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STABILITY OF THE EULER OBSTRUCTION OF A FUNCTION

NIVALDO G. GRULHA JR.

ABSTRACT. We study in this paper properties of the Euler obstruction of a func-
tion and its stability for families of functions with isolated singularities on weighted
homogeneous hypersurfaces with isolated singularities and on holonomic free di-
visors.

Introduction

The local Euler obstruction was first introduced by R. MacPherson in [14] as
a key ingredient for his construction of characteristic classes of singular complex
algebraic varieties. This invariant was then interpreted in [5] as an index of vector
fields. For an overview on the Euler obstruction see [1, 2]. The recent book [6] is
also a very good reference, since the point of view in this book is quite close to the
point of view of the present work.

In the paper [4], J.-P. Brasselet, Lê D. T. and J. Seade gave a Lefschetz type
formula for the local Euler obstruction, which shows that the local Euler obstruc-
tion, as a constructible function, satisfies the Euler condition relatively to generic
linear forms. A natural continuation of the result is the paper by J.-P. Brasselet,
D. Massey, A. J. Parameswaran and J. Seade [3], whose aim is to understand what
the obstacle is for the local Euler obstruction to satisfy the Euler condition rela-
tively to analytic functions with isolated singularity at the point considered. This
is the role of the so-called local Euler obstruction of f , denoted by Eu f ,V (0).

The relation between the local Euler obstruction of f and the number of Morse
points of a Morsification of f has been described in [19] by J. Seade, M. Tibar and
A. Verjovsky. They compare Eu f ,V (0) with two different generalizations of the
Milnor number for functions with isolated singularities on singular varieties. In
the case where (V ,0) is a complete intersection with isolated singularities they
also study the GSV index [11, 17].

In [12] we present some relations between the Euler obstruction of f and the
notion of Milnor number of functions with an isolated critical point on singular
spaces introduced by J. W. Bruce and R. M. Roberts in [7]. The originality of the
main formula in [12] is that we use the information of all strata, while in [19]
Seade, Tibar and Verjovsky use only the information in the regular stratum.
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From the relations between the Euler obstruction of f and the Bruce and
Roberts’ Milnor number we obtain in [12] relations between the Bruce and Rob-
erts’ Milnor number and Lê’s Milnor number and Goryunov-Mond’s Milnor num-
ber.

Let V ⊂ Cn be a hypersurface with isolated singularity and F : (Cn ×Cr,0) → C

a family of functions with isolated singularity on V at 0. In this context we can
ask about the constancy of the Euler obstruction of f t for this family.

In [12], we have discussed the stability of the Euler obstruction and its conse-
quences when the characteristic logarithmic variety associated to V , denoted by
LC(V ), is Cohen-Macaulay. Here we study the stability of the Euler obstruction
of f for families of functions with isolated singularities on the germ of a weighted
homogeneous hypersurface with isolated singularities and on holonomic free divi-
sors (V ,0).

The notion of free divisors was introduced by Saito in [16]. In a series of papers
Damon has discussed the importance of free divisors [8, 9, 10] and how common
they are. For example, discriminants of versal unfoldings of isolated hypersur-
face and complete intersection singularities are free divisors; the bifurcation sets
associated to the versal unfoldings of isolated hypersurface singularities are also
free divisors; the discriminant of a versal deformation of a space curve singularity
is a free divisor. One way to investigate these objects is to compute and under-
stand the behavior of some invariants on them: for example, we can study the
local Euler obstruction.

A key tool to determine the stability of the Euler obstruction of f in [12] was the
Cohen-Macaulayness property of the characteristic logarithmic variety associated
to V . In the cases of weighted homogeneous hypersurfaces and for free divisors,
we have this property by results of [7] and [15].

As we said before, we know from [19] and [12] that the Euler obstruction of
f is a generalization of the notion of Milnor number to the case of functions on
singular varieties. In this way we can expect that the study of the constancy of
the Euler obstruction of f can be useful to get a Lê-Ramanujan type result on
singular varieties [21], which is an open problem in this theory.

1. Euler obstruction and Morsification of a function

Let (V ,0) be the germ of a reduced complex analytic space at the origin, em-
bedded in Cn. In this work we will always consider (V ,0) with pure dimen-
sion. Let {Vα} be a Whitney stratification of a sufficiently small representative
V of the germ. We may suppose that V has only a finite number of strata Vα,
α ∈ {0,1,2, · · · ,d}, for some d ∈N, such that 0 ∈Vα.

To define a stratified Morse function we need the definition of a general point
of a function (or general function at a point).

Definition (1.1). Let (V ,0) be the germ of an analytic variety in Cn, endowed
with a Whitney stratification, and let f : (V ,0)→ (C,0) be a germ of analytic func-
tion, restriction of an analytic function F : U → (C,0), where U is an open ball
around 0. We say that 0 is a general point of f (or f : (V ,0) → (C,0) is general at
0) if the hyperplane ker(dF(0)) is transverse in Cn to every generalized tangent
space at 0; that is, for every sequence {xn} of points in some stratum Vα such that
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the sequence converges to 0 and the sequence of tangent spaces {Txn Vα} has a
limit T, one has that ker(dF(0)) is transverse to T.

Definition (1.2). Let (V ,0) be the germ of an analytic variety in Cn, endowed
with a Whitney stratification, and let f : (V ,0) → (C,0) be a germ of an analytic
function. Let V be a sufficiently small representative of the germ (V ,0). We say
that f : V →C is a stratified Morse function if the following holds:

(a) If 0 ∈Vα, dimVα ≥ 1, the restriction of f to the stratum Vα has a Morse point
at 0.

(b) If 0 ∉Vα, f is general at 0 with respect to the strata Vα.

Note that in the case where the stratum containing 0 has dimension zero, the
point 0 is a stratified Morse point of f (by definition) if f is general at 0.

The Euler obstruction of a function is a “hard to work” concept, but using Mor-
sifications we can find an interesting way to study this concept. Let us first give
an idea of the definition of the Euler obstruction of a function.

Let (V ,0) be the germ of an analytic variety in Cn, endowed with a Whitney
stratification, and let f : (V ,0) → (C,0) be a germ of analytic function. Let V be
a sufficiently small representative of the germ (V ,0). The complex conjugate of
the gradient of the extension F of f in the ambient space projects to the tangent
spaces of the strata of V into a vector field, which may not be continuous. One
can make it continuous as in [3]. One gets a well-defined continuous stratified
vector field, up to stratified homotopy, which we denote by ∇V f . If f is a function
on V with an isolated singularity at 0, with respect to the stratification, then ∇V f
has an isolated zero at 0. If ν : Ṽ → V is the Nash modification of V and T̃ is
the Nash bundle over Ṽ , then ∇V f lifts canonically to a never-zero section ∇̃ fV
of T̃ restricted to Ṽ ∩ν−1(V ∩Sε), where Sε is a small enough sphere around 0.
Following [3], the obstruction to extend ∇̃V f without zeros over Ṽ ∩ν−1(V ∩Bε),
where Bε is a small ball around 0 is denoted by Eu f ,V (0) and is called the local
Euler obstruction of f at 0.

LEMMA (1.3). (Lemma 4.1, [18]) Let f be the germ of an analytic function on
(V ,0) with an isolated Morse singularity at the origin in the stratified sense, Vα the
stratum that contains the origin. Then

1. Eu f ,V (0)= 0 if dimVα < dimV ;
2. Eu f ,V (0)= (−1)dimC(V ,0) if Vα is the regular stratum Vreg.

The next result characterizes the Euler obstruction of f on V by the number of
the Morse points of a Morsification of f on V .

PROPOSITION (1.4) (Proposition 2.3, [19]). Let f : (V ,0) → (C,0) be the germ of
an analytic function with isolated singularity at the origin. Then

Eu f ,V (0)= (−1)dimC(V ,0)nreg,

where nreg is the number of Morse points in Vreg in a stratified Morsification of
f .

2. Generalizations of the Milnor Number

Let us recall that µ( f ) denotes the Milnor number of a germ of an analytic
function f : (Cn,0) → (C,0) with an isolated critical point at the origin, defined as
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dimCOn/J( f ), where On is the ring of germs of analytic functions at the origin,
and J( f ) is the Jacobian ideal of f .

Let (V , x) be the germ of a complex analytic space. For simplicity let us take
x = 0. Bruce and Roberts in [7] defined a Milnor number for functions on singular
spaces.

Let V be a sufficiently small representative of the germ (V ,0) and let I(V )
denote the ideal in On consisting of the germs of functions vanishing on V .

One of the main goals in [7] is to characterize germs of diffeomorphisms pre-
serving V . The usual technique is the integration of germs of vector fields tangent
to V .

Definition (2.1). For x ∈Cn, let DerxC
n denote the On-module of germs of ana-

lytic vector fields on Cn at x. A vector field δ in DerxC
n is said to be logarithmic

for (V , x) if, when considered as a derivation δ : On →On, we have δ(h) ∈ I(V ) for
all h ∈ I(V ). The On-module of such vector fields is denoted by Θ(V ,x). When x = 0,
we denote it by ΘV .

LEMMA (2.2) (Lemma 1.5, [7]). Let V be a sufficiently small representative of
the germ (V ,0) and U an open neighborhood of the origin. There is a unique strat-
ification {Vα} of U with the following properties:

(i) Each stratum Vα is a connected manifold embedded in U , and U is the union⋃
Vα;

(ii) if Vα and Vβ are two different strata, such that Vα∩Vβ 6= ;, then Vα ⊂ ∂Vβ,
where ∂Vβ denotes the boundary of Vβ and Vβ denotes the closure of Vβ.

(iii) if x ∈Vα then the tangent space TxVα of Vα at x coincide with Θ(V ,x);

Definition (2.3). The decomposition {Vα} as above is called a logarithmic strat-
ification of V , and each Vα is called the logarithmic stratum.

We would like to clarify that we call {Vα} a logarithmic stratification, but it is
not always a usual stratification; in some cases this decomposition is not locally
finite. For the locally finite case we have the next definition.

Definition (2.4). The germ (V ,0) is holonomic for some neighborhood U at 0 in
Cn if the logarithmic stratification of U has only a finite number of strata.

PROPOSITION (2.5) (Proposition 1.10, [7]). Let (V ,0) be a holonomic germ. Then
in a sufficiently small neighborhood of the origin, the logarithmic stratification is
Whitney regular.

Definition (2.6). Let (V ,0) be the germ of an analytic variety in Cn endowed
with a Whitney stratification {Vα}. Let f : (V ,0) → (C,0) be the restriction of a
analytic function F : (U ,0)→ (C,0). Let V be a sufficiently small representative of
the germ (V ,0). We call a critical point of f a point x ∈ V such that, if x ∈ Vα we
have dF(x)(Tx(Vα)) = 0. We say that f has an isolated singularity at 0 ∈ V rela-
tive to the given Whitney stratification, if f has no critical points in a punctured
neighborhood of 0 in V .

Definition (2.7). Let JV ( f ) be the ideal {δ f : δ ∈ ΘV } in On,0. If the germ f :
(Cn,0) → (C,0) has an isolated singularity on V at the origin, then dimCOn/JV ( f )
is finite and is called the multiplicity of f over V at 0, or the Bruce-Roberts’ Milnor
number, and is denoted by µBR( f ).
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The characteristic logarithmic variety associated to V , denoted by LC(V ), is an
important tool in [7], and we use the information of this variety to obtain the main
results of this work.

Definition (2.8). [7] Let us suppose that the vector fields δ1, . . . ,δm generate
ΘV for some neighborhood U at 0 ∈ Cn. Then if T∗

UC
n is the restriction of the

cotangent bundle of Cn in U , we define

LCU (V )= {(x,ξ) ∈ T∗
UC

n : ξ(δi(x))= 0, i = 1 . . . ,m}.

LC(V ) is the germ of LCU (V ) in T∗
0C

n, and it can be shown that it is independent
of the choice of generators of ΘV .

Let Vα be a stratum of the logarithmic stratification of V . The conormal space
of Vα is the subspace of T∗

0C
n given by all forms vanishing on the tangent bundle

TVα. We denote it by C(Vα).
Then we have,

LC(V )=⋃
α

C(Vα).

PROPOSITION (2.9) (Proposition 1.14 (ii), [7]). Let V be a holonomic space with
stratification {Vα}. Then the sets C(Vα) are the irreducible components of LC(V ).

THEOREM (2.10) (Corollary 5.8, [7]). If f : (V ,0)→C has an isolated singularity
at the origin and nα is the number of critical points of a stratified Morsification of
f on Vα, and mα denotes the multiplicity of C(Vα) in LC(V ), then∑

α

mαnα ≤ dimCOn/JV ( f ).

with equality if and only if LC(V ) is Cohen-Macaulay at (0,d f (0)).

THEOREM (2.11) (Theorem 3.14, [12]). Let (V ,0) be as above such that the
LC(V ) is Cohen-Macaulay. Let f : (Cn,0) → (C,0) be a function with an isolated
singularity at the origin and such that f : V → C has also a stratified isolated
singularity at the origin. Then

µBR( f )=∑
α

mα(−1)dimCVαEu f ,Vα
(0),

where mα denotes the multiplicity of C(Vα) in LC(V ).

As a consequence of the last theorem, we state here the following result:

COROLLARY (2.12). Let (V ,0) be a weighted homogeneous hypersurface with
isolated singularities and f : (Cn,0)→ (C,0) a function with an isolated singularity
at the origin and such that f : V → C has also a stratified isolated singularity at
the origin. Then

µBR( f )=µ( f )+µ(1)( f )+ (−1)dimCV Eu f ,V (0),

where µ(1)( f ) is the Milnor number of a generic hyperplane section of (V ,0).

Proof. This follows from the last theorem and by the fact that since V is weight-
ed homogeneous hypersurface with isolated singularity, then LC(V ) is Cohen-
Macaulay [7, 15] and from [7] the multiplicities mα, 0 < α ≤ d, are 1 and m0 =
µ(1)( f ), where µ(1)( f ) is the Milnor number of a generic hyperplane section of
(V ,0).
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3. Stability of the Euler obstruction of f and the Bruce-Roberts’ Milnor
number

In [20], another notion of Milnor number arises, a generalization of the Mil-
nor number for analytic functions defined on singular analytic spaces such that
the rectified homotopical depth of V at 0, denoted rhd(V ,0) satisfies rhd(V ,0) =
dimC(V ,0).

Let V be a sufficiently small representative of the germ (V ,0). The Milnor fiber
of the complex analytic function f , with an isolated singularity at 0, defined on V
(in the stratified way), has the homotopy type of a bouquet of spheres. Lê’s Milnor
number, denoted by µL( f ), is defined as the number of spheres in the bouquet.

The relations between this invariant and the local Euler obstruction of f were
obtained in [19], in particular for a complete intersection with isolated singular-
ity (ICIS). Since in this case we have rhd(V ,0) = dim(V ,0), the following holds
(Section 3.1, [19]):

THEOREM (3.1). Let V be a sufficiently small representative of an ICIS germ,
0 ∈V , f an analytic function on V with stratified isolated singularity at 0, and l a
generic linear form. Then we have

Eu f ,V (0)= (−1)dimC(V ,0)[µL( f )−µL(l)].

The next result relates these different notions of Milnor number above (and the
classical one) and the Euler obstruction of a function. This theorem was presented
in [12], but the assumption that LC(V ) is Cohen-Macaulay was missing. In fact,
this is an open problem. Another version of this result was presented in [13].

THEOREM (3.2) (Theorem 4.18, [12], see also [13]). Let V ⊂ Cn be a hyper-
surface with isolated singularity such that its LC(V ) is Cohen-Macaulay and F :
(Cn ×Cr,0)→C a family of functions with isolated singularity on V at 0. Then:

(a) µBR( fu) constant for the family implies µ( fu), µL( fu) and Eu fu ,V (0) constant
for the family.

(b) When µ( fu) is constant for the family, we have that Eu fu ,V (0) or µL( fu) con-
stant for the family implies µBR( fu) is constant for the family.

In the weighted homogeneous case we immediately get the following result:

COROLLARY (3.3). Let V ⊂ Cn be a weighted homogeneous hypersurface with
isolated singularity and F : (Cn ×Cr,0) → C a family of functions with isolated
singularity on V at 0. Then:

(a) µBR( fu) constant for the family implies µ( fu), µL( fu) and Eu fu ,V (0) constant
for the family.

(b) When µ( fu) is constant for the family, we have that Eu fu ,V (0) or µL( fu) con-
stant for the family implies µBR( fu) is constant for the family.

Let us now give the definition of a free divisor introduced by Saito [16].

Definition (3.4). A reduced hypersurface (V ,0)⊂ (Cn,0) is said to be a free divi-
sor if ΘV ,0 is a free On-module.
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Examples of free divisors are discriminants of versal unfoldings of isolated hy-
persurfaces and complete intersection singularities; the bifurcation sets associ-
ated to the versal unfoldings of isolate hypersurfaces singularities are also free
divisors; and the discriminant of versal deformation of a space curve singularity.

REMARK (3.5). If (V ,0)⊂ (Cn,0) is a free divisor, then ΘV ,0 is necessarily gener-
ated by n elements.

THEOREM (3.6) (Proposition 6.3, [7]). If (V ,0) ⊂ (Cn,0) is a reduced analytic
subvariety, any two of the following properties imply the third.

(i) V is holonomic;
(ii) LC(V ) is a complete intersection;

(iii) (V ,0) is a free divisor.

In particular when V is holonomic and a free divisor, LC(V ) is a complete in-
tersection, therefore Cohen-Macaulay, and in this case we have the equality in the
formula of Theorem (2.10),

µBR(h)=∑
α

mαnα,

where nα is the number of Morse points of a Morsification f t on Vα.
Let (V ,0) ⊂ (Cn,0) be the germ of a holonomic analytic variety. Let us take

V as a sufficiently small representative of the germ, such that the logarithmic
stratification {Vα}, with α ∈ {0,1,2, · · · ,d} for some d ∈N, be Whitney. The closure
of each stratum Vα is itself an analytic space, with regular part Vα, so it makes
sense to define the invariant Eu f ,Vα

(0).

THEOREM (3.7). Let V ⊂Cn be a holonomic free divisor, and

F : (Cn ×Cr,0)→C

a family of functions with isolated singularity on at 0 on V . Then µBR( fu) constant
for the family implies µ( fu), µL( fu) and Eu fu ,V (0) constant for the family.

Proof. Since V is a holonomic free divisor, by Proposition 6.3 of [7] the LC(V ) is
a complete intersection, therefore Cohen-Macaulay, and in this case we have by
Theorem 2.12, the following,

µBR( f )=∑
α

mα(−1)dimCVαEu f ,Vα
(0),

where mα denotes the multiplicity of C(Vα) in LC(V ).
Since gα(u) = (−1)dimCVαEu fu ,Vα

(0) are upper semicontinuous, because it is
counting the number of Morse points, we have by the relations

µBR( f )=∑
α

mαgα(u),

that µBR( fu) constant for the family implies that all terms gα(u) and µ( fu) are con-
stant for the family. In particular it follows that µ( f ) and Eu fu ,V (0) are constant
for the family. Therefore, by Proposition 3.16 of [12] µL( fu) is also constant.

The motivation to study the constancy of theses invariants above (in particular
Euler obstruction of f ) is based on their relations with the Milnor number. We ex-
pect that the constancy of them can be an important tool to prove a Lê-Ramanujan
type result on singular varieties [21], which is an open problem in this theory.
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EXTENSIONS OF HOM-LIE ALGEBRAS ON LIE ALGEBRAS

ZHIQI CHEN AND KE LIANG

ABSTRACT. Hom-Lie algebras can be considered as a deformation of Lie alge-
bras, including Lie algebras as a subclass. The central extension theory of hom-
Lie algebras has been given. In this note, we develop the extension theory of
hom-Lie algebras on Lie algebras based on the cohomology of Lie algebras.

1. Introduction

A new approach to the deformation theory of Witt and Virasoro algebras using
σ-derivations was introduced by Jonas T. Hartwig, Daniel Larsson and Sergei D.
Silvestrov in [4]. They also introduced the notion of a hom-Lie algebra, which is
a non-associative algebra satisfying the skew symmetry and the σ-twisted Jacobi
identity. Here σ is called twisting homomorphism. When the twisting homomor-
phism is identity, the hom-Lie algebras degenerate to exactly the Lie algebras.
Deformation theory and cohomology of Hom-Lie algebras were considered in [8]
and earlier precursors of Hom-Lie algebras can be found in [2, 6]. In [5], Daniel
Larsson and Sergei D. Silvestrov introduced the notion of a quasi-hom-Lie alge-
bra, which is a natural generalization of hom-Lie algebras. Quasi-hom-Lie al-
gebras include also as special cases (color) Lie algebras and super-algebras, and
can be seen as deformations of these by maps, twisting the Jacobi identity and
skew-symmetry.

