves the claim.

Now we analyze the (local) uniqueness of solutions of the generalized eikonal
equation. We will use the results proved by Di Scala and the third named au-
thor in [5], where they studied the local uniqueness of the solutions of an eikonal
equation.

PROPOSITION (2.7). Let f : P→ I satisfy |∇ f | = C · (ρ ◦ f ) for C 6= 0. Then f is
given locally as in Proposition (2.5).

Proof. Let d = h−1 ◦ f , where h−1 is defined in equation (2.6). Let us calculate the
gradient of d in P :

∇d =∇(h−1 ◦ f )= ((h−1)′ ◦ f )∇ f = 1
C · (ρ ◦ f )

∇ f .

Therefore, |∇d| = 1. Theorem (5.3) in [5] implies then that for every point p ∈P
there exists a neighborhood U of p in P and a hypersurface L ⊂ P such that d|U
measures the distance from a point in U to the hypersurface L. This proves that
f = h◦d has the form given in Proposition (2.5).

We are ready to translate the above results to our constant angle hypersurfaces
setting.

COROLLARY (2.8). Let M
n+1

be the warped product I×ρPn. A connected hyper-
surface in M̄ is a constant angle hypersurface with θ ∈ (0,π/2) if and only if it is the
graph of a function f : P→ R of the form f = h ◦d, where d measures the distance
to a fixed orientable hypersurface L ⊂P and h satisfies

h−1(s)=
∫ s

s0

dσ
Cρ(σ)

.

with C = tanθ.

3. Applications and Examples

In this section we will construct some examples of constant angle hypersurfaces
and will show the relation of our construction with those made in the papers
already mentioned in the Introduction.

Example (3.1). Let us consider the upper-half space model for the hyperbolic
space Hn+1, which can be expressed as the warped product (0,∞)×ρ Rn, where
ρ(t)= 1/t. Then, taking s0 = 1,

r = h−1(s)=
∫ s

1

dσ
Cρ(σ)

= 1
C

∫ s

1
σdσ= s2 −1

2C
.

Hence, s = h(r) =p
2Cr+1. The hypersurface we consider is L = Rn−1, identi-

fied as usual with the points (x1, . . . , xn−1,0) so that the (oriented) distance func-
tion to L is xn, the n-th coordinate function on Rn.

Therefore, the explicit expression of the function f = h◦d is

f (x1, . . . , xn)= h◦d(x1, . . . , xn)= h(xn)=
√

2Cxn +1.

We calculate the gradient of f as

∇ f (x1, . . . , xn)= C√
2Cxn +1

∂n,
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where ∂n = ∂xn . Note that

|∇ f (x1, . . . , xn)|2 = C2

2Cxn +1
= C2(ρ ◦ f )2(x1, . . . , xn).

Application (3.2). In [13], Munteanu studied the surfaces in three-dimensional
Euclidean space whose normal vector at a point makes a constant angle with the
position vector of that point, showing (Theorem 1 in [13]) that a constant angle
surface is an open part of the Euclidean 2-sphere or it can be parameterized by

(3.3) r(u,v)= u
{
sinθ[cos(cotθ lnu)α(v)+sin(cotθ lnu) ·α(v)×α′(v)]

}
,

where θ 6= 0 and α is a unit speed curve α : I →S2.
To translate Munteanu’s analysis to our context, note that the Euclidean 3-

space minus the origin is isometric to the warped product

(0,∞)×ρ S2(sinθ), ρ(t)= t
sinθ

;

here S2(sinθ) denotes a 2-dimensional sphere with radius sinθ. Of course, the
natural isometry of this warped product with R3 \{0} is given explicitly by (t, p) 7→
tp.

To be able to compare Munteanu’s result with our Corollary (2.8), we note that
the function h given by equation (2.6) is given by

h−1(s)=
∫ s

1

dσ
Cρ(σ)

= sinθ
C

ln s.

Also, we will obtain an expression for the distance function in S2 to the curve
α that appears in (3.3). Note that the expression in braces in (3.3) gives a point
ϕ(u,v) in S2(sinθ) and that its distance d = d(ϕ(u,v)) to α(v) is precisely the prod-
uct of the radius and the angle between the two vectors; i.e.,

d(ϕ(u,v))= sinθ ·cotθ · lnu = cosθ · lnu;

recalling that C may be seen as tanθ, we have

d(ϕ(u,v))= h−1(u),

which gives
f (ϕ(u,v))= h◦d(ϕ(u,v))= u.

This fact means that a constant angle surface in (0,∞)×ρ S2(sinθ) is given by
the graph ( f (ϕ(u,v)),ϕ(u,v)) of f , i. e., by

(u,ϕ(u,v))= (u,sinθ[cos(cotθ lnu)α(v)+sin(cotθ lnu) ·α(v)×α′(v)]);

but this expression corresponds precisely to equation (3.3) via the aforementioned
isometry of (0,∞)×ρ S2(sinθ) with the Euclidean space. Thus, we recover Mun-
teanu’s result.

Application (3.4). In our last comparison we consider the work [10], where
Dillen et al. analyzed the hypersurfaces in the warped product I ×ρ R2 making a
constant angle with the vector field ∂t. Theorem 1 in [10] states that an isometric
immersion r : M2 → M = I ×ρ R2 defines a surface with constant angle θ ∈ [0,π/2]
if and only if, up to rigid motions of M, one of the following holds locally:



38 EUGENIO GARNICA, OSCAR PALMAS, AND GABRIEL RUIZ-HERNÁNDEZ

1. There exist parameters (u,v) of M, with respect to which the immersion r is
given by

(3.5) r(u,v)=
(
usinθ,cotθ

(∫ usinθ dσ
ρ(σ)

)
cosv−

∫ v
g(σ)sinσdσ,

cotθ
(∫ usinθ dσ

ρ(σ)

)
sinv+

∫ v
g(σ)cosσdσ

)
for some smooth function g.

2. r(M) is an open part of the cylinder x−G(t)= 0 for the real function G given
by

G(t)= cotθ
∫ t dσ

ρ(σ)
.

(Here (x, y) are the standard coordinates in R2.)
3. r(M) is an open part of the surface t = t0 for some real number t0, and θ = 0.
We will discuss items (1) and (2) of this theorem. In relation with item (2)

and in analogy with our previous discussion of Munteanu’s work, we see that the
function G may be written in our terminology as

G(t)= cotθ
∫ t dσ

ρ(σ)
=

∫ t dσ
Cρ(σ)

= h−1(t).

To obtain the cylinder x−G(t) = 0, we proceed as follows: We build a constant
angle curve in the (t, x)-plane, that is, a curve making a constant angle with the
vertical vector field ∂t. Note that this plane is a warped product I ×ρ R.

By Corollary 2.8, we may build this curve by first taking a codimension one
manifold in R, i.e., fixing a point in the real axis, which we may take as the origin.
Next, we calculate the distance function d in R to this point, which obviously
gives d(x)= x. Hence, the graph of f = h◦d = h =G−1 is the constant angle curve
we were looking for. By taking the cylinder over this curve in the 3-dimensional
space, we obtain the constant angle surface given in item (2).

To analyze item (1), we define the following curve α(v) in the (x, y)-plane:

α(v)=
(
−

∫ v
g(σ)sinσdσ,

∫ v
g(σ)cosσdσ

)
;

which may be obtained from the second and third coordinates in (3.5) making
u = 0.
Note that α′(v)= g(v)(−sinv,cosv), so that (cosv,sinv) is a unit vector field every-
where normal to this curve. An easy calculation shows that the second and third
coordinates in (3.5) give a parametrization ϕ(u,v) of a neighborhood of α by Fermi
coordinates; in fact, the distance of a point in this neighborhood to the curve α is
precisely

d(ϕ(u,v))= cotθ
(∫ usinθ dσ

ρ(σ)

)
,

which is equal to h−1(usinθ) in our terminology. From this we have that the
eikonal function f given in Corollary 2.8 is

f (ϕ(u,v))= h◦d(ϕ(u,v))= usinθ;

that is, equation (3.5) is the expression of the graph of f in I ×ρ R2.
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Remark (3.6). Note that instead of usinθ we may use a function ψ(u) in the
upper limit of the integrals appearing in (3.5) to obtain a point ϕ(u,v) in the plane
whose distance to the curve α is

d(u,v)= cotθ
(∫ ψ(u) dσ

ρ(σ)

)
,

so that f (ϕ(u,v))=ψ(u).

4. Minimal constant angle hypersurfaces

Let us recall that a function in Euclidean space is called eikonal if its gradient
has constant length.

LEMMA (4.1). Let f : U ⊂Rn −→R be a smooth function defined on the connected
open subset U . If f is a non constant harmonic and eikonal function then f is
linear.

Proof. The idea is to prove that f is locally linear and then to use that U is con-
nected. So in our argument we can take smaller open neighbourhoods if it were
necessary. Without loss of generality we can assume that |∇ f |2 = 1. Then the level
hypersurfaces of f are equidistant embedded hypersurfaces in Rn because the dis-
tance between two level hypersurfaces is measured along the integral curves of
the vector field ∇ f , which has constant length. Since f is harmonic and eikonal
every level hypersurface f −1(t) of f is minimal in Rn because the mean curvature
vector field H of the level hypersurfaces is given by

(4.2) H =− 1
|∇ f |4 f + 1

|∇ f |2 ∇|∇ f |,

see [17] for details. As we said before, in our case we can conclude that H ≡ 0, i.e.
every level hypersurface is minimal. So, { f −1(t)}t∈ f (U) is a family of equidistant
minimal hypersurfaces of Rn. We will prove that this is possible if and only if
every level hypersurface in the family is a hyperplane.
Let λ1,λ2, . . .λn−1 be the principal curvatures of f −1(t0). It is known that for every
t ∈ F(U) close to t0, the principal curvatures of f −1(t) are given by

λ1

1− (t− t0)λ1
,

λ2

1− (t− t0)λ2
, . . . ,

λn−1

1− (t− t0)λn−1
.

This is a consequence of the relation between the shape operator A of f −1(t0) and
the shape operator At of f −1(t): At = (I − tA)−1 A. See [3] page 38.
Since every level hypersurface f −1(t) of f is minimal, the mean curvature of f −1(t)
is zero:

λ1

1− (t− t0)λ1
+ λ2

1− (t− t0)λ2
+ . . .+ λn−1

1− (t− t0)λn−1
= 0.

Taking the derivative with respect to t and evaluating in t = t0 we obtain that
λ2

1+λ2
2+ . . .+λ2

n−1 = 0, which implies that λ1 =λ2 = . . .=λn−1 = 0. Therefore f −1(t)
is totally geodesic, i.e. it is part of a hyperplane. This proves that f is linear.

Remark (4.3). As noted by the referee, Lemma 4.1 is a consequence of classi-
cal results obtained by Levi-Civita and Segre (see [11] and [16]) in the context
of isoparametric hypersurfaces; we included the above proof for the sake of com-
pleteness. The referee also pointed out to us that we may prove the lemma in a
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shorter way using the well-known Bochner’s formula, valid for any smooth func-
tion f over a Riemannian manifold:

(4.4)
1
2
∆|∇ f |2 = 〈∇ f ,∇∆ f 〉−Ric(∇ f ,∇ f )−|Hess f |2.

In order to prove the lemma, note that Rn is Ricci flat and f is harmonic and
eikonal; hence Bochner’s formula implies that Hess f = 0. So, the second order
partial derivatives of f are zero. This proves that f is linear.

The next Corollary (4.5), improves Theorem (2.8) in [4] which says that a con-
stant angle hypersurface M in Euclidean space is minimal if and only if every slice
of M is also minimal. Our Corollary here gives a complete, explicit classification
of these hypersurfaces.

COROLLARY (4.5). Let M be a connected constant angle hypersurface in Rn with
respect to a constant direction X . If M is minimal then either M is part of a
cylinder, over a minimal hypersurface in Rn−1 or M is part of a hyperplane.

Proof. We can assume that X is a unit vector field. If X is tangent to M, then it
is clear that M is part of a cylinder over a hypersurface L in a Rn−1 orthogonal to
X . Moreover, L should be minimal because M is minimal.
If X is transversal to M then M if the graph of a smooth function f , the height
function in direction X . Since M is minimal, every slice of M with hyperplanes
orthogonal to X is minimal in the Euclidean ambient, which follows from Theorem
2.8 of [4]. Equivalently, every level hypersurface of f is minimal. Under the
hypothesis that f is eikonal and using relation (4.2), the latter condition holds if
and only if f is a harmonic function. So, f is an eikonal and harmonic function.
By Lemma (4.1), f is linear. Therefore, M is part of a hyperplane.
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CONSTRAINING EXTENT BY DENSITY: ON GENERALIZATIONS OF
NORMALITY AND COUNTABLE PARACOMPACTNESS

CHARLES J. G. MORGAN AND SAMUEL G. DA SILVA

ABSTRACT. It is well known that in the class of separable spaces both normality
and countable paracompactness imply certain constraints on the sizes of closed
discrete subsets. In this paper we show that analogous constraints hold for gen-
eralizations of such properties. We also discuss the limitations one has to deal
with when trying to find similar constraints for separable, countably metacom-
pact spaces.

1. Introduction

Determining upper bounds – in terms of the size of dense sets – on the sizes
of closed discrete subsets of topological spaces satisfying particular properties is
a longstanding procedure in General Topology. It goes back, at least, to the fourth
decade of the twentieth century, with the seminal work of Jones ([10]). There
the classical result that is nowadays referred to as “Jones’ Lemma” – that normal
separable spaces cannot include closed discrete subsets of size c – was established.
Jones, moreover, also showed that under 2ω < 2ω1 such spaces cannot include
uncountable closed discrete subsets.

Using the language of cardinal functions, we say that normality is a topolog-
ical property that “constrains the extent in terms of the density.” Recall that
the extent of a topological space X , e(X ), is the supremum of the cardinalities of
all closed discrete subsets of X and the density of X , d(X ), is the smallest car-
dinality of a dense subset of X (in each case subject to the proviso that if the
supremum/minimum, resp., is not infinite the value is set as ω). In these terms
the statement “the cardinality of the closed discrete subsets of X is constrained
by the minimal cardinality of a dense subset of X ” reduces to “e(X ) É d(X )”. The
“separable case” is to look at X with d(X )=ω, and “countable extent” is an abbre-
viation for “non-existence of uncountable closed discrete subsets”.

Another topological property under which extent is constrained by density (in
the separable case) is countable paracompactness. Fleissner [6] has shown that
countably paracompact, separable spaces cannot include closed discrete subsets
of size c.

