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ON THE CHARACTERIZATION OF A SUBVARIETY OF SEMI-DE
MORGAN ALGEBRAS

CANDIDA PALMA AND RAQUEL SANTOS

ABSTRACT. In this note we characterize by a new set of axioms the largest
subvariety of semi-De Morgan algebras with the congruence extension prop-
erty.

1. Introduction

The equational class of semi-De Morgan algebras was introduced by Sankap-
panavar in [8]. It consists of bounded distributive lattices with an additional
unary operation and it contains the variety of pseudocomplemented distribu-
tive lattices and XK 1, one of the subvarieties of Ockham algebras which in-
cludes De Morgan algebras.

In [4] Hobby developed a duality for semi-De Morgan algebras which he
used to find the largest subvariety of semi-De Morgan algebras with the con-
gruence extension property. This variety, which Hobby denoted by C, contains
both X1, and the equational class of demi-pseudocomplemented lattices, a
generalization of pseudocomplemented lattices studied by Sankappanavar in
[9] and [10].

The equations defining principal congruences as well as the subdirectly
irreducibles of the variety C were determined by us in [6]; however, the two
inequalities (o and B) that characterize this subvariety of semi-De Morgan are
rather complicated. In fact Problem 2 in [4] is to find “nicer axioms for C”.

We solved this problem algebraically determining a new inequality (y) such
that € can be characterized by y and B.

2. Preliminaries

We start by recalling some definitions and essential results from [8].

Definition (2.1). AnalgebraL = (L,V, A,’, 0, 1) is asemi-De Morgan algebra
if the following five conditions hold (a, b € L) :

(S1) (L, Vv, A, 0, 1) is a distributive lattice with 0, 1.

(S2)0 ~1and 1 = 0.

(83) (aVvb) ~a' AV.

(S4) (a A b) ~a” ND".

(S5) o ~ a'.

2000 Mathematics Subject Classification: 06D99, 06D15, 06D30.
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150 CANDIDA PALMA AND RAQUEL SANTOS

This equational class of algebras will be denoted by SDMA.
The following rules hold in SDMA and some of them are proved in [8] :

(86) (a A b) = (a" Ab") = (anb").

(ST) (anb) = (a/ V)"

(S8) (and)’ ~ (a' V).

(S9) a < bimplies &' < a'.

(S10)a A (anbd) >and.

(S11) (av )’ ~ (@ A V) = (a" V") = (av )"

3. The variety C

D. Hobby determined in [4] the largest subvariety of SDMA with the con-
gruence extension property. He characterized this variety, which he denoted
by €, by the following inequalities:

(@ a' Vb >(anb) Al@ncy A(bace) Abac)
(B o'V (adAbAY) > (and) .
It is possible to obtain simpler inequalities characterizing €. The search

for these inequalities requires some rather nasty calculations so we consider
several lemmas before we can reach our goal.

With this aim we will consider first the following identities:
(1) @' Vb =a' VbV ((a/\b)//\(a/\c)'/\ (bre) A (bAc’)’)
(B1) a' V(& AbAY) =(anb) Vv (a AbAY),

These identities are equivalent to « and B, respectively (note that a > a A b
implies @’ < (a A b)/).
Now we can prove the following.

LEMMA (3.1). Let L € Cand a,d € L. Then the identity oy implies
(a2) (@vd)nd” =@nd) And".
Proof. By (83), (a/ Ad")Vvd' = (aV d')' v d'. Replacing bby a v d', abyd
and ¢ by d’ in the identity a; and using commutativity, we obtain
(avdyvd
=(avdYvd Vv ((avd)nd) AdAdY AN(avd)INd) AN(aVvd)Nd"))
=(avd) vd'v (((a vd)Aad) A(dad) A d”)

because ((a V d’) /\d”)/ =((avd) /\d)' by (S6).
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But (d A d/)/ > ((avd)A d)' since dAd' < (aV d') Ad;hence it follows
from the previous equation that
(avd) vd =(avd) vd v (((avd’) Ad)' Ad”)
=(avd) vd v (((avd)rd)vd)  (byS3)
=(avd) vd v ((avd)a(dvd))  (bydistributivity)
=d' Vv (avd)r(dvd')) (because(aVvdy<((avd)n(dvd))
=dv ((a A d) v d’)/ (by distributivity)
=d'v ((a/\d)’ /\d”) .
Therefore we have (¢’ Ad")vVd' ={(and) Ad")Vvd.
Now, by distributivity, we obtain
(@vdi)nd"vd)=(and) vd)nd" vd).
Since (a A d) > d’, it follows that
(@ vdINnd'vd)=(and) A(d"Vvd)
and meeting the two members with d”, we have as. O

LEMMA (3.2). Let L €¢ SDMA and let a,b,c € L. Then
(ag) @ VOIANY =(@nb) Ab' and
(B1) a V(@ ANbBAYY =(@nb) V(e AbAD)

imply

(8) (@ ABAVE))V (' Aane))=(@nb) Alare) A ((b/\(c\/c'))/.
Proof. Let us denote by A and B, respectively, the left and right sides of

the identity 5. We are going to prove that 8; and ag imply A = B using the

distributivity of L.
First we will verify that the joins of A and B with (a’ A ¢’ A ¢”) are equal:

Ava ne A"y
=(@ABACVE)V(((0'V@AAY)N(@ne) Vi A A"))))
(by distributivity)
=@ AbACV))V (V@ AdAY)N (VI A ACY)))
(by B1 and S6)
=@ AbACV))V (B Ad)Vd AN N")  (by distributivity)
= (@' ANV Vi A A
because, by S9, (b A(cV )Y > b andthusa’ A(bA(cV ) >a' AD).
Bv(d A AT
=((@anbY ANV )V A AN"Y)A((@ne) Vi Ad Ae"))
(by distributivity)
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=((@aAdY ANV )V A AY)A(d VI A NY)
(by B1 and S6)

=((@anb) ABAVE) ANa')Via' Ac Ae”)  (by distributivity)

= (@ ANBACVE)) V(@ A ANC") Dbecause, by S9, (aAb) >d'.

Thus we have proved that AV (@’ Ac’ Ac”’)Y =BV (a' Ac' ACY.
Now we are going to see that the same is true with the meets. We will have
to use identity as, so we must note that by S3, S11, S9 and S5,
@ ne'AeY =@veve)Y =@ve’ve)Y >@nane ne”Y =@veve).
Therefore, denoting by d the expression a V ¢ V ¢/, we will have
(a/ A C/ A C//)/ _ d// > d/
and thus

AN@ NS NEY =ANd"
=((aABACV))VE Aane)) nd”
(aVv®Aleve)) \/(b’/\(a/\c)'))/\d” (by S3)

(by dlstrlbutwlty)
((@vbynd) nd”) v (@ A@ne))nd’)
(by the definition of d, )
(@vdyvd)nd")v (¥ A@ance))nd”) (by as)
(@ ANYVd)ANd") V(B Alane))nd”)  (byS3)
(@ AB)Vd v AaAe))Ad”  (by distributivity)
V(@ Aane))nd” (because (aAc) >a')
' Aanc) Ad")v(d' Ad") (by distributivity)
ANane) Ad")vd (becaused” > d).

(
((@vbrnt@veve)) nd") v (@ r@re))nd’)
((

(
(
(
= (d
=
= (¥

By a similar process,

BA@ A AN"Y =BAd”

=(@Ab)AbA(ev) Ad" ANaAce) (by commutativity)
=Wanb)vbAeve) Ad Aane) (byS3)
=bBA@veve)nd" Aance) (by distributivity)
=bBAd)Ad"Aanc) (bythe definition of d )
=®'vd)rd" AaAre) (applying as)
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= ANV ANd"DVA(@NCe)) (by distributivity)
=@ And"Yvd)N(@Nne))  (becaused” >d’)
=0 Ad"ANane))Vvd AaAc)) (by distributivity )
=0 ANd" AaNne))vd

(because, by S9,d’ =(aVeVvc) <(anc)).

Therefore we have proved that
AN@ A NY =BA@ A A"

By the characterization of 6;,;1.((a’ A’ Ac”Y, (@’ Ac’ Ac”’)) we conclude that
A=B. O

LEMMA (3.3). Let L € SDMA and let a, b, c € L. Then the identity
& (@ ABAVE)V (O Aane))=(@Ab) Aane) A(BAV))

is equivalent to o

!/

Proof. First note that « is equivalent to
@ Vvb)N@anbY AaneY AN(bAeY A(BACY = (anb) Alare) A(bAe) A(bACTY
and, by distributivity, this identity is equivalent to
(@' AaAb Aane) ANbAe) ABACY )V
(' A@nb) Alane) ANbAeY ANbACY ) =
=@Ab) Aanre) AN(bAe) ANBACY.

By S9, it is known that a’ is less than or equal to (a A b) and to (a A ¢) and
that &’ is also less than or equal to (a A b)Y, (b Ac¢) and (b A ') . Therefore the
previous identity is equivalent to

(@ ABAY ABACY)V (U Aane))=@Ab) Aane) AbAe) ABACY
and, by S3, also to
(@' ABASV DAV Aane)) =@nb) Aare) A((bre)vVibAac)) .
Finally, by the distributivity of L, we conclude that « is equivalent to §.
O
From the previous lemmas we obtain the following:
PROPOSITION (3.4). Let L € SDMA. Then L € Cif and only if the identities
(ar2) @ VvVO)AND =(@aAb) ANY’
and
(B1) ad V@ ANOANYY =(@Ab) V(d AbADYY

hold.

Proof. We proved in Lemma 3.1 that the identity as is a consequence of a;
which is equivalent to a.

Conversely, by Lemma (3.2), (ag and B;) imply (8 and 3;), and by Lemma
(3.3), these are equivalent to @ and B;. O
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It is now possible to characterize € by simpler axioms solving Problem 2 in
Hobby [4]:

THEOREM (3.5). The subvariety C of semi-De Morgan algebras can be char-
acterized by inequalities y and B:

(y) aVvb >(@nb) Ab”
(2)) a Vi ANbAY)Y > (aAb)

Proof. 1t is enough to prove that the identity ay of the previous lemma is
equivalent to the inequality y.
By ag we have

ad Vvt >@Vvb)AND =(@nb) Ab".

Therefore ag implies .
On the other hand, from y we know that

@ VvO)AN@AD) AN =(a@nb) AND".

But o’ < (aAb) and b’ < (a A b) sothata’ Vb’ < (a Ab) and therefore as
follows from v. 0
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UNIFORMITY OF DISTRIBUTION MODULO 1 OF THE
GEOMETRIC MEAN PRIME DIVISOR

FLORIAN LUCA AND IGOR E. SHPARLINSKI

ABSTRACT. We show that the fractional parts of nl/@®™ »1/2® gand the geo-
metric mean of the distinct prime factors of n are uniformly distributed modulo
1 as n ranges over all the positive integers, where (}(n) and w(n) denote the
number of distinct prime divisors of n counted with and without multiplicities.
Note that n1/?" ig the geometric mean of all prime divisors of n taken with
the corresponding multiplicities. The result complements a series of results
of similar spirit obtained by various authors, while the method can be applied
to several other arithmetic functions of similar structure.

1. Introduction

In[1], it is shown that the fractional part of the arithmetic mean of the prime
factors of an integer n, that is, the function

1
fn =53

pln

where w(n) denotes the number of distinct prime divisors of n, is uniformly
distributed in [0, 1) as n ranges over all the positive integers. The same method
can also be applied to the fractional part of the arithmetic mean of the prime
factors of an integer n taken with the corresponding multiplicities, that is, to
the function

1
Fn) = 0 le app,
pP||n

where ()(n) denotes the number of distinct prime divisors of n counted with
multiplicities.

This is in contrast with the main result from [3] where it is shown that the
arithmetic mean of all the divisors of 7, that is, the function

1
g(n) = mzd,

d|n

is an integer for almost all positive integers n, where, as usual, 7(n) denotes
the total number of positive divisors of n.

2000 Mathematics Subject Classification: 11K65, 11N37.
Keywords and phrases: uniform distribution, average prime divisor, arithmetic function.
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The above result from [1] naturally leads to the question whether the frac-
tional parts of the geometric mean of the prime factors of n

1/w(n)
h(n) = (H p)
pln

are uniformly distributed in [0, 1).

In this paper, we investigate the distribution modulo 1 of the function A(n)
and the closely related functions n'/“® and n'/*"_ Note that all three func-
tions coincide when 7 is square-free, and that n'/*™ has the natural interpre-
tation of the geometric mean of the prime factors of n taken with the corre-
sponding multiplicities.