For the class of hom-Lie algebras (or quasi-hom-Lie algebras), the central ex-
tension theory was developed in [4] (or [5]). Also it is of key importance to develop
the abelian extension theory. In order to do this, it is necessary to restrict the
hom-Lie algebras on certain class of algebras satisfying the skew symmetry. Thus
it is natural to study the hom-Lie algebras on Lie algebras. The goal of this paper
is to develop the extension theory of hom-Lie algebras on Lie algebras following
the notions of [4], in particular, for the case when the twisting homomorphisms
are automorphisms.

The paper is organized as follows. In Section 2, we list some notions. In Section
3, we give the central extension theory firstly introduced in [4]. In Section 4, we
develop the extension theory of hom-Lie algebras on Lie algebras. In Section 5,
assume that the twisting homomorphisms are automorphisms. Then we have
another σ-twisted Jacobi identity, which give a new form of the extension theory
of hom-Lie algebras on Lie algebras.

2. Preliminary

First let us recall some notions in [4].

2010 Mathematics Subject Classification: 17A30, 17B56.
Keywords and phrases: Hom-Lie algebra; extension; central extension; cohomology.
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Definition (2.1). A hom-Lie algebra (L,σ) is a non-associative algebra L over
the complex numbers field C together with an algebra homomorphism σ : L → L,
such that

[x, y]=−[y, x],(2.2)

[(id+σ)(x), [y, z]]+ [(id+σ)(y), [z, x]]+ [(id+σ)(z), [x, y]]= 0,(2.3)

for any x, y, z ∈ L, where [·, ·] denotes the product in L.

REMARK (2.4). We call (2.2) the skew symmetry and (2.3) the σ-twisted Jacobi
identity and σ the twisting homomorphism. The condition that σ is a homomor-
phism of algebras in the definition of hom-Lie algebra has been relaxed in [7], to
simply being a linear map. But in this paper, we follow the definition in [4].

EXAMPLE (2.5). Taking σ= id in the above definition gives us the definition of
a Lie algebra. Hence hom-Lie algebras include Lie algebras as a subclass.

EXAMPLE (2.6). For any vector space V , if we put [x, y] = 0 for any x, y ∈ V ,
then (V ,σ) is obviously a hom-Lie algebra for any linear map σ : V → V , since the
conditions are trivially satisfied. We call these algebras abelian hom-Lie algebras.

EXAMPLE (2.7). For hom-Lie algebras (L1,σ1) and (L2,σ2), as in the Lie al-
gebra case, we can define a hom-Lie algebra structure on the space L1 ⊕ L2 by
defining [x1+x2, y1+ y2]= [x1, y1]+[x2, y2] and σ1⊕σ2(x1+x2)=σ1(x1)+σ2(x2) for
any x1, y1 ∈ L1, x2, y2 ∈ L2. We call this hom-Lie algebra the direct sum of (L1,σ1)
and (L2,σ2) and denote it by (L1 ⊕L2,σ1 ⊕σ2).

Definition (2.8). A homomorphism (respectively isomorphism) of hom-Lie alge-
bra φ : (L1,σ1)→ (L2,σ2) is an algebra homomorphism (respectively isomorphism)
from L1 to L2 such that φ◦σ1 =σ2 ◦φ. In other words, the following diagram

-

-

? ?

L1

L1

L2

L2

φ

φ

σ1 σ2

commutes.

PROPOSITION (2.9) ([4]). Let (L,σ) be a hom-Lie algebra, and let N be any
non-associative algebra. Let φ : L → N be an algebra homomorphism. Then the
following two conditions are equivalent:

(1) There exists a linear subspace U ⊆ N containing φ(L) and a linear map
k : U → N such that φ◦σ= k ◦φ.

(2) kerφ⊆ ker(φ◦σ).
Moreover, if these conditions are satisfied, then
(i) k is uniquely determined on φ(L) by φ and σ,
(ii) k|φ(L) is a homomorphism,
(iii) (φ(L),k|φ(L)) is a hom-Lie algebra, and
(iv) φ is a homomorphism of hom-Lie algebras.
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3. Central extensions of hom-Lie algebras

If U and V are vector spaces, let Alt2(U ,V ) denote the space of skew-symmetric
forms (alternating mappings) U ×U →V .

Definition (3.1). An extension of a hom-Lie algebra (L,σ) by an abelian hom-
Lie algebra (H,σH) is a commutative diagram with exact rows

- - - -

- - - -

? ? ?

0 H L̂ L 0

0 H L̂ L 0,

ι

ι

pr

pr

σH σ̂ σ

where (L̂, σ̂) is a hom-Lie algebra. We say that the extension is central if ι(H) ⊆
ann(L̂)= {x ∈ L̂ | [x, y]= 0,∀y ∈ L̂}.

The sequence above splits (as vector spaces) just as in the Lie algebra case,
meaning that there is a (linear) section s : L → L̂ , i.e., a linear map such that
pr ◦ s = idL.

THEOREM (3.2) ([4]). Suppose that (L,σ) and (H,σH) are hom-Lie algebras
with H abelian. If there exists a central extension (L̂, σ̂) of (L,σ) by (H,σH), then
for every section s : L → L̂ there is a gs ∈ Alt2(L,H) and a linear map fs : L̂ → H
such that

fs ◦ ι=σH ,(3.3)

gs(σ(x),σ(y))= fs([s(x), s(y)]L̂),(3.4)

gs((id+σ)(x), [y, z]L)+ gs((id+σ)(y), [z, x]L)+ gs((id+σ)(z), [x, y]L)= 0(3.5)

for any x, y, z ∈ L. Moreover, the third equation is independent of the choice of
section s.

Definition (3.6). A central extension (L̂, σ̂) of (L,σ) by (H,σH) is called trivial if
there exists a linear section s : L → L̂ such that gs(x, y)= 0 for any x, y ∈ L.

PROPOSITION (3.7). A central extension is trivial if and only if for any section
s : L → L̂ there is a linear map s1 : L → L̂ such that (s+s1) is a section and ιgs(x, y)=
s1([x, y]L) for any x, y ∈ L.

THEOREM (3.8) ([4]). Suppose that (L,σ) and (H,σH) are hom-Lie algebras
with H abelian. Then for every g ∈ Alt2(L,H) and every linear map f : L⊕H → H
such that

f (0,a)=σH(a),∀a ∈ H,(3.9)

g(σ(x),σ(y))= f ([x, y]L, g(x+ y)),(3.10)

g((id+σ)(x), [y, z]L)+ g((id+σ)(y), [z, x]L)+ g((id+σ)(z), [x, y]L)= 0(3.11)

for any x, y, z ∈ L, there exists a hom-Lie algebra (L̂, σ̂), which is a central extension
of (L,σ) by (H,σH).
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4. Extensions of hom-Lie algebras on Lie algebras

It is well known that the classical algebras satisfying the skew symmetry are
Lie algebras. Then it is natural to study the hom-Lie algebras on Lie algebras,
such as the hom-Lie algebras on semisimple Lie algebras [3]. We mainly develop
the extension theory of hom-Lie algebras on Lie algebras.

Definition (4.1). If A is a Lie algebra with the products [·, ·] and σ : A → A is a
homomorphism of Lie algebras such that the identity

[(id+σ)(x), [y, z]]+ [(id+σ)(y), [z, x]]+ [(id+σ)(z), [x, y]]= 0

holds for any x, y, z ∈ A, then (A,σ) is called a hom-Lie algebra on a Lie algebra.

Let (L,σ) and (H,σH) be hom-Lie algebras on Lie algebras with H abelian.
The extension (L̂, σ̂) of (L,σ) by (H,σH) is of a hom-Lie algebra in the sense of
Definition (3.1) such that (L̂, σ̂) is a hom-Lie algebra on a Lie algebra. To construct
an extension (L̂ = L⊕H, σ̂) of (L,σ) by (H,σH), we have two things to do:

1. define the hom-Lie algebra homomorphism σ̂, and
2. construct the bracket [·, ·]L̂ with the desired properties.

Note first of all that

pr ◦ σ̂(x)=σ◦ pr(x),∀x ∈ L̂.

This means that

pr(σ̂(x)− s◦σ◦ pr(x))= 0

and this leads to, by the exactness,

(4.2) σ̂(x)= s◦σ◦ pr(x)+ ι◦ fs(x),

where fs : L̂ → H is a linear map dependent on s. Note that combining (4.2) with
the commutativity of the left square in Definition (3.1) we get for a ∈ H that

ι◦σH(a)= σ̂◦ ι(a)= s◦σ◦ pr ◦ ι(a)+ ι◦ fs ◦ ι(a)= ι◦ fs ◦ ι(a),

and since ι is an injective,

(4.3) σH(a)= fs ◦ ι(a).

Since for any x, y ∈ L,

pr([s(x), s(y)]L̂ − s[x, y]L)= 0,

we have that

(4.4) [s(x), s(y)]L̂ = s[x, y]L + ι◦ωs(x, y),

where ωs ∈ Alt2(L,H). Since L̂ is a Lie algebra, we know that ωs is a Lie algebra
2-cocycle in the sense of Chevalley-Eilenberg and (H,π) is a representation of L,
where π is defined by

(4.5) ι(π(x)a)= [s(x), ι(a)]L̂.

THEOREM (4.6). Suppose that (L,σ) and (H,σH) are hom-Lie algebras on Lie
algebras with H abelian. If there exists an extension (L̂, σ̂) of (L,σ) by (H,σH), then
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for every section s : L → L̂ there is a Lie algebra 2-cocycle ωs : L×L → H in the sense
of Chevalley-Eilenberg and a linear map fs : L̂ → H such that

σH(a)= fs ◦ ι(a),(4.7)

σH(π(x)a)=π(σ(x))(σH(a)),(4.8)

σH ◦ωs(x, y)−ωs(σ(x),σ(y))=π(σ(x))φs(y)−π(σ(y))φs(x)−φs([x, y]L),(4.9)

π([x, y]L)σH(a)−π(σ(x))π(y)a+π(σ(y))π(x)a = 0,(4.10)

	x,y,z (ωs(σ(x), [y, z]L)−π([y, z]L)φs(x)+π(σ(x))ωs(y, z))= 0,(4.11)

for any x, y, z ∈ L,a ∈ H, where 	x,y,z denotes cyclic summation with respect to
x, y, z and φs = fs ◦ s is a linear map from L to H.

Proof. Set φs = fs ◦ s. Since σ̂ is a homomorphism of L̂, we know that for any
x̂, ŷ ∈ L̂, σ̂[x̂, ŷ]L̂ = [σ̂(x̂), σ̂( ŷ)]L̂. Then for any x ∈ L,a ∈ H,

σ̂[s(x), ι(a)]L̂ = [σ̂◦ s(x), σ̂◦ ι(a)]L̂.

Also we have

[σ̂◦ s(x), σ̂◦ ι(a)]L̂

= [s◦σ◦ pr ◦ s(x)+ ι◦ fs ◦ s(x), s◦σ◦ pr ◦ ι(a)+ ι◦ fs ◦ ι(a)]L̂

= [s◦σ(x)+ ι◦φs(x), ι◦σH(a)]L̂

= [s◦σ(x), ι◦σH(a)]L̂

= ι(π(σ(x))(σH(a))).

Since ι is injective, by (4.5),

σH(π(x)a)=π(σ(x))(σH(a)).

For any x, y ∈ L, we also have σ̂[s(x), s(y)]L̂ = [σ̂◦ s(x), σ̂◦ s(y)]L̂. By (4.2) and (4.4),

σ̂[s(x), s(y)]L̂

= σ̂(s[x, y]L + ι◦ωs(x, y))

= s◦σ◦ pr ◦ s[x, y]L + ι◦ fs ◦ s[x, y]L + ι◦ fs ◦ ι◦ωs(x, y)

= s◦σ([x, y]L)+ ι◦φs([x, y]L)+ ι◦σH ◦ωs(x, y);

[σ̂◦ s(x), σ̂◦ s(y)]L̂

= [s◦σ◦ pr ◦ s(x)+ ι◦ fs ◦ s(x), s◦σ◦ pr ◦ s(y)+ ι◦ fs ◦ s(y)]L̂

= [s◦σ(x)+ ι◦φs(x), s◦σ(y)+ ι◦φs(y)]L̂

= [s◦σ(x), s◦σ(y)]L̂ + [s◦σ(x), ι◦φs(y)]L̂ + [ι◦φs(x), s◦σ(y)]L̂

= s[σ(x),σ(y)]L + ι◦ωs(σ(x),σ(y))+ ι◦π(σ(x))φs(y)− ι◦π(σ(y))φs(x).

It follows that

σH ◦ωs(x, y))−ωs(σ(x),σ(y))=π(σ(x))φs(y)−π(σ(y))φs(x)−φs([x, y]L).

Since (L̂, σ̂) is a hom-Lie algebra, we know that 	x̂, ŷ,ẑ [(σ̂+ id)(x̂), [ ŷ, ẑ]L̂]L̂ = 0.
Thus

	x̂, ŷ,ẑ [σ̂(x̂), [ ŷ, ẑ]L̂]L̂ = 0
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for any x̂, ŷ, ẑ ∈ L̂. By (4.2), (4.4) and the linearity of the product, for any x, y ∈
L,a ∈ H,

[σ̂◦ ι(a), [s(x), s(y)]L̂]L̂

= [s◦σ◦ pr ◦ ι(a)+ ι◦ fs ◦ ι(a), s[x, y]L + ι◦ωs(x, y)]L̂

=−[s[x, y]L, ι◦σH(a)]L̂

=−ι(π([x, y]L)σH(a));

[σ̂◦ s(x), [s(y), ι(a)]L̂]L̂

= [s◦σ◦ pr ◦ s(x)+ ι◦ fs ◦ s(x), ι◦π(y)a]L̂

= [s◦σ(x), ι◦π(y)a]L̂

= ι(π(σ(x))π(y)a).

Then we have that

[σ̂◦ ι(a), [s(x), s(y)]L̂]L̂ + [σ̂◦ s(x), [s(y), ι(a)]L̂]L̂ + [σ̂◦ s(y), [ι(a), s(x)]L̂]L̂

=−ι(π([x, y]L)σH(a)−π(σ(x))π(y)a+π(σ(y))π(x)a),

which implies that

π([x, y]L)σH(a)−π(σ(x))π(y)a+π(σ(y))π(x)a = 0.

Also by (4.2), (4.4) and the linearity of the product, for any x, y, z ∈ L,

[σ̂◦ s(x), [s(y), s(z)]L̂]L̂

= [σ̂◦ s(x), s[y, z]L + ι◦ωs(y, z)]L̂

= [σ̂◦ s(x), s[y, z]L]L̂ + [σ̂◦ s(x), ι◦ωs(y, z)]L̂

= [s◦σ◦ pr ◦ s(x)+ ι◦ fs ◦ s(x), s[y, z]L]L̂ + [s◦σ◦ pr ◦ s(x)+ ι◦ fs ◦ s(x), ι◦ωs(y, z)]L̂

= [s◦σ(x)+ ι◦φs(x), s[y, z]L]L̂ + [s◦σ(x)+ ι◦φs(x), ι◦ωs(y, z)]L̂

= [s◦σ(x), s[y, z]L]L̂ + [ι◦φs(x), s[y, z]L]L̂ + [s◦σ(x), ι◦ωs(y, z)]L̂

+ [ι◦φs(x), ι◦ωs(y, z)]L̂

= s[σ(x), [y, z]L]L + ι◦ωs(σ(x), [y, z]L)− ι◦π([y, z]L)φs(x)+ ι◦π(σ(x))ωs(y, z)

Summing up cyclically we get

	x,y,z (ωs(σ(x), [y, z]L)−π([y, z]L)φs(x)+π(σ(x))ωs(y, z))= 0.

THEOREM (4.12). Suppose that L is a Lie algebra and (H,σH) is a hom-Lie
algebra on a Lie algebra with H abelian. If there exists a hom-Lie algebra ex-
tension (L̂, σ̂) of (L, id) by (H,σH), then for every section s : L → L̂ there is a Lie
algebra 2-cocycle ωs : L×L → H in the sense of Chevalley-Eilenberg and a linear
map fs : L̂ → H such that

σH(a)= fs ◦ ι(a),(4.13)

σH(π(x)a)=π(x)(σH(a)),(4.14)

σH ◦ωs(x, y)−ωs(x, y)=π(x)φs(y)−π(y)φs(x)−φs([x, y]L),(4.15)

π([x, y]L)(σH − id)(a)= 0,(4.16)

	x,y,z (π([y, z]L)φs(x))= 0,(4.17)

for any x, y, z ∈ L,a ∈ H, where 	x,y,z denotes cyclic summation with respect to
x, y, z and φs = fs ◦ s is a linear map from L to H.
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Proof. The identity (4.17) follows the identity (4.11) and the fact that ωs is a 2-
cocycle. The others are clear.

For this case, the map σH involves cohomology of Lie algebras. First to recall
the definition of cohomology of Lie algebras [1]. Let B be a Lie algebra and V be
a module of B. For each non-negative integer k let Ck(B,V ) denote the space of
alternating k-linear B×·· ·×B into V where C0(B,V ) is defined to be equal to V
and C1(B,V ) is a linear map from B into V . Denote by C(B,V ) the direct sum of
all the spaces Ck(B,V )(0≤ k <∞). The coboundary operator d : C(B,V )→ C(B,V )
is defined by

(d f )(b0,b1, · · · ,bk)

=
k∑

i=0
(−1)ibi f (b0, · · · , b̂i, · · · ,bk)+∑

i< j
(−1)i+ j f ([bi,b j],b0, · · · , b̂i, · · · , b̂ j, · · · ,bk)

for any f ∈ Ck(B,V ) and b0,b1, · · · ,bk ∈ B, where the hat ˆ over a symbol means
that it should be omitted. It is known that d2 = 0. Call any k-form f ∈ Ck(B,V ) a
k-cocycle if and only if d f = 0 and denote the subspace of k-cocycles by Zk(B,V ).
The k-th cohomology group Hk(B,V ) is defined to be the factor space Zk(B,V )/
dCk−1(B,V ) for k ≥ 1 and Z0(B,V ) for k = 0.

Since H is an L-module defined by (4.5), we have that for any x0, x1, · · · , xk ∈ L
and f ∈ Ck(L,H), by (4.14),

σH(d f (x0, x1, · · · , xk)) = σH(
k∑

i=0
(−1)iπ(xi) f (x0, · · · , x̂i, · · · , xk)

+ ∑
i< j

(−1)i+ j f ([xi, x j], x0, · · · , x̂i, · · · , x̂ j, · · · , xk))

=
k∑

i=0
(−1)iσH(π(xi) f (x0, · · · , x̂i, · · · , xk))

+ ∑
i< j

(−1)i+ jσH( f ([xi, x j], x0, · · · , x̂i, · · · , x̂ j, · · · , xk))

=
k∑

i=0
(−1)iπ(xi)σH( f (x0, · · · , x̂i, · · · , xk))

+ ∑
i< j

(−1)i+ jσH( f ([xi, x j], x0, · · · , x̂i, · · · , x̂ j, · · · , xk))

=
k∑

i=0
(−1)iπ(xi)(σH ◦ f )(x0, · · · , x̂i, · · · , xk)

+ ∑
i< j

(−1)i+ j(σH ◦ f )([xi, x j], x0, · · · , x̂i, · · · , x̂ j, · · · , xk)

= d(σH ◦ f )(x0, · · · , xk).

It follows that

σH(dCk−1(L,H))⊆ dCk−1(L,H),

σH(Zk(L,H))⊆ Zk(L,H).
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Then there is a linear map σ∗
H on Hk(L,H) induced by σH . In particular, by (4.15),

for the 2-cocycle ωs,

(4.18) σH ◦ωs(x, y)−ωs(x, y)= dφs(x, y),

where φs ∈ C1(L,H). It follows that σ∗
Hω̄s = ω̄s. That is, we have the following

theorem:

THEOREM (4.19). Suppose that L is a Lie algebra and (H,σH) is a hom-Lie
algebra on a Lie algebra with H abelian, (L̂, σ̂) is an extension of (L, id) by (H,σH),
ωs and fs are the 2-cocycle and the linear map satisfying the identities (4.13)−
(4.17) corresponding to some section s. Then the element in the cohomology group
H2(L,H) induced by ωs is a fixed element of the linear map σ∗

H , where σ∗
H is the

linear map on Hk(L,H) induced by σH for any non-negative integer k.

5. Extensions of hom-Lie algebras on Lie algebras with twisting
automorphisms

It is natural to discuss a class of special hom-Lie algebras, hom-Lie algebras
(g,θ) on Lie algebras with θ automorphism of Lie algebras. For a given hom-
Lie algebra (g,θ) on a Lie algebra with θ automorphism, then θ-twisted Jacobi
identity

	x,y,z [θ(x), [y, z]]= 0
holds for any x, y, z ∈ g if and only if

(5.1) 	x,y,z [x,θ−1[y, z]]= 0.