In this paper, we show that similar constraints hold for generalizations of the
properties so far mentioned.
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03E35, 03E55.

Keywords and phrases: cardinal functions, seminormal spaces, countably semi-paracompact
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In §2 we work with semi-normal spaces, which generalize normal spaces in
exactly the same way that semi-regular spaces generalize regular spaces. For this
class of spaces we obtain restrictions on extents in terms of densities which are
entirely similar to those that hold for normal spaces, but by a different argument:
the proof of Jones’ Lemma is based on a careful construction of a injective function
from the family of subsets of a given closed and discrete subset into the family
of the subsets of a given dense set, while our results are based on a notion of
separation of families.

In §3 we consider countable paracompactness1 and introduce a wide-reaching
notion of µ-semi-paracompactness – where µ is supposed to be an infinite cardi-
nal. This concept generalizes the notion of µ-paracompactness due to M. E. Rudin
[18]. Our definition is based on decreasing sequences of closed sets and decreas-
ing sequences of semi-open sets – and this definition seems to be broader, as we
discuss, than the expected version based on semi-open refinements of open cov-
ers. We present a number of constraints on the size of closed discrete subsets for
this very general class of spaces, again by different arguments: the previously
obtained constraints (as well as [6] see also [24] and [21]) were established (for
case µ=ω) by constructing a suitable countable open cover and considering a lo-
cally finite open refinement, while our results deal directly with the decreasing
sequences mentioned above.

We remark that whenever one considers uncountable closed discrete subsets
of separable countably paracompact spaces one has to deal with small dominat-
ing families. These combinatorial structures are related to large cardinals (see
below) – and it follows that the problem of comparing extent and density in the
class of separable countably paracompact spaces involves intrinsic set-theoretic
difficulties.

Returning to our general problem of constraining extent by density, a related
theme is to find restrictions on the cardinalities of closed discrete subsets sat-
isfying relative versions of normality and countable paracompactness – or even
relative versions of their generalizations. We do not go into the details of these
results here, but limit ourselves in the main to statements of some of them and
giving references to the relevant literature.2

It would be highly desirable to find constraints for extent in terms of density
similar to those discussed in §2, §3 for (non-trivial) classes of separable, countably
metacompact spaces. In §4 we give examples of specific classes of such spaces
where instances of those constraints do not necessarily pertain and discuss the
limitations with which one therefore has to deal when addressing this problem.
We conclude, in §5, with some notes and questions.

We end this introduction with some standard references and definitions.
For small cardinals such as p, b and d, and for basic information on spaces

from almost disjoint families (the so-called Isbell-Mrówka spaces), see [4]. For
information on cardinal functions we refer to [7].

For f , g ∈ ω1ω write f É g, f É∗ g, when the set {α<ω1 : g(α)< f (α) } is empty,
countable, respectively. (The latter is the mod countable order).

1A space X is [countably] metacompact (resp. paracompact) if every [countable] open cover of X
has an open refinement which is point finite (resp. locally finite).

2Specific information on relative versions of normality and countable paracompactness may be
found in [21], [16] and [22].
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D ⊆ ω1ω is a dominating family if it is cofinal in 〈ω1ω,É∗〉, meaning (∀ f ∈ ω1ω)
(∃g ∈ D)[ f É∗ g]. The size of the smallest dominating family in ω1ω is denoted by
c f 〈ω1ω,É∗〉. We recall that c f 〈ω1ω,É∗〉 = c f 〈ω1ω,É〉 (see [2]).

A small dominating family is a dominating family of functions in ω1ω of size
not larger than the continuum. (Of course, if 2ω = 2ω1 all families of functions are
“small”.)

Jech and Prikry showed that “2ω < 2ω1 + 2ω regular + There is a small domi-
nating family” implies that “There is an inner model with a measurable cardinal”
([9]). On the other hand, Watson has shown that the existence of a small domi-
nating family is equivalent to the existence of a separable countably paracompact
space with an uncountable closed discrete subset ([24]). It follows that, under
“c f (2ω) = 2ω < 2ω1” and “There are no inner models with measurable cardinals”,
countably paracompact separable spaces have, necessarily, countable extent.

2. On semi-normal spaces

We start by giving a couple of combinatorial definitions and remarks.

Definition (2.1). (i) If A, B and C are sets such that A ⊆ B and B∩C = ; we
say that B separates A from C.

(ii) Let X be a set. If A ⊆P(X )×P(X ) is a set of pairs of disjoint sets we say
that B ⊆P(X ) is a separating family for A, or simply that B separates A, if for all
〈A,C〉 ∈A there is some B ∈B which separates A from C.

This notion of separation has immediate consequences when it comes to giving
upper bounds for the cardinalities of certain specific sets.

PROPOSITION (2.2). Let X be a set and suppose B separates A, where A is a
set of pairs of disjoint subsets of X . Let H be a subset of X and suppose H is a
subfamily of {〈A,H \ A〉 : A ∈P(H) }. Then H⊆A implies |H| É |B|. In particular,
if H= {〈A,H \ A〉 : A ∈P(H) }⊆A then 2|H| É |B|.

Proof. For each 〈A,H\ A〉 ∈H let BA ∈B separate A from H\ A. Then BA∩H = A
and so the function 〈A,H \ A〉 7→ BA is an injection from H to B.

It is easy to see that if X is a topological space and H ⊆ X then H is a closed
discrete subset of X if, and only if, every subset of H is closed. It follows that the
preceding proposition has the following corollary:

COROLLARY (2.3). Let X be a topological space and suppose that B separates
the family A of all pairs of disjoint closed subsets of X . If H is a closed discrete
subset of X then 2|H| É |B|.

Proof. Under the assumptions, {〈A,H \ A〉 : A ⊆ H }⊆A.

As usual, let RO(X ) denote the family of all regular open sets of a topological
space X – i.e., the open sets O satisfying O = intO. Recall that, if D is a dense
subset of X , then V = V ∩D for any open set V , and therefore there are at most
2|D| sets of the form the closure of an open set, and similarly for sets of the form the
interior of a closed set. This gives us the well-known inequality |RO(X )| É 2d(X )

for every topological space X .
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The following notion of semi-normal spaces generalizes normal spaces analo-
gously to the way that semi-regular spaces generalize regular spaces. Recall that
a topological space is semi-regular if every point has a base of regular open sets.

Definition (2.4) ([23]). A topological space X is semi-normal if RO(X ) separates
the family of all pairs of disjoint closed subsets of X .

Indeed, spaces satisfying the above definition are those in which every closed
set has a base of regular open sets.

For a semi-normal space X , RO(X ) is a separating family, of size not larger than
2d(X ), for the family A of all disjoint closed subsets of X . So, applying Corollary
2.3 for B = RO(X ), we establish the following version of Jones’ Lemma for semi-
normal spaces:

THEOREM (2.5). If X is a semi-normal topological space and H is a closed dis-
crete subset of X then 2|H| É 2d(X ), hence |H| < 2d(X ). Moreover, if 2d(X ) < 2d(X )+

then |H| É d(X ), and thus e(X )É d(X ).

Proof. Indeed, Corollary 2.3 gives us 2|H| É |B| = |RO(X )| É 2d(X ). The remaining
claims follow by elementary cardinal arithmetic.

In particular, semi-normal separable spaces behave just like normal separable
spaces when it comes to comparing extent and density.

3. On countably semi-paracompact spaces

Throughout this section, µ is always supposed to be an infinite cardinal.
M. E. Rudin noted some time ago that one of the usual equivalents of countable

paracompactness (due to Ichikawa [8], see [5], Theorem 5.2.1) is more appropriate
for generalization than the formulation in terms of locally-finite refinements of
open coverings. She defines µ-paracompact spaces, integral to her definition of
µ-Dowker spaces, as follows.

Definition (3.1) ([18], §4.3). A space X is µ-paracompact if for every decreasing
sequence of closed sets 〈Cα : α < µ〉 such that

⋂
α<µ

Cα = ; there is a decreasing

sequence of open sets 〈Aα : α<µ〉 such that Cα ⊆ Aα for all α<µ and
⋂
α<µ

Aα =;.

Weakenings of the notion of an “open” set have frequently been considered. One
can consult [17] for a survey up to the early 2000s, and there has been a noticeable
spurt of work in the area since then. Among these several “weak versions of open
sets”, we call the reader’s atention to Levine’s notion of semi-open sets (1963),
which will be very useful here.

Definition (3.2) ([11]). Let X be a topological space. A set A ⊆ X is semi-open if
A ⊆ intA. C ⊆ X is semi-closed if its complement is semi-open.

We remarked above that, for any topological space X , O = V ∩D whenever O
is an open set and D is a dense set. Levine’s notion gives us characterizations
for this kind of phenomena: he proved that U is a semi-open set if, and only if,
U =U ∩D for all dense sets D and D is a dense set if, and only if, U =U ∩D for
all semi-open sets U (see [12]).
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For the sake of completeness, we give a proposition with some basic facts on
semi-open sets.

PROPOSITION (3.3). Let X be topological space. The following statements hold:
(1) A ⊆ X is semi-open if, and only if, there is an open set O such that O ⊆ A ⊆O.
(2) The intersection of an open set with a semi-open set is semi-open.
(3) If { A i : i ∈ I } is a family of semi-open subsets of X , then

⋃
i∈I

A i is also semi-open.

Before the proof we remark that, regarding (2), it is easy to see that the inter-
sections of a pair of semi-open sets need not to be a semi-open set.

Proof. (1): Notice that, if A is a semi-open set, one has just to take O = int(A) and
we get the “only if” part. Conversely, if there is an open set O as in the statement
then O ⊆ int(A)⊆ A ⊆ A ⊆O and therefore int(A)= A, thus the desired holds.

(2): Let U be open and A be semi-open. With respect to A, consider an open set
O as in (1). We have

U ∩O ⊆U ∩ A ⊆U ∩O ⊆U ∩O,
the last inclusion valid because U ∩Y ⊆U ∩Y for any set Y , provided U is open.
Then the open set U ∩O testifies that U ∩ A is semi-open, by (1).

(3): We choose an open set Oi for each A i, under the conditions of item (1). It
follows that

⋃
i∈I

Oi ⊆ ⋃
i∈I

A i ⊆ ⋃
i∈I

Oi ⊆ ⋃
i∈I

Oi, the latter since
⋃
i∈I

Bi ⊆ ⋃
i∈I

Bi for any

family of Bi ’s. Hence
⋃
i∈I

Oi witnesses that
⋃
i∈I

A i is semi-open.

In the last 25 years, many generalized topological properties, stated in terms
of weakenings of the notion of open set, have been introduced and investigated.
Works in this line of research have been written by Di Maio, Noiri, Dontchev and
Ganster, amongst others; we refer to Noiri’s survey [17] for more details and refer-
ences. Accordingly, given the theme of this paper, we generalize Rudin’s definition
as follows.

Definition (3.4). A space X is µ-semi-paracompact if for every decreasing se-
quence of closed sets 〈Cα : α < µ〉 such that

⋂
α<µ

Cα = ; there is a decreasing

sequence of semi-open sets 〈Aα : α < µ〉 such that Cα ⊆ Aα for all α < µ and⋂
α<µ

Aα =;. If µ=ω we say X is countably semi-paracompact.

Equivalently: for every increasing open cover 〈Oα : α<µ〉 there is an increas-
ing sequence of semi-closed sets 〈Fα : α < µ〉 with Fα ⊆ Oα for each α < µ and
such that

⋃
α<µ

intFα = X .

For the case µ=ω we have equivalences mirroring the usual ones for countably
paracompact spaces, as we will see in the following result. The statement corre-
sponding to (ii) in the following proposition was taken in [1] as the definition of
countably S-paracompact.

PROPOSITION (3.5). Let X be a topological space. The following statements are
equivalent:

(i) X is countably semi-paracompact.
(ii) Every countable open cover of X has a locally finite semi-open refinement.
(iii) Every open cover U = {Ui : i <ω } of X has a locally finite semi-open refine-

ment V = {Vi : i <ω } with Vi ⊆Ui for each i <ω.
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Proof. First we prove the equivalence between (ii) and (iii). It is clear that (iii)
implies (ii). On the other hand, if W is any locally finite semi-open refinement of
U , consider for every W ∈W the natural number i(W) = min{i < ω : W ⊆ Ui} and
let Vi = ⋃

{W ∈W : i(W) = i }. V = 〈Vi : i < ω〉 is a locally finite refinement of W
and the Vi ’s are semi-open by (3) of Proposition 3.3.

We proceed by proving that (iii) implies (i). For this, suppose 〈Ci : i <ω〉 is a
decreasing sequence of closed subsets of X satisfying

⋂
i<ω

Ci =;. By (iii), let V =
〈Vi : i <ω〉 be a locally finite semi-open cover such that Vi ⊆ X \ Ci for all i <ω.
Let A i = ⋃

j>i
Vj for i < ω. Then each A i is semi-open (again by (3) of Proposition

3.3), the family of the A i ’s is decreasing and, as
⋃
jÉi

Vj ⊆ ⋃
jÉi

X \C j = X \Ci, we have

Ci ⊆ X \
⋃
jÉi

Vj ⊆ A i

for each i <ω; and
⋂

i<ω
A i =; holds as, by the local finiteness of V , each x ∈ X has

a neighbourhood contained in some X \ Ak.
Finally, we prove that (i) implies (ii). As already remarked in the definition,

(i) is equivalent to the following statement:
(*) For every increasing open cover 〈Oi : i <ω〉 there is an increasing sequence

of semi-closed sets 〈Fi : i <ω〉 with Fi ⊆Oi for each i <ω and such that
⋃

i<ω
int(Fi)=

X .
To see that (∗) ⇒ (ii), let U = 〈Ui : i <ω〉 be any countable open cover of X and

consider the increasing open cover 〈Oi : i < ω〉 defined by putting Oi = ⋃
jÉi

U j for

all i <ω. Consider the increasing sequence of semi-closed sets 〈Fi : i <ω〉 given by
(*). For every i < ω, let Vi =Ui \

⋃
j<i

F j. As the sequence of the Fi ’s is increasing,

each one of the Vi ’s is semi-open, by (2) of Proposition 3.3 – since they all can be
written as the intersection of an open set with a semi-open set. Notice that, for
every i <ω, ⋃

j<i
F j ⊆

⋃
j<i

O j ⊆
⋃
j<i

U j

and therefore Ui \
⋃
j<i

U j ⊆Ui \
⋃
j<i

F j =Vi, and this clearly implies that the family

V = 〈Vi : i < ω〉 is a cover of X (thus a semi-open refinement of U ). What is left
to prove is the local finiteness of V . But, as X = ⋃

i<ω
int(Fi), every x ∈ X has an

open neighbourhood of the form int(Fk) for some k < ω, and this neighbourhood
is disjoint from the semi-open set Vj for j Ê k – and this completes the proof.