We also recall that several more problems of a similar flavor have been
treated previously in [1], [2], [3], [5], [6], [12], [13], [14], [15], [16], [17] (see
also the references therein).

2. Notation and the Main Result

Recall that the discrepancy D(A) of a sequence A = (a,)Y_; of N (not neces-
sarily distinct) real numbers is defined by the relation
IA,y)

D(A) = sup
0<y<1

>

where I(A, vy) is the number of positive integers n < N such that {a,} < y.
We denote by 6(N), A(N) and V(N) the discrepancy of the sequences

N N .
(nt/em) ", (n¥/9™) " and (A(n))Y_,, respectively.

THEOREM (2.1). We have
S(N) = (log N)~ 10 A(N) = (log N)"1°0,  ¥(N) = (log N)~ LoD
as N — 0OQ.

It is clear that the above result implies that the fractional parts {n!/*™},
{nY/¥) and {h(n)} are all uniformly distributed in [0, 1) as n ranges over all
the positive integers.

3. Proof of the Main Result

(3.1) Preliminaries and the Scheme of the Proof. Since the proof of the
upper bound on A(N) is completely analogous to the proof of the upper bound
on 8(IN) (and can be obtained from it by essentially making only typographical
changes) we concentrate on the case of (V). We also indicate the tiny changes
needed to deal with the case of the function V(N).

For a positive integer & we put log;, N for the kth-fold iterate of the natural
logarithm function log N. We assume that N is sufficiently large, in particular,
large enough to make all the iterated logarithms well defined.

Also, given a set A we use 7(A) to denote the number of primes p € A. In
particular, as usual, 7(x) = ({1, ..., x| }).

Let P(n) denote the largest prime divisor of n > 2 and put P(1) = 1. As
usual, we say that an integer n > 1 is y-smooth if P(n) < y.

The proof follows the following steps:
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e At the first step we remove integers n < N whose arithmetic structure
is somewhat abnormal (for example, either n or P(n) are small).

e For the remaining integers n < N, we write n = mP(n) and show that
for every fixed m obtained in such a way, even the fractional parts of
(mp)Y/@m+D are already uniformly distributed when p runs through the
set of prime values which P(n) can take. Similar considerations apply to
deal with (mp)/ @+ and (h(mp))/ @™+ respectively.

(38.2) The Exceptional Sets. We define the following sets &;,,i = 1,...,7,
which are similar to those of [1] and estimated in the same way, although the
choice of parameters is somewhat different. We show that total number of
elements of these sets satisfies

N(log2 N)?
(3.2.1) (U & > “TogN

and thus they can be excluded from further considerations.
Let &; denote the set of positive integers n < N/log N.
We choose @ = NV, where
~ 2logy N
~ logg N’
and we denote by &3 the set of @-smooth positive integers n < N.
According to Corollary 1.3 of [9] (see also [4]), we have the bound
N
— < —u+to(u)
P(N, Q) < Nu g’
where, as usual, (x, y) = #{n < x : P(x) < y}.
Next, we denote by €3 the set of the positive integers n < N not in &5 such
that P(n)? | n. Clearly,

#53<Z

P log N’
Now let
K = |4log, N|,

and let &4 denote the set of positive integers n < N such that w(n) > K. Since
20 < 7(n) and

Z 7(n) ~ Nlog N

n<N
(see [7], Theorem 320), we get

N
<27k —.
#E4 < 27" Nlog N <« log N

Now let n < N be a positive integer not in U?:l&-. This integer n has a
unique representation of the form n = mp, where m is such that m < N/@,
and p = P(n) is a prime number in the half-open interval p € L(m), where

N
mlog N

L(m) = max {Q, P(m), } and L(m) = (L(m), N/m].
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Let &5 be the set of those n such that L(m) = @. In this case, since m@ <
mP(m) < mP(n) =n < N, we have
N
Qlog N —
When m is fixed, p < N/m can take at most w(N/m) values. Thus, the number
of elements n € &5 is

#e5 < > T (Z)

N/(@Qlog N)<Xm<N/Q

N
< Z mlog(N/m)
N/(Qlog N)<Xm<N/Q

N 1

« oy L
log @

N/(Qlog N)<m<N/Q

Nu ) N ) N
< log N <0g (Q) o8 <QlogN>)

Nulog, N < N(og, N)?
log N log N

Let &g be the set of those positive integers n < N which are not in U? ,¢&;
and such that L(m) = P(m). In this case,

m <

D=

<

Pm) mlog N’

so we see immediately that p = P(n) < P(m)log N. Thus, &g is contained in
the set of all those positive integers n < N which are divisible by two primes
q < p such that p < qlog N and p > Q. In particular, ¢ > @/log N > Q'/2.
Fix ¢ and p. The number of such n < N is O(N/pq). We recall the Mertens
formula (see Theorem 427 in [7]), which asserts that the relation

(3.2.2) Z% =logyx+a+0 (1>

et log x

holds for all x > 2, where « is some absolute constant. Hence, we derive that
for each g the total number T,(N) of such n < N with some prime p in the
interval (q, ¢ log N] can be estimated from (3.2.2) as

N 1 N
T,(N) < — Y —==(logy(qlogN)—logyq) +O ( )
q<p§q10ng 9 qlogq
_ Nlog(1+10g2N)+O< N ) NlogzN‘
q log q qloggq qloggq

Summing the above inequality over all ¢ > Q'/2, we get that

# < > TuN)<NlogsN > 11 < NllogQN
e oo 1l084q 0gQ

Nulog, N < N(og, N)?
log N log N
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Finally, put p(n) for the largest square-full divisor of n. Recall that a positive
integer m is called square-full if p? | m whenever p | m. For the purpose of the
analysis of A(n) only, we let &7 be the set of n < N such that p(n) > (log N)?.
It is clear that an upper bound for the cardinality of &7 is

N N
T S e
- log N’
p>(log N)* P &
p square-full

where we used the fact that

1 < 1
Z 0 1/2°
p>x P *
p square—full

which follows by partial summation from [11], Theorem 14.4.
Therefore, we have (3.2.1).

(3.3) The Remaining n.

3.3.1. Bounds on 8(N) and A(N). We only prove the claimed bound on (V)
as the case of A(N) is completely analogous.

We assume that n ¢ U?_,€; and that n = mp, where p = P(n). Let M be the
set of all acceptable values for m. For a given m € M, we have that

N N
mlogN’ m |’

Lim) = (

Now, for m € M, we put
Xy = |(N/log N)Y/ @D 41 and Y, = [NVemD)],
We let

w(m)+1 w(m)+1
Rm) = <Xmm o } '

m
It is clear that R(m) C L(m). Further,

N ygm-1 N 1 wlm)+1
m m m (1 - <1 +0 <N1/(w(m)+1))>

No(m) N
=0 (le/(w(m)+1)) =0 (m(log N)Z)

Xrar)L(m)+1 B N _ N
m mlogN ~ \m(ogN)?)’

and similarly

(3.3.1.1)

which together with

N N N !
m(Lm)) == (m) -7 <mlogN> ~ mlog(N/m) <1+0 (logN))
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shows that
w(m)+1 w(m)+1
2(R(m)) = m(L(m)) + O (‘Z Y - ‘mlogN B Xmm )
(3.3.1.2)
- w(L(m))
— m(Lm) + O ( - ) .

Let us fix y > 0 and let J,(N) be the number of n < N with {n!/*™} < y.
For each real y € [0, 1) and positive integer U € [X,,, Y,, — 1], we put

w(m)+1
Z,(m,U) = W +ym
and define the set
Ry(m, U) = [Zo(m, U), Z,(m, U)).
Now note thatif m = M and p € L(m), then forn = pm we have w(n) = w(m)+1
and
nl/w(n) elU U+ ’)’)
if and only if p € R,(m, U).
Thus, it follows from (3.2.1) and (3.3.1.2) that

(3.3.13) L= S mym, U))+O<

meM U=X,,

N(logy N)?
o N )

It is easy to see that it is enough to show that

N
(3.3.1.4) J(N)=yN +0 <(1ogN)1+<1>>
as N — oo uniformly for
1
0.1, <y <1].
(3.3.1.5) oy <7<l
We have
y \ @m)+1
Z,(m,U) — Zo(m, U) = Zy(m, U) ((1 + 7) _ 1)
(3.3.1.6) U
o (o @MY Zotm, Uxetm) + 1
=y U 77 ,

uniformly over all parameters (since w(m) < X% < UY2 for m € M).
We now recall that, accordingly to Heath-Brown [8] and Huxley [10], we
have

_ Y (logy X)*
(3.3.1.7) X +Y) - X = % (”0( log X >)

provided that Y > X7/12,
Under the condition (3.3.1.5) and since U < Y,, = N°® for m € M, we
immediately see from (3.3.1.6) that

Z,(m, U) — Zo(m, U) > Z,(m, U)"/12,
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Hence, the estimate (3.3.1.7) applies to 7(R,(m, U)). Remarking that

w(m) _ w(m) log N
3.1, — < = —0.
(3.3.1.8) U =X, < exp< 0510g2N)

and, by (3.3.1.1),

Uw(m)+1 - ch;zl(m)+1 N Q

> > =
Z,(m,U) > Zo(m, U) > m ~ mlogN - logN

> Q1/2,

we deduce the bound

4
7R (m, U)) — Zo(m, U)w(m)+ 1) (y L0 ((log2 [9)) ))

U log @
 Zo(m, Uda(m) + 1) (logy NP
(3.3.1.9) - = («Y Lo (mgN)> ,

Certainly, even much weaker results about primes in short intervals would
suffice, but using (3.3.1.7) makes everything immediately obvious.
Substituting (3.3.1.9) in (3.3.1.3) leads us to the bound

(log, N >5>) Y Zo(m, Uw(m) + 1)
N(og, N)?
+0 (ng>

which holds uniformly over all y < 1 under the condition (3.3.1.5). Using this
formula with y = 1 for which we obviously have J1(IN) = N, we see that

Y1 5

Z Z Zo(m, U)w(m) + 1) _N+O (N(logzN) )}
U log N

meM U=Xn

J(N) = <y ) <

which concludes the proof of the upper bound.
Taking into account the contribution from the prime numbers, we see that
for any y > 0,

N
> -
Jy(N) > 7(N) > Tog N’

which implies the lower bound and concludes the proof for 5(IV).
As we have mentioned, the case of A(IV) is entirely similar.
3.3.2. Bound on V(N). We let r(n) be the product of all prime divisors of n,
that is,
r(n) = Hp = h(n)*™,

pln
To estimate V(IN) one takes m € M, puts

N N 1/(@(m)+1)
X = K(m/r(m))logN> J 1

B N 1/(w(m)+1)
Y= K<m/r<m>)> J ’

and
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and lets

~ X;;(m)Jrl ?ﬁ(m#l
fR(m)( rm) ° r(m) ]

As in the analysis of the previous case, one shows that

W(L(m))>
logN /°

Thus, proceeding as in the previous analysis, we get that for all y € (0, 1] the
number of n < N such that {h(n)} < yis

7(R(m)) = w(L(m)) + O (

N Y, -1 _ 9
L= Y a@0mU)+0 (W)
meM U:)}m g

where R,(m, U) = [Zo(m, U), Z,(m, U)) and

~ U w(m)+1
Z,(m,U) = %

Since m/r(m) < p(m) = p(n) < (log N)?, the resulting intervals are still large
enough to apply (3.3.1.7), and now an argument identical to the previous one
finishes the proof of the upper bound.

For the lower bound, one uses again the contribution from the prime num-
bers. O
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TRIALGEBRAS AND LEIBNIZ 3-ALGEBRAS

J. M. CASAS

ABSTRACT. We analyze the relationship between trialgebras (K-vector spaces
equipped with three binary associative operations) and Leibniz 3-algebras (K -
vector spaces equipped with a ternary bracket that verifies an identity which
is a generalization of the Leibniz identity for Leibniz algebras) in a similar
way as dialgebras are related to Leibniz algebras. The universal enveloping
algebra U3 L(L) of a Leibniz 3-algebras L is constructed and the equivalence
between the categories of right UgL(L)-modules and L-representations is
proved.

1. Introduction

It is well-known that there exists a functor [—, —] from Ass (the category
of associative algebras) to Lie (the category of Lie algebras) which endows
an associative K-algebra A with a structure of Lie algebra by means of the
bracket [x, y] = x-y —y-x and that this functor is right adjoint to the universal
enveloping algebra functor U(—): Lie — Ass. In order to fix the notation, K
denotes a fixed ground field throughout the paper.