In this section, assume that (L,σ) and (H,σH) are hom-Lie algebras on Lie alge-
bras with σH and σ automorphisms and H abelian and (L̂, σ̂) is an extension of
(L,σ) by (H,σH). Then σ̂ is an automorphism. Furthermore we have a commuta-
tive diagram with exact rows

- - - -

- - - -

6 6 6

0 H L̂ L 0

0 H L̂ L 0.

ι

ι

pr

pr

σ−1
H σ̂−1 σ−1

Similar to the discussion in Section 4, note first of all that

pr ◦ σ̂−1(x)=σ−1 ◦ pr(x),∀x ∈ L̂.

This means that
pr(σ̂−1(x)− s◦σ−1 ◦ pr(x))= 0

and this leads to, by the exactness,

(5.2) σ̂−1(x)= s◦σ−1 ◦ pr(x)+ ι◦ gs(x),

where gs : L̂ → H is a linear map dependent on s. Combining (5.2) with the com-
mutativity of the left square in the above digram we get for a ∈ H that

ι◦σ−1
H (a)= σ̂−1 ◦ ι(a)= s◦σ−1 ◦ pr ◦ ι(a)+ ι◦ gs ◦ ι(a)= ι◦ gs ◦ ι(a),

and since ι is an injective,

(5.3) σ−1
H (a)= gs ◦ ι(a).



EXTENSIONS OF HOM-LIE ALGEBRAS ON LIE ALGEBRAS 113

Also we have that for any x, y ∈ L

(5.4) [s(x), s(y)]L̂ = s[x, y]L + ι◦ωs(x, y),

where ωs is a Lie algebra 2-cocycle in the sense of Chevalley-Eilenberg and (H,π)
is a representation of L, where π is defined by

(5.5) ι(π(x)a)= [s(x), ι(a)]L̂.

THEOREM (5.6). Suppose that (L,σ) and (H,σH) are hom-Lie algebras on Lie
algebras with H abelian and σH and σ automorphism. If there exists an extension
(L̂, σ̂) of (L,σ) by (H,σH), then for every section s : L → L̂ there is a Lie algebra
2-cocycle ωs : L × L → H in the sense of Chevalley-Eilenberg and a linear map
gs : L̂ → H such that

σ−1
H (a)= fs ◦ ι(a),(5.7)

σ−1
H (π(x)a)=π(σ−1(x))(σ−1

H (a)),(5.8)

σ−1
H ◦ωs(x, y)−ωs(σ−1(x),σ−1(y))=π(σ−1(x))φs(y)−π(σ−1(y))φs(x)−φs([x, y]L),

(5.9)

π(σ−1[x, y]L)a−π(x)(σ−1
H (π(y)a))+π(y)(σ−1

H (π(x)a))= 0,(5.10)

	x,y,z (ωs(x,σ−1[y, z]L)+π(x)φs([y, z]L)+π(x)(σ−1
H ◦ωs(y, z))= 0,(5.11)

for any x, y, z ∈ L,a ∈ H, where 	x,y,z denotes cyclic summation with respect to
x, y, z and φs = gs ◦ s is a linear map from L to H.

Proof. The proof is similar to that of Theorem (4.6).

THEOREM (5.12). Suppose that (L̂, σ̂) is an extension of (L,σ) by (H,σH), where
(L,σ) and (H,σH) are hom-Lie algebras on Lie algebras with H abelian and σH
and σ automorphisms, ωs and gs are the 2-cocycle and the linear map correspond-
ing to some section s respectively and φs = gs◦s. If s1 is a section such that ωs1 =ωs,
then Ω ∈ Z2(L,H), where Ω(x, y)= (φs −φs1 )[x, y]L.

Proof. By Theorem (5.6), for sections s, s1, we have that

	x,y,z (ωs(x,σ−1[y, z]L)+π(x)φs([y, z]L)+π(x)(σ−1
H ◦ωs(y, z))= 0,

	x,y,z (ωs1 (x,σ−1[y, z]L)+π(x)φs1 ([y, z]L)+π(x)(σ−1
H ◦ωs1 (y, z))= 0.

Set Ω(x, y) = (φs −φs1 )[x, y]L. Then Ω ∈ C2(L,H). By the above two identities and
the assumption ωs1 =ωs, we have that

	x,y,z π(x)Ω(y, z)=	x,y,z π(x)(φs −φs1 )[y, z]L = 0.

Thus for any x, y, z ∈ L,

dΩ(x, y, z)

=π(x)Ω(y, z)−π(y)Ω(x, z)+π(z)Ω(x, y)−Ω([x, y], z)−Ω([y, z], x)+Ω([x, z], y)

=π(x)Ω(y, z)+π(y)Ω(z, x)+π(z)Ω(x, y)− (φs −φs1 )([[x, y], z]+ [[y, z], x]+ [[z, x], y])

=	x,y,z π(x)Ω([y, z]L)= 0.

That is, the theorem follows.
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THEOREM (5.13). Suppose that (L̂, σ̂) is an extension of (L, id) by (H,σH), where
(L, id) and (H,σH) are hom-Lie algebras on Lie algebras with H abelian and σH
automorphism, ωs and gs are the 2-cocycle and the linear map corresponding to
some section s respectively and φs = gs◦s. If s1 is a section such that ωs1 =ωs, then

Λ ∈ Z1(L,H) and Ω ∈ Z2(L,H),

where Λ(x)= (φs −φs1 )(x) and Ω(x, y)= (φs −φs1 )[x, y]L.

Proof. By (5.9) for σ= id, we know that,

σ−1
H ◦ωs(x, y)−ωs(x, y)= dφs(x, y).

Similarly, for the section s1, we have that

σ−1
H ◦ωs1 (x, y)−ωs1 (x, y)= dφs1 (x, y).

Set Λ(x) = (φs −φs1 )(x) and Ω(x, y) = (φs −φs1 )[x, y]L. Then by the assumption
ωs1 =ωs and the above identities, we have that

dΛ(x, y)= 0.

That is, Λ ∈ Z1(L,H) and the theorem follows from Theorem (5.12).

6. Examples

Let L be a non-abelian Lie algebra in dimension 2 over C and σ be a homomor-
phism of L. It is easy to see that (L,σ) is a hom-Lie algebra if and only if there
exists a basis {x, y} such that

1. [x, y]= y, σ= 0, or
2. [x, y]= y, σ(x)= y, σ(y)= 0, or
3. [x, y]= y, σ(x)= ax for a 6= 0, σ(y)= 0or
4. [x, y]= y, σ(x)= x, σ(y)= ay for a 6= 0, or
5. [x, y]= y, σ(x)= x+ y, σ(y)= y;

Assume that V is a one-dimensional non-trivial module of L. Then there exists a
basis {z} of V such that

(6.1) x · z = bz, y · z = 0,

where b 6= 0. It is easy to check that dimH2(L,V )= 1. As a Lie algebra, the abelian
extension L̂ of L by V is defined by

(6.2) [x, y]= y+ cz, [x, z]= bz.

Let σ̂ be a homomorphism of L̂ such that σ̂(z) = dz. Then (L̂, σ̂) is a hom-Lie
algebra if and only if there exists a basis {x, y, z} of L̂ such that

1. [x, y]= y+ z, [x, z]= z, σ̂(x)= x+k1 y+k2z, σ̂(y)= d y+k3z, σ̂(z)= dz 6= 0, or
2. [x, y]= y+ z, [x, z]= z, σ̂(x)= kx, σ̂(y)= σ̂(z)= 0, or
3. [x, y]= y+ z, [x, z]= z, σ̂(x)= x+k1 y, σ̂(y)= k2 y+k3z 6= 0, σ̂(z)= 0, or
4. [x, y]= y, [x, z]= bz, σ̂(x)= kx, σ̂(y)= σ̂(z)= 0, or
5. [x, y]= y, [x, z]= z, σ̂(x)= x+k1 y, σ̂(y)= k2 y+k3z 6= 0, σ̂(z)= 0, or
6. [x, y]= y, [x, z]= bz for b 6= 1, σ̂(x)= bx, σ̂(y)= kz 6= 0, σ̂(z)= 0, or
7. [x, y]= y, [x, z]= bz for b 6= 1, σ̂(x)= x+k1 y, σ̂(y)= k2 y 6= 0, σ̂(z)= 0, or
8. [x, y]= y, [x, z]= bz, σ̂(x)= bx+k1 y+k2z, σ̂(y)= 0, σ̂(z)= dz 6= 0, or
9. [x, y]= y, [x, z]= z, σ̂(x)= x+k1 y+k2z, σ̂(y)= k3 y+k4z 6= 0, σ̂(z)= dz 6= 0, or

10. [x, y]= y, [x, z]=−z, σ̂(x)=−x+k1z, σ̂(y)= k2z 6= 0, σ̂(z)= dz 6= 0.
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In fact, this gives the classification of 1-dimensional abelian extensions of the 2-
dimensional hom-Lie algebras on the non-abelian Lie algebra.
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ON SIMILAR MATRICES AND THEIR PRODUCTS

EDITH ADAN-BANTE AND JOHN M. HARRIS

ABSTRACT. Let GL(n, q) be the group of n×n invertible matrices over a field with
q elements, and SL(n, q) be the group of n×n matrices with determinant 1 over a
field with q elements. We prove that the product of any two non-central conjugacy
classes in GL(n, q) is the union of at least q−1 distinct conjugacy classes, and that
the product of any two non-central conjugacy classes in SL(n, q) is the union of at
least

⌈ q
2

⌉
distinct conjugacy classes.

1. Introduction

Let G be a finite group and A ∈ G. Denote by AG = {AB | B ∈ G} the conjugacy
class of A in G. Let X be a G-invariant subset of G, i.e. XA = {BA | B ∈X} =X for
all A ∈G. Then X can be expressed as a union of n distinct conjugacy classes of G,
for some integer n > 0. Set η(X)= n.

Given any conjugacy classes AG, BG in G, we can check that the product AGBG =
{XY | X ∈ AG,Y ∈ BG} is a G-invariant subset of G and thus AGBG is the union of
η(AGBG) distinct conjugacy classes of G. For instance, if A or B is in the center
Z(G) of G, then AGBG = (AB)G and thus η(AGBG) = 1. The number η(AGBG) is
related to the (non-vanishing) structure constants for the center of the group al-
gebra CG and can (at least in principle) be calculated from the character table for
G.

It is proved in [4] that for any integer n > 5, given any nontrivial conjugacy
classes αSn and βSn of the symmetric group Sn of n letters, that is α,β ∈ Sn \ {e},
if n is a multiple of two or of three, the product αSnβSn is the union of at least
two distinct conjugacy classes, i.e. η(αSnβSn )≥ 2, otherwise the product αSnβSn is
the union of at least three distinct conjugacy classes, i.e. η(αSnβSn )≥ 3. A similar
result is proved for the alternating group An in [2]. If p is a prime number, in [1]
it is proved that given any p-group P and any conjugacy classes aP and bP of P
of size p, the product aP bP is either a conjugacy class or the union of at least p+1

2
distinct conjugacy classes.

Fix a prime p and integers m > 0 and n ≥ 2. Let F=F(q) be a field with q = pm

elements and G=GL(n, q) be the general linear group of n×n invertible matrices
over F. Then a conjugacy class AG in G is the set of all similar matrices to A.
Given any two noncentral conjugacy classes AG,BG of G, is there any relationship
among n, q and η(AGBG)?

THEOREM (1.1). Let A and B be matrices in G = GL(n, q). Then one of the
following holds:

(i) AGBG = (AB)G and at least one of A, B is a scalar matrix.

2010 Mathematics Subject Classification: 20G40, 20E45.
Keywords and phrases: conjugacy classes, products of conjugacy classes, general linear group, ma-

trices, special linear group.
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(ii) AGBG is the union of at least q−1 distinct conjugacy classes, i.e. η(AGBG)≥
q−1.

Given any group G, denote by min(G) the smallest integer in the set {η(aG bG) |
a,b ∈G \Z(G)}. We want to emphasize that the previous result is not an optimal
result, that is, min(GL(n, q))> q−1 for certain values of n and q. By Remark 2.15,
we have that min(GL(2,2m)) = 2m −1 for any integer m > 0. Also, using GAP [6],
we can check that min(GL(2, q))= q−1 for q ∈ {3,5,7,9,11,13}, but GL(3,3)= 4> 2.
Hence, we suspect that min(GL(n, q)) should be a function of n as well as q.

We now turn our attention to the special linear group SL(n, q), the group of n×n
matrices with determinant 1 over a finite field with q elements. For example, in
the case of SL(2, q) with q ≥ 4 even, by a conjecture of Arad and Herzog [5], since
SL(2, q) = PSL(2, q) is simple nonabelian, we must have that the product of two
nontrivial conjugacy classes ASL(2,q), BSL(2,q) of SL(2, q) is never a conjugacy class,
i.e η(ASL(2,q)BSL(2,q))> 1. In [3], min(SL(2, q)) is given for any q. We now consider
SL(n, q) for any integer n ≥ 2.

THEOREM (1.2). Let A and B be matrices in S = SL(n, q). Then one of the fol-
lowing holds:

(i) ASBS = (AB)S and at least one of A, B is a scalar matrix.
(ii) ASBS is the union of at least

⌈ q
2
⌉

distinct conjugacy classes, i.e. η(ASBS) ≥⌈ q
2
⌉
.

Given a group G, let max(G) denote the largest integer in the set {η(aG bG) |
a,b ∈ G}. Our computations suggest that max(GL(2, q)) = max(SL(2, q)) = q + 1
for q even, max(GL(2, q)) = q+2 for odd q, and max(SL(2, q)) = q+3+ (q+1) mod 4

2
for odd q > 3. These do not hold for n > 2, however. For instance, max(GL(3,3)) =
max(SL(3,3))= 12. Still, at least for our limited data, max(SL(n, q)) is always ν−1
or ν, where ν is the number of conjugacy classes of SL(n, q), with the exception of
max(SL(2,3))= 3.

Acknowledgment. We would like to thank Professor Everett C. Dade for his
suggestion to study products of conjugacy classes in the linear groups. The first
author would like to thank Northern Illinois University for their support.

2. Proofs

LEMMA (2.1). Let G be a finite group, aG and bG be conjugacy classes of G.
Then aG bG = bGaG .

Proof. See Lemma 3 of [4].

LEMMA (2.2). Let F be a finite field with q elements, and a,b, c ∈F with a 6= 0.
(i) If q is even, then the set {ai2 + c | i ∈F} has q elements.
(ii) The set {ai2 +bi+ c | i ∈F} has at least

⌈ q
2
⌉

elements.

Proof. (i) If the field F has even characteristic, the map x 7→ x2 is an automor-
phism of the field. Observe then that

|{ai2 + c | i ∈F}| = |{ai2 | i ∈F}| = |{i2 | i ∈F}| = q.

(ii) Observe that ai2 + bi + c = a j2 + b j + c for i 6= j if and only if a(i2 − j2) =
a(i+ j)(i− j) = −b(i− j), and thus if and only if i+ j = −b

a , i.e j = −i+ −b
a . Thus

given any i ∈ F, we can find at most one other element j ∈ F such that j 6= i and
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ai2 + bi+ c = a j2 + b j+ c, namely j = −i+ −b
a . Hence, the set {ai2 + bi+ c | i ∈ F}

has at least
⌈ q

2
⌉

elements. (In fact, the set has exactly
⌈ q

2
⌉

elements, except when
q even and b = 0.)

LEMMA (2.3). Let F be a finite field with q elements. Fix a,b, c,d and e in F.
Then for at least q−1 distinct values of f in F, the equation

(2.4) ax2 − y2 +bxy+ cy+ (d− f )x+ e = 0

has a solution (x, y) ∈F×F with x 6= 0. In particular, the set { 1
x (ax2− y2+bxy+ cy+

e)+d | (x, y) ∈F×F, x 6= 0} has at least q−1 elements.

Proof. Suppose a = 0. If e 6= 0, then ( −e
d− f ,0) is a solution for the equation as long

as f 6= d. If e = 0, choose y 6= 0. Then a solution for (2.4) is ( y2−cy
by+d− f , y), for all

f 6= by+d. Therefore in each case, we exclude only one possible value of f , giving
at least q−1 values.

We may assume then that a 6= 0.
Case 1. Assume that q is even and q > 2. (The result follows trivially when

q = 2.)
Suppose b = 0. If f = d, choose y such that −y2 + cy+ e 6= 0. Then the set

{ax2 − y2 + cy+ e | x ∈ F} has q elements by Lemma 2.2 (i). Hence, (2.4) has a
solution with x 6= 0.

Suppose f 6= d. For each y, choose x = −cy
d− f , so that cy+ (d− f )x = 0. By Lemma

2.2 (i), the set {ax2−y2+e | y ∈F, x = −cy
d− f }= {( −ac2

(d− f )2 −1)y2+e | y ∈F} has q elements,

as long as −ac2 6= (d− f )2. Then for some y, ( −cy
d− f , y) is a solution for (2.4), and x 6= 0

as long as c 6= 0 and y 6= 0. If c = 0, then the set {ax2 − y2 + (d− f )x+ e | y ∈F, x = 1}
has q elements by Lemma 2.2 (i), and so for some y, (1, y) is a solution for (2.4). If
y = 0, since ( −cy

d− f , y) was a solution, we must have that e = 0, and so (− d− f
a ,0) is a

solution for (2.4) with x 6= 0.
We may assume then that b 6= 0. If c 6= 0, then consider x = −c

b and so bxy+cy=
0. As before, the set {ax2 − y2 + (d− f )x+ e | y ∈F, x = −c

b } has q elements and thus
for some y, we have that (−c

b , y) is a solution for (2.4). We may assume then that
c = 0. Let y =− d− f

b and thus bxy+ (d− f )x = 0. Then the set {ax2 − y2 + e | x ∈F}
has q elements. Thus, for some x, we have that (x, y) is a solution for (2.4). If x = 0
then −y2 + e = 0 and since the field is of characteristic 2, then there is a unique
f ∈F such that −(− d− f

b )2 + e = 0. We conclude that in each case, for at least q−1
values of f , there exists a solution for (2.4) with x 6= 0 when q is even.

Case 2. Assume that q is odd.
Solving for x with the quadratic formula, we get the discriminant

∆= (by+d− f )2−4a(e+ cy− y2)= y2(b2+4a)+ y(2b(d− f )−4ac)+ ((d− f )2−4ae)

which takes on at least (q+1)/2 values as long as b2 +4a and 2b(d− f )−4ac are
not both zero.

Suppose b2 +4a = 0 and assume that c2 +4e is a square. If 2b(d− f )−4ac = 0,

(−c+2y+
p

c2+4e
b , y) is a solution for (2.4). Observe that if for some y, (0, y) is a solu-

tion, then −y2 + cy+ e = 0. Thus y = c±
p

c2+4e
2 and ( f−d−by

a , y) is another solution
for (2.4). Thus, for any value of f such that f 6= d + by, there exists some x 6= 0
such that (2.4) holds. If 2b(d− f )−4ac 6= 0, the discriminant ∆ must be a square
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for some y, since q+1
2 elements of F are squares and thus (−(by+d− f )+p∆

2a , y) is a

solution for (2.4). If (0, y) is a solution, then as above, y= c±
p

c2+4e
2 and ( f−d−by

a , y)
is another solution. Thus, for f 6= d + by, there exists some x 6= 0 such that (2.4)
holds.

Suppose b2 +4a = 0 and assume that c2 +4e is not a square. For all f such
that 2b(d− f )−4ac 6= 0, the discriminant ∆ must be a square for some y, and thus
(−(by+d− f )+p∆

2a , y) is a solution for (2.4). If (0, y) is a solution, then −y2 + cy+ e = 0
and so c2 + 4e is a square. But c2 + 4e is not a square by assumption. Hence,
(x, y) is a solution for (2.4) with x = −(by+d− f )+p∆

2a 6= 0. Thus, for any f such that
2b(d− f )−4ac 6= 0, there exists some x 6= 0 such that (2.4) holds.

Now, suppose that b2 +4a 6= 0. ∆ must be a square for some y, and so
(−(by+d− f )+p∆

2a , y) is a solution for (2.4). If (0, y) is a solution, then y= c±
p

c2+4e
2 and

( f−d−by
a , y) is another solution. Thus, for f 6= d+ by, there exists some x 6= 0 such

that (2.4) holds.
We conclude that in each case, for at least q − 1 values of f , there exists a

solution (x, y) for (2.4) with x 6= 0.
Observe that 1

x (ax2 − y2 + bxy+ cy+ e)+ d = f if and only if ax2 − y2 + bxy+
cy+ (d − f )x+ e = 0 for some (x, y) ∈ F×F with x 6= 0. The last statement then
follows.