For uncountable cardinals µ, it is easy to adapt the proof of implication (ii) ⇒
(i) of the preceding proposition and show that if every open cover of X with size not
larger than µ has a semi-open refinement which is locally less than µ, then X is
µ-semi-paracompact. However, the proof of the converse does not similarly admit
an easy adaptation, and indeed it is not clear to the authors if such a converse
holds without some additional assumption on the nature of the space. This seems
to indicate that our notion of µ-semi-paracompactness is preferable to the obvious
alternative formulations.

Now we present the main theorem of this section.
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THEOREM (3.6). Let κ be an uncountable cardinal. If X is a countably semi-
paracompact separable space and H ⊆ X is a closed discrete subset of size κ then
there is a dominating family of size at most 2ω in κω.

Proof. Let X be countably semi-paracompact, ω a dense set in X and κ \ω a
closed discrete subset of X . Let {Gα : α < λ }, for some λ É c, be an enumera-
tion of all decreasing sequences of subsets of ω, say Gα = 〈Gα,n : n < ω〉, which
satisfy

⋂
n<ω

Gα,n =;.3

For each α<λ define a function fα : (κ\ω)→ω such that, for every β ∈ κ\ω,

fα(β)=
{

max({ n : β ∈Gα,n }) if { n : β ∈Gα,n } 6= ;
0 otherwise.

Let F = { fα : α< λ }. We claim that F is a dominating family in κ\ωω – and this
clearly suffices for us.

Indeed: let g ∈ κ\ωω be arbitrary. For every n < ω let Hn = g−1“{ n } and let
Cn = ⋃

mÊn
Hm. As κ\ω is closed and discrete and {Hn : n <ω} is a partition of κ\ω,

C = 〈Cn : n < ω〉 is an decreasing sequence of closed subsets of X with empty
intersection.

By countable semi-paracompactness, let A = 〈An : n < ω〉 be a decreasing se-
quence of semi-open sets with Cn ⊆ An for each n <ω such that ∩n<ωAn =;. We
have An = An ∩ω for each n <ω, since An is semi-open (by Levine’s characteriza-
tion, [12]). So, there is some ξ<λ such that 〈An ∩ω : n <ω〉 = 〈Gξ,n : n <ω〉.

It follows that g is dominated by fξ, because if β ∈ κ\ω and m = g(β) then
β ∈ Hm ⊆ Cm ⊆ Am ⊆ Am = Am ∩ω = Gξ,m and therefore g(β) = m É max{n : β ∈
Gξ,n}= fξ(β).

We proceed by presenting some immediate consequences of the preceding the-
orem.

In the view of the results of Jech and Prikry on small dominating families in
ω1ω already remarked (see Section 1), we have the following:

COROLLARY (3.7). Under “c f (2ω) = 2ω < 2ω1” and “There are no inner models
with measurable cardinals”, countably semi-paracompact separable spaces have
countable extent.

We next present a statement which is a strengthening of Fleissner’s result on
the size of the closed discrete subsets of countably paracompact spaces ([6]). Our
argument is purely combinatorial: by a standard diagonal argument, families
of size κ in 〈κω,É〉 are not dominating – in particular, there are no dominating
families of size c in cω. So, Theorem 3.6 gives us the following:

COROLLARY (3.8). A countably semi-paracompact separable space cannot in-
clude a closed discrete subset of size c.

The following result is a corollary to the proof of Theorem 3.6. We emphasise
that, in light of the discussion immediately before the statement of the theorem,
the hypothesis is, as far as our knowledge goes and in comparision with all previ-
ous results of this type, the weakest presented in the literature.

3Note that these are precisely the decreasing locally finite sequences of subsets of ω.
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COROLLARY (3.9). If X is a µ-semi-paracompact space for any µ É d(X ) and
H ⊆ X is a closed discrete set of size κ> d(X ) then there is a dominating family of
size at most 2d(X ) in κµ.

Proof. Immediate.

By the above mentioned diagonal argument on dominating families, one can
similarly easily deduce from this last corollary that a space X which is µ-semi-
paracompact, for µÉ d(X ), cannot include a closed discrete subset of size 2d(X ).

This makes plain that, even in this very general context, we have to deal with
constraints on the extents of these spaces – and that these constraints are stated
in terms of their densities.

Defining the notion of relative countable semi-paracompactness in the natural
way,4 it is straightforward to check that obvious adaptations of what we have just
done also give:

COROLLARY (3.10). The existence of a separable space with an uncountable
closed discrete subset which is also relatively countably semi-paracompact implies
the existence of a small dominating family.

COROLLARY (3.11). Separable spaces cannot include closed discrete subsets
which have size c and are countably semi-paracompact in them.

4. Obstructions: on what cannot be extended for separable, countably
metacompact spaces

Countably paracompact spaces have constraints on their extents in terms of
their densities, in the separable case – and, moreover, we have just proved that
analogous constraints hold for certain generalizations of countable paracompact-
ness. It is very natural to ask: what about countably metacompact, separable
spaces? In what follows we show that, even supposing additional properties for
the space, there are easy examples of countably metacompact, separable spaces
for which extent is not constrained by density.

There are additional properties which it is very natural to consider in this
case. Let us review some of these properties. It is well known that countably
metacompact normal spaces are countably paracompact (see e.g. [5], 5.2.6), and
therefore one should investigate what happens when one adds hypotheses weaker
than normality – for instance, pseudonormality.

A topological space X is pseudonormal if countable closed sets have arbitrarily
small closed neighbourhoods, or, equivalently, disjoint closed sets are separated
by disjoint open sets whenever at least one of the closed sets is countable.

Let us turn in another direction. A topological property which is commonly
considered together with countable metacompactness is orthocompactness. In-
deed, in the literature the relationship between countable metacompactness and
orthocompactness is usually compared with the relationship between countable
paracompactness and normality, because of obvious similarities found in several
results involving finite topological products (see, e.g., [19]).

4Y ⊆ X is countably semi-paracompact in X if for every decreasing sequence 〈Ci : i <ω 〉 of closed
subsets of X with

⋂
i<ω

Ci =; there is a decreasing sequence of semi-open sets 〈 A i : i <ω 〉, such that

Ci ⊆ A i for all i <ω and
⋂

i<ω
A i ∩Y =;.
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A topological space X is orthocompact if every open cover has an open refine-
ment which is interior preserving, i.e., the intersection of any subfamily of the
open refinement is an open set.

In what follows, we show that considering both topological properties together
with countable metacompactness (even simultaneously), one may exhibit easy ex-
amples for which density does not constrain extent – either absolute examples or,
at least, consistent ones.

PROPOSITION (4.1). The following statement is a theorem of ZFC:

“There is a countably metacompact, orthocompact, separable space with a closed
discrete subset of size c”

The following statement is consistent with ZFC + 2ω < 2ω1 :

“There is a countably metacompact, orthocompact, pseudonormal, separable space
with uncountable extent”

Proof. Here we use Isbell-Mrówka spaces Ψ(A), constructed from almost dis-
joint families of subsets of ω. Every such space is separable, countably meta-
compact (see [20] for a proof) and also orthocompact: every space Ψ(A) has an
open refinement on which every A ∈A is covered by only one open set of the form
{A}∪ (A \ nA), where nA <ω. The intersection of any subfamily of this refinement
is a subset of ω and therefore is open in Ψ(A). So, any almost disjoint family of
size c shows that the first statement is a theorem of ZFC.

For the second statement, we use the fact that any almost disjoint family of
size less than b is pseudonormal (see [20] or [4] for more details), and therefore it
suffices to exhibit a model of ZFC on which b>ω1 and 2ω < 2ω1 : in such a model,
any almost disjoint family of size ω1 will give us the desired consistency.

In order to get a model satisfying these requirements, we can, e.g., use a very
general theorem due to Cummings and Shelah ([3], Theorem 2), which asserts,
as a particular case, that the cardinals in the triple 〈b,d,c〉 may assume any “rea-
sonable” values. More precisely: suppose that θ,κ and µ are cardinals of a model
of GCH satisfying ω1 É θ = c f (θ) É c f (κ), κ É µ and c f (µ) > ω. Then there is a
forcing such that in the generic extension we have b = θ, d = κ and c = µ. Apply-
ing this theorem for θ = κ = ω2 = ℵ2 and µ = ℵω1 , then in the extension we have
b = d = ω2 and 2ω = ℵω1 , and it follows that 2ω < 2ω1 also holds in the extension
(for if 2ω = 2ω1 in the extension then ω1 = c f (ℵω1 ) = c f (2ω1 ) – but this contradicts
König’s theorem, which states that λ< c f (2λ) for every infinite cardinal λ).

5. Notes and Questions

First of all, we would like to call the reader’s attention to the following subtlety:
there are models of 2ω = 2ω1 in which it is easy to find examples of separable,
normal, countably paracompact (a)-spaces for which extent is not constrained by
density. It suffices to get a model of ω1 < p and, taking a subset Y of R of size ω1
in this model, consider the well-known space M(Y ), the Moore space derived from
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Y . If |Y | =ω1 < p, then 2ω = 2ω1 and M(Y ) is a separable, normal, countably para-
compact space with uncountable extent (see [20] for more details5). Therefore, it
is reasonable to suppose that the general problem of finding topological and set-
theoretical conditions implying e(X ) É d(X ) should be investigated in models of
2ω < 2ω1 . This motivates and justifies our interest in the consistency of the second
statement of Proposition 4.1.

We also remark that, by previous results of the authors (see [15]), topological
(or any kind of) properties that imply the existence of small dominating families
cannot hold under a certain weak parametrized diamond principle, Φ(ω,<) (one of
the family of such principles introduced by Moore, Hrušák and Džamonja in [13]).
In view of Theorem 3.6, we have the following:

THEOREM (5.1). Φ(ω,<) implies countable extent for separable countably semi-
paracompact spaces.

There are some questions and problems which are naturally suggested by our
work. In particular, there are questions which may be regarded as generalizations
of questions formerly presented by the authors. For instance, on the one hand, in
the view of the preceding theorem – since all weak parametrized diamond prin-
ciples similar to Φ(ω,<) imply 2ω < 2ω1 , see [13], it is quite natural to ask the
following question which, on the other hand, generalizes a question asked by the
authors in [15].

QUESTION (5.2). Does 2ω < 2ω1 alone imply countable extent for separable count-
ably semi-paracompact spaces?

Despite the obstructions presented in Section 4, the authors are still very inter-
ested in investigating the borders between countable paracompactness and count-
able metacompactness – specifically, with regard to the general problem under
consideration: when does density constrain extent ?

PROBLEM (5.3). Find topological properties P such that countably metacom-
pact spaces which satisfy P have their extents constrained in terms of their den-
sities. Obviously, we are interested in properties P which neither imply countable
paracompactness when combined with countable metacompactness, nor are satis-
fied by every Isbell-Mrówka space.
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RIGID GEMS IN DIMENSION N

PAOLA BANDIERI AND CARLO GAGLIARDI

ABSTRACT. We extend to dimension n ≥ 3 the concept of ρ-pair in a coloured
graph and we prove the existence theorem for minimal rigid crystallizations of
handle-free, closed n-manifolds.

1. Introduction

The concept of ρ-pair in a 4-coloured graph was introduced for the first time by
Sostenes Lins in [12]. Roughly speaking, it consists of two equally coloured edges,
which belong to two or three bicoloured cycles. A graph with no ρ-pairs was then
called rigid in the same paper, where the following basic result was proved:

Every handle-free, closed 3-manifold admits a rigid crystallization of minimal
order.

The proof is based on the definition of a particular move, called switching of
a ρ-pair. Starting from any gem Γ of a closed, irreducible 3-manifold M, a finite
sequence of such moves, together with the cancelling of a suitable number of 1-
dipoles, produces a rigid crystallization Γ′ of the same manifold M, whose order is
strictly less than the order of Γ.

The above existence theorem plays a fundamental rôle in the problem of gen-
erating automatically essential catalogues of 3-manifolds, with “small” Heegaard
genus and/or graph order (see, e.g., [12], [3], [5], [4], [14]).

In the present paper, we extend the concepts of ρ-pair, switching and rigidity
to (n+1)-coloured graphs, for n > 3.

Our main result is the proof of the existence of a rigid crystallization of minimal
order, for every handle-free n-dimensional, closed manifold. It will be used in a
subsequent paper to generate the catalogue of all 4-dimensional, closed manifolds,
represented by (rigid) crystallizations of “small” order.

2. Notations

In the following all manifolds will be piecewise linear (PL), closed and, when
not otherwise stated, connected. For the basic notions of PL topology, we refer to
[17] and to [8]; “∼=” will mean “PL-homeomorphic”. For graph theory, see [9] and
[18].
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We will use the term “graph” instead of “multigraph”. Hence multiple edges
are allowed, but loops are forbidden. As usual, V (Γ) and E(Γ) will denote the
vertex-set and the edge-set of the graph Γ.

If Γ is an oriented graph, then each edge e is directed from its first endpoint
e(0) (also called tail) to its second endpoint e(1) (called head).

An (n+1)-coloured graph is a pair (Γ,γ), where Γ is a graph, regular of degree
n+1, and γ : E(Γ) →∆n = {0, . . . ,n} is a map with the property that, if e and f are
adjacent edges of E(Γ), then γ(e) 6= γ(f). We shall often write Γ instead of (Γ,γ).

Let B be a subset of ∆n. Then, the connected components of the graph ΓB =
(V (Γ),γ−1(B)) are called B-residues of (Γ,γ). Moreover, for each c ∈ ∆n, we set
ĉ =∆n \{c}. If B is a subset of ∆n, we define gB to be the number of B-residues of
Γ; in particular, given any colour c ∈∆n, g ĉ denotes the number of components of
the graph Γĉ, obtained by deleting all edges coloured c from Γ. If i, j ∈ ∆n, i 6= j,
then g i j denotes the number of cycles of Γ, alternatively coloured i and j, i.e.
g i j = g{i, j}.

An isomorphism φ :Γ→Γ′ is called a coloured isomorphism between the (n+1)-
coloured graphs (Γ,γ) and (Γ′,γ′) if there exists a permutation ϕ of ∆n such that
ϕ◦γ= γ′ ◦φ.

A pseudocomplex K of dimension n [11] with a labelling on its vertices by
∆n = {0, . . . ,n}, which is injective on the vertex-set of each simplex of K is called a
coloured n-complex .