A non skew-symmetric version of Lie algebras, called Leibniz algebras, was
introduced by Loday [8, 9] as K -vector spaces equipped with a bilinear bracket
which satisfies the Leibniz identity

[, [y, 211 = [lx, y], 2] — [[x, 2], y]

If we factorize a Leibniz algebra g by the two-sided ideal spanned by the
elements [x, x], x € g, then we obtain the Lie algebra denoted by gri.. The
kernel of the canonical map g — gr;e is denoted by g®™™. Thus we have defined
a functor (—); : Leib — Lie which is left adjoint to the inclusion functor from
Lie to Leib which considers a Lie algebra as a Leibniz algebra.

Moreover Loday [10] introduced a type of algebras, called dialgebras, which
are K-vector spaces endowed with two associative operations 4 and I~ (left and
right) satisfying three axioms (see below). We denote by Dias the category
corresponding to these objects. This kind of algebras is closely related to
binary trees [10] and they play a similar role with respect to Leibniz algebras
as associative algebras with respect to Lie algebras, that is, a dialgebra D
can be functorially endowed with a structure of Leibniz algebra by means of
the bracket [x,y] = x 4 y — y + x and this functor is right adjoint to the
universal enveloping dialgebra functor Ud(—): Leib — Dias (see Proposition
1.9 in [10D).

2000 Mathematics Subject Classification: 17A30, 17A32, 17A40, 17A42, 18A40.
Keywords and phrases: Leibniz algebra, Leibniz 3-algebra, Quasilie 3-algebra, Dialgebra,
Trialgebra.
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When Loday and Ronco were studying ternary planar trees [13], they found
a type of algebras, called trialgebras, which are K-vector spaces equipped
with three binary associative operations -, 1, and - (left, middle, and right)
satisfying eight axioms (see below).

The goal of this paper (see section 2) is to endow trialgebras functorially with
a structure of Leibniz 3-algebra (Leibniz n-algebras [2] are K-vector spaces
endowed with an n-ary bracket satisfying the fundamental identity (2.4) below)
by means of the bracket

[x,y,zl=xd(yLlz—zly)—(ylz—zlykFx

Moreover we construct the universal enveloping trialgebra functor UT(—) from
sLeib (the category of Leibniz 3-algebras) to Trias (the category of trialgebras)
which is left adjoint to the functor described previously. These adjoint functors
are related with the adjoint functors Ud(—) 4 [—, —] : Leib — Dias by means
of the commutative diagram (2.12) below.

Section 3 is devoted to introducing the category 3QLie of Quasilie 3-
algebras as Leibniz 3-algebras for which the following identity holds:

[x,y,y1=0

for all x, y. This kind of algebras plays a similar role with respect to Leibniz
3-algebras as Lie algebras with respect to Leibniz algebras. Concretely, we
functorially endow an associative algebra with a structure of QuasiLie 3-
algebras by mean of the bracket

[x,y,2l=x-y-z2—x-2-y—y-z-x+z-y-x=x-(y-2—2-y)—(y-z2—2-y)-x

We construct the universal Quasi-Lie 3-algebra functor Us(—) as the left adjoint
to the functor[—, —, —]: Ass — 3QLie and, finally, we relate this pair of adjoint
functors with the adjoint pair UT(—) 4 [—, —, —]: sLeib — Trias by means of
the commutative diagram (3.4) below.

Finally, in section 4, we construct the universal enveloping algebra of a
Leibniz 3-algebra and we prove that the category of representations of a Leibniz
3-algebra L is equivalent to the category of right-modules on the universal
enveloping algebra Us L(L). Also we prove the typical properties of a universal
enveloping algebra for UsL(L) (see Th. 1, p. 152 in [5]).

2. Trialgebras

Our goal in this section is to construct a pair of adjoint functors between
the categories of Leibniz 3-algebras and trialgebras similar to the adjoint pair
between the categories of Leibniz algebras and dialgebras. We start recalling
a kind of algebras with three associative operations, called trialgebras, which
were introduced by Loday and Ronco [13] when they studied ternary planar
trees.

Definition (2.1). An associative trialgebra is a K-vector space A equipped
with 3 binary associative operations: -, 1,-: A ® A — A (called left, middle,
and right, respectively), satisfying the following relations:

lL.xdy)dz=x4(yF2=x1(@y L2

2. (xFy)dz=xkF(yd2)
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. (xdyrz=axt@yrza=xLytz
4. xly)dz=xLl(yd2
5,xdy)lz=x1l(ytF2)
6. xFy)lz=xt(ylz

A morphism between two associative trialgebras is a linear map which is
compatible with the three operations. We denote by Trias the category of
associative trialgebras.

Examples (2.2).

i) An associative K-algebra A endowed with the binary operations x 1y =
x Ly=xty=uxy,forall x,y € A. This operation defines a functor from
Ass to Trias which has as left adjoint the functor (—)a: Trias — Ass which
maps a trialgebra T to the associative algebra Ty, which is the factorization
of T by the ideal (in sense of trialgebras) spanned by the elements of the form
xFy—xly,xdy—x Ly,x,yeT.

ii) Let A be an associative K-algebra. Take T = A ® A ® A and define the
following operations:

axbcdd @b ®cd =axbxcabd
a®b®ckad @b ®c :=abca’ @b @c
ab®cld @b ®cd:=a®bca'b @c
Extending these formulas by linearity on A ® A ® A one obtains product
applications -, I, | which satisfy the trialgebra axioms.

iii) Opposite Trialgebra: The opposite trialgebra of a trialgebra (7, -, I, L)
is the trialgebra T°° with the same underlying vector space and product given
by

xty=ybxxH y=ydx;x 'y =y L x

iv) For other examples we refer to [13].

In order to show the role which trialgebras play with respect to Leibniz
3-algebras we start recalling few well-known material.

Leibniz algebras [8, 9] are a non-skew symmetric version to Lie algebras,
that is, they are K-vector spaces g equipped with a bilinear bracket [—, —]: g®
g — g satisfying the Leibniz relation [x, [y, z]] = [[x, y], 2] — [[x, 2], y]. We
denote by Lie and Leib the categories of Lie algebras and Leibniz algebras,
respectively.

A dialgebra [10] is a K-vector space equipped with two associative opera-
tions: -, F (called left and right, respectively), satisfying the following rela-
tions:

lL.xdy)dz=x14(yF2)
2. (xFydz=x+(y2)
.(xdyFz=xFykF2)
A morphism between two associative dialgebras is a linear map which pre-

serves the two operations. We will denote by Dias the category of associative
dialgebras.
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It is well-known that an associative algebra A can be endowed with a struc-
ture of dialgebra by means of the operations x 4y = x-y = x b y, for all
x,y € A[10]. Conversely, for a dialgebra D, let Dag be the factorization of D
by the two sided ideal (in the sense of dialgebras) spanned by the elements
of the form x 4 y — x F y,Va,y € D. It is clear that 4 = I in D and so
Dags 1s an associative algebra. The factorization map D — D is universal
among the applications from D to an associative algebra, that is, the associa-
tivization functor (—)as: Dias — Ass is left adjoint to the inclusion functor
inc: Ass — Dias. We summarize this information in the following diagram:

(_)Lie
Lie “—.  Leib
(2.3) UE) H[-,-] Ud(-) H[-,-]
(_)Ass
Ass ~—_ Dias

A
From the diagonal composition of adjoint functors in diagram (2.3) one derives
the isomorphism Ud(g)ass = U(grie) (see Lemma 4.8 in [11]).

On the other hand, a dialgebra D can be functorially endowed with a struc-
ture of trialgebra by means of one of the inclusion functors:

1. Taking the dialgebra operations -, - and defining x 1 y :=x - y.
2. Taking the dialgebra operations -, - and defining x 1 y := x F y.

Conversely, for any trialgebra T, let Tp;,s be the factorization of T by the
three-sided ideal I; spanned by the elements of the form x 1. y —x 4 y, and
let Topias be the factorization of T' by the three-sided ideal I, spanned by the
elements of the form x | y — x - y. Itis clear that x | y = x 4 y in the first
case and x | ¥ = x F y in the second one. Therefore, Tipias, (i = 1,2), is an
associative dialgebra. Moreover, the factorization application T' — Tipjas, (i =
1, 2) is universal for applications from T' to any associative dialgebra, that
is, the dialgebrization functor (—);piss: Trias — Dias is left adjoint to the
inclusion functor inc; : Dias — Trias, I = 1, 2).

Lie algebras and Leibniz algebras are a particular case (n = 2) of Lie
n-algebras and Leibniz n-algebras respectively [4, 14, 2]. We recall that a
Leibniz n-algebra is a K-vector space L equipped with an n-linear operation
[— ..., —]: L®" — [ satisfying the following fundamental identity:

(2.4)

n
[[xb xZ) M xn]; y2: .. :yn] = Z[xly .. ')xifly [xi) yZ’ .. -;yn]; xi+1; ce xn]
=1

If the bracket is skew-symmetric, that means
[x1, %2, - - -, Xn] = (=D (2501, Ko@) -« +» Xoim)]

for all o € S, (S, is the symmetric group of n elements and the number e(o)
is equal to O or 1 depending on the parity of the permutation o), then we have
a Lie n-algebra. A morphism of Leibniz n-algebras (Lie n-algebras) is a linear
map which preserves the bracket. We denote by ,Lie and ,,Leib the categories
of Lie n-algebras and Leibniz n-algebras, respectively.
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In this paper we concentrate on the case n = 3 in order to establish an
adjunction between trialgebras and Leibniz 3-algebras similar to the adjunc-
tion between dialgebras and Leibniz algebras. To achieve this we need the
following results:

PROPOSITION (2.5). Let A be a trialgebra. Then Ais a Leibniz 3-algebra with
respect to the bracket
[x,y,zl=xd(y L2 -y laFx—xdzLly+LykFx=
=xd(ylz—zly)—-(ylz—zlytx
forall x,y,z € A

Proof. The proof is straightforward and we leave it to the reader. O

Also it is possible to establish other structures of Leibniz 3-algebras from
a trialgebra. To do this we introduce the notion of noncommutative Leibniz-
Poisson algebra. A cohomology theory of this kind of algebras was developed
in [3].

Definition (2.6). A non-commutative Leibniz-Poisson algebra (in brief NLP-
algebra) is a K-vector space P together with two bilinear operations
tPxP—Pay)—x-y
[——1: PxP— P(x,y)— [x,y]
such that (P, [—, —]) is a Leibniz algebra, (P, -) is an associative algebra and
the following identity holds:
[a-bcl=a-[bcl+acl-b
forall a, b,c € P.

Examples (2.7).
1) Poisson algebras.

ii) Any Leibniz algebra is a NLP-algebra with trivial associative product
(a - b = 0). On the other hand, any associative algebra is a NLP-algebra with
the usual bracket [a¢,b]=a-b—b-a.

iii) Any associative dialgebra is a NLP-algebra with respect to the operations
a-b=atb;la,bl=a-1b—-bt a.

iv) Any associative trialgebra is a NLP-algebra with respect to the operations
a-b=albla,bl=a-1b—-bla.

v) If P; and P, are NLP-algebras, then the K-module P; ® P, endowed with
the operations

(a1 ® ag) - (b ® bg) = (a1 - b1) @ (ag - bg)
[a; ® ag, by ® bal = [ay, [b1, b2l ® ag + a1 ® [as, [by, ball
is a NLP-algebra.
vi) For examples coming from Physics the reader is referred to [6].

LEMMA (2.8). If P is a non-commutative Leibniz-Poisson algebra, then
{x, 3,2} =[x,y 2]
defines a Leibniz 3-algebra structure on P.
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Proof.

{{x, 3, 2},0,0} — {{x, 0, b}, 3, 2} — {x, {3, 0, b}, 2} — {x,5, {2, 0, b}}
=[x,y -zla-bl—I[lx,a-bl,y -zl—Ix[y,a-bl-z1—I[x,y- [z a-bll
=[x,y -zla-bl—I[lx,a-bly -z1-I[x[y,a-bl-z+y-[za-bll
=[x,y -zla-bl—I[lx,a-bl,y -zl—I[x[y-2z a-bll

The last term vanishes thanks to the Leibniz identity. O

LEMMA (2.9). If P is a non-commutative Leibniz-Poisson algebra , then P°P
is also a non-commutative Leibniz-Poisson algebra. Here P°° has the same
Leibniz algebra structure as P, but the associative algebra structure in P°P is

Xxy=y-x

LEMMA (2.10). If A is an associative trialgebra, then (A, L, [—, —]) is a non-
commautative Leibniz-Poisson algebra, where

[a,b]=a-1b—-bla.