Notation. We will denote matrices with uppercase letters and elements in F

with lowercase letters.

REMARK (2.5). Let A be an n× n matrix over F. It is well known that A is
similar to a matrix M such that M is the direct sum of the companion matrices of
a family of polynomials p1, . . ., pt in F[x].

Recall that the companion matrix of a polynomial xr +λr−1xr−1 +·· ·+λ0 ∈F[x]
is

(2.6) R =



0 0 0 0 · · · 0 0 −λ0
1 0 0 0 · · · 0 0 −λ1
0 1 0 0 · · · 0 0 −λ2
0 0 1 0 · · · 0 0 −λ3
...

...
0 0 0 0 · · · 1 0 −λr−2
0 0 0 0 · · · 0 1 −λr−1


Theorem A and B follow from the following remark

REMARK (2.7). Two matrices in the same conjugacy class have the same trace.
Thus, if the matrices do not have the same trace, then they belong to distinct con-
jugacy classes.

We clearly then have

LEMMA (2.8). Let H be a subgroup of GL(n, q) and A, B in H. Suppose that the
set {Trace(XY ) | X ∈ AHBH} has at least r elements. Then AHBH is the union of
at least r distinct conjugacy classes of H, i.e. η(AHBH)≥ r.
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LEMMA (2.9). Let R be an r×r matrix as in (2.6) with r ≥ 2, I be the (r−2)×(r−2)

identity matrix, D =
(

a b
c d

)
be a 2×2 matrix with determinant w = ad−bc 6= 0.

and 0 be a matrix of zeros with the appropriate size. Set E =
(

I 0
0 D

)
. Then for

r = 2,

RE = 1
w

( −λ0cd−ab+λ1bc −λ0d2 −b2 +λ1bd
λ0c2 +a2 −aλ1c λ0cd+ab−aλ1d

)
,

and for r > 2, RE is the r× r matrix

0 0 0 0 · · · 0 0 −λ0c −λ0d
1 0 0 0 · · · 0 0 −λ1c −λ1d
0 1 0 0 · · · 0 0 −λ2c −λ2d
...

...
...

0 0 0 0 · · · 1 0 −λr−3c −λr−3d
0 0 0 0 · · · 0 d

w
−λr−2 cd−ab+λr−1bc

w
−λr−2d2−b2+λr−1bd

w
0 0 0 0 · · · 0 −c

w
λr−2 c2+a2−aλr−1 c

w
λr−2 cd+ab−aλr−1d

w


.

Proof. Suppose r = 2. Then

RE = 1
w

(
d −b
−c a

)(
0 −λ0
1 −λ1

)(
a b
c d

)
= 1

w

(
d −b
−c a

)( −λ0c −λ0d
a−λ1c b−λ1d

)
= 1

w

(
d(−λ0c)−b(a−λ1c) d(−λ0d)−b(b−λ1d)
−c(−λ0c)+a(a−λ1c) −c(−λ0d)+a(b−λ1d)

)
.

For r > 2, RE = (
R11 R12

)( I 0
0 D

)
= (

R11 R12D
)
, where R11 and R12

are r× (r−2) and r×2 submatrices of R, respectively. Hence,

RE =



0 0 0 0 · · · 0 0 −λ0c −λ0d
1 0 0 0 · · · 0 0 −λ1c −λ1d
0 1 0 0 · · · 0 0 −λ2c −λ2d
...

...
...

0 0 0 0 · · · 1 0 −λr−3c −λr−3d
0 0 0 0 · · · 0 1 −λr−2c −λr−2d
0 0 0 0 · · · 0 0 a−λr−1c b−λr−1d


.

Observe that

RE = E−1(RE)=
(

I 0
0 D−1

)(
(RE)11
(RE)21

)
=

(
(RE)11

D−1(RE)21

)
,

where (RE)11 and (RE)21 are (r−2)× r and 2× r submatrices of RE, respectively.
Hence, the first r−2 rows of RE are identical to those of RE, and the last two form
the submatrix(

0 · · · 0 d
w

d(−λr−2 c)−b(a−λr−1 c)
w

d(−λr−2d)−b(b−λr−1d)
w

0 · · · 0 −c
w

−c(−λr−2 c)+a(a−λr−1 c)
w

−c(−λr−2d)+a(b−λr−1d)
w

)
.
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HYPOTHESIS (2.10). Fix n ≥ 2. Let M be a matrix similar to A such that M
is the direct sum of the companion matrices of a family of polynomials p1, . . ., pt.
Also, let N be a matrix similar to B such that N is the direct sum of the companion
matrices of a family of polynomials q1, . . ., qw. Assume that R is the last direct
summand in M, that is,

(2.11) M =
(

M11 0
0 R

)
where M11 is an (n− r)× (n− r) matrix.

Let S be the companion matrix of the polynomial xs+ρs−1xs−1+·· ·+ρ0. Assume
that S is the last direct summand in N, that is

(2.12) N =
(

N11 0
0 S

)
,

where N11 is an (n− s)× (n− s) matrix.

LEMMA (2.13). Assume Hypothesis 2.10. Let E1 =
(

I 0
0 E

)
, where E is as in

Lemma 2.9. Given x, y ∈F with x 6= 0, let D(x, y) =
(

x y
0 1

)
, i.e. a = x, b = y, c = 0

and d = 1 in D, and E(x, y)=
(

I 0
0 D(x, y)

)
.

(i) If r > 2 and s > 2, then

Trace(ME1 N) = Trace(MN)−λr−3c+λr−2 +ρs−2 −λr−1ρs−1
+ 1

w (−λr−2d2 −b2 +λr−1bd+ρs−3c−λr−2ρs−2c2 −a2ρs−2
+aλr−1ρs−2c−λr−2ρs−1cd−abρs−1 +aλr−1ρs−1d).

In particular,

Trace(ME(x,y)N) = 1
x (−ρs−2x2 − y2 −ρs−1xy+λr−1 y−λr−2)
+λr−2 +ρs−2 +Trace(MN).

Thus the set {Trace(ME(x,y)N) | (x, y) ∈F×F, x 6= 0} has at least q−1 elements, and
{Trace(ME(1,y)N) | y ∈F} has at least

⌈ q
2
⌉

elements.
(ii) If r = 2 and s ≥ r, then

Trace(ME1 N) = Trace(MN)+λ0 +ρs−2 −λ1ρs−1
+ 1

w (−λ0d2 −b2 +λ1bd−ρs−2(λ0c2 +a2 −aλ1c)
−ρs−1(λ0cd+ab−aλ1d)).

In particular,

Trace(ME(x,y)N) = 1
x (−ρs−2x2 − y2 −ρs−1xy+λ1 y−λ0))
+λ0 +ρs−2 +Trace(MN).

Thus the set {Trace(ME(x,y)N) | (x, y) ∈ F×F, x 6= 0} has at least q−1 elements,
and {Trace(ME(1,y)N) | y ∈F} has at least

⌈ q
2
⌉

elements.

(iii) Assume that r ≥ 2. Let N1 =
(

I 0
0 D1

)
, where D1 =

(
u 0
0 v

)
is a 2×2

matrix where u 6= v. Then

Trace(ME1 N1) = Trace(MN1)+ u
w (−λr−2cd−ab+λr−1bc)

+ v
w (λr−2cd+ab−aλr−1d+λr−1).
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Thus

Trace(ME(x,y)N1) = 1
x (xy(v−u)−λr−1x+λr−1)+Trace(MN1).

Therefore the set {Trace(ME(1,y)N1) | (x, y) ∈F×F, x 6= 0} has q elements.

Proof. (i) Observe that all but the last three elements of the diagonal of the ma-
trices MN and ME1 N have the same values. Hence, using the previous result,
the last three diagonal values of ME1 N −MN = (ME1 −M)N are

• (0−0)0+ (−λr−3c−0)1+ (−λr−3d+λr−3)0=−λr−3c,
• ( d

w−1)0+( 1
w (−λr−2cd−ab+λr−1bc)−0)0+( 1

w (−λr−2d2−b2+λr−1bd)+λr−2)1=
1
w (−λr−2d2 −b2 +λr−1bd)+λr−2, and

• (−c
w −0)(−ρs−3)+( 1

w (λr−2c2+a2−aλr−1c)−1)(−ρs−2)+( 1
w (λr−2cd+ab−aλr−1d)

+λr−1)(−ρs−1)= 1
w (ρs−3c−λr−2ρs−2c2 −a2ρs−2 +aλr−1ρs−2c−λr−2ρs−1cd

−abρs−1 +aλr−1ρs−1d)+ρs−2 −λr−1ρs−1.

Hence,

Trace(ME1 N)−Trace(MN) = Trace(ME1 N −MN)

= −λr−3c+λr−2 +ρs−2 −λr−1ρs−1

+ 1
w

(−λr−2d2 −b2 +λr−1bd+ρs−3c

−λr−2ρs−2c2 −a2ρs−2 +aλr−1ρs−2c
−λr−2ρs−1cd−abρs−1 +aλr−1ρs−1d).

Thus, when a = x, b = y, c = 0 and d = 1,

Trace(ME1 N)−Trace(MN) = λr−2 +ρs−2 −λr−1ρs−1

+1
x

(−λr−2 − y2 +λr−1 y−ρs−2x2

−ρs−1xy+λr−1ρs−1x)

= 1
x

(−ρs−2x2 − y2 −ρs−1xy+λr−1 y−λr−2)

+λr−2 +ρs−2.

By Lemma 2.3, the set { 1
x (−bs−2x2 − y2 −ρs−1xy+λr−1 y−λr−2)+λr−2 +ρs−2 +

Trace(MN) | (x, y) ∈F×F, x 6= 0} has at least q−1 elements.
By Lemma 2.2 (ii), the set {Trace(ME(1,y)N | y ∈ F} = {−ρs−2 − y2 + (−ρs−1 +

λr−1)y−λr−2 +λr−2 +ρs−2 +Trace(MN) | y ∈F} has at least
⌈ q

2
⌉

elements.
(ii) In this case, the diagonals of MN and ME1 N have the same values, in all

but the last two entries. Hence, using the previous result, the last two diagonal
values of ME1 N −MN = (ME1 −M)N are

• ( 1
w (−λ0cd−ab+λ1bc)−0)0+ ( 1

w (−λ0d2 −b2 +λ1bd)+λ0)1 and
• ( 1

w (λ0c2 +a2 −aλ1c)−1)(−ρs−2)+ ( 1
w (λ0cd+ab−aλ1d)+λ1)(−ρs−1).

Hence, Trace(ME1 N)−Trace(MN)=Trace(ME1 N −MN)=
λ0+ρs−2−λ1ρs−1+ 1

w (−λ0d2−b2+λ1bd−ρs−2(λ0c2+a2−aλ1c)−ρs−1(λ0cd+ab−
aλ1d)).

When a = x, b = y, c = 0 and d = 1, Trace(ME1 N)−Trace(MN)=
λ0+ρs−2−λ1ρs−1+ 1

x (−λ0−y2+λ1 y−ρs−2x2−ρs−1xy+λ1ρs−1x). Thus, Trace(ME1 N)
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= 1
x (−ρs−2x2 − y2 −ρs−1xy+λ1 y−λ0)+λ0 +ρs−2 +Trace(MN). By Lemma 2.3 it

follows that Trace(ME1 N) can take q−1 values.
By Lemma 2.2 (ii), the set {Trace(ME(1,y)N) | y ∈ F} = {−ρs−2 − y2 + (−ρs−1 +

λ1)y−λ0 +λ0 +ρs−2 +Trace(MN) | y ∈F} has at least
⌈ q

2
⌉

elements.
(iii) In this case, the diagonals of MN1 and ME1 N1 have the same values, in all

but the last two entries. Hence, using the previous result, the last two diagonal
values of ME1 N1 −MN1 = (ME1 −M)N1 are

• ( 1
w (−λr−2cd−ab+λr−1bc)−0)u+ ( 1

w (−λr−2d2 −b2 +λr−1bd)+λr−2)0 and
• ( 1

w (λr−2c2 +a2 −aλr−1c)−1)0+ ( 1
w (λr−2cd+ab−aλr−1d)+λr−1)v.

Hence, Trace(ME1 N1)−Trace(MN1)=Trace(ME1 N1 −MN1)=
u
w (−λr−2cd−ab+λr−1bc)+ v

w (λr−2cd+ab−aλr−1d+λr−1).
When a = x, b = y, c = 0 and d = 1, Trace(ME1 N1)−Trace(MN1)=

−uxy
x + v

x (xy−λr−1x+λr−1). Thus, Trace(ME1 N1) = 1
x (xy(v− u)−λr−1x+λr−1)+

Trace(MN1). Since v−u 6= 0, the set { 1
x (xy(v−u)−λr−1x+λr−1)+Trace(MN1) | x =

1, y ∈F} has q elements.

LEMMA (2.14). Let C =
(

C11 0
0 D1

)
be a n×n matrix, where D1 =

(
u1 0
0 v1

)
is a 2× 2 matrix where u1 6= v1. Let E =

(
I 0
0 D

)
be in GL(n, q), where D =(

a b
c d

)
and ad−bc = 1.

Then CE1 =
(

C11 0
0 DD

1

)
, where DD

1 =
(

adu1 −bcv1 bd(u1 −v1)
−ac(u1 −v1) adv1 −bcu1

)
.

Thus, given a matrix N =
(

N11 0
0 D2

)
in GL(n, q), where D2 =

(
u2 0
0 v2

)
is a

2×2 matrix where u2 6= v2, we have that

Trace(CE N)=Trace(CN)−u1u2 −v1v2 +u2(adu1 −bcv1)+v2(adv1 −bcu1).

In particular, if we fix x ∈F, ad = x, and bc = x−1, we have that

Trace(CE N)= x(u1 −v1)(u2 −v2)+ (Trace(CN)− (u1 −v1)(u2 −v2)).

Therefore given any f ∈F, we can find some x ∈F such that Trace(CE N)= f .

Proof. Observe that

DD
1 =

(
d −b
−c a

)(
u1 0
0 v1

)(
a b
c d

)
=

(
d −b
−c a

)(
au1 bu1
cv1 dv1

)
=

(
adu1 −bcv1 bd(u1 −v1)
−ac(u1 −v1) adv1 −bcu1

)
.

The diagonals of CE N and CN have the same values, in all but the last two
entries. Hence, the last two diagonal values of CE N −CN = (CE −C)N are

• (adu1 −bcv1 −u1)u2 + (bd(u1 −v1)−0)0 and
• (−ac(u1 −v1)−0)0+ (adv1 −bcu1 −v1)v2.
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Hence,

Trace(CE N)−Trace(CN) = Trace(CE N −CN)
= (adu1 −bcv1 −u1)u2 + (adv1 −bcu1 −v1)v2.

When ad = x and bc = x−1,

Trace(ME N)−Trace(MN) = (xu1 − (x−1)v1 −u1)u2
+(xv1 − (x−1)u1 −v1)v2

= x((u1 −v1)u2 + (v1 −u1)v2)
+(v1 −u1)u2 + (u1 −v1)v2

= x(u1 −v1)(u2 −v2)− (u1 −v1)(u2 −v2).

Since u1 6= v1 and u2 6= v2, we have that (u1 − v1)(u2 − v2) 6= 0 and thus the set
{x(u1 −v1)(u2 −v2)+ (Trace(CN)− (u1 −v1)(u2 −v2)) | x ∈F}=F.

Proof of Theorem A. If at least one of A, B is in the center Z(G) of G, then AGBG =
(AB)G. Thus we may assume that both matrices A and B are not in the center,
that is we may assume that both A and B are non-scalar matrices.

Assume Hypothesis 2.10. If r ≥ 2 or s ≥ 2, then by Lemma 2.1, Lemma 2.8
and Lemma 2.13 we have that η(AGBG) ≥ q−1. Without loss of generality, we
may assume then that for i = 1, . . . , t and j = 1, . . . ,w, the polynomials pi, q j have
degree 1, that is both A and B are diagonal matrices. Since both A and B are
non-scalar matrices, we may assume that A is similar to C and B is similar to
N, where C and N are as constructed in Lemma 2.14. Hence, by Lemma 2.14,
η(AGBG)≥ q.

REMARK (2.15). Let F be a field with q = 2m elements, for some integer m > 0.

Set G = GL(2, q) = GL(2,F). Let A =
(

1 1
0 1

)
and B =

(
0 1
−1 w

)
in G, where

x2 −wx+1 is an irreducible polynomial over F. Observe that both A and B are in
SL(2, q) and thus AGL(2,q)BGL(2,q) ⊆SL(2, q).

By Proposition 2.13 of [3], η(ASL(2,q)BSL(2,q)) = q−1. Since x 7→ x2 is an auto-
morphism of F, two matrices C, D in GL(2, q) are similar if and only there exists
some H ∈SL(2, q) such that CH = D. Thus η(ASL(2,q)BSL(2,q))= η(AGBG)= q−1.

Proof of Theorem B. As in the proof of Theorem A, we may assume that both ma-
trices A and B in S = SL(n, q) are not in the center, that is we may assume that
both A and B are non-scalar matrices.

We may assume then Hypothesis 2.10. Observe that the matrix E(1, y) in
Lemma 2.13 is in S. Thus if r ≥ 2 or s ≥ 2, then by Lemma 2.1, Lemma 2.8 and
Lemma 2.13 we have that η(ASBS) ≥ ⌈ q

2
⌉
. As in the proof of Theorem A, we may

assume then that both A and B are diagonal matrices. Observe that since ad = x
and bc = x−1, then ad−bc = 1 and so the matrix E in Lemma 2.14 is in S. Since A
and B are non-scalar matrices, the result then follows by Lemma 2.8 and Lemma
2.14.

Received January 20, 2011

Final version received September 8, 2011



126 EDITH ADAN-BANTE AND JOHN M. HARRIS

EDITH ADAN-BANTE

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF SAINT THOMAS,
MAIL OSS 201, 2115 SUMMIT AVENUE,
SAINT PAUL, MN 55105-1079, USA
EdithAdan@illinoisalumni.org

JOHN M. HARRIS

DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF SOUTHERN MISSISSIPPI,
730 EAST BEACH BOULEVARD,
LONG BEACH, MS 39560, USA
john.m.harris@usm.edu

REFERENCES

[1] E. ADAN-BANTE, Nilpotent groups and conjugacy classes. to appear.
[2] E. ADAN-BANTE, J. HARRIS, AND H. VERRIL, Products of conjugacy classes of the alternating

group. preprint.
[3] E. ADAN-BANTE AND J. M. HARRIS, On conjugacy classes of (2, q). preprint.
[4] E. ADAN-BANTE AND H. VERRILL, Symmetric groups and conjugacy classes, J. Group Theory, 11

(3), (2008), 371–379.
[5] Z. ARAD AND M. HERZOG, Products of conjugacy classes in groups, Lecture notes in mathematics,

Springer-Verlag, 1112, (1985).
[6] T. G. GROUP, GAP – Groups, Algorithms, and Programming, Version 4.4.10, http://www.gap-

system.org, 2007.



Bol. Soc. Mat. Mexicana (3) Vol. 17, 2011

INTERPOLATION OF ENTIRE FUNCTIONS

GHIOCEL GROZA, AZEEM HAIDER, AND SARDAR MOHIB ALI KHAN

We establish an interpolation theorem for entire functions, in the case of an
unbounded set of interpolation, which generalizes a series known results.

1. Introduction

Series of the form

(1.1)
∞∑

k=0
akPk,

where the coefficients are complex numbers and Pk are polynomials are useful
tools in different areas of mathematics. For example the expansion of a function
into a series with real coefficients constructed by means of orthogonal polynomial
with respect to a scalar product or interpolation problems of finding a function
from its values on a given sequence are solved by means of series of this type.
Also a proof of a well-known result of Lindemann on the transcendency of eγ,
when γ is an algebraic number (see [8], Theorem 6, Ch. 2, Sec. 3) is based on a
series of the form (1.1). The case

Pk(z)=
k∏

j=1

(
1− z

α j

)
, k ≥ 1, P0(z)= 1,

when the numbers αk defines either a monotone increasing sequence of positive
real numbers with lim

k→∞
αk =∞ or a monotone decreasing sequence of positive real

numbers with lim
k→∞

αk = 0 and the series
∞∑

k=1
αk converges is the subject of [7].

Applications of these series to approximate solutions of boundary value problems
for differential equations are presented in [4] and [5].