It is easy to associate a coloured n-complex K(Γ) to each (n+1)-coloured graph
Γ, as follows:

- for each vertex v of Γ, take an n-simplex σ(v) and label its vertices by ∆n;
- if v and w are vertices of Γ joined by a c-coloured edge (c ∈∆n), then identify

the (n−1)-faces of σ(v) and σ(w) opposite to the vertices labelled c.

If M is a manifold of dimension n and Γ an (n+1)-coloured graph such that
|K(Γ)| ∼= M, then, following Lins [12], we say that Γ is a gem (graph-encoded-
manifold) representing M.

Note that Γ is a gem of an n-manifold M iff, for every colour c ∈ ∆n, each
ĉ-residue represents Sn−1. Moreover, M is orientable iff Γ is bipartite.

If, for each c ∈ ∆n, Γĉ is connected , then the corresponding coloured complex
K(Γ) has exactly (n+1) vertices (one for each colour c ∈ ∆n); in this case both Γ
and K(Γ) are called contracted. A contracted gem Γ, representing an n-manifold
M, is called a crystallization of M.

The existence theorem of crystallizations for every n-manifold M was proved by
Pezzana [15], [16]. Surveys on crystallizations theory can be found in [7], [2].

Let x,y be two vertices of an (n+1)-coloured graph Γ joined by k edges {e1, . . . ,
ek} with γ(eh) = ih, for h = 1, . . . ,k. We call Θ = {x,y} a dipole of type k, involving
colours i1, . . . , ik, iff x and y belong to different (∆n \{i1, . . . , ik})-residues of Γ.

In this case a new (n+1)-coloured graph Γ′ can be obtained by deleting x,y and
all their incident edges from Γ and then joining, for each i ∈ ∆n \ {i1, . . . , ik}, the
vertex i-adjacent to x to the vertex i-adjacent to y. Γ′ is said to be obtained from
Γ by cancelling (or deleting) the k-dipole Θ. Conversely Γ is said to be obtained
from Γ′ by adding the k-dipole Θ.

By a dipole move, we mean either the adding or the cancelling of a dipole from
a gem Γ.
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As proved in [6], two gems Γ and Γ′ represent PL-homeomorphic manifolds iff
they can be obtained from each other by a finite sequence of dipole moves.

An n-dipole Θ= (x,y) is often called a blob (see [13], where a different calculus
for gems is introduced). If c is the (only) colour not involved in the blob Θ, and
x′,y′ are the vertices c-adjacent to x and y respectively, then the cancelling of Θ
from Γ produces (in Γ′) a new c-coloured edge e′, joining x′ with y′. Following
Lins, we call the inverse procedure the adding of a blob on the edge e′.

Two vertices x,y of an (n+1)-coloured graph Γ are called completely separated
if, for each colour c ∈ ∆n, x and y belong to two different ĉ-residues. The fusion
graph Γfus(x,y) is obtained simply by deleting x and y from Γ and then by gluing
together the “hanging edges” with the same colours.

The following result was first proved, for case (a), in [12] and, for case (b), in
[12] (n = 3) and in [10].

LEMMA (2.1). Let x,y be two completely separated vertices of a (possibly dis-
connected) graph Γ.

(a) If x and y belong to the (only) two different components Γ′ and Γ′′ of Γ, repre-
senting two n-dimensional manifolds M′ and M′′ respectively, then Γfus(x,y)
is a gem of a connected sum M′#M′′.

(b) If Γ is a gem of a (connected) n-manifold M, then Γfus(x,y) is a gem of M#H,
where H is either Sn−1×S1 or Sn−1×̃S1 (i. e. the orientable or non-orientable
(n−1)-sphere bundle over S1).

Note that such a manifold H is often called a handle (of dimension n). A man-
ifold M is called handle-free if it admits no handles as connected summands (i.e.
if M is not homeomorphic to M′#H, M′ being any n-manifold).

3. Switching of ρ-pairs

Let (Γ,γ) be an (n+1)-coloured graph. Let further (e,f) be any pair of edges,
both coloured c, of Γ.

If we delete e,f from Γ, we obtain an edge-coloured graph Γ, with exactly four
vertices of degree n (namely, the endpoints u,v of e and the endpoints w,z of f).

Now, there are exactly two (n+ 1)-coloured graphs (Γ1,γ1), (Γ2,γ2) (different
from (Γ,γ)) which can be obtained by adding two new edges (both coloured c) to Γ:
such edges are either e1,f1, joining u with w and v with z respectively, or e2,f2,
joining u with z and v with w respectively. (See Figure 1, Figure 1a and Figure
1b, where, without loss of generality, we consider c = 0)

We will say that (Γ1,γ1) and (Γ2,γ2) are obtained from (Γ,γ) by a switching on
the pair (e,f).

Actually, we are interested in particular pair of equally coloured edges of Γ.
More precisely:

Definition (3.1). A pair R = (e,f) of edges of Γ, with γ(e)= γ(f)= c, will be called:
(a) a ρn-pair involving colour c if, for each colour i ∈∆n \{c}, we have Γ{c,i}(e)=

Γ{c,i}(f);
(b) a ρn−1-pair (n > 1), involving colour c, if there exists a colour d 6= c, such

that:
(b1) Γ{c,d}(e) 6=Γ{c,d}(f), and
(b2) for each colour j ∈∆n \{c,d},Γ{c, j}(e)=Γ{c, j}(f).
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The colour d of above will be said to be not involved in the ρn−1-pair R.
By a ρ-pair, we will mean for short either a ρn-pair or a ρn−1-pair.

THEOREM (3.2). Let (Γ,γ) be an (n+1)-coloured graph, R = (e,f) be a ρ-pair of
Γ and let (Γ1,γ1) be obtained from (Γ,γ) by any switching of R. Then:

(a) if R is a ρn−1- pair, then Γ and Γ1 have the same number of components;
(b) if R is a ρn- pair, then Γ1 has at most one more component than Γ.

Proof. As before, let us call u,v the endpoints of e and w,z the endpoints of f. Let
further Γ be the graph obtained by deleting e and f from Γ.

As it is easy to check, u,v,w and z lie in the same component of Γ.
(a) If R is a ρn−1- pair, then u,v,w and z also lie in the same component of Γ

(and therefore of Γ1).
For, let d be the colour not involved in R. By definition of ρn−1- pair, Γ{c,d}(e)

and Γ{c,d}(f) are two different bicoloured cycles of Γ, the first one containing e and
the second one containing f.

Hence there are two paths of Γ, which join u with v and w with z, respectively.
On the other hand, if j is any colour, j 6= c,d, then Γ{c, j}(e) = Γ{c, j}(f) is a single

bicoloured cycle, containing both e and f.
This proves that there is a path of Γ, which joins u with either w or z.
This completes the proof of (a).
(b) If i ∈ ∆n \ {c}, then by definition of ρn-pair, Γ{c,i}(e) = Γ{c,i}(f). This proves

that there are two paths of Γ, the first one joining u with either endpoint of f, w
say, and the second one joining z with v.

This shows that Γ (hence also Γ1) has at most one more component than Γ.

In the following, we will show that in some particular, but geometrically rel-
evant cases, it is possible to choose a “preferred” way to switch a pair of equally
coloured edges of (Γ,γ).

CASE (A): Γ bipartite.
If R = (e,f) is any pair of edges, both coloured c (in particular, if R is a ρ-pair)

of a bipartite (n+1)-coloured graph (Γ,γ), then it is easy to see that only one of
the two possible switching of R is again bipartite.

If, further, V0,V1 are the two bipartition classes of Γ and we orient e,f from
V0 to V1, so that their tails x0 = e(0),y0 = f(0) belong to V0, and their heads x1 =
e(1),y1 = f(1) belong to V1, the (bipartite) switching (Γ′,γ′) of R is obtained as
follows:

(I) delete e and f from Γ (thus obtaining Γ);
(II) join x0 with y1 and x1 with y0 by two new edges e′,f′, both coloured c.

CASE (B): Γ non bipartite, with bipartite residues.
If Γ is a non bipartite graph, but for each colour i, Γ ı̂ has bipartite components

(residues), then we shall consider two subcases.
Subcase (B1): R = (e,f) is a ρn−1-pair of Γ, involving colour c and not involving

colour d.
Let Ξ be the residue of Γd̂ containing both e and f (note that e and f belong to

the same ı̂-residue, because for every colour i 6= c,d, Γ{c,i}(e)=Γ{c,i}(f).)
Let V0,V1 be the two bipartition classes of Ξ (recall that Ξ is bipartite), As in

Case (A), let us orient e from V0 to V1. Now, the switching of R = (e,f) is the
(n+1)-coloured graph (Γ′,γ′) , obtained as before (Case (A)):
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(I) delete e and f from Γ;
(II) join x0 = e(0) with y1 = f(1) and x1 = e(1) with y0 = f(0) by two new edges

e′,f′, both coloured c.
Subcase (B2): R = (e,f) is a ρn-pair (involving colour c) of Γ and n ≥ 3.
Let us orient arbitrarily the edge e, as before, let us call x0 = e(0) and x1 = e(1).

Let now i be any colour different from c. The orientation on e induces a coherent
orientation on all edges of the cycle Γ{c,i}(e) and, in particular, on the edge f (with
the induced orientation).

Now, we shall prove that the orientation on f (and hence its tail and its head)
is independent from the choice of colour i (i 6= c).

For, let h be any colour of ∆n,h 6= c, and let yh
0 ,yh

1 be the tail and the head of
the edge f, with the orientations induced by the cycle Γ{c,h}(e) (e being oriented as
before).

Let now j ∈ ∆n, j 6= i, c. In order to prove that yi
0 = yj

0 (and, as a consequence

yi
1 = yj

1), let us consider a further colour k, with k 6= i, j, c.
Note that such a colour k must exist, since n ≥ 3 and therefore ∆n contains at

least four colours.
Let now Ξ be the k̂-residue of Γ, which contains e. Ξ is bipartite and contains

both the cycles Γ{c,i}(e) and Γ{c, j}(e). As a consequence, yi
0 = yj

0. In fact, supposing

on the contrary, yi
0 = yj

1, we could construct an odd cycle of Ξ.
The construction of the switching (Γ′,γ′) of the ρn-pair R = (e,f) can now be

performed as in the above cases:
(I) delete e and f from (Γ,γ);

(II) join x0 with yi
1 and x1 with yi

0 by two new edges e′,f′, both coloured c.

Remark (3.3). The above cases include all ρ-pairs of gems representing ori-
entable n-manifolds (Case (A)), all ρn−1-pairs of gems representing non orientable
n-manifolds (Case (B1)) and all ρn-pairs of gems representing non orientable n-
manifolds, with n ≥ 3 (Case (B2)).

The only remaining case is that of a ρ2-pair of a gem Γ representing a non
orientable surface, for which it is not always possible the choice of a standard
switching.

In fact, for n = 2, the procedure described in Case (B2) doesn’t work, as it de-
pends on the choice of the colour i. 1

4. Main results

The present section is devoted to prove the following Theorems (4.1) and (4.5),
which concern the geometrical meaning of switching ρ-pairs in gems of n-dimens-
ional manifolds.

As in Section 2, let H be a handle, i.e. either (Sn−1 ×S1) or (Sn−1×̃S1).

THEOREM (4.1). Let (Γ,γ) be a gem of a (connected) n-manifold M, n Ê 3, R =
(e,f) be a ρn-pair in Γ and let (Γ′,γ′) be the (n+ 1)-coloured graph, obtained by
switching R. Then:

1The case n = 2 is completely analyzed in [1], also for graphs representing surfaces with non-empy
boundary.



RIGID GEMS IN DIMENSION N 61

(a) if (Γ′,γ′) splits into two connected components, (Γ′1,γ′1) and (Γ′2γ
′
2) say, then

they are gems of two n-manifolds M′
1 and M′

2 respectively, and M ∼= M′
1#M′

2;
(b) if (Γ′,γ′) is connected, then it is a gem of an n-manifold M′ such that M ∼=

M′#H.
Moreover, if (Γ,γ) is a crystallization of M, then (Γ′,γ′) must be connected, and only
case (b) may occur.

In order to prove Theorem 4.1, we need some further constructions and a dou-
ble sequence of Lemmas, which will be proved by induction on n.

LEMMA (4.2). – step n Let (Σ,σ) be a gem of the n-sphere Sn, n Ê 2, R = (e,f)
be a ρn-pair of Σ and let (Σ′,σ′) be obtained by switching R. Then Σ′ splits into
two connected components, both representing Sn.

Let now Γ,R = (e,f),Γ′ be as in the statement of Theorem 4.1. Recall that (n
being ≥ 3) any orientation of e induces a coherent orientation on f. As in Section 2,
let e(0),f(0),e(1) and f(1), be the ends of e and f, so that e is directed from e(0) to
e(1) and f is directed from f(0) to f(1). Furthermore, after the switching, the new
edges e′,f′ of Γ′ join e(0) with f(1) and e(1) with f(0) respectively. Denote by Γ̃ the
(n+1)-coloured graph obtained by adding a blob (i.e. an n-dipole), with vertices A
and B on the edge f′ of Γ′ (see Figure 2)

LEMMA (4.3). – step n With the above notations, if Γ is a gem of a (connected)
n-manifold M, n ≥ 3, then:

(i) Γ′ (hence also Γ̃) is a gem of a (possibly disconnected) n-manifold M′;
(ii) e(0) and B are two completely separated vertices of Γ̃; moreover Γ coincides

with Γ̃fus(e(0),B).

Proof. First of all, we repeat here the proof of Lemma 4.2, step 2, which is exactly
Corollary 13 of [1].

Let (Σ,σ) a 3-coloured, bipartite graph representing S2. Let R be a ρ2- pair
in Σ involving colour c ∈ ∆2. Then, by switching R in the only possible way, we
obtain a new graph (Σ′,σ′), either connected or with two connected components.
Moreover, if we denote by d,k the further two colours of ∆2, then Σ′ has the same
number of (d,k)- coloured cycles (ĉ-residues) and one more (c,h)- coloured cycle
(ĥ-residue), for h = d,k.

Hence χ(Σ′) = χ(Σ)+2 = 4. This implies that Σ′ must have two connected com-
ponents, both representing S2.

Now, assuming Lemma (4.2), step n−1, we prove Lemma (4.3), step n.
For, let us suppose Γ to be a gem of the n-manifold M. As a consequence, for

each colour i ∈∆n, all ı̂-residues are gems of Sn−1. Now, suppose R = (e,f) to be a
ρn-pair of Γ, involving color c, whose switching produces the graph Γ′.