COROLLARY (2.11). Let A be a trialgebra, then A is a Leibniz 3-algebra in
two ways:

1. with respect to the bracket: [x,y,zh =x 1 (y L2)—(y L 2)F x;
2. with respect to the bracket: [x,y,zlo =(z Ly)Fx—x4(z L y).

Proof. Apply Lemmas (2.8), (2.9) and (2.10). O

Let us observe that [x, y, z] in Proposition (2.5) is equal to [x, v, z]1 +[x, y, zla.
We will use the structure in Proposition (2.5) since it is the structure which
guarantees the commutativity of square (2.12) below.

Proposition (2.5) gives us a functor [—, —, —]: Trias — 3Leib which has
as left adjoint the universal enveloping trialgebra functor UT(—): sLeib —
Trias. This functor assigns to a Leibniz 3-algebra L the trialgebra UT(L)
defined by
D1 K[P,] © L&

1
where @©,>1K[P,] ® L®" is the free associative trialgebra over the underlying
vector space L [13]land I = ({x 1 (y L2)—(y La)Fx—x 4 Ly)+(z Ly H
x—lx,y,2]|x,y,z€ L}).

UrL) =

It is well-known that a Leibniz algebra g can be endowed with a Leibniz
3-algebra structure by means of the operation [x, y, z] = [x, [y, 211 [2], thus we
obtain the following diagram which extends the diagram (2.3)

Leib —2+ ;Leib
(212) Ud(') l I [','] UT(') l I Ene
. (—)iDias R
Dias . Trias
inci
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It is easy to verify that a Leibniz 3-algebra coming from a dialgebra D via
Trias is same as that via Leib; that is, diagram (2.12) is commutative in the

following way: Dias =5 Leib 2 ;Leib = Dias <5 Trias =5 sLeib.

3. QuasilLie 3-algebras

The goal of this section is to construct a diagram similar to diagram (2.3) in
the category sLeib. In order to achieve our goal we need to introduce a new
kind of ternary algebras.

Definition (3.1). A Quasilie algebra of order 3 or QuasilLie 3-algebra is a
Leibniz 3-algebra L for which the following identity holds:
[x, 5,51 =0
forall x,y € L.
Obviously, a homomorphism of QuasiLie 3-algebras is a linear map such

that preserves the bracket. We denote by 3QLie the category of QuasiLie
3-algebras.

Examples (3.2). i) Lie 3-algebras [4, 14].

ii) Lie triple systems [7] are K-vector spaces equipped with a trilinear
bracket which satisfies the identity (2.4) and, instead of skew-symmetry, sat-
isfies the conditions

lx,y, 21+ [z, x,y] +[y,2x]=0
and
[x,5,y1=0
This is an example of QuasiLie 3-algebras which are not Lie 3-algebras.
iii) Let A be a K-associative algebra equipped with a K-linear map D: A —
A satisfying
D(a - Db) = Da - Db = D(Da - b)
for all a, b € A. If we define the bracket
[a,b,cl]=a-b-Dc—a-Dc-b—b-Dc-a+Dc-b-a

then we have a Leibniz 3-algebra, when D is an endomorphism of algebras
such that D? = D or D is a derivation such that D? = 0, which is a QuasiLie
3-algebra, for instance, in particular case of D = Id.

iv) The particular case D = Id in example iii) shows a K-associative algebra
A endowed with a structure of Quasi-Lie 3-algebra by means of the bracket

[x,y,2l=x-y-z2—x-2-y—y-z2-x+z-y-x=x-(y-z2—2-y)—(y-2—2-y)-x
x, ¥, z €A. This QuasiLie 3-algebra is not a Lie 3-algebra.

If we factorize a Leibniz 3-algebra L by the three-sided ideal spanned by all
brackets of the form [x, y, y], x, ¥y € L, then we obtain the QuasiLie 3-algebra
denoted by Lg1ie. The canonical morphism L — Lg1je is universal for every
morphism from £ to a QuasiLie 3-algebra, that is, the functor (—)g 4 : sLeib —
sQLie is left adjoint to the inclusion functor. We denote the kernel of the
canonical morphism £ — Lg1;e by LQann
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On the other hand, the functor [—, —, —]: Ass — 3QLie described in Ex-
ample (3.2) iv) has as left adjoint the universal enveloping QuasiLie 3-algebra
functor. The universal enveloping QuasiLie 3-algebra functor assigns to a
QuasiLie 3-algebra L the factorization of the free Quasilie 3-algebra @L(L)
by the ideal spanned by the elements of the form [x,y,z] —x-y-z+x-z-y +
y-z-x—z-y-x,forallx,y,ze L.

PROPOSITION (3.3). There exists the free QuasiLie 3-algebra over a set X.

Proof. Following the same way as [15], we define a 3-magma M as a set
together with a ternary operation w: M x M x M — M, (x, y, 2) — w(x, y, 2).
For a set X define inductively the family of sets X,,(n > 1) as follows:

X=X, Xo=XxX,

1) Xy = [, g1r—n Xp X Xg x X:(n > 3) (= disjoint union).

Put My = ]_[Zil X, and define Mx x Mx x Mx — My by means of X, x
Xox X, — Xpigir CM.

My is the free 3-magma on X, since for every 3-magma N and every map
f: X — N there exists a unique homomorphism of 3-magma F: My — N
which extends f.

Let Ax be the free K-3-algebra (K-vector space equipped with a ternary op-
eration called product) associated to the free magma My and let I be the
three-sided ideal of Ax spanned by the elements of the form w(a, b, b) and

FI(a: b’ c, d; e) = w(w(a’ b’ C), d) e) - w(w(a; d, e)’ b) C) - w(a: w(bJ d’ e), C)
— w(a, b, w(c, d, e)),

then Ax/I is the free QuasiLie 3-algebra on X, denoted by QL(X).

After Proposition (3.3), the universal enveloping QuasiLie 3-algebra of L is

QL(L)
{lx,y,2l —x-y-z+x-2-y+y-z-x—z-y-x})

Us(L) =

since L — QL(L) —» Us(L) and every homomorphism of QuasiLie 3-algebras
f: L — [A] can be extended to a homomorphism f: QL(L) — [A] by the
universal property of the free QuasiLie 3-algebra. Plainly f vanishes on the
ideal spanned by the elements [x,y,z] —x-y-z4+x-z2-y+y-z2-x—2z-y-x, soit
induces a homomorphism of associative algebras ¢: Us(L) — A which extends
/. Here [A] denotes an associative algebra endowed with a QuasiLie 3-algebra
structure given by Example (3.2) iv). O

We can summarize this information in the following diagram of adjoint

functors: (—)QLie
3QLie - sLeib

(3.4) Us(—) H[-,',-] UT() H =y
(_)Ass
Ass ~— Trias
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PROPOSITION (3.5). For a Leibniz 3-algebra L the following isomorphism
holds:
Us(Lgrie) = UT(L)ags -

Proof. The composition of adjunctions gives us an adjunction in the diagonal
and apply that adjoint functors are unique up to isomorphism. O

4. Universal enveloping algebra

In the category Lie the universal enveloping algebra functor U : Lie — Ass
has the following property: the category of representations over a Lie algebra
g is equivalent to the category of U(g)-modules. Nevertheless, in Leib the
same property does not hold in the sense that the composition of the adjoint
functors from Leib to Ass in diagram (2.3) does not reproduce the analogous
property. To solve this problem, in [12] Loday and Pirashvili constructed the
functor UL : Leib — Ass, defined by

UL(g):=T(g @ g")/I

where g and g” are isomorphic copies of g and I is an appropriate two-sided
ideal. One verifies that a g-representation in Leib is equivalent to a UL(g)-
module. Moreover one verifies that UL(g) = U(gpi) ® (U(gLie) ® g) and the
subalgebra of UL(g) generated by the elements r,, x € g, which are the iso-
morphic copies of x in g", is isomorphic to U(gye).

The goal of this section is to analyze this problem in the category 3Leib.

Definition (4.1). [1]. A representation of a Leibniz n-algebra L is a K-
vector space M endowed with n actions [—,.7., —]: L& @ M @ L& -1 M,
0 <i < n -1, satisfying the following 2n — 1 axioms:

1. For2<k<n

Pk([ll; DRI ln]; ln+1; ) l2n72) — Zpi(lh ey lAi) DR} ln) : Pk(li, ln,+1; D) l2n72);

=1

2. For1<k<n

[pl(ln; MRRE] l2n—2), pk(lly MRE] ln—l)]
n—1
= Zpk(ll) MRS Zifl; [li) ln: MRS l2n—2], li+1’ MRS ln—l)
=1

the multilinear applications p;: L®"~! — Endg(M) being defined by
Pi(ll; M) ln—l)(m) - [ll: MRS Zi*l; m; li: M ln—l]; (1 S I/ S n)
and the bracket on Endx (M) being the usual one for associative algebras.

In the particular case n = 3, that is, L is a Leibniz 3-algebra, a representa-
tion M of L consists of three applications

[, — —1: LeLloM - M;[—, —, -]: LoM&L — M;[—, -, -]: MeLeL - M
satisfying the following axioms:
1. [[{4, lg, I3, Ls, m] = [y, Ly, m], Lo, Us] + [11, (Lo, Ls, m], 3] + (L4, lo, [ls, Lg, m]]
2. [[11, b, I3), m, 14 = [[11, m, U4], lo, 3] + [14, (Lo, m, L4), I3] + (14, Lo, (L3, m, U4]]
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3- [[m; ll: l2]’ l3) l4] - [[m: l3: l4]; ll: lZ] + [m; [ll’ 13) l4]; lZ] + [m; ll: [12) lSJ l4]]

4. [[l, m, Ia), I3, L4] = (111, U3, 4], m, Do) + (11, [m, U3, L4], Lo + (11, m, [1a, I3, 14]]

5. [[l1, lo, m], s, 14] = (111, I3, Us], Lo, m] + (14, [g, U3, L), m] + [y, s, [m, I3, L4]]

For a Leibniz 3-algebra £, we consider three copies (LR L), (LRL)™, (LRL)
of the Leibniz algebra (L ® L) whose bracket is given by

[x®y,a®bl=I[xabley+xxI[ya bl

We denote by L.y, Mgy, 'xey the elements of (L @ L), (L @ L™, (L @ L)
corresponding to x ® y € L ® L. We consider the tensorial algebra T((L @ L)' ®
L eL)"e L L)) and the following relations

D) P, el) — el Thel) — Muek)T 6ol — Thel) el

1) M1y, 151010 — lisel) M @L) — M@l Mel) — Tol) Ms@ly)

i) Ly, @il ety — Lol lissly = Uil lael) — W el

V) gy o1 Mol — MUyl 10l — M) iisel) — MG Sl byl

V) Lyl — Tl l1ok) — Tl iyl — Theblisel)

Let us observe that from the relations ii) and iv) we can deduce the following:

1) ma, g1 Mol + Maeinliel) + Mo Mael) + Mol i) = 0

and from the relations i) and v) we can deduce the following:

i) ma, o1 tel) + Faelolien) + Taen el + ool =0

Definition (4.2). The universal enveloping algebra of the Leibniz 3-algebra
L is the associative unitary algebra

UsL(L) :==T(L®LY & (L @L)" & (L& L))/]
where I is the two-sided ideal corresponding to the relations 1), it’), iii), iv), v).

THEOREM (4.3). The category of representations of the Leibniz 3-algebra L
is equivalent to the category of right modules on UsL(L).

Proof. Let M be a representation of L. We define a right action from U3 L(L)
on the K-vector space M as follows. Firstly (L @ L), (L @ L), (L ® L) act on
M by

m gy = [m, x, yI;m - mugy) = [, m, ylim - rpgy) = [x, y, ml;

then we extend this actions to an action of T((L @ LY ® (L @ L)™ & (L @ L))
by composition and linearity.

The axioms 1-5 of representation imply that the relations 1), it’), iii)-v) act
trivially. Thus M is endowed with a structure of UsL(L)-module.

Conversely, we start with a UsL(L)-module. The restriction of actions to
(L ® L)Y, (L e L) (L ® L) provides three actions of L ® £ which make M a
representation of L ® L.

Thanks to relation iii) we have that the subalgebra spanned by the elements
ligy, x ®y € L ® L, is isomorphic to U((L @ L)rie).

Letd: Lol aLeal)"o L oLl) — UL @ L), be the K-linear
application defined by d(l;gy) = —x @y = —x®@y+J,whereJ = {[xQy,x®
yllx®yeLol}),dimyg,) =0,d(rg,) = 0. One extends d to an algebra
homomorphism from T((L ® L)) & (L @ L)" & (L ® L)) to U((L ® L)1) which
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vanishes on the ideal spanned by the relations i)-v), hence d extends to an
algebra homomorphism d: UsL(L) — UL ® L)re).