Given an arbitrary sequence S = {αk}k≥1 of complex numbers, in Section 2 we
denote by CS[[X ]] the set of Newton interpolating series at S, constructed by
means of Newton interpolation polynomials, and by H(C) the C-algebra of all en-
tire functions with coefficients in C. For every f ∈H(C) we consider g =ϕS( f ) from
CS[[X ]], the Newton interpolating series at S associated to f . If ϕS( f ) converges
absolutely for all z ∈C, we call it a Newton entire function at S.

This paper deals with entire functions which are represented as Newton entire
functions. If S is a bounded set the result is known (see [2], Theorem 4.3.1).

In [6] Ismail and Stanton established q-analogues of Taylor series expansions
for entire functions where M(r, f ) grows like ln2 r, so-called q-Taylor series. They
solved the problem of constructing such entire functions from their values at
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αn = aqn+a−1 q−n

2 , for a, q positive real numbers less than one and n ∈N. In [9] and
[10] Welter generalized this result, when the set {αn}n≥1 is a particular infinite
discrete set called regular sparse. Theorem 2.4 establishes an analogous result
for an arbitrary unbounded sequence of distinct complex numbers, not necessar-
ily regular sparse or even discrete. Consequences of this result are Theorems 3.1
and 3.3 from [6] and Theorem 2.2 from [10] which we obtain in Corollary 2.6 and
Remark 1.

Corollary 2.10 is a well known theorem of Carlson when αk = k−1 and f is of
order one and type less ln2. An example of more general result obtained by this
method is given in Corollary 2.11.

2. Interpolation at an unbounded sequence

Let S = {αk}k≥1 be a sequence of complex numbers and the polynomials uk
defined by

(2.1) u0 = 1, uk =
k∏

j=1
(X −α j), k ≥ 1.

We consider the set of formal series

CS[[X ]]=
{

f =
∞∑

k=0
akuk : ak ∈C

}
,

two such expressions being regarded as equal if and only if they have the same
coefficients. When αk = 0, for all k, CS[[X ]] becomes the usual C-algebra of for-
mal power series C[[X ]]. We call an element f from CS[[X ]] a (formal) Newton
interpolating series at S with coefficients in C.

If { fk}k≥1 is a sequence of complex numbers and S = {αk}k≥1 is a sequence of dis-
tinct complex numbers, we denote by f i1,i2,...,is the divided difference with respect
to s distinct points αi1 , . . . ,αis . Thus f j,k = fk− f j

αk−α j
and generally

f i1,...,is =
f i2,...,is − f i1,...,is−1

αis −αi1

.

Then (see (7) from [3], p. 7)

(2.2) f1,2,...,n =
n∑

k=1

fk
n∏

j=1, j 6=k
(αk −α j)

.

If f is an entire function and S is a sequence of distinct complex numbers, we take
fk = f (αk) and, for every non-negative integer s,

as = f1,2,...,s+1.

We consider

(2.3) g =
∞∑

k=0
akuk ∈CS[[X ]].

Then the series g given by (2.3) is called the Newton interpolating series at S
associated to f .

If f = ∑∞
n=0 bnzn ∈ H(C), then we define a mapping ϕS from H(C) to CS[[X ]]

such that ϕS( f ) is the Newton interpolating series at S associated to f .
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A Newton interpolating series g given by (2.3) which converges absolutely for
all complex numbers is called a Newton entire function at S. Let HS(C) be the
subset of CS[[X ]] of all Newton entire functions. For an entire function f , we are
interested in choosing a particular sequence S such that the Newton interpolating
series at S associated to f is a Newton entire function.

We study the problem when S = {αk}k≥1 is an unbounded sequence of distinct
complex numbers. There are sequences S, such that g, the Newton interpolating
series at S associated with a given entire function f , does not define a complex
function equal to f . Thus if we consider f a non constant entire function having
infinitely many zeros αk, k = 1,2, ..., then by taking S = {αk}k≥1 it is easy to see
that g is the zero function.

Consider R = {rn}n≥1 a sequence of positive real numbers such that rn ≥ γBn,
for all n, where γ> 1, B1 is either equal to |α1|, if α1 6= 0, or equal to |α2|, if α1 = 0,
and for n > 1,

Bn := max
1≤i≤n

{|αi|}.
We set Mn( f ) := max

|z|≤rn
| f (z)|,

es,n,S,R( f ) :=


Mn+1( f )

n+1∏
k=1

(s+Bk)

n+1∏
k=1

(rn+1 −|αk|)


1
n

, s ≤ n,

and
eS,R( f ) := limsup

s→∞
limsup

n→∞
es,n,S,R( f ).

THEOREM (2.4). Let f be an entire function. Consider S = {αk}k≥1 an un-
bounded sequence of distinct complex numbers. If there exists a sequence of positive
real numbers R = {rn}n≥1 such that rn ≥ γBn, for sufficiently large n, where γ > 1
and eS,R( f )< 1, then ϕS( f ) belongs to HS(C),

(2.5) f (z)=
∞∑

n=0
anun(z),

where the series converges uniformly on every compact subset of C, an are given by
(2.2) and every such f is uniquely determined by its values on S.

Proof. By (123) from [3], Section 2.3.1, it follows that

Rn(z)= un+1(z)
2πi

∫
|ξ|=rn+1

f (ξ)dξ
(ξ− z)un+1(ξ)

.

Let z be a fixed complex number. Since there exist s ∈N∗, a real number δ> 1 and
n1 = n1(z) such that |z| ≤ s < Bn1+1, δ

δ−1 < γ and, for all n ≥ n1,

rn+1

rn+1 − s
< δ,

it follows that

|un(z)| ≤
n∏

k=1
(|z|+ |αk|)≤

n∏
k=1

(s+Bk)
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and

|Rn(z)| ≤

n+1∏
k=1

(s+Bk)rn+1Mn+1( f )

(rn+1 − s)
n+1∏
k=1

(rn+1 −|αk|)
≤ δes,n,S,R( f )n.

Hence, because eS,R( f )< 1, it follows that limsup
n→∞

(|Rn(z)|) 1
n < 1 which implies the

theorem.

COROLLARY (2.6). ([6], Theorems 3.1 and 3.3) If f ∈H(C),

xn = aq
n
2 +a−1q− n

2

2
, n ≥ 0, a, q ∈ (0,1)

and

limsup
r→∞

ln M(r, f )
ln2 r

= c,

with M(r, f ) := sup
|z|≤r

{| f (z)|} and c < 1
2ln q−1 , then

f (z)=
∞∑

n=0
cnϕn(z,a),

where

ϕn(z,a)=
n−1∏
k=0

(1−2azqk +a2q2k),

cn =
n∑

k=0
Dk f (x2k),

and Dk are constants constructed by means of a, q and the q-shifted factorials.
Moreover f is uniquely determined by its values on {x2n}n≥0.

Proof. We take, for every k ≥ 1, αk = x2(k−1). Then ϕn(z,a) = (−2a)nq
n(n−1)

2 un(z)
and we choose γ> 1, R = {γa−1q1−n}n≥1. If ε> 0 is small enough, then

(2.7) Mn+1( f )< exp
(

(1−ε) ln2 rn+1

2ln q−1

)
≤ (q−1)

(1−ε)n2
2 +O((q−1)n).

Since, for a fixed s and n large enough, there exists C > 0 such that

(2.8)
n+1∏
k=1

(s+Bk)≤ C2n+1B1B2...Bn+1 ≤ a−n−1(q−1)
n2+n

2 C2n+1

and

(2.9)
n+1∏
k=1

(rn+1 −|αk|)≥
n+1∏
k=1

(rn+1 −Bn+1)≥
(
γ−1

a

)n+1
(q−1)(n+1)2 ,

by (2.7)-(2.9) we obtain

en
s,n,S,R( f )≤ C(s)2nq

n2ε
2 +O(n)(γ−1)−n−1,

where C(s) is a positive real number. Hence eS,R( f ) = 0 and by Theorem 2.4 it
follows the corollary.
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COROLLARY (2.10). ([1], Theorem 9.10.7) Let f be an entire function of order
one and type less than ln2, then

f (z)=
∞∑
j=0

(
z
j

)
(∆ j f0),

where ∆0 f0 = 1, ∆ j f0 =
j∑

k=0
(−1)k

(
j
k

)
f (k), and the series converges uniformly on

compact subsets of the complex plane.

Proof. We choose αk = k−1, k ≥ 1, rk = 2k. Since f is of order one and type less
than ln2 there exists a positive real number ε such that

Mn( f )≤
(

2
eε

)rn

.

Hence there exists ε1 < 1− 1
e2ε such that

es,n,S,R( f )≤
(

2
eε

) 2n+2
n

(
(s+1)...(s+n+1)
(2n+1)...(n+1)

) 1
n + ε1

2
≤ 1

e2ε +ε1

which implies eS,R( f )< 1. Now the result follows by Theorem 2.4.

COROLLARY (2.11). Let f be an entire function of order ρ ∈ (0,∞) and of finite

type σ. If αn = n
θ
ρ , with θ ∈ (0,1), then ϕS( f ) belongs to HS(C),

f (z)=
∞∑

n=0
anun(z),

where the series converges uniformly on every compact subset of C, where an are
defined by (2.2) and every such f is uniquely determined by its values on S.

Proof. We choose rn = 2αn. By hypothesis there exists ε> 0 such that

Mn+1( f )≤ e(σ+ε)rρn+1 .

Then

es,n,S,R( f )≤ e
2ρ (σ+ε)(n+1)θ

n

(
n+1∏
k=1

s+αk

2αn+1 −αk

) 1
n

.

Hence there exists ε1 > 0 small enough such that

es,n,S,R( f )≤ (1+ε1)v
1
n
n ,

where

vn =
n+1∏
k=1

s+αk

2αn+1 −αk
.

Since, for every k ≥ 2,
2αn+1 −α1

2αn+2 −α1
> 2αn+1 −αk

2αn+2 −αk

it follows that
lim

n→∞
vn+1

vn
≤ e−

θ
ρ .

Thus eS,R( f )< 1 and the result follows by Theorem 2.4.
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Remark 1. In [9] and [10], Welter call a subset X ⊂ C regular sparse if X is
infinite, discrete and there exist θ ∈ (1,+∞) and T ∈R such that

(2.12) ψX (rθ)≤ TψX (r)+ o(ψX (r)), when r →+∞,

where ψX (r)=card{x ∈ X : |x| ≤ r}.
For a fixed θ he set

TX (θ) := limsup
r→+∞

ψX (rθ)
ψX (r)

and

Λ̄(X ) := limsup
r→+∞

∑
x∈X ,0<x≤r

ln |x|

ψX (r) ln r
.

If X is a regular sparse subset of C and {αn}n≥1 is the sequence of all distinct
elements of X ordered by increasing modulus, then he proved that all entire func-
tions f with

(2.13) σ := limsup
r→+∞

ln M(r, f )
ψX (r) ln r

< sup
θ∈(1,+∞)

θ− Λ̄(X )
θTX (θ)

have the series expansion of the form (2.5) with an given by (2.2). The result
generalizes Theorem 3.3 from [6]. However the set of all nonnegative integers is
not a regular sparse subset.

To obtain Theorem 2.2 of [10], from Theorem 2.4, as in [10], p. 401 we choose
θ > 1 such that σ < θ−Λ̄(X )

θTX (θ) and rn = |αn|θ. Then rn ≥ 2Bn for sufficiently large n.
Hence, because ψX (|αn|)= n+O(1),

n+1∏
k=1

(rn+1 −|αk|)≥ C1
|αθn+1|n+1

2n+1 ≥ 2−n−1C1 exp
(
θψX (|αn+1|) ln |αn+1|

)
(2.14) +O(|αθn+1|),
where C1 is a positive constant independent on n. By (2.13) and (2.12) it follows
that, for n sufficiently large,

ln Mn+1( f )≤σψX (|αθn+1|) ln |αn+1|θ

(2.15) ≤σTX (θ)θψX (|αn+1)| ln |αn+1|+ o(ψX (|αn+1)| ln |αn+1|).
Then, for each ε> 0,

(2.16) B1B2...Bn+1 = exp

( ∑
x∈X ,0<x≤|αn+1|

ln |x|
)
≤ Λ̄(X )ψX (|αn+1)| ln |αn+1|+ε

and by (2.14)-(2.16)

en
s,n,S,R( f )≤ 4nC2 exp((σθTX (θ)−θ+ Λ̄(X ))ψX (|αn+1|) ln |αn+1|)

+2no(ψX (|αn+1|) ln |αn+1|),
where C2 is a positive constant independent on n. Since ψX (|αn+1|) = n+O(1),
σθTX (θ)−θ+Λ̄(X )< 0 and for regular sparse sets there are positive constants C3
and C4 such that ln |αn| ≥ C3nC4 , for all n, (see [9], Proposition 1) we obtain that
lim

n→∞ es,n,S,R( f )= 0. Then the result follows by Theorem 2.4.
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ASYMPTOTICALLY CENTRAL NETS IN SEMIGROUP ALGEBRAS OF
LOCALLY COMPACT TOPOLOGICAL SEMIGROUPS

B. MOHAMMADZADEH

Let S be a locally compact semigroup and Ma(S) be the semigroup algebra of
all complex Radon measures on S with continuous translations. In this paper, we
study the existence of asymptotically central and quasi-central nets in Ma(S) and
their relations with inner amenability of a locally compact semigroup S.

1. Introduction

Throughout this paper, S denotes a locally compact semigroup; i.e., a semi-
group with a locally compact Hausdorff topology whose binary operation is jointly
continuous. As usual, we denote by M(S) the Banach algebra of all complex
Radon measures on S with the convolution product ∗ and the total variation
norm. The space of all measures µ ∈ M(S) for which the maps x 7−→ δx ∗ |µ| and
x 7−→ |µ| ∗δx from S into M(S) are weakly continuous is denoted by Ma(S) (or
L̃(S) as in [2]), where δx denotes the Dirac measure at x. It is well-known that
Ma(S) is a closed two-sided L-ideal of M(S); see [2] or [21]. S is said a foundation
semigroup if S coincides with the closure of the set

⋃
{supp(µ) : µ ∈ Ma(S)}. Let

us point out that the second dual Ma(S)∗∗ of Ma(S) is a Banach algebra with the
first Arens product ¯ defined by the equations

(F ¯H)( f )= F(H f ), (H f )(µ)= H( f µ) and ( f µ)(ν)= f (µ∗ν)

for all F,H ∈ Ma(S)∗∗, f ∈ Ma(S)∗, and µ,ν ∈ Ma(S).
For M⊆ M(S), we say that a net (µα) in Ma(S) is M-quasi-central (resp. weakly

M-quasi-central) if
µ∗µα−µα∗µ−→ 0

for all µ ∈M in the norm (resp. weak) topology of Ma(S); let us remark that (µα) is
simply called quasi-central (resp. weakly quasi-central) if it is M(S)-quasi-central
(resp. weakly M(S)-quasi-central). The purpose of this paper is to initiate a study
asymptotically central nets in Ma(S) to obtain some characterizations for inner
amenability for certain class of locally compact semigroup of S.

2. Asymptotically central net and inner amenability

We commence with the following lemma which is needed in the sequel. First,
let co(A) denote the convex hull of a subset A of Ma(S).

LEMMA (2.1). Let S be a locally compact semigroup and M⊆ M(S). If (µα)α∈A
is a weakly M-quasi-central net in Ma(S), then there exists a M-quasi-central net
in co({µα}α∈A).

2010 Mathematics Subject Classification: 43A07, 43A10, 43A20, 46H05.
Keywords and phrases: Asymptotically central nets, inner amenability, inner invariant mean, lo-

cally compact semigroup, quasi-central nets.
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Proof. Let E be the locally convex spaceΠ{Ma(S) :µ ∈M} under the product of the
norm topology of Ma(S). Then the weak topology of E is the product of the weak
topology of Ma(S). Following an idea due to Namioka [17], let T : Ma(S)−→ E be
defined by

T(ν)(µ)=µ∗ν−ν∗µ (ν ∈ Ma(S),µ ∈M).

Then T is well defined and linear. Let (µα)α∈A be a weakly M-quasi-central net
in Ma(S). Since T(µα)−→ 0 in the weak topology of E, it follows that 0 lies in the
weak closure of T(co({µα}α∈A)) in E. Now, the convexity of T(co({µα}α∈A)) implies
that 0 lies in the closure of T(co({µα}α∈A)) in E with respect to the product of
the norm topology of Ma(S). So there exists a net (νβ) in co({µα}α∈A) such that
‖(T(νβ))(µ)‖ −→ 0 for all µ ∈M. That is ‖µ∗νβ−νβ∗µ‖ −→ 0 for all µ ∈M.

In the following, P1(Ma(S)) denotes the set of all probability measures in
Ma(S).

PROPOSITION (2.2). Let S be a locally compact semigroup and M ⊆ M(S).
Then there is a weakly M-quasi-central net in P1(Ma(S)) if and only if there is
a M-quasi-central net in P1(Ma(S)).

Proof. Since P1(Ma(S)) is a convex set in Ma(S), this follows immediately from
Lemma 2.1.

An element m in the second dual Ma(S)∗∗ of Ma(S) is said to be a mean on
Ma(S)∗ if ‖m‖ = m(u) = 1, where u ∈ Ma(S)∗ is defined by u(µ) := µ(S) for all
µ ∈ Ma(S). The set of all means on Ma(S)∗∗ is denoted by P1(Ma(S)∗∗). We say
that a mean m on Ma(S)∗ is M-inner invariant if

m( f µ)= m(µ f ) (µ ∈M, f ∈ Ma(S)∗);

where f µ and µ f in Ma(S)∗ are defined by f µ(ν) := f (µ∗ν) and µ f (ν) := f (ν∗µ)
for all f ∈ Ma(S)∗ and µ ,ν ∈M. We also say that S is M-inner amenable if there
exists an M-inner invariant mean on Ma(S)∗.

PROPOSITION (2.3). Let S be a foundation semigroup with identity and M ⊆
M(S). Then the following assertions are equivalent.

(a) S is M-inner amenable.
(b) There is a weakly M-quasi-central net in P1(Ma(S)).
(c) There is an M-quasi-central net in P1(Ma(S)).

Proof. Suppose that (a) holds, and let m be an M-inner invariant mean on Ma(S)∗.
Since S is a foundation semigroup with identity, it follows from Proposition 3.6 of
[21]. Thus P1(Ma(S)) is weak∗ dense in P1(Ma(S)∗∗) [11, Lemma 2.1]. So, there
is a net (µα) in P1(Ma(S)) such that µα −→ m in the weak∗ topology of Ma(S)∗∗.
For each µ ∈M and f ∈ Ma(S)∗ we have

(µ∗µα−µα∗µ)( f )=µα( f µ−µ f )−→ m( f µ−µ f )

Therefore µ∗µα−µα∗µ−→ 0 in the weak topology of Ma(S) for all µ ∈M. That is
(b) holds. That (b) implies (c) follows from Lemma 2.2. In order to prove that (c)
implies (a), we suppose that (µα) is an M-quasi-central net in P1(Ma(S)). Then it
is clear that any weak∗ cluster point of (µα) defies an M-inner invariant mean on
Ma(S)∗. This completes the proof.
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To prepare the setting for the next results, let L∞(S, Ma(S)) be the set of
all complex-valued bounded functions g on S that are µ-measurable for all µ ∈
Ma(S). We identify functions in L∞(S, Ma(S)) that agree µ-almost everywhere
for all µ ∈ Ma(S). For every g ∈ L∞(S, Ma(S)), define

∥ g ∥∞:= sup{ ‖g‖∞,|µ| :µ ∈ Ma(S) },

where ‖.‖∞,|µ| denotes the essential supremum norm with respect to |µ|. Observe
that L∞(S, Ma(S)) with the complex conjugation as involution, the pointwise op-
erations and the norm ‖.‖∞ is a commutative C∗-algebra. Recall that a that a
mean on L∞(S, Ma(S)) is a positive functional m with norm one; for M ⊆ M(S),
we say that m is M-inner invariant if

m(µ◦ g)= m(g ◦µ)

for all µ ∈M and g ∈ L∞(S, Ma(S)), where µ◦ g, g ◦µ ∈ L∞(S, Ma(S)) are defined
by

(µ◦ g)(x) :=
∫
S

f (yx)dµ(y) and (g ◦µ)(x) :=
∫
S

f (xy)dµ(y)

for all x ∈S. Let us recall that if S is a foundation semigroup with identity, then
the equation τ(g)(µ) = µ(g) defines an isometric isomorphism τ of L∞(S, Ma(S))
onto Ma(S)∗. Therefore, the adjoint τ∗ of τ defines an isometric isomorphism of
Ma(S)∗∗ onto L∞(S, Ma(S))∗.

PROPOSITION (2.4). Let S be a foundation semigroup with identity. Then
τ∗ maps M-inner invariant means on Ma(S)∗ onto M-inner invariant means on
L∞(S, Ma(S)).