Of course, the switching of R has no effects on the ĉ-residues of Γ. Hence, each
ĉ-residue of Γ′ is colour-isomorphic to the corresponding one of Γ, and therefore
represents Sn−1. Let now i be any colour different from c and letΞ be the ı̂-residue
containing R. Of course, R is a ρn−1-pair of Ξ (where Ξ is a gem of Sn−1). Hence,
by Lemma 4.2, step n−1, the switching of R splits Ξ into two new ı̂-residues of Γ′,
both representing Sn−1.

Since all ı̂-residues of Γ, different from Ξ, are left unaltered by the switching
of R, Γ′ is again a gem of a n-manifold M′ (with either one or two connected
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Figure 2.

components). Let now Γ̃ be obtained from Γ′ by adding a blob (i.e. an n-dipole
Θ= (A,B)) on the edge f′, with endpoints e(1),f(0). Of course, Γ̃ is again a gem of
M′ and, as it is easy to check, Γ̃fus(e(0),B) is colour-isomorphic to Γ (where the
vertex A plays the role of e(0)).

Now, assuming Lemma (4.3), step n, we prove Lemma (4.2), step n. Let Σ,R =
(e,f),Σ′ be as in the statement of Lemma (4.2). Let further Σ̃ be obtained by adding
a blob Θ= (A,B) on the edge f′ of Σ′. Hence, by Lemma (4.2), step n, Σ′ and Σ̃ are
both gems of an n-manifold M′; moreover e(0) and B are completely separated
vertices of Σ̃, and Σ is isomorphic to Σ̃fus(e(0),B). If Σ′ (hence also Σ̃) is connected,
then, by Lemma (2.1), the manifold represented by Σ must have a handle H as a
direct summand, but this is impossible, since Σ represents Sn, by hypothesis.
Hence Σ′ (and Σ̃) must split into two components Σ′

1, Σ′
2 say, representing two

connected n-manifolds M′
1, M′

2 respectively, so that Sn ∼= M′
1#M′

2. But this implies
that both M′

1, M′
2 are gems of Sn, too.

This concludes the proof of Lemmas (4.2) and (4.3).

Proof of Theorem (4.1). The proof of Theorem (4.1), (a) and (b), is now a direct
consequence of Lemma (4.3), Step n, and Lemma (2.1).
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Figure 2a. Figure 2b.

If, further, Γĉ is connected, c being the colour involved in R (in particular, if
Γ is a crystallization of M), then Γ′ must be connected, too, and therefore M ∼=
M′#H.

As a consequence of Theorem (4.1) and of Corollary 13 of [1], we have the fol-
lowing

COROLLARY (4.4). If (Σ,σ) is a crystallization of the n-sphere Sn, n ≥ 2 then it
cannot contain any ρn-pair.

THEOREM (4.5). Let (Γ,γ) be a gem of a (connected) n-manifold M, R = (e,f) be
a ρn−1-pair of Γ and let (Γ′,γ′) be obtained by switching R. Then Γ′ is a gem of the
same manifold M.

Proof. W.l.o.g., let us suppose c = 0 to be the colour involved and d = n the one
not involved in R. By Theorem (3.2), Γ′ has the same number of connected compo-
nents as Γ and, by performing the switching, it is bipartite (resp. non- bipartite)
iff Γ is.

Consider the graph Γ̃, obtained by replacing the neighborhood of R in Γ (Fig-
ure 3a), with the graph of Figure 3b. The switching of R can be thought as the
replacing of the neighborhood of R = (e,f) by the neighborhood of R′ = (e′,f′) (see
Figure 1a). Consider now the graph Γ̃ obtained by replacing the above neighbor-
hood by the graph of Figure 3b, where Θ1 (Θ2 resp.) is formed by two vertices
A′,e(1) (B′,f(0) resp.) joined by n−1 edges coloured 1, . . . ,n−1.

We will describe two sequences of dipole moves, joining Γ̃ with Γ and Γ′ respec-
tively, thus proving that Γ,Γ′ are gems of PL-homeomorphic manifolds.

The first sequence starts by considering δ1 = (A,A′), which is a 1-dipole. In
fact, Γ̃n̂(A′)=Θ1, whose further end is e(1); hence the n̂-residue Γ̃n̂(A) is different
from Θ1. By deleting the 1-dipole δ1 from Γ̃, yields a 2-dipole δ2 with ends B,B′; in
fact Γ̃n̂(B′) consists of exactly n multiple edges, whose further common endpoint
is f(0) and which differs from the n̂-residue Γ̃n̂(B). By cancelling δ2, too, we obtain
Γ (Fig. 3c and 3d).
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Θ1 and Θ2 are (n − 1)-dipoles, since the (0,n)-residue containing A′,B′ is a
quadrilateral cycle whose vertices are A,B,A′,B′ only. By deleting them from
Γ̃ (Figg. 3e and 3f), we obtain Γ′.

5. Rigid gems

Definition (5.1). An (n+1)-coloured graph (Γ,γ), n ≥ 3, is called rigid iff it has
no ρ-pairs. 2

THEOREM (5.2). The (n+ 1)-coloured graph (Γ,γ), n ≥ 3, is rigid iff for each
i ∈∆n, the graph Γ ı̂ has no ρn−1-pairs.

2Note that, for n = 2, the concept of rigidity has no interest at all. In fact, if Γ is a 3-coloured graph
representing a closed surface, then it contains ρ-pairs: ρ2-pairs, if Γ is a crystallization, either ρ1-pairs
or ρ2-pairs, otherwise. Hence, given any closed surface M2, it cannot exist any rigid crystallization of
M2
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Figure 3e. Figure 3f.

Proof. Suppose that (Γ,γ) is rigid and that there is a colour i ∈ ∆n such that Γı̂
has a ρn−1-pair R = (e,f) of colour c ∈∆n − {i}. Then R is a ρ-pair in Γ too, and Γ
cannot be rigid.

Conversely, if for each i ∈∆n, (Γ) ı̂ contains no ρn−1-pairs, but (Γ,γ) is not rigid,
then Γ contains at least a ρ-pair R = (e,f).

If R is a ρn-pair, then R is a ρn−1-pair in (Γ) ı̂, for each i ∈∆n.
If R is a ρn−1-pair, and d is the non-involved colour, then R is a ρn−1-pair in

Γd̂ .

THEOREM (5.3). Every closed, connected, handle-free n-manifold Mn, n ≥ 3,
admits a rigid crystallization.

Moreover, if (Γ,γ) is a crystallization of a closed, connected, handle-free n-
manifold Mn of order p, then there exists a rigid crystallization of Mn of order
≤ p.

Proof. Starting from any gem of Mn by cancelling a suitable number of 1-dipoles,
we always can obtain a crystallization of Mn (see [7]). Suppose now that Γ is a
crystallization of Mn; if Γ is rigid, then it is the requested crystallization.

If Γ has some ρn−1-pair R = (e,f), of colour c ∈ ∆n and non involving colour
d ∈∆n \{c}, then consider the connected component Ξ of Γd̂ containing both e and
f. Since Mn is a manifold, Ξ represents Sn−1 and R is a ρn−1-pair in Γd̂ , again.
For Lemma 4.2, by switching R in Γd̂ , we obtain two connected components, both
representing Sn−1; since Γd̂ is connected (Theorem 3.2), then there is at least a 1-
dipole in Γd̂ . Hence, Γd̂ is not contracted; the cancellation of such 1-dipole reduces
the vertex-number.

If Γ has some ρn-pair R = (e,f), of colour c ∈∆n, then, for each colour i ∈∆n\{c},
the connected component of Γı̂ containing e and f, representsSn−1 and R is a ρn−1-
pair in Γı̂, as before, by switching R in Γı̂, we obtain two connected components,
both representing Sn−1; since Γı̂ is connected (Theorem (3.2)), then there is at
least a 1-dipole in Γı̂. Hence, Γı̂ is not contracted; the cancellation of such 1-dipole
reduces the vertex-number, for each i ∈∆n \{c}.
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Note that the minimal crystallizations of Sn−1 ×S1 and Sn−1×̃S1 are not rigid
(see, e.g., [10]). Hence the second statement of Theorem 5.2 is false for handles.

In dimension 3, there exist rigid crystallizations for S2 ×S1 and S2×̃S1. The
minimal ones have order 20 for S2 ×S1 and order 14 for S2×̃S1.

For n > 3, it is easy to construct a rigid crystallization of Sn−1×S1, if n is even,
and of Sn−1×̃S1, if n is odd, both of order 2(2n −1).

The remaining cases are still open.
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HYPERBOLIC WEIGHTED HARMONIC CLASSES

DIANA D. JIMÉNEZ SURO, LINO F. RESÉNDIS O., AND LUIS M. TOVAR S.

ABSTRACT. In this paper we introduce hyperbolic weighted harmonic classes for
harmonic functions from the open complex unit disk to the interval (−1,1).

Dedicated to Prof. Enrique Ramírez de Arellano, for his remarkable
labour as Managing Editor of the Boletín de la Sociedad Matemática Mexicana

1. Introduction

Denote by D=D1 the open unit disk in the complex plane C and T its boundary.
Let φa : C→C be the Möbius transformation

φa(z)= a− z
1−az

, |a| < 1,

with pole at z = 1/ā and satisfying φ−1
a =φa. We observe that

(1.1) 1−|φa(z)|2 = (1−|a|2)(1−|z|2)
|1−az|2 = (1−|z|2)|φ′

a(z)| .

Let 0 < r. Define Dr(0) = {z ∈ D : |z| < r} and D(a, r) := φa(Dr(0)). For z, a ∈ D, we
denote the Green’s function of D, with logarithmic singularity at a, by

(1.2) g(z,a)= ln
|1−az|
|a− z| = ln

1
|φa(z)| .

En 1994 R. Aulaskari and P. Lappan introduced in [1] the Qp spaces for 1 ≤
p <∞ as the familiy of analytic functions f : D→C satisfying the condition

sup
a∈D

∫ ∫
D
| f ′(z)|2 gp(z,a)dx dy<∞ .

The Qp spaces for 0 < p < 1 were introduced and studied by R. Aulaskari, J. Xiao
and R. Zhao in [4].

Motivated by the recently emerged Qp theory, in 1996 Ruhan Zhao introduced
in [19] the F(p, q, s) spaces of analytic functions f : D→C satisfying

sup
a∈D

∫ ∫
D
| f ′(z)|p(1−|z|2)q gs(z,a)dx dy<∞ ,

where 0< p <∞, −2< q <∞ and 0≤ s <∞.
For an analytic function f : D→D, its hyperbolic derivative is defined by

(1.3) f ∗(z)= | f ′(z)|
1−| f (z)|2 .

Considering this special type of derivative, in the eighties and nineties of the last
century, Yamashita wrote a series of papers on hyperbolic classes [13], [14], [15]
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and [16]. In 2005 Xianon Li [7] introduced, for 0< p <∞, the so called hyperbolic
Q∗

p class as the set of analytic functions f : D→D such that

sup
a∈D

∫ ∫
D

f ∗(z)2 gp(z,a)dx dy<∞ .

Note that the definition of hyperbolic Q∗
p classes is obtained from the definition

of Qp spaces when the derivative is replaced by the hyperbolic derivative.
Recently Aulaskari, Reséndis and Tovar introduced in [2] the hyperbolic

weighted Bergman classes. More precisely, for 0 < p <∞, −2 < q <∞, 0 ≤ s <∞,
define the q, s-weighted hyperbolic p-Bergman class A∗(p, q, s) as the set of
functions f : D→D such that

sup
a∈D

∫ ∫
D

| f (z)|p
(1−| f (z)|2)2

(1−|z|2)q gs(z,a)dx d y<∞ .

The weighted harmonic spaces introduced in [9] are comprised of harmonic
functions u : D→R that satisfy

sup
a∈D

∫ ∫
D
|∇u(z)|p(1−|z|2)q gs(z,a)dx dy<∞,

and are the real valued harmonic counterpart of the spaces F(p, q, s).
The aim of this paper is to obtain explicitly properties of the weighted hyper-

bolic harmonic classes of harmonic functions u : D→ (−1,1) satisfying

sup
a∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z,a)dx dy<∞.

where 0< p <∞, −2< q <∞ and 0< s <∞.
To introduce the hyperbolic gradient in these classes of functions, consider first

the hyperbolic distance d defined as

d(z,w)= 1
2

log
1+|φw(z)|
1−|φw(z)| ,

where z,w ∈D. Observe that d(z,w)≈ 2|φw(z)| = 2
∣∣∣ w− z
1−wz

∣∣∣ when d(z,w) is small.
For a function u : (D, | · |Euc) → ((−1,1), | · |Euc) its gradient is determined by the

partial derivative with respect to x and y. However for a function u : (D, | · |Euc)→(
(−1,1), | · |H yp

)
its hyperbolic gradient is determined in the following way, for h ∈

R:

∂∗u
∂x

(z) = lim
h→0

d (u(x+h, y),u(x, y))
h

= lim
h→0

2
∣∣∣∣ u(x+h, y)−u(x, y)
1−u(x+h, y)u(x, y)

∣∣∣∣
|h|

= 2lim
h→0

|u(x+h, y)−u(x, y)|
|h| |1−u(x+h, y)u(x, y)| = 2

∣∣∣ ∂u
∂x (z)

∣∣∣
1−u(z)2

.

Similarly for
∂∗u
∂y

(z). In this way

∇∗u(z)= 1
1−u(z)2

(∣∣∣∣∂u
∂x

(z)
∣∣∣∣, ∣∣∣∣∂u
∂y

(z)
∣∣∣∣) .
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The next expression initiates the motivation of this work:

|∇u(z)|p
(1−|u(z)|2)p =

(|∇u(z)|2)p/2

(1−|u(z)|2)p =

[(
∂u
∂x

)2 +
(
∂u
∂y

)2
]p/2

(1−|u(z)|2)p

=

(∣∣∣ ∂u
∂x

∣∣∣2 + ∣∣∣ ∂u
∂y

∣∣∣2)p/2

(1−|u(z)|2)p = |∇∗u(z)|p.

Let H(D) be the class of harmonic functions u : D→ (−1,1). We define for 0 <
p <∞, −2< q <∞, 0≤ s <∞ and u ∈H(D) the functions I∗p,q,s(u)(a) : D→ [0,∞) as

(1.4) I∗p,q,s(u)(a) :=
∫ ∫

D
|∇∗u(z)|p(1−|z|2)q gs(z,a)dx dy ;

the hyperbolic harmonic class HI∗(p, q, s) as

HI∗(p, q, s) := { u ∈H(D) : sup
a∈D

I∗p,q,s(u)(a)<∞ };

and the little hyperbolic harmonic class HI∗0 (p, q, s) as

HI∗0 (p, q, s) := { u ∈H(D) : lim
|a|→1−

I∗p,q,s(u)(a)= 0 }.