On the other hand, s: L®L — UsL(L), s(x®y) = —l.g, is a Leibniz algebra
homomorphism which vanishes on (£ ®£)*™ and hence it induces a Lie algebra
homomorphism s: (L ®L)z;. — UsL(L) which extends to an algebra homomor-
phism s: U((L ® L)) — UsL(L), s(x ® y) = —l,g,. Moreover s is a section of
d. Let H be the two-sided ideal of U3 L(L) spanned by m.gy, rrgy, * ® y € LRL.
It is clear that H = Ker d, so we have the following split exact sequence:

s
0 - H - UsL(L) = U((L ® L)rze) — 0.
d

O

Definition (4.4). Let be L € sLeib and A € Ass. A trihomomorphism from
L to A consists of a triple of K-linear maps (¢, i, ¢) : L ® L — A satisfying the
following relations.

a) ¢([11, o, I31®14)) = p(la®13)-P(L1 @1 )+ (L1 ®13)-d(la@1)+ (L1 ®12)-Pls®14)
b) (i1, Lo, I31®14) = e(la®13)- (11 @14)+ (11 ®13)- P(la @)+ (L1 ®1o)-P(l3@14)
Oelli®ly,lzl]=¢ls®1ly)- o1 ® 1) — el ®12) - ¢(l3 @ 14)
DYllh @, s l] = els @1y - Y1 @ 12) —Ppl1 ® L) - (I3 @ 1y)
e)plli ®1p, ls @] = (3 @ 14) - P11 @ Iz) — Pp(ly @ 1o) - (I3 @ 14)

For a Leibniz 3-algebra L there exists a canonical trihomomorphism (/, m, r)
from L to UsL(L) given by l(x ® y) = Lixzy), M(X ®Y) = Mgy, HX R Y) = I'xay),
forallx@y e L® L.

PROPOSITION (4.5) (Universal Property). The canonical trihomomorphism
(I,m,r): L ® L — UsL(L) is universal for the trihomomorphisms of L, that is,
Trihom (L, A) = Ass(UsL(L), A).

Let (¢, 4, ¢) be a trihomomorphism from £ to A. We define a K-linear
homomorphism (L®L) &L LY BLRL) — Abylygy) — @(x®Y), Mgy —
P(x ® ), rixgy — ¢(x ® y) which extends to T((L ® LYeLeLl)y"® L eL))
and which vanishes on I, so it induces a homomorphism of associative algebras
UsL(L) — A.

Conversely, for a homomorphism of associative algebras f: UsL(L) — A,
the triple (f -, f - m, f - r) is a trihomomorphism of L. Moreover, both processes
are inverses.

PROPOSITION (4.6). UsL(L) is generated by the image (I, m, r)(L ® L)

Proof. Let B the subalgebra spanned by /(,xy), Mxgy, Fxey, VX ®y € L ® L.
(I, m,r) is a trihomomorphism from L to B, then Proposition (4.5) gives a
unique homomorphism i such that i - ([, m,r) = ([, m,r). We can consider i
as a homomorphism from UsL(L) to UsL(L), so Proposition (4.5) implies that
1= 1U3L(L)- Hence 1U3L(L)(U3L(L)) - B, so B = U3L(L) O

LEMMA (4.7). Let (¢, s, $) be a trihomomorphism from a Leibniz 3-algebra
Lo to a K-algebra A and let a : L1 — Lo be a homomorphism of Leibniz
3-algebras. Then (¢, ¥, d) - (@ ® a) is a trihomomorphism from L4 to A.



176 J. M. CASAS

Proof. « induces the homomorphism of Leibniz algebras ¢ ® a: L1 ® L1 —
Lo ® Lo, x ®y — alx) ® aly); hence it is a straightforward task to verify the
properties of trihomomorphism for (¢, ), ¢) - (@ ® a). O

PROPOSITION (4.8). Let a: L1 — Lo be a homomorphism of Leibniz 3-alge-
bras. There exists a unique homomorphism o' : UsL(L1) — UsL(Ls) such that
o (I, my,r) =g, mg, 12) - (@ ® ).

Proof. Apply Lemma (4.7) and Proposition (4.5). O

PROPOSITION (4.9). Let B be a three-sided ideal of a Leibniz 3-algebra L and

let R be the two-sided ideal of U3 L(L) spanned by the elements l.gy, Mygy, Txgy
Vxy€eBB®BL®L®B. Then UsL(L/B) =2 UsL(L)/R.

Proof. We construct the well-defined trihomomorphism (¢, i, ¢) from L/B
to UsL(L)/Rby ¢(x+ B)®(y+ B)) = ligy + R; Y(x+ B)@ (y + B)) = mygy + R;
¢((x + B) ® (y + B)) = rxgy + B. The Proposition (4.5) provides a unique
homomorphism 6: UsL(L/B) — UsL(L)/R.

Conversely, ¢'(x @ y) = lu1pepB); ¥ © ¥) = MuiBeyip; '@ @ y) =
'x+B)®(y+B) define a trihomomorphism from £ to U3 L(L/B), then Proposition
(4.5) provides a unique homomorphism 7: UsL(L) — UsL(L/B) which van-
ishes on R, so induces a homomorphism 7 from UsL(L)/R to UsL(L/B).

Finally, it is easy to check that 6 and 7 are inverses. O

PROPOSITION (4.10). U3L(L) has a unique anti-homomorphism m such that
- (L, r,m) = (=1, —r,—m). Moreover, w2 = 1.

Proof. (=1, —r,—m) is a trihomorphism; then Proposition (4.5) ends the
proof. O

PROPOSITION (4.11). Thereis a unique homomorphism §: UsL(L) — UsL(L)
NU3sL(L)such that 6-(, m,r) = (@, ¢, §), where p(xRy) = lygy A1+ 1Algy; P(x®
Y)=Megy N1+ 1AMy ; pX @ Y) =Tigy A1+ 1 ATy, VERQy e L L.

Proof. The map (¢, §, ¢) is a trihomomorphism from L to the associative
algebra UsL(L) A UsL(L). Proposition (4.5) ends the proof. O

PROPOSITION (4.12). Let d be a derivation of a Leibniz 3-algebra L. There
exists a unique derivation D' of UsL(L) such that D' - (I, m,r) = (I, m,r) - D,
where D=d®1+12d.

Proof. The derivation d induces a derivation of Leibniz algebras D = d ®
1+1®d: L L — L ®L. We consider the algebra Mg of 2 x 2 matrices with
entries in UsL(L) and we define the K-linear maps ¢, i, ¢ from £ ® L to My
given by

. Loy lawey+xedy)

P (x@y) — Mxgy  Mdx)Qy+x0d(y)
0 Myy

b (xDy) - xRy Tdxey+rod(y)
0 T'y®y
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With a tedious verification we can see that (¢, ¢, ¢) is a trihomomorphism

from L to Mg, so Proposition (4.5) gives us a homomorphism 6: UsL(L) — My

such that 6 - ([, m,r) = (@, ¢, ). Since 0(l,g,) = ( lxg’y ld(x)%y”‘@d(y) ),
x®y

m mqg +x®d r r'q +a®d!
0(mygy) = ( 3(6)®y (x’);?i/(ga;@ 2 , 0(rygy) = ( xS@y (x)%z@;c’@ )

(I, m,r)(L ® L) generates UsL(L), we have for any X,z € UsL(L) that
_( Xagb Xdweobrazdb)
Q(Xa@)b) N 0 X a®b
From the calculations of trihomomorphism conditions for (¢, , ¢) we can de-
duce that D’ is a derivation of U3 L(L) considered as associative algebra in the
usual way. Moreover D' - (I, m,r) = (I, m,r) - D. The uniqueness of D’ follows
from the fact that (I, m, r)(L ® L) generates UsL(L). O

and

We write D'(Xogp) = Xawebtraod®):-
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A METHOD TO INTEGRATE FILIFORM LIE ALGEBRAS

J. C. BENJUMEA, F. J. ECHARTE AND J. NUNEZ

ABSTRACT. Lie’s Third Theorem states that given a Lie algebra g of finite
dimension, there exists a simply connected Lie group G whose associated Lie
algebra is g. The classical proof of this result, which is not simple, is based
on Ado’s Theorem. According to it, every Lie algebra of finite dimension can
be represented as a Lie subalgebra of the general linear group of matrices.
We show in this paper a method to give a matrix representation of the simply
connected group associated with a fixed nilpotent Lie algebra. Moreover, we
give the representation of the Lie groups associated with filiform nilpotent Lie
algebras whose derived is abelian.

Introduction

Lie’s Third Theorem (and its converse, which is false in infinite dimension)
establishes a unique correspondence between simply connected Lie groups and
their associated Lie algebras. A direct proof of this result (see [4]), which is
also known as Cartan’s Theorem, uses a geometrical construction based on
Maurer-Cartan constants and on the group of automorphisms.

Moreover, the customary proof in the literature is based on Ado’s Theorem
(see [7]), which states that given any Lie algebra g, there is a linear Lie algebra
isomorphic to it. However, its proof cannot be called elementary.

Recently (see [10]), Tuynman has given an elementary proof of Lie’s Third
Theorem by using the correspondence between Lie subalgebras and Lie sub-
groups and the fact that, for a simply connected Lie group G, one has H%(G) =
0. This proof generalizes, as the same author claims, the method to integrate
nilpotent Lie algebras in a recursive way studied by A. Gray in [5].

In this paper we now improve Tuynman’s work for a particular case, al-
though far-reaching: a special class of nilpotent Lie algebras called filiform.
To do this we give an explicit construction of a simply connected Lie group
whose Lie algebra falls into a given filiform Lie algebra, say g. This is the
main goal of the paper.

By using the group of automorphisms of filiform Lie algebras of a finite
dimension n, in particular the unipotent automorphisms, we find a kind of basis
with respect to which these automorphisms can be represented by triangular
matrices. The dimension of the associated algebra, which is a subalgebra of
Der g, is at most 2n — 3.

Starting from the model filiform Lie algebra of each dimension (it is the
most abelian of filiforms), its algebra of derivations contains as subalgebras
those filiform Lie algebras such that [g, g] is abelian. Note that one of them
is the initial model algebra. These subalgebras determine, in a unique way,
the corresponding subgroups from the initial group of automorphisms which

2000 Mathematics Subject Classification: 22E60, 17B30.
Keywords and phrases: Lie group, matrix group, Lie algebra, nilpotent, filiform.

179



180 J. C. BENJUMEA, F. J. ECHARTE AND J. NUNEZ

constitute, as is claimed, a matrix representation of the simply connected Lie
group corresponding to each of such algebras.

We also apply this method, as an example, to construct the Lie groups
associated with complex filiform Lie algebras of dimension less or equal than 7.

We conclude this introduction by explaining the motivations for dealing with
filiform Lie algebras. These algebras were introduced by M. Vergne in the
late 60’s of the past century [11], although before that, Blackburn had already
studied the analogous class of finite p-groups and used the term maximal class
for them, which is now also used for Lie algebras [3]. In fact, both terms filiform
and maximal class are synonymous.

Vergne showed that within the variety of nilpotent Lie multiplications
on a fixed vector space, non-filiforms can be relegated to small-dimensional
components. Further, filiform Lie algebras are as the most structured as the
least abelian within the nilpotent Lie algebras. In this sense, we can study
them more easily than the set of nilpotent Lie algebras.

1. Definitions and notations

Let g = (C", [, ]) be a Lie algebra of dimension n with [, ] the associated law.
We consider the lower central series of g defined by Clg = g, C'g = [g, G 1g].
This was used by Ancochea and Goze to classify complex nilpotent Lie algebras
of dimension 7 and complex filiform Lie algebras of dimension 8, since it is an
invariant of these algebras, in the sense of not depending on the basis chosen
(see [1]).

A Lie algebra g of dimension n is filiform if dim Clg = n —ifor 2 < i < n.
If x € g we denote by ad(x) the adjoint mapping associated to x (i.e. the map
y — [x, y]). As we already said, these algebras were introduced by Vergne in
1966 (see [11]). In the case of groups, the term filiform goes back at least as
far as Ph. Hall in the 1930’s and in the case of algebras, Vergne also used it in
her paper, although in fact the term may appear in the works of Ph. Hall and
Witt, also in the 1930’s.