Proof. First note that τ(g)µ= τ(µ◦ g) for all µ ∈M and g ∈ L∞(S, Ma(S)). Indeed;
for any ν ∈ Ma(S) we have

τ(µ◦ g)(ν)=
∫
S

∫
S

g(xy) dµ(x) dν(y)=
∫
S

g(t) d(µ∗ν)(t)= τ(g)(µ∗ν)= (τ(g)µ)(ν).

Now, let n ∈ Ma(S)∗∗ and f ∈ Ma(S)∗. Then since τ is onto, there is g ∈
L∞(S, Ma(S)) such that f = τ(g). Thus

τ∗(n)(µ◦ g) = n(τ(µ◦ g))

= n(τ(g)µ)

= n( f µ).

A similar argument shows that τ∗(n)(g ◦ µ) = n(µ f ). Also τ∗(1) = n(1) and
‖τ∗(n)‖ = ‖n‖. Therefore τ∗(n) is an M-inner invariant mean if so is n.

A mean on L∞(S, Ma(S)) is called inner invariant if it is δS-inner invariant.

COROLLARY (2.5). Let S be a foundation semigroup with identity. Then S is
M-inner amenable if and only if there is an M-inner invariant mean on L∞(S,
Ma(S)).

We say that S is inner amenable if there exists an inner invariant mean on
Ma(S)∗ = L∞(S, Ma(S)); that is, a δS-inner invariant mean.

The study of inner amenability was initiated by Effros [8] and pursued by Ake-
mann [1], H. Choda and M. Choda [5], M. Choda [6], Kaniuth and Markfort [9],
Paschke [19], Pier [20], and Watatani [25] for discrete groups, Lau and Paterson
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[11], Losert and Rindler [13], Stokke [23], Takahashi [24], Yuan [26] for locally
compact groups, and recently by Ling [12] for discrete semigroups.

The following consequence of Proposition 2.6 is due to Losert and Rindler [13]
and Yuan [26] for the case of locally compact groups.

COROLLARY (2.6). Let S be a foundation semigroup with identity. Then the
following assertions are equivalent.

(a) S is inner amenable.
(b) There is a weakly asymptotically central net in P1(Ma(S)).
(c) There is an asymptotically central net in P1(Ma(S)).

3. Inner invariant extension of Dirac measures

Let S be a foundation semigroup with identity e and let Cb(S) denote the
closed subspace of L∞(S, Ma(S)) consisting of all bounded and continuous func-
tions on S. Then δe is an inner invariant mean on Cb(S). The possibility of
extension of δe to an inner invariant mean on L∞(S, Ma(S)) has been studied in
[3].

PROPOSITION (3.1). Let S be foundation semigroup with identity and µn ⊆
P1(Ma(S)). Then (µn) is an asymptotically central sequence if and only if it is
a quasi-central sequence.

Proof. The “if” part is trivial. To prove the converse, suppose that (µn) is an
an asymptotically central sequence in P1(Ma(S)). Then for each ν ∈ M(S) and
g ∈ L∞(S, Ma(S)). Then we have∣∣(ν∗µn −µn ∗ν)(g)

∣∣ =
∣∣∣∣∫

S
(ν∗µn −µn ∗ν)(y)g(y) d y

∣∣∣∣
=

∣∣∣∣∫
S

(
∫
S

(δx ∗µn −µn ∗δx)(y) dν(x))g(y) d y
∣∣∣∣

=
∣∣∣∣∫

S
(
∫
S

(δx ∗µn −µn ∗δx)(y)g(y) dy) dν(x)
∣∣∣∣

=
∣∣∣∣∫

S
(δx ∗µn −µn ∗δx)(g) dν(x)

∣∣∣∣
≤ ||g||∞

∫
S
||δx ∗µn −µn ∗δx|| d|ν|(x).

Since

||δx ∗µn −µn ∗δx|| −→ 0 (y ∈S).

Lebesgue’s theorem implies that

(ν∗µn −µn ∗ν)(g)−→ 0.

Since ν ∈ M(S) and g ∈ L∞(S, Ma(S)) is arbitrary, we have

(ν∗µn −µn ∗ν)(g)−→ 0

in the weak topology of M(S). Now, invoke Proposition 2.2 to conclude that (µn)
is a quasi-central sequence in P1(Ma(S)).
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Let us recall from [10] that S is said to be left compactly cancelletive if C−1D
is a compact subset of S for all compact subsets C and D of S, where

C−1D = {x ∈S : cx ∈ D for some c ∈ C }.

Right compactly cancellative locally compact semigroups are defined similarly.
Moreover, let C0(S) denote the space of all continuous functions on S vanishing
at infinity.

THEOREM (3.2). Let S be a left or right compactly cancelletive foundation semi-
group with identity e and (en)⊆ P1(Ma(S)). Then (en) is an asymptotically central
approximate identity for Ma(S) if and only if it is a quasi-central approximate
identity for Ma(S).

Proof. The ”if“ part follows from [9, Theorem 2.4]. The converse follows from
Proposition 3.1.

4. Strict inner amenability

Let S be a foundation semigroup with identity e and recall that E ∈ Ma(S)∗∗
is a mixed identity if E¯µ = µ¯E = µ for allµ ∈ P1(Ma(S)). By [18, Proposition
2.4], any mixed identity with norm one is a topological inner invariant mean on
L∞(S, Ma(S)). Consequently, Ma(S) is always has a topological inner invariant
mean on L∞(S, Ma(S)); that is, a Ma(S))-inner invariant mean on L∞(S, Ma(S)).
Following [18], the measure algebra Ma(S) is called strictly inner amenable if
there is a topological inner invariant mean m on L∞(S; Ma(S)) that is not a mixed
identity.

Furthermore, recall from [3] that S is called strictly inner amenable if there is
a topological inner invariant mean m on L∞(S; Ma(S)) whose restriction to Cb)S)
is not equal to δe.

In the case where S is discrete, δe is the only mixed identity with norm one in
`∞(S)∗, and of course δe is an inner invariant mean. However, a mixed identity
with norm one in L∞(S, Ma(S))∗ is not in general an inner invariant mean. In
particular, inner amenability of S is not equivalent to inner amenability of Ma(S).

It is shown in [15] that if a locally compact group G is strictly inner amenable,
then L1(G) is strictly inner amenable. This resolves positively a question raised
in [18]. We show that this result remains valid for certain foundation semigroups
with identity.

PROPOSITION (4.1). if S be a compact foundation semigroup with identity e.
Then strict inner amenability of S implies strict inner amenability of Ma(S).

Proof. First, note that Cb(S) is equal to the space of UC(S) of all uniformly con-
tinuous functions on S. If S is strict inner amenable and m is an inner invariant
mean on L∞(S, Ma(S)) not a mixed identity, then m is also a topological inner
invariant mean on UC(S); [10, Corollary 2.3]. So, the result follows from this
fact that any topological inner invariant mean on Cb(S) has an inner invariant
extension to a topological inner invariant mean on L∞(S, Ma(S)); [9, Proposition
3.1].
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THEOREM (4.2). Let S be a left or right compactly cancelletive foundation semi-
group with identity e such that Ma(S) is separable, then strict inner amenability
of S implies strict inner amenability of Ma(S).

Proof. Suppose that S is strictly inner amenable. Then there there is an inner
invariant mean m on L∞(S, Ma(S)) not equal to δe on Cb(S). In view of [9,
Theorem 2.3], the set of mixed identities with norm one on L∞(S, Ma(S)) are
exactly the extensions of δe to means on L∞(S, Ma(S)). In particular, m is not a
mixed identity.

On the other hand, since Ma(S) is separable, there is a sequence (µn) ∈ P1
(Ma(S)) converging to m in the weak∗ topology of Ma(S)∗∗ such that

(δx ∗µn −µn ∗δx)(g)−→ 0

for all g ∈ L∞(S, Ma(S)) and x ∈S. So, µn) is a quasi-central sequence in P1(Ma
(S)), and hence m as a weak∗ cluster point of µn) in P1(Ma(S)) is a topological
inner invariant mean.

In the end, let T = {1,2, ...,n} (n ∈ N). Define the multiplication on T by 1k =
k1= k for every k ∈ T and kl = k for k 6= 1 and l 6= 1. Let G be any locally compact
group. Then S= T ×G with the product topology and coordinatewise multiplica-
tion defines a foundation semigroup with identity such that S is not a subset of
any group.
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COMMUTATIVE ALGEBRAS OF TOEPLITZ OPERATORS ON THE
SUPERSPHERE OF DIMENSION (2 | 2)

To my wife

ARMANDO SÁNCHEZ-NUNGARAY

ABSTRACT. In this paper, we introduce the Bergman theory and Toeplitz oper-
ator on the super-sphere S(2|2). We characterize the functions invariant under
the action of the super-circle and finally we show that the C∗ algebra of the
Toeplitz operators with “radial-like” symbols (invariant under the action of the
super-circle) is commutative.

1. Introduction

Commutative C∗-algebras generated by Toeplitz operators acting on
the (weighted) Bergman space over the unit disc have been recently an im-
portant object of study.

In [15, 16] Vasilevski discovered a family of commutative C∗-algebras of Toepl-
itz operators on the unit disk. These algebras can be classified as follows. Each
pencil of hyperbolic geodesics determines a set of symbols consisting of functions
which are constant on the corresponding cycles, the orthogonal trajectories to
geodesics forming a pencil. The C∗-algebra generated by all Toeplitz operators
with such symbols turns out to be commutative.

In [6] Grudski, Quiroga, and Vasilevski proved that the C∗-algebra generated
by the Toeplitz operators is commutative on each weighted Bergman space if and
only if there is a pencil of hyperbolic geodesics such that the symbols of the Toeplitz
operators are constant on the cycles of this pencil. All cycles are in fact the orbits of
a one-parameter subgroup of isometries for the hyperbolic geometry on the unit
disc. This provides us with the following scheme: the C∗-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space if and only if
there is a maximal commutative subgroup of Möbius transformations such that the
symbols of the Toeplitz operators are invariant under the action of this subgroup.

Other similar results on the sphere, the ball and on Reinhardt domains can be
found in [8, 5, 9, 10, 11].

In [2, 3] Borthwick, Klimek, Lesniewski and Rinaldi introduced a general the-
ory of the non-perturbative quantization of a class of hermitian symmetric super-
manifolds. The quantization scheme is based on the notion of a Toeplitz superop-
erator on a suitable Z2-graded Hilbert space of superholomorphic functions. The
quantized supermanifold arises as the C∗-algebra generated by such operators.

2010 Mathematics Subject Classification: Primary 47B35; Secondary 47L80, 32A36, 58A50.
Keywords and phrases: Toeplitz operators, Commutative C* algebras, Bergman spaces, Super-

manifolds and graded manifolds.
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They carried out the quantization on the superplane, superdisc, and on Cartan
superdomains.

The paper is organized as follows: In Section 2, we define the supersphere and
the Lie supergroup SU(2 | 1). We construct a symplectic form on the supersphere
invariant under the action of SU(2 | 1). We also define an SU(2 | 1)-invariant
Hermitian supermetric on it.

In Sections 3 and 4, we define the weighted Bergman superspace on the super-
sphere and construct the corresponding Bergman kernel. We study some proper-
ties of this kernel and define the Bergman supermetric on the supersphere. We
define and describe Toeplitz superoperators on the supersphere as well.

In Section 5, we define the supercircle and prove that it is a super subgroup
of isometries of the supersphere and describe the action of the supercircle on the
supersphere. We determine those functions on the supersphere that are invariant
under the action of the supercircle.

In the final section we determine the Toeplitz superoperators having super-
circle-invariant symbols, and we prove that these operators are diagonal with
respect to the base B0. Therefore, the C∗ algebra generated by the Toeplitz su-
peroperators with “radial-like” symbols (ie, invariant under the action of the su-
percircle), is commutative.

2. The supersphere and the Lie supergroup SU(2|1)

In this paper, the supersphere S(2|2) is the superspace of equivalence classes
defined on the set of two even and one odd complex coordinates (z1, z2,θ) taken
from C(2|1) by letting,

(z1, z2,θ)∼ (z′1, z′2,θ′)⇔∃λ ∈C− {0} : such that (z1, z2,θ)= (λz′1,λz′2,λθ′).

This yields the two usual charts on the sphere given by the complex local coordi-
nates z, and z′ , respectively, together with the real rank-2 vector bundle defined
by the trivial complex line bundle having θ as a global non-vanishing section. The
local charts are

(z,θ)=
(

z1

z2
,
θ

z2

)
(z′,θ′)=

(
z2

z1
,
θ

z1

)
.

and therefore S(2|2) can be covered by two open domains glued by

(z′,θ′)=
(

1
z

,
θ

z

)
.

More details concerning the construction of the superprojective plane can be found
in [7].

In particular, any f ∈ C∞(S(2|2)) can be written in local coordinates as

f (z,θ, θ̄)= f00(z)+ f10(z)θ+ f01(z)θ̄+ f11(z)θθ̄
where f i j ∈ C∞(C).

Definition (2.1). A function Φ ∈ C∞(S(2|2)) is called superholomorphic if ∂z̄Φ= 0
and ∂θ̄Φ= 0 or, equivalently, if

(2.2) Φ(z,θ)=ϕ0(z)+ϕ1(z)θ,

where ϕ0 and ϕ1 are holomorphic functions in C. In what follows, we shall use
the notation Z = (z,θ).
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The Lie supergroup SU(2|1) is defined as follows: Its base manifold is SU(2),
the group of unitary 2× 2 matrices. Its real supermanifold structure sheaf is
generated by the 3×3 matrices γi j and γ̄i j satisfying the following conditions:

(2.3) γ∗γ= I =
 1 0 0

0 1 0
0 0 1

 ,

with γ∗i j = γ̄ ji;

(2.4) Berγ= 1,

where Ber denotes the Berezinian (see, [1]); and, the parity assignments on γi j
and γ̄i j are given by:

(2.5) |γi j| = |γ̄i j| =
{

0, if 1≤ i, j ≤ 2 and i = j = 3,
1, otherwise.

Conditions (2.3), (2.4), and (2.5) are the defining relations of the structure sheaf
of SU(2 | 1), and its supergroup structure is given by matrix multpilication as
usual. More details are given in [1].

We define the action of SU(2 | 1) on S(2|2) as follows:

z → z′ := γ11z+γ12 +γ13θ

γ21z+γ22 +γ23θ
,

(2.6) θ→ θ′ := γ31z+γ32 +γ33θ

γ21z+γ22 +γ23θ
.

The expression (γ21z+γ22 +γ23θ)−1 is defined in terms of the Taylor series for
superfunctions (see [1]) by

(γ21z+γ22 +γ23θ)−1 = 1
γ21z+γ22

− γ23

(γ21z+γ22)2
θ.

By a slight abuse of notation, we write (2.6) as Z′ = (z′,θ′)= γ(Z).
We define

(2.7) γ′(Z)=Ber

(
∂z′
∂z

∂θ′
∂z

∂z′
∂θ

∂θ′
∂θ

)
=Ber

∂Z′

∂Z
.

PROPOSITION (2.8). If γ ∈ SU(2 | 1), then

(2.9) γ′(Z)= 1
γ21z+γ22 +γ23θ

.

(See [2]).

PROPOSITION (2.10). Let Z = (z,θ) and W = (w,η). If γ(Z) = (z′,θ′) and γ(W) =
(w′,η′) then

(2.11) 1+ z′w̄′−θ′η̄′ = (1+ zw̄−θη̄)γ′(Z)γ′(W).

Proof. The proof is by explicit computation. We start with

(1+ z′w̄′−θ′η̄′)(γ′(Z))−1(γ′(W))−1.

If we substitute (2.9) and (2.6) in the above equation, we obtain
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[
1+

(
γ11z+γ12 +γ13θ

γ21z+γ22 +γ23θ

)(
γ11w+γ12 +γ13η

γ21w+γ22 +γ23η

)

−
(
γ31z+γ32 +γ33θ

γ21z+γ22 +γ23θ

)(
γ31w+γ32 +γ33η

γ21w+γ22 +γ23η

)]
(γ21z+γ22 +γ23θ)(γ21w+γ22 +γ23η),

or equivalently

(γ21z+γ22 +γ23θ)(γ̄21w̄+ γ̄22 − γ̄23η̄)+ (γ11z+γ12 +γ13θ)(γ̄11w̄+ γ̄12 − γ̄13η̄)

−(γ31z+γ32 +γ33θ)(γ̄31w̄+ γ̄32 + γ̄33η̄),
or

(γ̄11γ11+γ̄21γ21+γ̄31γ31)zw̄+(γ̄11γ12+γ̄21γ22+γ̄31γ32)w̄+(γ̄11γ13+γ̄21γ23+γ̄31γ33)w̄θ

+(γ̄12γ11+γ̄22γ21+γ̄32γ31)z+(γ̄12γ12+γ̄22γ22+γ̄32γ32)+(γ̄12γ13+γ̄22γ23+γ̄32γ33)θ
−(γ̄13γ11+γ̄23γ21+γ̄33γ31)zη̄−(γ̄13γ12+γ̄23γ22+γ̄33γ32)η̄−(γ̄13γ13+γ̄23γ23+γ̄33γ33)θη̄.
From (2.3) the identity follows.

By an abuse of notation, we write

(2.12) 1+ZW̄ = 1+ zw̄−θη̄.

Let
D := dz⊗ ∂

∂z
+dθ⊗ ∂

∂θ
,

D̄ := dz̄⊗ ∂

∂z̄
+dθ̄⊗ ∂

∂θ̄
.

Consider the following two-form

(2.13) ω := iD∧ D̄ log(1+ZZ̄)= iD∧ D̄ log(1+ zz̄−θθ̄).

PROPOSITION (2.14). ω is an SU(2|1)-invariant supersymplectic form on S(2|2).

Proof. To see that ω is SU(2|1)-invariant, we note that, as a consequence of (2.11)
we have

log(1+γ(Z)γ(Z)) = log[(1+ZZ̄)γ′(Z)γ′(Z)]

= log(1+ZZ̄)+ log(γ′(Z))+ log(γ′(Z)).

Since γ′(Z) is holomorphic,

D∧ D̄ logγ′(Z)= 0,

and thus γ∗ω=ω, where γ∗ω is the pullback.
To see that ω is supersymplectic, we write

ω= i(ωzz̄dz∧dz̄+ωzθ̄dz∧dθ̄+ωθ z̄dθ∧dz̄+ωθθ̄dθ∧dθ̄),

where
ωzz̄ = 1

(1+ zz̄)2
+ (1− zz̄)

(1+ zz̄)3
θθ̄, ωzθ̄ =

−θ z̄
(1+ zz̄)2

,

(2.15) ωθ z̄ = zθ̄
(1+ zz̄)2

and ωθθ̄ =
−1

1+ zz̄
.

Let

(2.16) Ω=
(
ωzz̄ ωzθ̄
ωθ z̄ ωθθ̄

)
.
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We compute the Berezianian of Ω,[
1

(1+ zz̄)2
+ (1− zz̄)

(1+ zz̄)3
θθ̄−

(
θ z̄

(1+ zz̄)2
(−1− zz̄)

zθ̄
(1+ zz̄)2

)]
(−1− zz̄).

As a consequence, we have

(2.17) BerΩ= −1
1+ zz̄−θθ̄ .

It is clear from these explicit formulas that ω is non-degenerate and close, and
thus it is supersymplectic.

Observe that the inverse matrix of Ω is given by

(2.18)
(

(1+ zz̄−θθ̄)(1+ zz̄) (1+ zz̄)z̄θ
(1+ zz̄)zθ̄ −(1+ zz̄+θθ̄)

)
.

Definition (2.19). We define the superspherical measure by

(2.20) dµ(Z) := −1
π

(1+ zz̄−θθ̄)−1dA(z)dθ∧dθ̄,

where dA(z)= (i/2)dz∧dz̄.

It is clear that the above form is SU(2|1)-invariant.
On the other hand, the natural almost complex structure (acs) on the super-

sphere is compatible with the symplectic form, moreover this acs is integrable
since the projective plane is rigid (that is, all deformations of analytical geometry
are trivial). See [13] and [14] for details.

Using the natural almost complex structure on the supersphere and the sym-
plectic form given by (2.15), we obtain the Hermitian supermetric for the super-
sphere:

(2.21) g =ωzz̄dzdz̄+ωzθ̄dzdθ̄+ωθ z̄dθdz̄+ωθθ̄dθdθ̄.

Since dω= 0, this supermetric is Kählerian.

3. Bergman superspace

We consider the perturbation of the measure (2.20) given by

(3.1) dµh(Z)= (1+ zz̄−θθ̄)−1/hdµ(Z)= −1
π

(1+ zz̄−θθ̄)−1−N dA(z)dθ∧dθ̄,

where h = 1/2,1/3, . . . and N = 1/h ∈N.