For 0< p <∞, −2< q <∞, 0≤ s <∞ and u ∈H(D) define the functions J∗
p,q,s : D→

[0,∞) as

(1.5) J∗
p,q,s(u)(a) :=

∫ ∫
D
|∇∗u(z)|p(1−|z|2)q(1−|φa(z)|2)sdx dy;

the hyperbolic harmonic class HJ∗(p, q, s) as

HJ∗(p, q, s) := { u ∈H(D) : sup
a∈D

J∗
p,q,s(u)(a)<∞ };

and the little hyperbolic harmonic class HJ∗
0 (p, q, s) as

HJ∗
0 (p, q, s)= { u ∈H(D) : lim

|a|→1−
J∗

p,q,s(u)(a)= 0 }.

In section 3 we will show that HI∗(p, q, s)=HJ∗(p, q, s) and HI∗0 (p, q, s)=HJ∗
0 (p,

q, s).
We write HJ∗

p =HJ∗(p,0,0) and observe that HI∗(2,0,0)=HJ∗(2,0,0)=HJ∗
2

is the hyperbolic Dirichlet class of harmonic functions.
We say that u ∈H(D) belongs to the hyperbolic harmonic Bloch class HB∗(D) if

sup
z∈D

(1−|z|2)
|∇u(z)|

1−u(z)2
= sup

z∈D
(1−|z|2) |∇∗u(z)| <∞

and to the little hyperbolic harmonic Bloch class HB∗
0 (D) if

lim
|z|→1−

(1−|z|2)
|∇u(z)|

1−u(z)2
= lim

|z|→1−
(1−|z|2) |∇∗u(z)| = 0 .

In a similar way, for −1 < q <∞ and 0 < p, we say that u ∈H(D) belongs to the
hyperbolic q-Dirichlet class HJ∗(p, q,0) if

J∗
p,q,0(u)(a)=

∫ ∫
D
|∇∗u(z)|p(1−|z|2)q dx d y<∞ .

The main references for this work are R. Aulaskari et al [3], X. Li [7], Jie Xiao
[12], Ruhan Zhao [18], [19] and Reséndis, Tovar [9].



72 D. D. JIMÉNEZ S., L. F. RESÉNDIS O., AND L. M. TOVAR S.

Although this work is inspired in X. Li [7], the techniques and properties are
in general different.

We want to thank to Prof. Rauno Aulaskari who suggested the subject of this
paper. Likewise we want to acknowledge the referees for their important sugges-
tions and comments.

2. Basic properties of HJ∗(p, q, s) and HI∗(p, q, s)

In this part we clarify some elementary aspects of our functions. The following
two results are fundamental for the development of this paper.

LEMMA (2.1) ([17], Theorem 1.12). Let t >−1, c ∈ R and define I t,c : D→ [0,∞)
by

I t,c(a)=
∫ ∫

D

(1−|z|2)t

|1−az|2+t+c dxdy.

Then
(a) If c < 0 then I t,c(a) is bounded in a.
(b) If c = 0, then

I t,c(a)≈ ln
1

1−|a|2 , ( |a|→ 1−) .

(c) If c > 0, then

I t,c(a)≈ 1
(1−|a|2)c , ( |a|→ 1−) .

We need the following result.

PROPOSITION (2.2). Let 0 < p < ∞ and u ∈ H(D). Then the function
|∇∗u(z)|p : D→ [0,∞) defined by

|∇∗u(z)|p = |∇u(z)|p
(1−u(z)2)p ,

is subharmonic.

Proof. Let v : D→ R be a harmonic conjugate of u. If f (z) = u(x, y)+ iv(x, y) is the
analytic completion of u, then ln |∇u(z)| = ln | f ′(z)| is a subharmonic function.

Define g(z)=− ln(1−u(z)2). Thus

∂g
∂x

(z)= 2u(z)
1−u(z)2

∂

∂x
u(z)= 2u(z)

1−u(z)2
ux(z)

and
∂2 g
∂x2 (z)= 2(1+u(z)2)

(1−u(z)2)2
ux(z)2 + 2u(z)

1−u(z)2
uxx(z) .

A similar result is obtained for g yy(z). From the harmonicity of u(z) we have

∆ g(z)= ∂2 g
∂x2 (z)+ ∂2 g

∂y2 (z)= 2(1+u(z)2)
(1−u(z)2)2

(ux(z)2 +uy(z)2)≥ 0 .

Then g(z) is a subharmonic function. As 0 < p < ∞, the function ln |∇∗u(z)|p =
p ln |∇u(z)|−p ln(1−u(z)2) is subharmonic. We now compose with the convex func-
tion eα and this concludes the proof.
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The following elementary estimate is well known: let q ∈R and a ∈D. Then for
all z ∈D,

(2.3)
1

ρ(a, q)
(1−|z|2)q ≤ (1−|φa(z)|2)q ≤ ρ(a, q)(1−|z|2)q ,

where

ρ(a, q)=
(1+|a|
1−|a|

)|q|
.

Let q ∈R and a ∈D. Then for all z ∈D,

(2.4)
1

ρ(a, q)
≤ |φ′

a(z)|q ≤ ρ(a, q) .

The class HI∗(p, q, s) is Möbius invariant in the classical sense:

PROPOSITION (2.5). Let a ∈Cwith |a| < 1, 0< p <∞, −2< q <∞ and 0≤ s <∞.
If u ∈HI∗(p, q, s), then

sup
b∈D

∫ ∫
D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)q gs(w,b)dξdη

= sup
c∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z, c)dx dy<∞ ,

if q = p−2.

Proof. Let a ∈ D be fixed. Denote w = φa(z) and b = φa(c). Since the Green func-
tion is conformally invariant, then g(φa(z),φa(c))= g(z, c). Thus∫ ∫

D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)q gs(w,b)dξdη

=
∫ ∫

D

|∇(u(φa(φa(z)))|p
(1−u(φa(φa(z)))2)p |φ′a(φa(z))|p|φ′a(z)|2(1−|φa(z)|2)q gs(φa(z),φa(c))dx d y

=
∫ ∫

D

|∇ (u(z)) |p
(1−u(z)2)p |φ′a(z)|2−p(1−|φa(z)|2)q gs(z, c)dx dy .

Therefore if q = p−2, by (1.1)

sup
b∈D

∫ ∫
D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)p−2 gs(w,b)dξdη

= sup
c∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)p−2 gs(z, c)dx dy<∞.

In addition the class HI∗(p, q, s) is Möbius invariant in the following sense.

PROPOSITION (2.6). Let a ∈C with |a| < 1, −2 < q <∞, 0 < p <∞, 0 ≤ s <∞. If
u ∈HI∗(p, q, s), then u ◦φa ∈HI∗(p, q, s), that is,

sup
b∈D

∫ ∫
D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)q gs(w,b)dξdη<∞ .
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Proof. Let a ∈D be fixed. Denote w =φa(z), b =φa(c). Since the Green function is
conformally invariant, then g(φa(z),φa(c))= g(z, c). Thus by (2.3) and (2.4)∫ ∫

D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)q gs(w,b)dξdη

=
∫ ∫

D

|∇(u(φa(φa(z)))|p
(1−u(φa(φa(z)))2)p |φ′a(φa(z))|p|φ′a(z)|2(1−|φa(z)|2)q gs(φa(z),φa(c))dx d y

≤ ρ(a, p+|q|+2)
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z, c)dx dy .

Therefore

sup
b∈D

∫ ∫
D

|∇(u ◦φa)(w)|p
(1−u(φa(w))2)p (1−|w|2)q gs(w,b)dξdη

≤ ρ(a, p+|q|+2)sup
c∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z, c)dx dy<∞.

As corollary of this proof we have the following result.

COROLLARY (2.7). Let a ∈ C be with |a| < 1 and 0 < p <∞, −2 < q <∞, 0 ≤ s <
∞. If f ∈HI∗0 (p, q, s), then f ◦φa ∈HI∗0 (p, q, s).

Proof. With the notation of the previous proposition, b = φa(c) if and only if c =
φa(b), so by (1.1)

1−|c|2 = 1−|φa(b)|2 = (1−|a|2)(1−|b|2)
|1−ab|2 .

Therefore |c|→ 1 if and only if |b|→ 1.

The next proposition is an important tool.

THEOREM (2.8) ([5], Schwarz-Pick Theorem). Let f : D → D be holomorphic.
Then, for all z1, z2 ∈D ∣∣∣∣∣ f (z1)− f (z2)

1− f (z1) f (z2)

∣∣∣∣∣≤
∣∣∣∣ z1 − z2

1− z1 z2

∣∣∣∣
and, for all z ∈D,

| f ′(z)|
1−| f (z)|2 ≤ 1

1−|z|2 .

From this, we can extend the inequality for our harmonic functions:

PROPOSITION (2.9). Let u,v ∈H(D). If f (z) = u(z)+ i v(z) is the analytic com-
pletion of u with f : D→D, it follows that

|∇u(z)|
1−u(z)2

≤ 1
1−|z|2 .

Proof. Consider a harmonic function u : D→ (−1,1), and let f be as in the state-
ment. As | f ′(z)| = |∇u(z)| and |u(z)| = |Re f (z)| ≤ | f (z)|, then as

1
1−u(z)2

≤ 1
1−| f (z)|2 .

Finally
|∇u(z)|

1−u(z)2
≤ 1

1−|z|2 .
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Observe that | f ′(z)| = |∇u(z)| = |∇v(z)|. So if u belongs to HI∗(p, q, s), then as

| f ′(z)| ≤ |∇u(z)|
1−u(z)2

we have f ∈ F(p, q, s) and from [9] f ∈ F(p, q, s) if and only if

u,v ∈HF(p, q, s), where HF(p, q, s) means the harmonic F(p, q, s) class.

THEOREM (2.10). Let 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞ with q+ s ≤ −1.
Then the class HJ∗(p, q, s) consists only of constant functions.

Proof. Let u ∈HJ∗(p, q, s) be a nonconstant function. Then there exists 0 < b < 1
such that ∇u(z0) 6= 0 with |z0| = b. Since ∇u is a continuous function, there exists
0< δ< 1 with ∇u(z) 6= 0 for all z ∈ Dδ(z0). By Proposition (2.2)

∞> J∗
p,q,s(u)(0) =

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy

≥
∫ 1

b

∫ 2π

0

|∇u(reiθ)|p
(1−u(reiθ)2)p (1− r2)q+sr dθdr

≥
∫ 2π

0

|∇u(beiθ)|p
(1−u(beiθ)2)p dθ

∫ 1

b
(1− r2)q+sr dr.

Since

0<
∫ 2π

0

|∇u(beiθ)|p
(1−u(beiθ)2)p dθ

and as ∫ 1

b
(1− r2)q+sr dr =∞

for q+ s ≤−1, we get a contradiction.

Example (2.11). Let 0 < p <∞, −2 < q <∞, 0 < s <∞ and let f : D→ D be an
analytic function given by f (z) = u(z)+ iv(z); thus u : D→ (−1,1) is a harmonic
function (for instance Re(φa(z)) ). Since | f ′(z)| = |∇u(z)| and |u(z)| = |Re f (z)| ≤
| f (z)|, then by Proposition (2.9) we have

(2.12)
|∇u(z)|p(

1−u(z)2
)p ≤ | f ′(z)|p(

1−| f (z)|2)p ≤ 1(
1−|z|2)p .

Therefore∫ ∫
D

|∇u(z)|p(
1−u(z)2

)p
(
1−|z|2)q (

1−|φa(z)|2)s
dx dy

≤
∫ ∫

D

(
1−|z|2)q−p (

1−|φa(z)|2)s
dx dy .

From (1.1), we have∫ ∫
D

(
1−|z|2)q−p (

1−|φa(z)|2)s
dx d y≤ (

1−|a|2)s
∫ ∫

D

(
1−|z|2)q−p+s

|1−a z|2s dx dy.

By Lemma (2.1) with q− p+ s = t and 2s = 2+ t+ c, we have c = s− q+ p−2:
• If c > 0, there exists C > 0 such that(

1−|a|2)s
∫ ∫

D

(
1−|z|2)q−p+s

|1−a z|2s dx dy≤ (
1−|a|2)s C(

1−|a|2)s−q+p−2

and lim
|a|→1−

(
1−|a|2)q−p+2 = 0 when p < 2+ q. Hence u ∈HJ∗

0 (p, q, s).

• If c = 0, there exists C > 0 such that
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(
1−|a|2)s

∫ ∫
D

(
1−|z|2)q−p+s

|1−a z|2s dx dy≤ C
(
1−|a|2)s

log
1

1−|a|2

and lim|a|→1−
(
1−|a|2)s log

1
1−|a|2 = 0 for the parameter 0 < s. Hence

u ∈HJ∗
0 (p, q, s).

• If c < 0, (
1−|a|2)s

∫ ∫
D

(
1−|z|2)q−p+s

|1−a z|2s dx dy≤ (
1−|a|2)s

M

and lim|a|→1−
(
1−|a|2)s M = 0 for the parameter 0< s. Hence u ∈HJ∗

0 (p, q, s).

Remark (2.13). The same estimates are obtained for Im( f (z)) = v(z), so v ∈
HJ∗

0 (p, q, s).

Example (2.14). Let G a domain such that D ⊂ G and f : G → [−δ,δ]×R an
analytic function with |δ| < 1. Then Re f (z) ∈HJ∗

0 (p, q, s).

As the real and imaginary parts of an analytic function belonging to Q∗
s are har-

monic functions from D to [−1,1], it is good to compare some results of the Q∗
s

classes with the corresponding ones for hyperbolic weighted harmonic classes (see
[7]).

Example (2.15). For the restriction to the disk D of the function f (z)= z, Li has
shown that f ∉ Q∗

s for 0 < s ≤ 1. For u(z) = Re z = x we have some similarities
but also some differences respect to f (z) = z. Let 0 < R < p

2−1 and define Ω =
{1+ρeiθ ∈ D : 0 < ρ < R, 3

4π < θ < 5
4π}. Applying the Fatou’s Lemma and after a

straightforward calculation and estimations in polar coordinates we obtain, for
q− s− p 6= −2,Ï

D

1
(1− x2)p (1−|z|2)q (1−|φa(z)|2)s dx dy

≥ (1−|a|2)s
Ï
Ω

1
(1− x2)p

(
1−|z|2)q+s

|1− z|2s dx dy

≥ 1
2p (1−|a|2)s

∫ R

0

∫ 5
4π

3
4π

ρq−s−p+1 dr dθ = π

2p+1 (1−|a|2)sρq−s−p+2
∣∣∣R
0

.