Let g be a filiform Lie algebra of dimension n. Then there exists a basis
B ={Xy,...,X,} of gsuch that X; € g\ C%g, the matrix of ad(X;) with respect
to B has a Jordan block of order n — 1 and C'g is the span of {X;,1,..., X}
with2 <i<n-1.

Note that the previous conditions involve [ X1, X;,] = Xp 1 for2 <h <n-—1.
Further, as [ Xy, X,,] = 0 ({X,,} is the center of g) and [ X1, X,,—1] = X,,, we can
conclude that [Xg, X,,_1] = aX,, and thus the change of basis X, = X3 — a X},
X, = X, (k # 2) gives [X), X, _;] = 0 and this does not change the remaining
brackets. Such a basis B is called an adapted basis.

It is easy to deduce that, with respect to such a basis,

C:g) = (X3, ..., X,)
g = (Xy,..., X,
(1.1) :
" Hg) = (X,)
C*(g) = {0}
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Moreover, expressions (1.1) supply, for each filiform Lie algebra g of dimen-
sion n, a chain of ideals with successive quotients of dimension 1, which are
also invariant as by automorphisms of Lie algebras as by derivations, that is:

(1.2) 0=002012022... 2 0n12 0n = {0}
where g1 = Z;(C"2(g)), g; = Ci(g) (i > 2).

In this sense, a basis B = {X3, ..., X, } of g is adapted if and only if, up to
order, the following holds:

(1.3) X,-Egi,l 5 i=1,...,n

A filiform Lie algebra is said to be a model Lie algebra if the unique nonzero
brackets between the elements of an adapted basis are the following:

(X, Xpl=Xp1 (R=2,...,n—1).

It is immediate to check that there exists an unique model filiform Lie
algebra for each dimension. It will denoted by P,,.

Finally, if C?(g) is a abelian subalgebra of g, the nonzero brackets with
respect to an adapted basis are the following (see [2]):

[Xl,Xh]:Xh+]_ (h:2,,n—1),
(1.4)
[Xo, X3l =37 " Xpun (h=3,...,n—2).

2. The group of unipotent automorphisms of P,,

The objective of this section is to parametrize the group of unipotent auto-
morphisms of the model algebra of each dimension. To do this, we will prove
first that with respect to an adapted basis, all automorphisms are represented
by triangular matrices (it is general for every nilpotent Lie algebra).

Let P, be the model filiform Lie algebra of dimension n > 4. Let B =
{Xi,...,X,} an adapted basis of P,, with respect to which the law of the
algebra can be expressed by

(X1, Xpl=Xpy1 ;3 2<k<n-1
with the rest of brackets null, up to antisymmetry.
PROPOSITION (2.1). Every automorphism of Lie algebrasin P, maps adapted

bases to adapted bases. Moreover, for a given adapted basis, the matrices of all
of automorphisms are (upper) triangular.

Proof. The first assertion is a consequence of (1.2) and (1.3).

Let us fix an adapted basis B = {X3,...,X,,} of P, and let ¢ : P, — P, be
an automorphism of Lie algebras. If we denote Y; = ¢(X;), we obtain a new
adapted basis of P, satisfying

Y, Y, =Y, 2<k<n-1

and having the rest of brackets null, up to antisymmetry. The matrix corre-
sponding to ¢ is triangular. Indeed, if we express Y; and Ys with respect to the
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basis B,
n n
Y1 = Z alini, Yz = Z az’ij .
=1 Jj=1

the rest of the basis vectors are determined by them:
Y3 =[Y1, Y2l = ) a3, X;, where agp=a11095 1 — 0141021
k=3

and by recurrence, we obtain (3 < h < n):
(2.2)

n

Y, =Y, Y1l =) a1 Xy, where ajp=0a1105-15-1— G14-10%—11-
F—h

Moreover, from [Ys, Y,_1] = 0 we deduce ag; = 0, which implies that the
matrix of the basis change is triangular and gives the elements placed in the
third and following rows as functions of those belonging to the first two rows,

(2.3)
ai,r a2 @13 ... Qin
0 Q992 Q23 ... Qzn aii,a0; €C
0 0 ass ... Qasgnp ’ ’
: : : : anr, with 3 < h < n, satisfying (2.2).
0 0 0 ... am

This construction allows us to parametrize the group of automorphisms of
P, by triangular matrices which have a Lie group structure. More specifically,
the subgroup of unipotent automorphisms will be a simply connected Lie group
of dimension 2n — 3. It will contain the simply connected Lie group associated
with P, as a subgroup. O

THEOREM (2.4). The unipotent automorphisms of P, give a 2n — 3-dimen-
sional Lie subgroup G of Aut(P,) admitting a linear representation by upper
triangular matrices.

Proof. Let B = {X3, ..., X,} be an adapted basis of P,, as in (2.1), and let
¢: P, — P, be an unipotent automorphism of Lie algebras with Y; = ¢(X;).
If we choose the two first elements of the matrix as a11 = ags = 1, that is,

Yi= Xi+a12Xo+a13Xs+ - +a1.Xn
Y, = Xo+agsXs+ -+ agnXy,

the remaining diagonal elements satisfy, according to (2.2), that
arr=1, k>3
Moreover, due to a;; = 0 (2 < i < n), we have that
app = Ap_1p-1, 3<h<k<n.

Therefore we have a group G formed by triangular matrices having diagonal
elements equal 1, which represent all unipotent automorphisms of P,, with
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respect to an adapted basis. This allows us to parametrize G as a Lie subgroup
of the general linear group,

(2.5)
1 x9 X3 X4 ... Xp—3 Xp—2 Xp—1 X,
0 1 x1 xpy1 ... Xop6 Xon—5 Xon—d4 X2p-3
0 0 1 x1 v v X6 Xonb Xon—d
0 0 1 . e . Xopg Xon—
TR T with () € €203,
0O 0 O 0 1 X1 Xn+l  Xnt2
00 0 O 0 1 2% %pr
0O 0 O 0 0 0 1 X1
0O 0 O 0 0 0 0 1

3. The Lie algebra associated with G

The tangent space of G at the unit I, € G is composed of all the matrices X
for which we can find a differentiable curve ¢ = ¢(¢) on G satisfying ¢(0) = I,
and ¢’(0) = X. This space g constitutes the Lie algebra associated with G and
it is formed of the component at the origin of differentiable fields in G which
are invariant under left translations of the group.

We will construct a basis of g starting from a system of one-parameter
groups of transformations {¢};—1,_2,—3, which will define the paths of such
left-invariant fields.

We will denote

g:C»3 @G
x) — &)
where g(x;) is a generic point of G, as in (2.5).

We now define 2n — 3 differentiable curves in G, which will represent a
system of one-parameter groups of transformations. Basically, these curves
¢;: R — G will be parametrized by x; = ¢ and the remaining coordinates equal
0, with the exception of suitable adjustments to make that ¢; into a group, that
is, that ¢;(t + s) = @;(t)@;(s). The first curve will be obtained in the following
way:

X1 = 1
X9 = 0
01 :R— G, t— gx;) with
Xn =0
Xnik = gttt 1<k<n-3.

It is verified that ¢ (¢ + s) = ¢1(t)e1(s) and ¢(0) = I,. The following 2n — 4
curves are defined by

xXp =1

or:R— G, t— g(x;) with {szo,j;ék.
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except in the case of n even. In this case, the one-parameter group ¢,z 2 is
parametrized by

Xnti-2 = 4
1,2
X2n—3 = Qt
x; = 0, otherwise.

For each k, the curves g¢, represent the paths of a differentiable field on
G, which is invariant under left translations. Tangent vectors define at the

origin (with respect to the canonical basis {ei = %} N of C2-3), the
following basis {X1, ..., X, Xni1, ..., Xon—3} of g:
Xl = ( 1’ 0,.762,.7C3,3€4, v Xn—2,Xn—1, X1 5Xn+1,Xn+2;5- - »X2n—5,X2n—4 )
X, =(0,1,0,0,0,..., 0, 0,0, 0,0,., 0, 0)
X =(0,0,1,0,0,..., 0, 0,0, 0,0,., 0, 0)
X, =(0,0,0,0,0,..., 0, 1,0,0,0,., 0, 0)
~~

Xni1 =(0,0,0,x2,x3,...,%5-3,%Xn—2, 1 , X1 ,Xpn41,.. X20—6,%2n—5)

-~
n+1
Xn+2 :(0,0,0,O,x2,...,xn74,xn73, O > 1 > xl :---;x2n77,x2n76)
n+2
X2n74:(0:0,0;0:0:---: X2 , X3, 0: 0; 0;---; 1 , X1 )
in—3:(0:0:0;0)0)~'-) 0 > X2, 0 b O b O ERIURY) 0 1) 1 )

In this way we obtain a Lie algebra g of dimension 2n — 3 which is a
subalgebra of Der(P,), since the latter is the algebra associated with the group
of automorphisms of P, (see, for example, [8]). Note also that the algebra
obtained is isomorphic to the nilradical of the derivation algebra of P,,. With
respect to this basis, the law of the algebra is the following:

(X1, Xpl= X1, 2<k<n-1

(Xn—ns Xnikl = Xnpihy1, 2<h<n-2, 1<k<n-3

Moreover, the basis so obtained allows us to check that g has the following
property, which is also satisfied by P,: the subalgebra (Xy, ..., X,,) is abelian.
Indeed, we obtain the following result:

THEOREM (3.1). Every filiform Lie algebra L of dimension n whose derived
algebra [L, L] is abelian, is a subalgebra of g. As a consequence, there exists a
Lie subgroup of G whose associated algebra is L.

Proof. We consider, in the first instance, the case in which L = ?,. If
{X1,..., Xon_3} is the basis of g previously constructed, the subalgebra g, =
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(X1, ..., X,) satisfies
[X1, Xol=—X35 ; [X1,X3]=—X4; ... ; [X1, X 1]l=—-X,, ; [X1,X,]1=0

[Xp, Xpl=0 ;2<h<k<n

which implies g, = P,.

On the other hand, as each Lie subalgebra of g determines, in an unique way,
a Lie subgroup of G, the existence of a subgroup of G,, C G whose associated
Lie algebra is P, can be deduced. Moreover, g, = (X3, ..., X,,) determines in g
an involutive distribution. Therefore, G, will be the n-dimensional connected
integral subvariety containing every point of GG, and it will be obtained as a
solution of the system:

{wi = O}i:n+1,...,2n73

where {w;}; is the dual basis of {X;}; in g.
If we also require

{x; =0}i=1,.2n—3

as an initial condition, we will obtain the connected component of the unit.
Recall that a representation of P, (and of Q,,) are explicitly described in [9].

Now let L be a filiform Lie algebra of dimension n whose derived Lie algebra
[L, L] is abelian. As in (1.4), the nonzero brackets are

(X1, Xpl = Xpi1 (h=2,...,n—1)

[XQ: Xh] = ?:Hhil ath+l+1 (h == 3, ceey n — 2)
for some ay, ..., a,_4 € C. After applying the change of basis
Y =X,
Yo = X9 — ZZ: apXyip
Y,=X;,i>3

the law of the algebra with respect to the basis {Y;};_1, 2,3 satisfies the
following brackets:

Y1, Y l=Yr1 2<h<n-1
[Vo, Vil =07 ' eViiss1 3<h<n-—2

[V,,Y,1=0, 3<h<k<n

and, as a consequence, (Y3,...,Y,) = L. By a similar reasoning for G, we
deduce the existence of a simply connected Lie subgroup G C G corresponding
to the solution of the system:

w;=0,1=n+1,...,2n -3
xj(0)=0,j=n+1...,2n—-3
where {w;} is the dual basis of {Y;} in g.
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4. Application to filiform Lie algebras of dimension less or equal
than 7

In this section, we will give a list of filiform Lie algebras of dimension n,
with 3 < n < 7 (according to Goze and Ancoechea’s classification given in [1],
later corrected by Goze and Remm in [6]), whose derived Lie algebra is abelian
(they make 13 out of a total of 17) and the simply connected associated Lie
group. We will show the complete study of one of the cases, as an example.

EXAMPLE (4.1). Let u? be the complex filiform Lie algebra defined, with
respect to a basis {Y1, ..., Y7}, by the nonzero brackets:

Y,Y 1=Yp1, k=2,...,6

[Yo,Y3]=Y5
[Ys, Yyl =Y,
[Yo, Y51 =Yy

Its derived Lie algebra is (Yy,...,Ys), which is, indeed, abelian. The
corresponding values in (1.4) are a; = 1, a3 = 0 and a3 = 0.