PROPOSITION (3.2). The form defined by (3.1) has the following properties:∫
S(2|2)

dµh(Z)= 1,

and

dµh(γ(Z))= γ′(Z)−1/hγ′(Z)−1/hdµr(Z),

where γ′(Z) is given by (2.7).
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Proof. The second statement is a consequence of (2.11). The first statement estab-
lishes that the integral is independent of h. For N = 1/h, we have the expansion

(3.3) (1+ zz̄−θθ̄)−N−1 = (1+ zz̄)−N−1 + (N +1)(1+ zz̄)−N−2θθ̄,

and thus ∫
S(2|2)

dµh(Z)= −N −1
π

∫
C

(1+ zz̄)−N−2dA(z)
∫ ∫

θθ̄dθdθ̄

= N +1
π

∫ 2π

0

∫ ∞

0
(1+ r2)−N−2rdrdt = (N +1)

∫ ∞

0
(1+u)−(N+2)du = 1.

Let f , g be a functions defined on S(2|2), we define the semi-inner product by

(3.4) ( f , g)h :=
∫

S(2|2)
f (Z)g(Z)dµh(Z),

where f , g have the form (5.5), and f i j are measurable functions on S2.
Expanding (3.4) we obtain

( f , g)h = N +1
π

∫
C

f00(z)g00(z)dA(z)
(1+ zz̄)N+2

+1
π

∫
C

( f11(z)g00 + f10(z)g10(z)− f01(z)g01(z)+ f00(z)g11(z))dA(z)
(1+ zz̄)N+1 .

We note that the above semi-inner product is not positive definite. Now we
consider the restriction of the semi-inner product to the set of superholomorphic
functions. This semi-inner product turns out to be positive definite and therefore
defines the inner product

( f , g)h = N +1
π

∫
C

f0(z)g0(z)dA(z)
(1+ zz̄)N+2 + 1

π

∫
C

f1(z)g1(z)dA(z)
(1+ zz̄)N+1 .

Using the above, we define the superspace

L2
h(S(2|2))= { f : f (Z)= f0(z)+ f1(z)θ, f0, f1are measurables and ( f , f )h <∞}.

The completion of the set superholomorphic functions with respect to the norm
∥ · ∥h is a Hilbert space. This superspace is called the weighted Bergman super-
space on the supersphere and is denoted by A2

h(S(2|2)). It is clearly finite dimen-
sional and closed.

For f ∈ L∞(S(2|2)), we define the weighted Bergman projection by

Ph( f (Z))=
∫

S(2|2)
f (W)Kh(Z,W)dµh(W),

where
Kh(Z,W)= (1+ zw̄−θη̄)N .

THEOREM (3.5). If f ∈ L∞
h (S(2|2)), then P( f ) ∈A2

h(S(2|2)) and P( f )= f
if f ∈A2

h(S(2|2)).

Proof. To verify this statement we consider the functions:

φn,0(Z)=
[(

N
n

)]1/2

zn, for n = 0,1, ..., N,
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and

(3.6) φn,1(Z)=
[

N
(

N −1
n

)]1/2

znθ, for n = 0,1, ..., N −1,

where (
N
n

)
= N!

n!(N −n)!
.

The set of functions {φn,0,φm,1, n = 0, ..., N, m = 0, ..., N −1} is an orthonormal
basis for A2

h(S(2|2)).
In consequence,

Kh(Z,W) =
N∑

n=0
φn,0(W)φn,0(Z)+

N−1∑
n=0

φn,1(W)φn,1(Z)(3.7)

= (1+ zw̄)N −N(1+ zw̄)N−1θη̄

= (1+ zw̄−θη̄)N ,

is the Bergman kernel for the space A2
h(S(2|2)).

PROPOSITION (3.8). The Bergman kernel transforms under the action of the Lie
supergroup SU(2, | 1) according to the rule

Kh(γ(Z),γ(W))= γ′(Z)Nγ′(W)
N

Kh(Z,W).

Proof. This is an immediate consequence of Proposition (2.11) with Z =W .

Definition (3.9). We define the Bergman supermetric on the supersphere by

h = ∑
α,β

∂2logK1(Z, Z)
∂zα∂z̄β

dzα⊗dz̄β.

That is,

h = ∂2log(1+ zz̄−θθ̄)
∂z∂z̄

dzdz̄+ ∂2log(1+ zz̄−θθ̄)
∂z∂θ̄

dzdθ̄

+ ∂2log(1+ zz̄−θθ̄)
∂θ∂z̄

dθdz̄+ ∂2log(1+ zz̄−θθ̄)
∂θ∂θ̄

dθdθ̄.

It is clear that the supermetric h is equal to the Hermitian supermetric g de-
fined by (2.21).

4. Toeplitz superoperators

Definition (4.1). Let a be a function on C∞(S(2|2)) or L∞(S(2|2)). We define the
Toeplitz superoperator with symbol a acting on the weighted Bergman superspace
and A2

h(S(2|2)) as

(4.2) Th
a (ϕ)(Z)= Ph(Ma(ϕ))(Z)=

∫
S(2|2)

a(W)Φ(W)Kh(Z,W)dµh(W).

where Φ ∈A2
h(S(2|2)) and Ma is a multiplication operator.

Definition (4.3). We define the weighted Bergman space on the sphere S2 by

A2
N (S2)= A2

h(S2)= {
φ ∈ L2(S2, (N +1)dµh) : φ is holomorphic

}
,

where dµh = (1/π)(1+ zz̄)−N−2dA(z) and N = 1/h = 1,2,3, . . ..
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Definition (4.4). Let b be a function on L∞(S2). We define the Toeplitz operator
with symbol a acting on A2

h(S2) as

Th(b)(φ)(z)= TN (b)(φ)(z)= Bh(b(w)φ(w))(z);

where Bh is the Bergman projection onto the weighted Bergman space A2
h(S2).

We can represent the superspace A2
h(S(2|2)) as a direct sum of Bergman spaces

on the sphere S2. We have that if Φ=ϕ0 +ϕ1θ ∈A2
h(S(2|2)) then ϕ0 ∈ A2

N (S2) and
ϕ1 ∈ A2

N−1(S2). Therefore we obtain that the Bergman superspace has the form

A2
h(S(2|2))= A2

N (S2)⊕ A2
N−1(S2)

where A2
N (S2) and A2

N−1(S2)Θ are the even and odd parts of the Bergman super-
space respectively.

On the other hand, we describe the Toeplitz operator acting on the superspace
A2

N (S2)⊕ A2
N−1(S2).

First, we know that a(W) is of the form (5.5) and Φ(W)=ϕ0(w)+ϕ1(w)η, then

a(W)Φ(W) = ϕ0(w)[a00(w)+a10(w)η+a01(w)η̄+a11(w)ηη̄]

+ ϕ1(w)[a00(w)η−a01(w)ηη̄],

Using equations (3.3) and (3.7) we have

Kh(Z,W)dµh(W) = −1
π

[
(1+ zw̄)N

(1+ww̄)N+1

]
dA(w)dη∧dη̄

+ −1
π

[
−N(1+ zw̄)N−1θη̄

(1+ww̄)N+1

+ (N +1)(1+ zw̄)N

(1+ww̄)N+2 ηη̄

]
dA(w)dη∧dη̄.

The only elements in the integrals that do not vanish are the ones that contain
the term ηη̄. In consequence we obtain

Th
aΦ(Z) = −1

π

∫
C

ϕ1(w)a01(w)(1+ zw̄)N

(1+ww̄)N+1 dA(w)

+ N +1
π

∫
C

(
a00(w)+ a11(w)(1+ zz̄)

N +1

)
ϕ0(w)(1+ zw̄)N

(1+ww̄)N+2 dA(w)

+
[

N
π

∫
C

ϕ0(w)a10(w)(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ

+
[

N
π

∫
C

ϕ1(w)a00(w)(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ.

Therefore the Toeplitz superoperator Th
a on A2

N (S2)
⊕

A2
N−1(S2) is given by

(4.5)
(

TN (a00 +a11(1+ zz̄)/(N +1)) −TN−1
N (a01)

TN
N−1(a10) TN−1(a00)

)(
ϕ0
ϕ1

)
where TN (a00 + a11(1+ zz̄)/(N +1)) and TN−1(a00) are Toeplitz operators on the
weighted Bergman spaces A2

N (S2) and A2
N−1(S2) respectively. On the other hand,
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we have that TN−1
N (a01) and TN

N−1(a01) are quasi-Toeplitz operators defined by

TN−1
N (a01) : A2

N−1(S2) −→ A2
N (S2).(4.6)

ϕ1 7→ 1
π

∫
C

ϕ1(w)a01(w)(1+ zw̄)N

(1+ww̄)N+1 dA(w)

and

TN
N−1(a01) : A2

N (S2) −→ A2
N−1(S2)(4.7)

ϕ0 7→ N
π

∫
C

ϕ0(w)a10(w)(1+ zw̄)N−1

(1+ww̄)N+1 dA(w).

Note that the Toeplitz superoperator has the form

(4.8) Th
a =

(
Th(a00 +a11θθ̄) Th(a01θ̄)

Th(a10θ) Th(a00)

)
,

and we have that a00 +a11θθ̄,a00 are even functions and a10θ,a01θ̄ are odd func-
tions. In consequence we have that every Toeplitz superoperator is an even oper-
ator on the Bergman superspace.

5. S(1|1)-invariant functions

The super circle is defined as the super manifold

S1|1 = {(z = x+ i y,ζ= ζ1 + iζ2)| x2 + y2 + ζ̄ζ= 1, ζ1x+ζ2 y= 0}

where ζ1,ζ2 are real Grassmann varibles.
The definition of S1|1 given above is equivalent to define the supercircle as the

set of matrices

A =
(

z ζ

ζ z

)
,

such that A∗A = I, BerA = 1.
In local coordinates, z = eit and ζ= ieitξ, where ξ is a real grassmann variable.
Now, we give a representation of the supercircle as SU(2 | 1).

THEOREM (5.1). The supercircle is a supergroup of isometries of the super-
sphere.

Proof. First we define the map

A : S(1|1) −→ SU(2 | 1),

given by

A
[(

z ζ

ζ z

)]
=

 z 0 ζ

0 1 0
ζ 0 z

 ,

where
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A
[(

z ζ

ζ z

)]∗
· A

[(
z ζ

ζ z

)]

=
 z̄ 0 ζ̄

0 1 0
ζ̄ 0 z̄

 z 0 ζ

0 1 0
ζ 0 z


=

 1 0 0
0 1 0
0 0 1

 .

Then,

Ber

 z 0 ζ

0 1 0
ζ 0 z


=Det

((
z 0
0 1

)
−

(
ζ

0

)
· ( z

) · ( ζ 0
)) ·Det

(
z̄

)= 1.

It is easy to see that A satisfy

A[z1,ξ1)] · A[(z2,ξ2)]= A[(z1z2, z2ξ1 + z1ξ2)];

and therefore, it is a Lie supergroup homomorphism. Actually, it is a monomor-
phism.

We have proved that the supercircle is a subsupergroup of SU(2|1). In par-
ticular, the Riemannian supermetric in S(2|2) given by (2.21) is S(1|1)-invariant.
Since SU(2|1) acts by isometries on S(2|2) , so does the supercircle. Moreover we
have that the group SU(2|1) is a group of isometrics of the supermanifold S(2|2).
Thus we obtain that the supercircle is a supergroup of isometries of the super-
sphere.

The action of the group SU(2|1) on the supermanifold S(2|2) is given by (2.6),
thus the action of the supercircle on the supersphere

(eit,ξ) · (z,θ),

is given by
z 7→ w = zeit + ieitξθ,

(5.2) θ 7→ η= eitθ+ ieitzξ.

THEOREM (5.3). Let a be a smooth function on the supersphere. If a is invariant
under the action of the supercircle (i.e. a(z,θ)= a((eit,ξ)·(z,θ))), then a has the form

(5.4) a(z,θ)= a0(r)+a1(r)z̄θ+a1(r)zθ̄− a′
0(r)
2r

θθ̄,

where a0 and a1 are radial functions.

Proof. An element a ∈ C∞(S(2|2)) is of the form

(5.5) a(z,θ)= a00(z)+a10(z)θ+a01(z)θ̄+a11(z)θθ̄,

where ai j ∈ C∞(S2).
Now, we want to find the S(1|1)-invariant functions, i.e. a ∈ C∞(S(2|2)) such that

(5.6) a(z,θ)= a(zeit + ieitξθ, eitθ+ ieitzξ),
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where (eit,ξ) ∈ S(1|1).
First we take the elements of the form (eit,0), then a is invariant under the

action of these elements, if this function satisfies the equation

a00(z)+a10(z)θ+a01(z)θ̄+a11(z)θθ̄

= a00(zeit)+a10(zeit)θeit +a01(zeit)θ̄e−it +a11(zeit)θθ̄.

By the above equation, we obtain that the function a00 and a11 are radial, while
the function a10(z) is of the form z̄ã10 where ã10 is a radial function, analogously
a01(z)= zã01.

Therefore we have that the function a is of the form

(5.7) a(z,θ)= a00(r)+ z̄ã10(r)θ+ zã01(r)θ̄+a11(r)θθ̄.

Now we consider the action of elements of the form (1,ξ),

w = z+ iξθ and η= θ+ izξ.

We note that

s = (ww̄)1/2 = ((z+ iξθ)(z̄+ iξθ̄))1/2 = r+ iξ(z̄θ+ zθ̄)
2r

.

Now, we take a radial function h(r) then h(s) is defined in terms of the Taylor
series for superfunctions (see, [1]), thus

(5.8) h(s)= h(r)+ iξ(z̄θ+ zθ̄)h′(r)
2r

.

On the other hand,

(5.9) h(s)w̄η=
(
h(r)+ iξ(z̄θ+ zθ̄)h′(r)

2r

)
(z̄+ iξθ̄)(θ+ izξ)= h(r)z̄θ+ ir2h(r)ξ,

or equivalently

(5.10) h(s)wη̄= h(r)z̄θ− ir2h(r)ξ.

Analogously

(5.11) h(s)ηη̄=
(
h(r)+ ξ(z̄θ− zθ̄)h′(r)

2r

)
(θ+ izξ)(θ̄− i z̄ξ)= h(r)θθ+h(r)iξ(z̄θ+ zθ̄).

As a consequence of (5.8)-(5.11), we have

a(w,η) = a00(s)+ ã10(s)w̄η+ ã01(s)wη̄+a11(s)ηη̄

= a00(r)+ iξ(z̄θ+ zθ̄)a′
00(r)

2r
+ ã10(r)z̄θ+ ir2ã10(r)ξ

+ ã01(r)z̄θ− ir2ã01(r)ξ+a11(r)θθ+a11(r)iξ(z̄θ+ zθ̄).

Therefore, a function a is S(1|1)-invariant if this function satisfies (5.7) and the
following condition:

(5.12) a11(r)= −a′
00(r)
2r

and ã10(r)= ã01(r).
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6. Algebra of Toeplitz operator with S(1|1)-invariant symbols

Now we study Toeplitz operators whose symbols are invariant under the action
of the supergroup S(1|1); this functions are of the form (5.4).

The Toeplitz superoperator with symbol a acting on the Bergman superspace
A2

h(S(2|2)) where a is S(1|1)-invariant function, has the form

Th
a (ϕ0(z)+ϕ1(z)θ) = −1

π

∫
C

ϕ1(w)a1(r)w(1+ zw̄)N

(1+ww̄)N+1 dA(w)

+ N +1
π

∫
C

ϕ0(w)a0(r)(1+ zw̄)N

(1+ww̄)N+2 dA(w)

− 1
π

∫
C

ϕ0(w)a′
0(r)(1+ zw̄)N

2r(1+ww̄)N+1 dA(w)

+
[

N
π

∫
C

ϕ0(w)a1(r)w̄(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ

=
[

N
π

∫
C

ϕ1(w)a0(r)(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ.

We define the coefficients ˆaN of the function a by the equation

(6.1) ˆaN (n)=
∫ ∞

0

a(r)
(1+ r2)N+1 r2n+1dr for n = 0,1, ..., N.

We consider the base B of A2
h(S(2|2)) given by

(6.2) B= {zn, for n = 0,1, ..., N, and znθ, for n = 0,1, ..., N −1}.

Now we evaluate the Toeplitz superoperator Th
a on the elements of B.

First, we evaluate on zn for n = 0

Th
a (1) = N +1

π

∫
C

a0(r)(1+ zw̄)N

(1+ww̄)N+2 dA(w)

− 1
π

∫
C

a′
0(r)(1+ zw̄)N

2r(1+ww̄)N+1 dA(w)

+
[

N
π

∫
C

a1(r)w̄(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ

= 2(N +1)
∫ ∞

0

a0(r)rdr
(1+ r2)N+2 −

∫ ∞

0

a′
0(r)dr

(1+ r2)N+1 = ãN
0 (0).(6.3)
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Now, we evaluate on zn for n = 1,2, ..., N

Th
a (zn) = N +1

π

∫
C

wna0(r)(1+ zw̄)N

(1+ww̄)N+2 dA(w)

− 1
π

∫
C

wna′
0(r)(1+ zw̄)N

2r(1+ww̄)N+1 dA(w)

+
[

N
π

∫
C

wna1(r)w̄(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ

= 2
(

N
n

)[
(N +1)

∫ ∞

0

a0(r)r2n+1dr
(1+ r2)N+2 −

∫ ∞

0

a′
0(r)r2n+1dr

2r(1+ r2)N+1

]
zn

+ 2N
(

N −1
n−1

)[∫ ∞

0

a1(r)r2n+1dr
(1+ r2)N+1

]
zn−1θ.(6.4)

Integrating by parts we have∫ ∞

0

a0(r)r2n+1dr
(1+ r2)N+2

(6.5) = n
N +1

∫ ∞

0

a0(r)r2(n−1)+1dr
(1+ r2)N+1 + 1

N +1

∫ ∞

0

a′
0(r)r2n+1dr

2r(1+ r2)N+1 .

We substitute (6.5) on (6.4) and use the coefficients of equation (6.1), then

(6.6) Th
a (zn)= 2n

(
N
n

)[
âN

0 (n−1)
]

zn +2N
(

N −1
n−1

)[
âN

1 (n)
]

zn−1θ.

Finally, we evaluate znθ for n = 0,1, ..., N −1

Th
a (znθ) = −1

π

∫
C

wna1(r)w(1+ zw̄)N

(1+ww̄)N+1 dA(w)

+
[

N
π

∫
C

wna0(r)(1+ zw̄)N−1

(1+ww̄)N+1 dA(w)
]
θ

= −2
(

N
n+1

)[∫ ∞

0

a1(r)r2(n+1)+1dr
(1+ r2)N+1

]
zn+1

+ 2N
(

N −1
n

)[∫ ∞

0

a0(r)r2(n)+1dr
(1+ r2)N+1

]
znθ.

In consequence we have that

(6.7) Th
a (znθ)=−2

(
N

n+1

)[
âN

1 (n+1)
]

zn+1 +2N
(

N −1
n

)[
âN

0 (n)
]

znθ.

7. Spectrum of Toeplitz operators

Consider the basis B0 of the Bergman space A2
h(S(2|2)) given by

ϕ0 = 1, ϕn = −izn
p

n
+ zn−1θ, φn = izn

p
n
+ zn−1θ for n = 1, . . . , N

LEMMA (7.1). The basis B0 is orthogonal.
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Proof. It is sufficient to prove that ϕn and φn are orthogonal, since the basis B
generated by zn and znθ is orthogonal. Calculate:

(ϕn,φn)h = N +1
π

∫
C

−znzndA(z)
n(1+ zz̄)N+2 + 1

π

∫
C

zn−1zn−1dA(z)
(1+ zz̄)N+1 .

= −1
n

(
N
n

)−1

+ 1
N

(
N −1
n−1

)−1

= 0.

THEOREM (7.2). Let a be a function invariant under the action of supercircle.
Then the Toeplitz operator Th

a is diagonal with respect to the basis B0.

Proof. By (6.3) that Th
a (1) belong to the space generated by 1. That is, 1 is a

eigenfunction of Toeplitz operator with eigenvalue ãN
0 (0).

On the other hand, By (6.6) and (6.7) we know that Th
a (zn) and Th

a (zn−1θ) be-
long to the space generated by zn and zn−1θ, where n = 1, . . . , N. Therefore the
Toeplitz superoperator has the form 2n

(
N
n

)
âN

0 (n−1) −2
(

N
n

)
âN

1 (n)

2N
(

N −1
n−1

)
âN

1 (n) 2N
(

N −1
n−1

)
âN

0 (n−1)



= 2N
(

N −1
n−1

) âN
0 (n−1)

−âN
1 (n)
n

âN
1 (n) âN

0 (n−1)


on the superspace generated by {zn, zn−1θ}, where n = 1, . . . , N.