For 0< p <∞, −2< q <∞ and 0< s <∞, if q−s−p+2< 0 then u ∉HJ∗(p, q, s).
Integrating, a similar result is obtained if q− s− p+2= 0. In particular for p = 2,
q = 0 and 0< s ≤ 1, the function u(z)=Re(z) ∉HJ∗(2,0, s) since −s < 0.

However, if 0< s ≤ 1, q = 0 and taking in account Lemma (2.1), for

{0< p < 1,0< s < 2− p}
⋃

{1≤ p ≤ 3
2

, p−1< s < 2− p} we have that u ∈HJ∗(p,0, s).

Example (2.16). If f ∈Q∗
s , by the first inequality in (2.12) we have u = Re f ∈

HJ∗(2,0, s).

In particular, for the restriction to D of the function f (z) = 1− (1− z)α with
0<α< 1, from [7] we know that f ∈Q∗

s for all 0< s < 1, therefore,

Re
(
1− (1− z)α

)= 1−|1− x− y|α cos
(
αarctan

y
x−1

)
∈HJ∗(2,0, s)
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and
Im

(
1− (1− z)α

)= |1− x− y|α sin
(
αarctan

y
x−1

)
∈HJ∗(2,0, s).

Example (2.17). Consider the function H : D→D defined by

H(z)= 1−2
1−s1

2

2
· f (z),

where f (z)=∑∞
n=0 anz2n

with an = 1

2
n(1−s1)

2

. From [7], we know that for p = 2, q = 0

and 0 < s1 < s < 1 we have H ∈Q∗
s but H ∉Q∗

s1
, in particular |H(z)| < 1

2
. Then if

u =Re(H), u ∈HJ∗(2,0, s), however u ∉HJ∗(2,0, s1) since

9
16

Ï
D

|H′(z)|2
(1−|H(z)|2)2

(1−|φa(z)|2)s dx dy

≤
Ï
D

|∇u(z)|2
(1−u(z)2)2

(1−|φa(z)|2)s dx dy

≤ 16
9

Ï
D

|H′(z)|2
(1−|H(z)|2)2

(1−|φa(z)|2)s dx dy .

Thus this example shows that the inclusion HJ∗(2,0, s1) ( HJ∗(2,0, s)
(0< s1 < s < 1) is strict.

PROPOSITION (2.18). For 0< p <∞, we have HJ∗(p,0,0)⊂HB∗
0 (D).

Proof. Take u ∈HJ∗(p,0,0). By Proposition (2.2) we have

|∇u(0)|p
(1−u(0)2)p ≤ 1

2π

∫ 2π

0

|∇u(reiθ)|p
(1−u(reiθ)2)p dθ .

Let 0< R < 1 be fixed. After multiplying by R and integrating from 0 to R we have

|∇u(0)|p
(1−u(0)2)p ≤ 1

πR2

∫ ∫
DR (0)

|∇u(z)|p
(1−u(z)2)p dx dy .

As |∇u| ◦φa is also subharmonic, with the change of variable w = φa(z) and by
(2.4)

|∇u(a)|p
(1−u(a)2)p ≤ 1

πR2

∫ ∫
D(a,R)

|∇u(w)|p
(1−u(w)2)p |φ′

a(w)|2 du dv

≤ 1
πR2

(1+|a|)2
(1−|a|)2

∫ ∫
D(a,R)

|∇u(w)|p
(1−u(w)2)p du dv.

Thus

(1−|a|2)2
|∇u(a)|p

(1−u(a)2)p ≤ (1+|a|)4
πR2

∫ ∫
D(a,R)

|∇u(w)|p
(1−u(w)2)p du dv .

If |a|→ 1− then |D(a,R)|→ 0 and u ∈HB∗
0 (A).

We require the following result.

LEMMA (2.19). Let −2< q <∞, 0< p <∞, 0< s <∞ and |a| < 1. Then
1

ρ(a, p+|q|+2)
J∗

p,q,s(u)(a)≤ J∗
p,q+s,0(u ◦φa)(0)≤ ρ(a, p+|q|+2)J∗

p,q,s(u)(a) .
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Proof. Suppose that J∗
p,q,s(u)(a)<∞. If u◦φa ∈HJ∗(p, q+s,0), then by the change

of variable formula with z =φa(w), we have by inequalities (2.3) and (2.4)

J∗
p,q,s(u ◦φa)(0)=

∫ ∫
D

|∇(u ◦φa)(z)|p
(1−u(φa(z))2)p (1−|z|2)q+s dx dy

J∗
p,q+s,0(u ◦φa)(0)=

∫ ∫
D

|∇u(φa(z))φ′a(z)|p
(1−u(φa(z))2)p (1−|z|2)q+s dx dy

=
∫ ∫

D

|∇u(w)|p
(1−u(w)2)p |φ′a(φa(w))|p|φ′a(w)|2(1−|φa(w)|2)q+s dξdη

≤ ρ(a, p+|q|+2)
∫ ∫

D

|∇u(w)|p
(1−u(w)2)p (1−|w|2)q(1−|φa(w)|2)s dξdη

= ρ(a, p+|q|+2) J∗
p,q,s(u)(a) .

Conversely, if J∗
p,q+s,0(u◦φa)(0)<∞ then with z =φa(w), it is enough to consider

J∗
p,q+s,0(u ◦φa)(0)=

∫ ∫
D

|∇(u ◦φa)(z)|p
(1−u(φa(z))2)p (1−|z|2)q+sdxdy

=
∫ ∫

D

|∇u(φa(z))φ′a(z)|p
(1−u(φa(z))2)p (1−|z|2)q+sdxdy

=
∫ ∫

D

|∇u(w)|p
(1−u(w)2)p |φ′a(φa(w))|p|φ′a(w)|2(1−|φa(w)|2)q+sdudv

≥ 1
ρ(a, p+|q|+2)

∫ ∫
D

|∇u(w)|p
(1−u(w)2)p (1−|w|2)q(1−|φa(w)|2)sdudv

= 1
ρ(a, p+|q|+2)

J∗
p,q,s(u)(a).

Let 0< s < s′ <∞. Then it is immediate that

HJ∗(p, q, s)⊂HJ∗(p, q, s′) and HJ∗
0 (p, q, s)⊂HJ∗

0 (p, q, s′) .

The following results clarifies the relation between HJ∗
0 (p, q, s) and HJ∗(p, q, s).

PROPOSITION (2.20). Let −2< q <∞, 0< p <∞, 0≤ s <∞ and u ∈HJ∗(0, q, s).
Then J∗

p,q,s(u)(a) is a continuous function, as a function of a ∈D.

Proof. If u is constant on D, it is clear that J∗
p,q,s(u)(a) is continuous for all a ∈D.

Therefore suppose that u is not constant, in particular J∗
p,q,s(u)(0) 6= 0. Let a ∈ D

be fixed and let δ > 0 be such that D(a,δ) ⊂ D. The function l : D×D(a,δ) → R

defined by

(z,ζ)→ (1−|ζ|2)s

|1−ζz|2s

is uniformly continuous on D×D(a,δ). Then given ε > 0, there exists ρ > 0 such
that if |z′− z| < ρ and |ζ′−ζ| < ρ then

|l(z′,ζ′)− l(z,ζ)| < ε

J∗
p,q,s(u)(0)

.

Note that J∗
p,q,s(u)(0)<∞ since u ∈HJ∗(p, q, s). Then if |a−b| < ρ,

|J∗
p,q,s(u)(a)− J∗

p,q,s(u)(b)| ≤

≤
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p

(
1−|z|2)q+s |l(z,a)− l(z,b)|dx dy< ε.
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COROLLARY (2.21). Let −2 < q <∞, 0 < p <∞, 0 ≤ s <∞. Then HJ∗
0 (p, q, s) ⊂

HJ∗(p, q, s).

Proof. If u is a function with |∇(z)| = 0 for all z ∈D, the statement is clear. Suppose
u is not a constant and u ∈ HJ∗

0 (p, q, s). Then there exists 0 < R < 1 such that
J∗

p,q,s(u)(a)< J∗
p,q,s(u)(0) for all R < |a| < 1. By Proposition (2.20), J∗

p,q,s(u) attains
its finite maximum on DR , so we have u ∈HJ∗(p, q, s).

3. Equivalence between HI∗(p, q, s) and HJ∗(p, q, s)

In this section we obtain basic properties for the hyperbolic weighted harmonic
classes HI∗(p, q, s) and HJ∗(p, q, s). In particular we will see that they coincide.

THEOREM (3.1). Let −2 < q <∞, 0 < p <∞ and u ∈H(D). If J∗
p,q,s(u)(0) <∞

then for 0< s <∞
(3.2)

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q lns 1

|z| dx dy≤ t
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy

where t = t(q, s,R) for some fixed 0< R < 1.
If J∗

p,q,s(u)(0)<∞ then for 0< s < 1

(3.3)
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p |z|−2s(1−|z|2)q+s dx d y≤ t̃

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy

where t̃ = t̃(q, s,R) for some fixed 0< R < 1.

Proof. We follow the idea of the proof of Theorem 2.2 in [2]. Let c = .0183403 be
the root of − ln x = 4(1− x2). Let R be fixed with c < R < 1. Define

0< 1
τ(q, s,R)

=
∫ R

c
(1− r2)q+sr dr = 1

2(1+ q+ s)
((1− c2)1+q+s − (1−R2)1+q+s)

= 1
2(1+ q+ s)

(.9996641+q+s − (1−R2)1+q+s) .

Since R is fixed, τ(q, s,R) = τ(q, s). By Proposition (2.2),
|∇u(z)|p

(1−u(z)2)p is subhar-

monic. Then
1

τ(q, s,R)

∫ 2π

0

|∇u(ceiθ)|p
(1−u(ceiθ)2)p dθ =

∫ R

c
(1− r2)q+sr dr

∫ 2π

0

|∇u(ceiθ)|p
(1−u(ceiθ)2)p dθ

≤
∫ R

c
(1− r2)q+sr dr

∫ 2π

0

|∇u(reiθ)|p
(1−u(reiθ)2)p dθ

=
∫ ∫

DR (0)\Dc(0)

|∇u(reiθ)|p
(1−u(reiθ)2)p (1−|z|2)q+s dx d y

≤
∫ ∫

DR (0)

|∇u(reiθ)|p
(1−u(reiθ)2)p (1−|z|2)q+s dx d y .

Thus

(3.4)
∫ 2π

0

|∇u(ceiθ)|p
(1−u(ceiθ)2)p dθ ≤ τ(q, s,R)

∫ ∫
DR (0)

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy .

Define

0< τ̃(q, s)=
∫ c

0
r(1− r2)q lns 1

r
dr <∞.(3.5)
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By subharmonicity and (3.4) we have the estimate∫ ∫
Dc(0)

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q lns 1

|z| dx dy

=
∫ c

0

∫ 2π

0

|∇u(reiθ)|p
(1−u(reiθ)2)p (1− r2)q lns 1

r
r dθdr

≤
∫ c

0
r(1− r2)q lns 1

r
dr

∫ 2π

0

|∇u(ceiθ)|p
(1−u(ceiθ)2)p dθ

≤ τ̃(q, s)τ(q, s,R)
∫ ∫

Dr(0)

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy

≤ τ(q, s,R)τ̃(q, s)
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy .(3.6)

From the inequality

(3.7) − ln x ≤ 4(1− x2) for each x ∈ (c,1]

we have ∫ ∫
D\Dc(0)

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q lns 1

|z| dx dy

≤ 4s
∫ ∫

D\Dc(0)

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy

≤ 4s
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx dy .(3.8)

Let t(q, s,R)= τ(q, s,R)τ̃(q, s)+4s. Combining (3.6) and (3.8) we have∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q lns 1

|z| dx dy≤ t(q, s,R)
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q+s dx d y .

For 0< s < 1 we need to consider instead of (3.5) the following expression,

0<
∫ c

0
r1−2s(1− r2)q+s dr = 1

2
B[c2,1− s,1+ q+ s].

Here B is the incomplete Beta function, and we prove (3.3) in a similar way.

THEOREM (3.9). Let −2< q <∞, 0< p <∞ and 0≤ s <∞. Then for u ∈H(D)

(3.10) sup
a∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z,a)dx dy<∞

if and only if

(3.11) sup
a∈D

∫ ∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q(1−|φa(z)|2)s dx d y<∞ .

Proof. We have
1− x2 ≤−2ln x for each x ∈ (0,1] .

Taking x = |φa(z)| we have 1−|φa(z)|2 ≤ 2g(z,a), thus∫ ∫
D

|∇u(z)|p
(1−u(z)2)p

(
1−|z|2)q (

1−|φa(z)|2)s
dx dy

≤
∫ ∫

D

|∇u(z)|p
(1−u(z)2)p

(
1−|z|2)q

gs(z,a)dx dy,
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that is,
J∗

p,q,s(u)(a)≤ 2I∗p,q,s(u)(a) for each a ∈D .

Then (3.10) implies (3.11).
By the hypothesis and Lemma (2.19), J∗

p,q,s(u ◦φa)(0) <∞. Since u ◦φa : D→
(−1,1) is a harmonic function and 0< p <∞, then by Proposition (2.2)

|∇(u ◦φa)(z)|p
(1−u(φa(z))2)p

is a subharmonic function. Therefore the inequality (3.2) implies∫ ∫
D

|∇(u ◦φa)(z)|p
(1−u(φa(z))2)p (1−|z|2)q lns 1

|z| dx dy

≤ t(q, s,R)
∫ ∫

D

|∇(u ◦φa)(z)|p
(1−u(φa(z))2)p (1−|z|2)q+s dx dy .

Consider the change of variable z =φa(w) to obtain∫ ∫
D

|∇(w)|p
(1−u(w)2)p |φ′

a(φa(w))|p|φ′
a(w)|2(1−|φa(w)|2)q lns 1

|φa(w)| dξdη

≤ t(q, s,R)
∫ ∫

D

|∇(w)|p
(1−u(w)2)p |φ′

a(φa(w))|p|φ′
a(w)|2(1−|φa(w)|2)q+s dξdη

or equivalently

0 ≤
∫ ∫

D

|∇(w)|p
(1−u(w)2)p |φ′

a(φa(w))|p|φ′
a(w)|2(1−|φa(w)|2)q ·(

t(q, s,R)(1−|φa(w)|2)s − lns 1
|φa(w)|

)
dξdη

≤ ρ(a, p+|q|+2)
∫ ∫

D

|∇(w)|p
(1−u(w)2)p (1−|w|2)q ·(

t(q, s,R)(1−|φa(w)|2)s − lns 1
|φa(w)|

)
dξdη.