The group of unipotent automorphisms of the model Lie algebra P; of
dimension 7 is a Lie group G of dimension 11 whose representation with respect
to an adapted basis is

1 X2 X3 X4 X5 X6 X7

0 1 x1 x3 X9 X10 Xn

0 O 1 X1 Xg X9 X10

0O 0 O 1 x1 x3 x9 |; (x;) € clt
0 0 0 0 1 X1 X8

0 0 0 0 0 1 x

0 0 0 0O 0 O 1

The associated Lie algebra g is nilpotent of dimension 11, and a basis is
{Xi,...,X11}. Coordinates of this basis with respect to the canonical basis of
C™M are

X1=1(1,0,x2,x3, %4, %5, X6, %1, X8, X9, X10 )
X9=(0,1,0,0,0,0,0,0,0,0, 0)

X3=1(0,0,1,0,0,0,0,0,0,0, 0)
X4=1(0,0,0,1,0,0,0,0,0,0, 0)
X5=(0,0,0,0,1,0,0,0,0,0, 0)
X=(0,0,0,0,0,1,0,0,0,0, 0)
X7=(0,0,0,0,0,0,1,0,0,0, 0)
Xgi(0,0,0,JCz,x » X4, X5, 1 xl,xg,xg)
X9:(O,0,0,0,x ,x3,x4,0 1 xl,xg)
Xw:(0,0,0,0,0,x2,x3,0,0,1,x1)
X11=(0,0,0,0,0,0,x2,0,0,0, 1)
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The bracket products in g are:

[X1, X111=0 [Xo, X11] = X7
[X1, X10] =0 [Xo, X10l = X¢  [X3, X10]l = X7
[X1, Xol =0 [Xo, Xol = X5 [X3, Xol =Xg [Xy, Xol = X7
[X1, Xs]=0 [Xo, Xgl = Xy [X3, Xgl=X5 [Xy, Xgl= X5
[X5, Xs]l = X7
[X1, X7]1=0
[X1, X6l = —X7
[X1, X5] = —Xs
[X1, X4l = —X5
(X1, X3]=—-X4
[X1, Xol = —X3
The change of basis

Yi=-X;

Yo = Xo — X3

Yi=X;,i#12
allows us to deduce that the subalgebra g7 = (Y3, ..., Y7) of g is isomorphic to
uZ. If {w;} denotes the dual basis of {Y;} in g, the connected integral subvariety
of G of dimension 7 which corresponds to g7 is the solution of the system

{w; = 0}s<i<11 which contains the unit in G. The results of this integration is
the following:

1
wg = —x1dx; —dxg +dxg = x5 = 596% + X9
wg = (x% — xg)dx; — x1 dxg + dxg

1 1
= (—zx% - xz) dx; — x1dxg +dxg = x9 = gx? +x1x2

w19 = (—x% + 2x1x8 — x9) dx1 + (x% — xg)dxg — x1 dxg + dx1g

1 1
= (—Gx‘;’ - x1x2> dxq + (—2x% - x2> dxg + duxgg

1 4 1 2 1 2
= X10 = ﬂx1+§x1x2+§x2

w11 = (lel — 3x%x3 + 2x1x9 — X10 + x%) dxq + (—xi’ + 2x1x8 — x9) dxg

+ (%3 — xg) dxg — x1 dxgo + dxyy =

1 1 1 1
= (—24x‘11 — Qx%xg — 2x%) dx; + (—Gx? — xlxg) dxs +dx1; =

1 5 1 3 1 2
= X11 = mxl + gxlxz + Qxlxz
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and therefore, the simply connected Lie group associated with uZ is

1 X9 X3 X4 X5 X6 X7
0 1 x1 2x2+x2 23 +x120 g5 + Jadug + a2 25xf + 2adxo + o1l
00 1 x 2ad + x9 txf + 212 mat + da2xy + 12
00 O 1 X1 %x% + xo %x? + x1%9
000 O 1 X1 3%7 + xo
00O 0 0 1 x1
00O 0 0 0 1

with (x;) € C7. O

We finally show a table with the list of filiform Lie algebras of dimension less
or equal than 7 (whose derived algebra is abelian) and the Lie group associated
to each one.

Dimension 3.

Lie algebra ué (model, Heisenberg’s algebra). The law of this Lie algebra with
respect to the basis { X1, Xg, X3} is

[X1, X2] = Xs.

Its associated Lie group is

1 X2 X3
0 1 X1
0 0 1

Dimension 4.

Lie algebra ui (model). The law of this Lie algebra with respect to the basis
{Xl, X2, X3, X4} is

Xy

X3.

[X, X3]
[X1, Xo]

Its associated Lie group is

1 X9 X3 X4
0 1 x %xl
0 0 1 x
0 0 O 1

Dimension 5.

Lie algebra pi. The law of this Lie algebra with respect to the basis {Xj, ...,
X5} is
{ [ X1, Xpl=Xp1, R=2,3,4

[Xo, X3] = X5.
Its associated Lie group is
1 X2 X3 X4 X5
0 1 x1 3xi+x gad+xixe
0 0 1 X1 1l x| (%;) € C3
0O 0 O 1 X1
0 0 O 0 1
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Lie algebra ug (model). The law of this Lie algebra with respect to the basis
{Xl, .. .,X5} is
[Xb Xk] = Xk+1 > k = 2: 3:4

Its associated Lie group is

1 X2 X3 X4 X5
0 1 x; 3x? %x?
0 0 1 x a2|; @)eC.
0 0 O 1 X1
0 0 O 0 1

Dimension 6.

Lie algebra ,u%. The law of this Lie algebra with respect to the basis {X3, ...,
X6} is

[Xo, X4] = Xs

[Xl,Xk]:Xk+1, k:2JJ5
[Xo, X3 = X5.

Its associated Lie group is

1 X9 X3 X4 X5 X6

0 1 x1 3xf+xp gad+xxe oyt + Ladag + a3

0 0 1 X1 2x? + xp tad + x1p ) &) e C6
0 0 O 1 x1 357 + %o ’ ' '
0O 0 O 0 1 X1

0O 0 O 0 0 1

Lie algebra pj. The law of this Lie algebra with respect to the basis {X1, ...,
Xg} is

[Xl)Xk]:Xk+l) k:2JJ5
[Xo, X3] = Xg.

Its associated Lie group is

1 x9 x3 x4 X5 X6

0 1 x; %x% %x? + X9 ix‘ll + X129

0 0 1 ux9 1 2xd + x _ 6
00 0 1 %1 12  @el
0O 0 O 0 1 X1

0O 0 O 0 0 1

Lie algebra pg (model). The law of this Lie algebra with respect to the basis
{Xl, ey Xs} is
[Xl’Xk] :Xk+1’ k:2:J5
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Its associated Lie group is

1 X2 X3 X4 X5 X6

0 1 x; 3af %xz %xﬁ

0 0 1 x1 gx7 gx7|. - 6
0 0 0 1 X1 gx% 5 (x;) e C°.
0 0 O 0 1 X1

0 0 O 0 0 1

Dimension 7.

Lie algebra p2. The law of this Lie algebra with respect to the basis {X1, ...,
X7} is
[X].,Xk] = Xk+1 > k = 2: 16

[Xo, X5] = X7
[Xo, X4] = X6
[XZ) XS] == X5 .

Its associated Lie group is

1 xo x3 X4 X5 Xg X7
0 1 x1 3x2+x9 gx3+ X120 syX] + 3X9X0 + 3X2 1355 + X3x2 + 312
00 1 X1 122 + 29 Txf + a1 Xt + a2xy + 2
00 O 1 X1 %xf + X9 %x? “+ X1%X2
000 0 1 x1 342 4 X9

00 O 0 0 1 X1

00 O 0 0 0 1

with (x;) € C7.

Lie algebra ug. The law of this Lie algebra with respect to the basis {X3, ...,
X7} is

[ X1, Xpl=Xp1, R=2,...,6

[Xo, X5] = X7

[Xo, X4] = X6

[Xo, X3] = X5 + X7.

Its associated Lie group is

1x2x3 x4 X5 X x7

01 x; %x% + X2 %x% + X1%2 ix‘f + %x%xz + %x% + X2 ﬁloxi’ + %x‘;’xg + %xlxg + X1%2
001 x1 %x% + x9 éx? + X122 ix‘ll + %x%xz + %xé —+ x9
000 1 X1 %x% + X9 %x‘i’ + x1%2

000 O 1 x1 305+ 2z

000 0 0 1 X1

000 0 0 0 1

with (x;) € C.
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Lie algebra u?. The law of this Lie algebra with respect to the basis {Xj, ...

X7} is

[Xo, X4] = X7
[Xo, X3] = X6+ X7.

Its associated Lie group is

{ [XlJ-Xk]:Xk+1’ k:2J)6

1 X2 X3 X4 X5 X6 X7

0 1 x1 32 Lad+we gpaf+xixg+ae gab + Sxixs + x1xn
0 0 1 x4 a2 23+ xp 22X + X120 + %3

0 0 0 1 x1 32 323+ xo

0 0 0 O 1 x1 Tl

0O 0 O 0 0 1 X1

0O 0 O 0 0 0 1

with (x;) € C7.

Lie algebra pS. The law of this Lie algebra with respect to the basis {X1, ...

X7} is
[Xl;Xk] :Xk+l: k:2;)6
[Xo, X4l = X7
[Xo, X3] = X5
Its associated Lie group is
1 x9 x3 x4 X5 X6 X7
01 =x %x% %xf + X2 ﬁx‘f + x1%2 %x‘;’ + %x%xg
0 0 1 x9 1x? 323 + xo 277 + X129
00 0 1 X1 a2 323 + x
0 0 0 O 1 X1 g
0 0 0 O 0 1 X1
0 0 0 O 0 0 1

with (x;) € C7.

Lie algebra p?. The law of this Lie algebra with respect to the basis {Xj, ...

X7} is
[Xl)Xk]:Xk+1, k:2,...,6
[XZ, XS] = X7 .
Its associated Lie group is
1 x2 x3 x4 X5 X6 x7
0 1 =z zaf %xz 511 —&3— X2 15 x‘;’4—|— X122
0 0 1 X1 Qxl §x1 ﬂxl + X9
00 0 1 = 247 %x?
0 0 0 O 1 X1 1x2
0 0 0 O 0 1 X1
0O 0 0 o 0 0 1

with (x;) € C7.

>
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Lie algebra u§ (model). The law of this Lie algebra with respect to the basis
{Xl, .. .,X7} is
{ X, X}l =Xp1, k=2,...,6.

Its associated Lie group is

1 X2 X3 X4 X5 X6 X7

0 1 wm it b et et

0 0 1 x9 gx¥ gx3 oqxi

0 0 0 1 x5 za %ﬁ’ with (x;) € C”.
0 0 0 O 1 X1 zx2

0 0 0 O 0 1 x1

0 0 0 O 0 0 1
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HOLDER ESTIMATES FOR THE 3-EQUATION ON SURFACES
WITH SIMPLE SINGULARITIES

F. ACOSTA AND E. S. ZERON

ABSTRACT. Let3 C C3 be a 2-dimensional subvariety with an isolated simple
(rational double point) singularity at the origin. The main objective of this
paper is to solve the d-equation on a neighbourhood of the origin in 3, requiring
a Holder condition on the solution.

1. Introduction

Let X C C3 be a subvariety with an isolated singularity at the origin. Given
a d-closed (0, 1)-differential form A defined on X minus the origin, Gavosto and
Fornaess proposed a general technique for solving the differential equation
dg = A on a neighbourhood of the origin in 3. The calculations were done
in the sense of distributions, and they required an extra Hoélder condition
on the solution g, see [2] and [3]. Their basic idea was to analyse X as a
branched covering over C2, to solve the corresponding 9-equation on C2, and to
lift the solution from C2 into 3, again. Gavosto and Fornzess completed all the
calculations in the particular case when 3 C C2 is defined by the polynomial
X1X9 = x%, that is, when 2 is a surface with an isolated simple (rational double
point) singularity of type Ay at the origin, [1], p. 60.

Let Xy and Yy be two subvarieties of C3 defined by the respective poly-
nomials x1x9 = xé\’ and ylys + y2 = yév *1 for any natural number N > 2.
The surface Xy (respect. Yx) has an isolated simple singularity of type Ay_1
(respect. Dy, 2) at the origin, see [1], p. 60. The main objective of this paper is
to give an alternative and simplified solution to the equation dg = A on both
surfaces X and Yy, with an extra Holder condition on g. The central idea is
to consider C? as a branched covering over Xy and Yy, instead of analysing
Xy as a branched covering over C2. In the case of Xy, we use the natural
branched N-covering 7y : C2 — Xy defined by my(21, 22) = (2, 2, z129), in
order to obtain the following theorem. We shall explain, at the end of the third
section of this paper, why we use the covering 7y instead of a standard blow

up mapping.