We calculate the eigenvalue corresponding to the above matrix, which are given
by

2N
(

N −1
n−1

)âN
0 (n−1)− iâN

1 (n)p
n

 and 2N
(

N −1
n−1

)âN
0 (n−1)+ iâN

1 (n)p
n


this engenvalues corresponding to eigenfunction ϕn,φn for n = 1, . . . N respec-
tively.

COROLLARY (7.3). Let a be invariant under the action of supercircle, then the
spectrum of the Toeplitz operator Th

a is given by

spTh
a =

ãN
0 (0), 2N

(
N −1
n−1

) ±iâN
1 (n)+p

nâN
0 (n−1)

p
n

for n = 1, . . . N

 .

COROLLARY (7.4). Let a be invariant under the action of supercircle. Then the
elements of the basis B0 are eigenfunctions of the Toeplitz operator Th

a , equiva-
lently

Th
a (1)= ãN

0 (0) ·1

Th
a (ϕn)= 2N

(
N −1
n−1

)−iâN
1 (n)+p

nâN
0 (n−1)

p
n

 ·ϕn for n = 1, . . . N.

Th
a (φn)= 2N

(
N −1
n−1

) iâN
1 (n)+p

nâN
0 (n−1)

p
n

 ·φn for n = 1, . . . N.
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COROLLARY (7.5). The algebra of Toeplitz operators with invariant symbols
under the action of the supercircle is commutative.
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SOME NEW NONIMMERSION RESULTS FOR REAL PROJECTIVE
SPACES

DONALD M. DAVIS

ABSTRACT. We use the spectrum tmf to obtain new nonimmersion results for
many real projective spaces RPn for n as small as 113. The only new ingredient
is some new calculations of tmf-cohomology groups. We present an expanded
table of nonimmersion results. Our theorem is new for 17% of the values of n
between 2i and 2i +214 for i ≥ 15.

1. Introduction

We use the spectrum tmf to prove the following new nonimmersion theorem for
real projective spaces Pn.

THEOREM (1.1). Let α(n) denote the number of 1’s in the binary expansion of n.
(a) If α(M)= 3, then P8M+9 does not immerse in (6⊆) R16M−1.
(b) If α(M)= 6, then P8M+9 6⊆R16M−11.
(c) If α(M)= 7, then P16M+16 6⊆R32M−7 and P16M+17 6⊆R32M−6.
(d) If α(M)= 9, then P32M+25 6⊆R64M−4 and P32M+26 6⊆R64M−3.
(e) If α(M)= 10, then P16M+17 6⊆R32M−20 and P16M+18 6⊆R32M−19.

We apply the same method that was used in [4], using tmf∗(−) to detect nonex-
istence of axial maps. The novelty here is that we compute and utilize groups
tmf∗(Pm ∧Pn) when m and/or n is odd. In [4], only even values of m and n were
considered. There is, however, no significant difference or complication in using
the odd values. We prove Theorem 1.1 in Section 2.

For many years, the author has maintained a website ([5]) which listed all
known immersion, nonimmersion, embedding, and nonembedding results for Pn

and tabulated them for n = 2i +d with 2i > d and 0 ≤ d ≤ 63. In [12], W. Stephen
Wilson acknowledged how this table motivated him to try (and succeed) to prove
nonimmersions for small Pn. Our Theorem 1.1(a) includes P2i+49 6⊆ R2i+1+79 and
P2i+57 6⊆ R2i+1+95 for i ≥ 6, which improve on previous best results (of [12]) by 1
and 2 dimensions, respectively, and hence enter the table [5].

To facilitate checking whether results are new, the author has greatly expanded
his table of nonimmersion results at www.lehigh.edu/∼dmd1/imms.html. We
have listed there the best known nonimmersions of P2i+d for 2i > d +1 and 0 ≤
d ≤ 16,383 together with the first acknowledged source. A listing of and link to the
Maple program that generated this table is also included there. This table gives
all known nonimmersion results for Pn with 7 < n < 49,152 except for James’
nonimmersions ([11]) of P2e−1 in dimension 2e+1 −2e−〈3,2,2,4〉 if e ≡ 〈0,1,2,3〉
mod 4.

2010 Mathematics Subject Classification: 57R42, 55N20.
Keywords and phrases: Immersions, projective space, topological modular forms.
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Theorem 1.1 appears 2796 times in this table, thus giving new results for 17%
of the projective spaces of dimension between 2i and 2i +214 for i ≥ 15. The semi-
nal result of [6],

(1.2) P2(m+α(m)−1) 6⊆R4m−2α(m),

appears 7063 times in the table, but is divided among four references. The first
4361 of them appeared in [1], which obtained a result equivalent to (1.2) for Pn

with n satisfying a very complicated condition. The statement (1.2) was first con-
jectured in [2] and proved there for α(m) ≤ 6, which yielded 168 new results in
this table. It was extended to α(m)= 7 in [13], and this still applies to 700 values.
This left 1834 values which were covered by the general result (1.2) and not by
any of the three preceding references, and have not been bettered in subsequent
work.

The first tmf-paper, ([4]), appears 2866 times in the table; there are 110 addi-
tional values for small α(−) of tmf-implied nonimmersions which were overlooked
in [4] and noted in [8]. The other big collection of nonimmersion results is those
obtained in [12] using ER(2)-cohomology, which appears 2092 times. Both ER(2)
and tmf can be considered as real versions of BP〈2〉. Using ER(2) is advanta-
geous because ER(2)∗(Pn) has a 2-dimensional class, while tmf∗(Pn) only has
an 8-dimensional class. Also ER(2) is more closely related to BP〈2〉, and so, as
W. Stephen Wilson says, it can “mooch” off the result (1.2). The advantage of tmf
is that some of its groups are one 2-power larger than those of ER(2).

In [6], it was stated that (1.2) was within 2 dimensions of all known nonimmer-
sion results, in the sense that the two dimensions could come from the Euclidean
space, the projective space, or a combination. In other words, if D(n) denotes the
nonimmersion dimension for Pn obtained from (1.2), and K(n) the best known
nonimmersion dimension for Pn, then, at the time, it was true that

(1.3) K(n)≤max(D(n)+2, D(n+1)+1, D(n+2)).

This is no longer true. There are 10 values of n in the table for which the result of
[9], which states that if α(n)= 4 and n ≡ 10 mod 16 then Pn 6⊆R2n−9, does not sat-
isfy (1.3), and there are 418 values of n in the table for which Theorem 1.1(c) does
not satisfy (1.3). These are the only results which are more than 2 stronger than
(1.2) in the sense of (1.3), and it is still true that (1.2) is within 3 dimensions of
all known results in the same sense. That is, the following statement is currently
true:

K(n)≤max(D(n)+3, D(n+1)+2, D(n+2)+1, D(n+3)).

The first example of (1.3) not being satisfied occurs for n = 58; we have K(58)= 107
due to [9] (which used modified Postnikov towers) while D(58) = D(59) = 98 and
D(60)= D(61)= 106. The first example of our 1.1(c) causing (1.3) to be not satisfied
occurs from K(3584) = 7129 (due to 1.1(c)) while D(3584) = D(3585) = 7124 and
D(3586)= D(3587)= 7128.

Some of our new results improve on previous best results by large amounts.
For example, from 1.1(b), we obtain P32265 6⊆ R64501. Prior to this paper, the best
result was P32265 6⊆ R64466, due to (1.2), and so we improve by 35 dimensions.
However, (1.3) holds here because (1.2) also implies that P32266 6⊆R64500, which is
weaker than our new result by 1 dimension in the projective space plus 1 in the
Euclidean space.
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Theorem 1.1 can be extended to larger values of α(M) similarly to what was
done in [4]. We have emphasized the results for small values of α(M) for clarity of
exposition. The extension, whose proof we sketch in Section 3, is as follows. The
lettering of the parts corresponds to the parts of Theorem 1.1.

THEOREM (1.4). Let p(h) denote the smallest 2-power ≥ h.
(b,e) Suppose α(M) = 4h+ 2 and h ≤ 2e1 − 2e0 if M ≡ 2e0 + 2e1 mod 2e1+1 with

e0 < e1. Then
(b) If h is odd, P8M+8h+1 6⊆R16M−8h−3, and
(e) If h is even, then P8M+8h+1 6⊆R16M−8h−4 and P8M+8h+2 6⊆R16M−8h−3.

(c) If α(M) = 4h + 3 with h odd and M ≡ 0 mod p(h + 1), then P8M+8h+8 6⊆
R16M−8h+1 and P8M+8h+9 6⊆R16M−8h+2.

(d) If α(M) = 4h + 1 with h even and M ≡ 0 mod p(h + 1), then P8M+8h+9 6⊆
R16M−8h+12 and P8M+8h+10 6⊆R16M−8h+13.

2. Proof of Theorem 1.1

Let tmf denote the 2-local connective spectrum introduced in [10], whose mod-
2 cohomology is the quotient of the mod-2 Steenrod algebra A by the left ideal
generated by Sq1, Sq2, and Sq4. Thus tmf∗(X ) may be computed by the Adams
spectral sequence (ASS) with E2 = ExtA2 (H∗X ,Z2), where A2 is the subalgebra
of A generated by Sq1, Sq2, and Sq4. We rely on Bob Bruner’s software ([3]) for
our calculations of these Ext groups. It was proved in [8, p.167] that there are
8-dimensional classes X , X1, and X2 such that the homomorphism in tmf∗(−)
induced by an axial map Pm×Pn → Pk effectively sends X to u(X1+X2), where u
is a unit in tmf0(Pm ×Pn) which will be omitted from our exposition.

We will often use duality isomorphisms tmfi(Pn) ≈ tmf−i−1(P−n−1) for i > 2,
and tmfi(Pm∧Pn)≈ tmf−i−2(P−m−1∧P−n−1) for i >max(m,n)+2. For any integer
m, Pm denotes the spectrum P∞

m . We make frequent use of the periodicity P t+8
b+8 ∧

tmf ' Σ8P t
b ∧ tmf proved in [4, Prop 2.6]. Other aspects of the proof in [4] will be

noted when needed.
We let ν(−) denote the exponent of 2 in an integer, and use ν

((m
n
)) = α(n)+

α(m−n)−α(m). Also, if L is large, ν
((2L−k

n
))= ν

((−k
n

))= ν
((n+k−1

n
))

. We will never
be interested in the values of odd factors of coefficients, and will not list them.

Proof of (a). If the immersion exists, there is an axial map P8M+9 × P8M+9 →
P16M−1. The induced homomorphism in tmf∗(−) sends 0= X2M to

(2.1)
∑(2M

i
)
X i

1X2M−i
2

in tmf16M(P8M+9∧P8M+9). This group is isomorphic to tmf−2(P−10∧P−10)≈ tmf30(
P6∧P6). The portion of the ASS for tmf30(P6∧P6) arising from filtration 0 by h0-
extensions appears in Figure 1.

rr
rr
rr rr

Figure 1. Portion of tmf30(P6 ∧P6).
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There are also several elements in higher filtration in tmf30(P6 ∧P6) which are
not relevant to our argument. The elements pictured in Figure 1 cannot be
hit by differentials in the ASS because in dimension 31 there is only one tower
in low enough filtration and it cannot support a differential by the argument
of [4, p.54], namely that its generator is a constructible homotopy class. The
filtration-0 elements must correspond to X M−1

1 X M+1
2 , X M

1 X M
2 , and X M+1

1 X M−1
2 in

tmf16M(P8M+9 ∧P8M+9). Since

(2.2) 22X M+1 = 0 in tmf∗(P8M+9),

the two Z/4’s in Figure 1 must represent X M±1
1 X M∓1

2 , and multiples of these are 0
in all filtrations > 1. Thus X M

1 X M
2 generates the Z/24 in tmf16M(P8M+9 ∧P8M+9).

Since ν
((2M

M
)) = α(M) = 3, we obtain that (2.1) is nonzero, contradicting the exis-

tence of the immersion.

Proof of (b). If the immersion exists, there is an axial map P8M+9 ×P2L+3−16M+9

→ P2L+3−8M−11 for sufficiently large L. Hence

(2.3)
∑(−M−1

i
)
X i

1X2L−M−1−i
2 = 0 ∈ tmf2

L+3−8M−8(P8M+9 ∧P2L+3−16M+9).

This group is isomorphic to tmf38(P6 ∧P6), and the relevant part of it is given in
Figure 2. Similarly to case (a), and continuing in all remaining cases, it cannot be
hit by a differential in the ASS.

rr
rr
rr rr
�� DD

rr
rr
rr

Figure 2. Portion of tmf38(P6 ∧P6).

The outer (Z/4) generators must correspond to the classes X M−2
1 X2L−2M+1

2 and
X M+1

1 X2L−2M−2
2 . (Note that 4 times each of these classes is 0 by (2.2), and so they

cannot produce a higher-filtration component impacting the middle summands.
This will be the case also for the outer summands in subsequent diagrams.) The
inner generators must be X M−1

1 X2L−2M
2 and X M

1 X2L−2M−1
2 . By [4, Thm 2.7], the

class 24(X M−1
1 X2L−2M

2 + X M
1 X2L−2M−1

2 ) has filtration ≥ 5. This is depicted by the
behavior of the chart between filtration 3 and 4. Since α(M) = 6, the component
of these terms in (2.3) is(−M−1

M−1
)
X M−1

1 X2L−2M
2 + (−M−1

M
)
X M

1 X2L−2M−1
2 = 25X M−1

1 X2L−2M
2 +26X M

1 X2L−2M−1
2 ,

which is nonzero in the group depicted by Figure 2, contradicting the existence of
the immersion.

Proof of (c). If the first immersion exists, there is an axial map

P16M+16 ×P2L+3−32M+5 → P2L+3−16M−18.
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Hence

(2.4)
∑(−2M−2

i
)
X i

1X2L−2M−2−i
2 = 0 ∈ tmf∗(P16M+16 ∧P2L+3−32M+5).

This group is isomorphic to tmf46(P7 ∧P2), and the relevant part of it is given in
the left side of Figure 3.

rr
rr
rr
rr

rr
rr

rr
rr

r
�� ��DD DD
rrr

rr

rr
rr
rr
rr

rr
rr

rr
rr

rr
�� ��DD DD
rrrr

rr

Figure 3. Portion of tmf46(P7 ∧P2) and tmf46(P6 ∧P3).

The generators, from left to right, correspond to

X2M−2
1 X2L−4M

2 , . . . , X2M+2
1 X2L−4M−4

2 ,

with the sum relation in filtration 4 similar to that of the previous (and future)
parts. Since α(M)= 7, the component of the middle terms in (2.4) is

28+ν(M)X2M−1
1 X2L−4M−1

2 +27X2M
1 X2L−4M−2

2 +28X2M+1
1 X2L−4M−3

2 ,

which is nonzero in the group depicted by Figure 3. The argument for the second
nonimmersion involves the same sum in a group isomorphic to tmf46(P6 ∧ P3),
which is pictured on the right side of Figure 3.

Proof of (d). The proof is similar to those of parts (b) and (c). The first nonimmer-
sion is proved by showing if α(M)= 9, then

(2.5)
∑(−4M−3

i
)
X i

1X2L−4M−3−i
2 6= 0 ∈ tmf2

L+3−32M−24(P32M+25 ∧P2L+3−64M+2).

This group is isomorphic to tmf62(P6 ∧P5), the relevant part of which is depicted
in Diagram 4, with generators corresponding to i = 4M−3, . . . ,4M+3 in (2.5). The
sum relation in filtration 8 follows from [4, Thm 2.7]. The middle components of
our class are

210+ν(M)X4M−1
1 X2L−8M−2

2 +29X4M
1 X2L−8M−3

2 +29X4M+1
1 X2L−8M−4

2 ,

which is nonzero in filtration 9. Note that 29X4M
1 X2L−8M−3

2 is 0 in filtration 9, as
can be seen from Diagram 4 or from [4, 2.7], which says that if g1, g2, g3 denote
the middle three generators, then there are relations that both 28(g1 + g2 + g3)
and 28(g1 + g3) have filtration > 8.

The argument for the second nonimmersion is virtually identical. Its obstruc-
tion is the same sum in a group isomorphic to tmf62(P5 ∧P6), so just the reverse
of Figure 4.
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rr
rr

rr
r

rr
rr

rr
rr

rr
rr
rr
rr
rr

�� �� �� ��DD DD DD DD
rr
rr
rr
rr
rrrr

r �� DD
rr

Figure 4. Portion of tmf62(P6 ∧P5).

Proof of (e). The obstruction this time is
∑(−2M−2

i
)
X i

1X2L−2M−2−i
2 in a group iso-

morphic to the one depicted in Figure 4. The middle terms are

29X2M−2
1 X2L−4M

2 +211+ν(M)X2M−1
1 X2L−4M−1

2 +210X2M
1 X2L−4M−2

2 ,

which is nonzero.

3. Sketch of proof of Theorem 1.4

We use the v8
2-periodicity of ExtA2 proved in [7, p.299,Thm 5.9] to see that,

if one of the diagrams of Section 2 depicts a portion of tmfi(Pa ∧Pb), then the
top part of the portion of tmfi+48 j(Pa ∧Pb) generated by filtration-0 classes has
the same form 8 j units higher. We also use the arguments on [4, p.54] to see
that, when this portion is interpreted as a quotient of a tmfk(P c ∧Pd) group, the
relations are of the same sort as those in [4, Thm 2.7]. The relation [4, (2.10)] is
especially important and will be noted specifically below. We use cofiber sequences
such as Sa∧Pb → Pa∧Pb → Pa+1∧Pb to deduce results for our spaces, in which at
least one of the bottom dimensions is even, from those of [4], which dealt with the
situation when both bottom dimensions are odd. The nice form of ExtA2 (H∗Pb)
below a certain line of slope 1/6 is important here. As noted on [4, p.54], it is just
a sum of copies of ExtA1 (Z2), suitably placed.

Proof of 1.4(b,e). If the immersion in (b) exists, there is an axial map

P8M+8h+1 ×P2L+3−16M+8h+1 → P2L+3−8M−8h−3.

We obtain a contradiction to this by showing

(3.1)
∑(−M−h

i
)
X i

1X2L−M−h−i
2 6= 0 ∈ tmf∗(P8M+8h+1 ∧P2L+3−16M+8h+1).

Our obstruction will be in filtration 4h+1, where there is a nonzero class by v8
2-

periodicity from Figure 2, which is the case h = 1. Note that the group in which
(3.1) lies is isomorphic to tmf24h+14(P6∧P6). The terms in (3.1) with i > M cannot
interfere in this filtration because for such i, 24h−2X i

1 = 0 in tmf∗(P8M+8h+1). The
same holds for terms with i < M − h due to the second factor. By [4, 3.12], the
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coefficients of the terms in (3.1) with M −h ≤ i ≤ M are all divisible by 2α(M)−1 =
24h+1. This is where the strange hypothesis comes into play. Next we note that

ν
( h∑

j=0

(h
j
)(−M−h

M− j
))= ν

((−M
M

))=α(M)−1.

By a variant on [4, Cor 2.13.3], this implies that (3.1) is nonzero. There are four
things that are required to make this work. (a) No interference from the outer
terms because they are precisely 0 in a lower filtration. (b) All the h+1 interme-
diate terms have filtration at least 4h+1. (c) The chart is nonzero in filtration
4h+1. (d) An odd number of the intermediate terms which have

(h
j
)

odd, 0≤ j ≤ h,
are nonzero in filtration 4h+1. This latter is a version of [4, (2.10)]. It is a conse-
quence of a relation in every fourth filtration that the sum of the basic classes in
the previous filtration is 0 in that filtration. By “basic,” we mean those obtained
from canonical classes in filtration 0 or 4 by v8

2 periodicity.
The proof of (e) is virtually identical.

Proof of 1.4(c,d). The proof of (d) is virtually identical to that of (c), and this is
similar to that of (b) with the main difference being that the obstruction is due
to

(−M−1
M

)
instead of

(−M
M

)
, which causes a very different-looking hypothesis. The

contradiction to the first result of (c) is obtained by showing

(3.2)
∑(−M−h−1

i
)
X i

1X2L−M−h−1−i
2 6= 0 ∈ tmf∗(P8M+8h+8 ∧P2L+3−16M+8h−3).

The obstruction will be in filtration α(M) = 4h+3. The terms with i > M or i <
M−h are precisely 0 in filtration less than 4h+3 due to their first or second factor.
By our hypothesis and [4, 3.8], the intermediate terms are all divisible by 2α(M).
Since

ν
( h∑

j=0

(h
j
)(−M−h−1

M− j
))= ν

((−M−1
M

))=α(M),

and, by v8
2-periodicity from Figure 3, the obstruction group is nonzero in filtration

α(M)= 4h+3.
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