As 0< ρ(a, p+|q|+2) we obtain∫ ∫
D

|∇(w)|p
(1−u(w)2)p (1−|w|2)q lns 1

|φa(w)| dξdη

≤ t(q, s,R)
∫ ∫

D

|∇(w)|p
(1−u(w)2)p (1−|w|2)q(1−|φa(w)|2)s dξdη(3.12)

and the theorem follows.

From Theorem (3.9) we have

COROLLARY (3.13). Let −2 < q <∞, 0 < p <∞, 0 ≤ s <∞. Then HI∗(p, q, s) =
HJ∗(p, q, s).

COROLLARY (3.14). Let −2 < q < ∞, 0 < p < ∞ and 0 ≤ s < ∞. Then
HI∗0 (p, q, s)=HJ∗

0 (p, q, s).

Now we give a characterization of the classes HJ∗(p, q, s) in terms of Carleson
squares:
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For 0 < s < ∞, we say that a positive measure µ defined on D is a bounded
s-Carleson measure provided

sup
I⊂T

µ(S(I))
|I|s <∞

where |I| denotes the arc length of I ⊂ T and S(I) denotes the Carleson box based
on I, that is

S(I)=
{

z ∈D :
z
|z| ∈ I, 1−|z| ≤ |I|

2π

}
.

If

lim
|I|→0

µ(S(I))
|I|s = 0

for I ⊂ T, we say that is a compact s−Carleson measure. By Lemma 2.1 in [3] we
obtain

THEOREM (3.15). Let 0< p <∞, −2< q <∞, 0< s <∞. Consider u ∈H(D) and

dµu = |∇u(z)|p(
1−u(z)2

)p
(
1−|z|2)q+s

dx dy.

Then
• u ∈HJ∗(p, q, s) if and only if dµu(z) is a bounded s-Carleson measure.
• u ∈HJ∗

0 (p, q, s) if and only if dµu(z) is a compact s-Carleson measure.

4. Several properties of weighted harmonic classes

It is clear that the sets HJ∗(p, q, s) and HJ∗
0 (p, q, s) are not vector spaces. How-

ever they have some other interesting properties.

Although uv : D→ (−1,1) is not necessarily a harmonic function when u,v ∈
H(D), we have

THEOREM (4.1). Let 0 < p < ∞, −2 < q < ∞, 0 ≤ s < ∞. If u,v ∈HJ∗(p, q, s),
then

sup
a∈D

∫ ∫
D

|∇ (uv) (z)|p(
1− ((uv)(z))2

)p (1−|z|2)q(1−|φa(z)|2)sdx dy<∞;

and if u,v ∈HJ∗
0 (p, q, s), then

lim
|a|→1−

∫ ∫
D

|∇ (uv) (z)|p(
1− ((uv)(z))2

)p (1−|z|2)q(1−|φa(z)|2)sdx dy= 0.

Proof. Let u,v ∈HJ∗(p, q, s). Note that

∇(u v)(z)= v(z)∇u(z)+u(z)∇v(z) for all z ∈D
and

|∇(u v)(z)|p = |v(z)∇u(z)+u(z)∇v(z)|p ≤
[
|v(z)∇u(z)|+ |u(z)∇v(z)|

]p

≤ 2p
[
|u(z)∇v(z)|p +|v(z)∇u(z)|p

]
.

Since u : D→ (−1,1) and v : D→ (−1,1), we have u(z)2 v(z)2 < 1 for all z ∈ D. Also
u(z)2 v(z)2 < v(z)2, then 1−v(z)2 < 1−u(z)2 v(z)2 and 1−u(z)2 < 1−u(z)2 v(z)2.
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Therefore
|∇(u v)(z)|p(

1− ((u v)(z))2
)p ≤ 2p |u(z)|p|∇v(z)|p(

1−v(z)2
)p +2p |v(z)|p|∇u(z)|p(

1−u(z)2
)p

≤ 2p |∇v(z)|p(
1−v(z)2

)p +2p |∇u(z)|p(
1−u(z)2

)p

and the theorem follows.

Remember that for u,v ∈H(D), uv : D→ (−1,1) is a harmonic function if and
only if ∇u ·∇v ≡ 0, that is, if u y v are harmonic conjugate functions. In this case
we have the following.

COROLLARY (4.2). Let 0 < p <∞, −2 < q <∞, 0 ≤ s <∞ and u,v ∈HJ∗(p, q, s)
such that ∇u · ∇v ≡ 0. Then uv ∈ HJ∗(p, q, s) and for u,v ∈ HJ∗

0 (p, q, s), uv ∈
HJ∗

0 (p, q, s).

Now we will make our classes into convex metric spaces: for 0 < p <∞, −2 <
q <∞, 0≤ s <∞ and u,w ∈H(D) define the metric d in the class HI∗(p, q, s) as

d(u,w) := |u(0)−w(0)|+sup
a∈D

[∫ ∫
D

∣∣∣∣ ∇u(z)
1−u(z)2

− ∇w(z)
1−w(z)2

∣∣∣∣p
dµ

] 1
p

for 1< p <∞

and

d(u,w) := |u(0)−w(0)|+sup
a∈D

[∫ ∫
D

∣∣∣∣ ∇u(z)
1−u(z)2

− ∇w(z)
1−w(z)2

∣∣∣∣p
dµ

]
for 0< p ≤ 1,

where dµ= (1−|z|2)q gs(z,a)dx dy.
• 1< p <∞

Observe that d satisfies the metric properties which are inherited from the
Lebesgue spaces Lp(dµ).

• 0< p ≤ 1
To prove the triangle inequality we observe that is enough to show that

(α+β)p ≤αp +βp

for 0< p ≤ 1 and α> 0, β> 0; and this is equivalent to the inequality

1≤ ap +bp with a+b = 1,a > 0,b > 0.

It is easy to see that

0≤ ap + (1−a)p −1 with 0< a < 1.

Finally, we only prove that if d(u,w) = 0 then u = v, since the other properties
follow easily from the properties of the complex module. In this way

(4.3)
∣∣∣∣ ∇u(z)
1−u(z)2

− ∇w(z)
1−w(z)2

∣∣∣∣= 0

and

(4.4) |u(0)−w(0)| = 0.

From (4.3)
∇u(z)

1−u(z)2
= ∇w(z)

1−w(z)2
.
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It follows that 
∂u(z)
∂x

1−u(z)2
,

∂u(z)
∂y

1−u(z)2

=


∂w(z)
∂x

1−w(z)2
,

∂w(z)
∂y

1−w(z)2


for z = x+ i y. Now ∫ ∂u(z)

∂x

1−u(z)2
dx =

∫ ∂w(z)
∂x

1−w(z)2
dx

implies

ln
1+u(z)
1−u(z)

= ln
1+w(z)
1−w(z)

+C(y),

then
1+u(z)
1−u(z)

= eC(y) 1+w(z)
1−w(z)

;

and from (4.4) it follows that eC(y) = 1, which implies that C(y)= 0.
Hence

(1+u(z)) (1−w(z))= (1−u(z)) (1+w(z))
1−w(z)+u(z)−u(z)w(z)= 1+w(z)−u(z)−u(z)w(z)

u(z)= w(z).

PROPOSITION (4.5). Let 0 < p <∞, −2 < q <∞ and 0 < s <∞. Then the class
(HI∗(p, q, s),d) equipped with the metric d is a complete metric space. Moreover,
HI∗0 (p, q, s) is a closed (and therefore complete) subspace of HI∗(p, q, s).

Proof. The family H(D) is locally bounded and therefore is normal. Let {un} be
a Cauchy sequence in HI∗(p, q, s) which converges to u uniformly on compact
subsets of D. Let ε> 0. Then there exists N such that if n ≥ m > N,∫

D

∣∣∣∣ ∇un(z)
1−un(z)2

− ∇um(z)
1−um(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy< εp

2
.

Then Fatou’s lemma yields∫
D

∣∣∣∣ ∇u(z)
1−u(z)2

− ∇um(z)
1−um(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy

≤
∫
D

lim
n→∞

∣∣∣∣ ∇un(z)
1−un(z)2

− ∇um(z)
1−um(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy < εp.

It follows that
• For 0< p < 1, the estimates∣∣∣∣ ∇u(z)

1−u(z)2

∣∣∣∣p
≤

∣∣∣∣ ∇u(z)
1−u(z)2

− ∇um(z)
1−um(z)2

∣∣∣∣p
+

∣∣∣∣ ∇um(z)
1−um(z)2

∣∣∣∣p
.

(4.6)
∫
D

|∇u(z)|p
(1−u(z)2)p (1−|z|2)q gs(z,a) dx dy

≤ εp +
∫
D

|∇um(z)|p
(1−um(z)2)p (1−|z|2)q gs(z,a) dx dy .

Thus u ∈HI∗(p, q, s).
• for 1< p <∞
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(4.7)
(∫
D

∣∣∣∣ ∇u(z)
1−u(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy

) 1
p

≤
(∫
D

∣∣∣∣ ∇u(z)
1−u(z)2

− ∇um(z)
1−um(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy

) 1
p

+
(∫
D

∣∣∣∣ ∇um(z)
1−um(z)2

∣∣∣∣p
(1−|z|2)q gs(z,a) dx dy

) 1
p

.

Thus u ∈HI∗(p, q, s).

The second part of the assertion follows by (4.6) and (4.7).

THEOREM (4.8). Let 0< p <∞, −2< q <∞, 0≤ s <∞. Then for all 0≤ t ≤ 1

(1− t) ·HJ∗(p, q, s)+ tHJ∗(p, q, s)=HJ∗(p, q, s)

and
(1− t) ·HJ∗

0 (p, q, s)+ tHJ∗
0 (p, q, s)=HJ∗

0 (p, q, s) .

Proof. For t = 0, t = 1 the result is immediate, thus we are going to consider t ∈
(0,1). Let 0< t < 1 be fixed and u, v ∈HJ∗(p, q, s). Note that

|∇ ((1− t)u(z)+ tv(z))| = |(1− t)∇u(z)+ t∇v(z)| ≤ (1− t)|∇u(z)|+ t|∇v(z)|
and

|∇ ((1− t)u(z)+ tv(z))|p ≤ 2p
[
(1− t)p|∇u(z)|p + tp|∇v(z)|p

]
for all z ∈D. Then∫ ∫

D

|∇ ((1− t)u(z)+ tv(z))|p(
1− (

(1− t)u(z)+ tv(z)
)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy

≤ 2p
∫ ∫

D

(1− t)p|∇u(z)|p + tp|∇v(z)|p(
1− (

(1− t)u(z)+ tv(z)
)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy.

Note that(
(1− t)u(z)+ tv(z)

)2 ≤
(
(1− t)|u(z)|+ t|v(z)|

)2

= (1− t)2 u(z)2 +2t(1− t)|u(z)| |v(z)|+ t2 v(z)2

≤ (1− t)2 +2t(1− t)+ t2 v(z)2

and

1−
(
(1− t)u(z)+ tv(z)

)2 ≥ 1−
(
(1− t)2 +2t(1− t)+ t2 v(z)2

)
= t2 (

1−v(z)2
)
.

For the second term in the sum of the numerator,∫ ∫
D

tp|∇v(z)|p(
1− (

(1− t)u(z)+ tv(z)
)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy.

≤ 1
t2p

∫ ∫
D

|∇v(z)|p(
1−v(z)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy.
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Now, for the first term we get(
(1− t)u(z)+ tv(z)

)2 ≤
(
(1− t)|u(z)|+ t|v(z)|

)2

= (1− t)2 u(z)2 +2t(1− t)|u(z)| |v(z)|+ t2 v(z)2

≤ (1− t)2 u(z)2 +2t(1− t)+ t2

≤ (1− t)2 u(z)2 +2t− t2

and

1−
(
(1− t)u(z)+ tv(z)

)2 ≥ 1−
(
(1− t)2 u(z)2 +2t− t2

)
= (1− t2)

(
1−u(z)2

)
∫ ∫

D

(1− t)p|∇u(z)|p(
1−

(
(1− t)u(z)+ tv(z)

)2)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy

≤ 1
(1+ t)p

∫ ∫
D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy,

and the theorem follows from this estimate.

It is possible to replace the weight (1−|φa(z)|2)s by its reflection (|φa(z)|−2−1)s,
as the following theorem shows.

THEOREM (4.9). Let 0 < p <∞, −2 < q <∞, 0 < s < 1 be. Then u ∈HJ∗(p, q, s)
if and only if

sup
a∈D

∫ ∫
D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q (|φa(z)|−2 −1
)s

dx dy<∞ .

Proof. Since |φa(z)|2 < 1 for all z ∈D, then
(
1−|φa(z)|2)s < (|φa(z)|−2 −1

)s. There-
fore ∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy

≤
∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q (|φa(z)|−2 −1
)s

dx dy.

Conversely, if∫ ∫
D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q (
1−|φa(z)|2)s

dx dy<∞ ,

then consider∫ ∫
D

|∇u
(
φa(w)

) |p(
1−u

(
φa(w)

)2
)p

(
1−|w|2)s

|w|2s (1−|w|2)q dξdη

≤ t̃
∫ ∫

D

|∇u
(
φa(w)

) |p(
1−u

(
φa(w)

)2
)p

(
1−|w|2)q+s

dξdη;



HYPERBOLIC WEIGHTED HARMONIC CLASSES 87

where t̃ = t̃(q, s,R) as in Theorem (3.1). Consider the change of variable z =φa(w)
to obtain∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p |φ′
a(z)|2

(
1−|φa(z)|2)s

|φa(z)|2s (1−|φa(z)|2)q dx dy

≤ t̃
∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p |φ′
a(z)|2 (

1−|φa(z)|2)q+s
dx dy;

then

0≤
∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p |φ′a(z)|2(1−|φa(z)|2)q
[

t̃(1−|φa(z)|2)s − (1−|φa(z)|2)s

|φa(z)|2
]

dx dy,

by the estimates for (1−|φa(z)|2)q and |φ′
a(z)|2 in (2.3) and (2.4) respectively we

get

0≤ ρ(a, |q|+2)
∫ ∫

D

|∇u(z)|p(
1−u(z)2

)p (1−|z|2)q
[

t̃(1−|φa(z)|2)s − (1−|φa(z)|2)s

|φa(z)|2
]

dx dy

and the result follows from this estimate.
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