THEOREM (1.1). Let Ev(N) be the smallest even integer greater than or equal
to N. Given an exponent 0 < 8 < 1/Ev(N) and an open ball Br C C? of radius
R > 0 and centre in the origin, there exists a finite positive constant C1(R, B)
such that: For every continuous (0, 1)-differential form A defined on the compact
set mn(Br) C Xy, and 9-closed on the interior wxn(Bg), the equation 0h = A has

2000 Mathematics Subject Classification: 32F20, 32W05, 35N15.
Keywords and phrases: Holder estimates, d-equation, branched covering.
Research supported by Cinvestav(Mexico) and Conacyt(Mexico).
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a continuous solution h on wyn(Bg) which also satisfies the following Holder
estimate,

Ih(x) — h(w)
(1.2) 1Al ayBe + SUP
VR emyBe 1% — wl[B

< CI(R’ B)H/\HWN(BR)'

In the last section of this paper, we extend Theorem (1.1) to solve the 9-
equation on the subvariety Yy as well. The notation ||k||s stands for the
supremun of k| on the set S, and ||x — w|| stands for the euclidean distance
between x and w. Since ||x — w|| is less than or equal to the distance between
x and w measured along the surface Xy, we can assert that inequality (1.2)
is indeed a Holder estimate on X itself. Finally, all differentials are defined
in terms of distributions. For example, the fact that the continuous (0, 1)-
differential form A is d-closed on 7 (Bg) means that the integral

(1.3) / AANdo =0,
7N (Bgr)

vanishes for every smooth (2, 0)-differential form o defined on 7n(Bg) \ {0},
such that both o and 9o extend continuously to the origin, and these extensions
have both compact support inside 7 (Bg).

The proof of Theorem (1.1) is presented in the following two sections. The
next section is devoted to introducing all the basic ideas for the particular case
when N = 2. Moreover, in the third section of this paper, we shall use these
ideas for solving the 9-equation on Xy, in the extended case N > 3. Finally, in
the last section of this paper, we extend Theorem (1.1) to solve the d-equation
on the subvariety Yy as well.

2. Proof of Theorem (1.1), case N = 2.

Consider the natural branched covering mqo(zy, z3) = (z%, z%, 2129) defined
from C2 onto Xs = [x1%9 = x%]. It is easy to see that w5 is a branched 2-
covering, and that the origin is the only branch point of 773, because the inverse
image 7, '(x) is a set of the form {+z}, for every x € Xs. Further, define
the antipodal automorphism ¢(z) = —z which allows us to jump between the
different branches of . In particular, we have that ¢p*ma(2) = mo(—2) = mo(2).

We assert that the operators 75 and 9 commute. It is easy to see that
s and d commute when 9 is a standard differential, for 75 is holomorphic.
However, calculations become more complicated when 9 is analysed in the
sense of distributions. Let Br C C? be an open ball of radius B > 0. We
prove the commutativity of 775 and o for the particular case of a d-closed (0, 1)-
differential form A defined on 73(Bg); the proof with a general differential
form follows exactly the same procedure. We have that dA = 0 in the sense of
equation (1.3), and we need to prove that d(m;A) is equal to 75(9A) = 0 in the
sense of distributions, that is:

(2.1) / 7T§/\/\5U =0,
Br

for every smooth (2, 0)-differential form v with compact support in Br. The
automorphism ¢ preserves the orientation of Bp, for it is analytic. Thus, after
doing a simple change of variables, and recalling that ¢*me = 79, we have
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that the integral in equation (2.1) is equal to |, Bx w3 A A d¢*v. Moreover, since
v+ ¢*v is constant on the fibres of 79 (it is invariant under the pull back ¢*)
there exists a second differential form o defined on 79(Bg) such that v + ¢*v
is equal to 750. Hence

_ _ * AN
/ 7T§)\/\6U:/ 7T§)\/\60+¢U:/ 7 -0
Bg Bg 2 ma(BR) 2

The equality to zero follows from equation (1.3), and so d(5A) = 0 on Bg, as
we wanted to prove. Suppose now that the differential equation dg = 75\ has
a solution g on Bg. The sum g + ¢*g is also constant in the fibres of 75 (it is
invariant under the pull back ¢*), so there exists a continuous function f on
Bp, such that 5 f is equal to g + ¢*g. We assert that df = 2A on 7a(Bg). This
result follows automatically because

madf = d(g + d*g) = oA + p*mEA = wH(2A).

The previous equation requires that the operators ¢* and 9 commute as
well in Bg, when 9 is seen as a distribution. This is an exercise based on
the fact that [¢*X = [ R, as we have indicated in the paragraph situated
after equation (2.1), and because ¢ preserves the orientation of Bg. Suppose
now that A is also continuous on the compact set 72(Bg). Then we can apply
Theorems 2.1.5 and 2.2.2 of [4] in order to get the following Holder estimate.

THEOREM (2.2). Given an exponent 0 < 8 < 1 and an open ball Bg C C? of
radius R > 0 and centre at the origin, there exist two finite positive constants
C3(R) and Cs(R, 5) such that: For every continuous (0, 1)-differential form A
defined on wo(Bgr) C X, and d-closed on the interior mo(Bg), the equation
g = w4\ has a continuous solution g on Br which also satisfies the following
Holder estimates,

lg(2 — g .
(2.3) g, + Z,SglelgR =7z S Ca(R)||73 || BRs
(2.4) and 18@) =@ (R 8)miAlln,.

Z,{GBR/Z ||zié/H8

Proof. Inequality (2.3) holds because of Theorem 2.2.2 in [4]. Further,
recalling the proofs of Lemma 2.2.1 and Theorem 2.2.2, in [4], we have that
inequality (2.4) holds whenever there exists a finite positive constant C4(R)
such that

|E(z) — E())|

(2.5)
Z,ZEBR/Q ||Z_§H

< Co(R)|[mr3Al| g,

for every function E(z) defined according to equation (2.2.7) of [4], p. 70. Let Y
be the closed interval which joins z and { inside the ball Bg/3. Then,

1
(2.6) E(z)— EQ)| < / %E(tg”r(lft)z) dt
0
2
0E| |0E
< - — |t ="
< Jz—¢| iggkg Ry
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Finally, by equation (2.2.9) in [4], we know there exists a finite constant
C4(R) such that all partial derivatives

@Hw;)\HBR, for every y € Bg/s and each index k& = 1, 2. Notice that D = Bpg
in equations (2.2.7) and (2.2.9), but y lies inside the smaller ball Bg/;. Thus,
equation (2.6) automatically implies that inequalities (2.5) and (2.4) holds, as
we wanted. O

IE 9K
5 ‘ and ‘ 5, ’ are less than or equal to

The problem is now reduced to estimating the distance ||z — || with respect
to the projections ||ma(2) — m2()|.

LEMMA (2.7). Given two points z and { in C? such that ||z — || is less than
or equal to ||z + ||, the following inequality holds.

2||ma(2) — mo(D| = ||z — || max{]|z]], IZ]], ]z — ]}

Proof. We know that 2||z|| and 2||{|| are both less than or equal to ||z + {|| +
|z — ¢|. The given hypotheses indicates that ||z — ¢|| < ||z + £||. Hence, the
maximum of ||z]|, ||{|| and ||z — || is also less than or equal to ||z + ¢||. The
desired result will follows after proving that ||z — (|| - ||z + £|| is less than or
equal to 2||7e(2) — m2({)||. Setting Py = z1 — {1, Po = 29 — {9, Q1 = 21 + {1 and
Q2 = 23 + {2, allows us to write the following series of inequalities:

lz—=¢|? -l +¢1? =
= |PQ1]” + |P1Qa|? + | Pa@u[* + | P2Q2f
4|P1Q1 | + 4| P2Qs* + |P1Q2f” + | P2Q1|* — 2| P1Q1 PoQ2|
4|P1Q1[* + 4|Pa@s* + | P1Q2 + Pa@u [
4|ma(2) — DI

IN A

O
We are now in position to prove Theorem (1.1) for the simplest case N = 2.

Proof. (Theorem (1.1), case N = 2). Suppose that A = >~ A;dx;. Then,

(2.8) o d = [2Z1A1(1r2) + ZoA3(m2)ldZ1 + [2Z2A9(19) + Z1A3(72)]1d 20,
We obviously have that |z;| < R for every point z € Br. Hence,
(2.9) 72 AlBy < 3R ||AllmyBp)-

Let g be a continuous solution to the equation dg = 7;A on Bg, and suppose
that g satisfies the Holder estimates given in equations (2.3) and (2.4) of
Theorem (2.2). Recalling the analysis done in the paragraphs situated before
Theorem (2.2), we know there exists a continuous function 4 defined on 7o(Bg)
such that h o 79 is equal to g*éﬂ. In particular, 0h = A on 79(Bg), and

_le+o

“glls
210) Pl = 1E BB gy,

Note that B < 1/2 when N = 2. Given two points x, w € mo(Bg), choose
z,{ € Bg such that x = m(2) and w = 79(0). Since 79(¢) = mo(—{), we can
even choose { € Bg so that ||z— (|| is less than or equal to |z+{||. If zand { are
both inside the ball Bg/;, we may apply equation (2.4) of Theorem (2.2), and
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the inequality 2||x — w|| > ||z—¢||? given in Lemma (2.7), in order to obtain the
following equation for 0 < B8 < 1/2

h(x) — hw)|  _ |g(2) — 8| + |g(—2) — g(=0)|
2Px —wlf — 2||z—¢|*#
Cs(R, 2B)||m3A| B
On the other hand, suppose, without lost of generality, that z is not inside
the ball Bg/s; that is ||z]| > %. Lemma (2.7) implies then that ||x —w|| is greater

than or equal to £z — £||. Whence, equation (2.3) automatically implies the
following,

(2.11)

IN

|~(x) — h(w)) 2
—— < —— Co(R)||msAl|B,-
||x—LU||1/2 = \/R 2( )Hﬂ-z ||BR
Finally, considering Theorem (2.2) and equations (2.9) to (2.12), we can de-
duce the existence of a bounded positive constant C;(R, 8) such that equa-
tion (1.2) holds. O

(2.12)

We close this section with some observations about Theorem (1.1). Firstly,
the procedure presented in this section yields a continuous solution A to the
equation 9k = A. Moreover, we are directly using the estimates given in [4],
but we may use any integration kernel which produces estimates similar to
those presented in equations (2.3) and (2.4) of Theorem (2.2).

On the other hand, the extension of Theorem (1.1) to considering a general
subvariety 3 with an isolated singularity does not seem to be trivial. Theo-
rem (1.1) requires the existence of a branched finite covering 7 : W — %, where
W is a nice non-singular manifold and the inverse image of the singular point
is a singleton. It does not seem to be trivial to produce such a branched finite
covering.

3. Proof of Theorem (1.1), case N > 3.

We analyse in this section the general case of the variety Xy C C2 defined by
X1X9 = xév , for any natural number N > 3. Surface Xy has an isolated simple
singularity of type Ay_1 at the origin, [1], p. 60. Define the automorphisms
¢, : C2 — C? for each natural number £,

(3.1) bi(z1, 22) = (pl21, py"22) where py = e®™/N.

Consider the natural branched covering 7y(z1, z2) = (ZZIV S 212\’ , 2122) defined

from C2 onto X . It is easy to see that 7y is a branched N-covering, and that
the origin is the only branch point of 7, because the inverse image 77;,1(x) is
a set of the form {¢;(2)}1<r<n, for every x € Xy. Thus, the automorphisms
¢;, allow us to jump between the different branches of 7wy. In particular, we
have that 7y = ¢;7x for every k. Besides, the operators 7} and 9 commute,
the proof'is based on the same ideas presented at the beginning of section two.

Given a d-closed (0, 1)-differential form A defined on X, we obviously have
that a(m3A) = 0. Suppose the differential equation dg = 73 A has a solution

g in C2. The sum % Z;V:l ¢7.8 is constant in the fibres of 7y (it is invariant
under every pull back d)}'f), so there exists a continuous function ~ on Xy such
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that 73, A is equal to % > ¢;8. We assert that oh = A on Xy. This result
follows automatically because

TRk = £ Y big = X B = THA.

Let B C C2 be an open ball of radius R > 0. If A is continuous on the
compact set x5 (Bg), then we can apply Theorem (2.2) in order to get a solution
h which satisfies a Holder estimate on the ball Bg. Obviously, as in the second
section of this paper, the central part of the proofis an estimate of the distance
||z — ¢|| with respect to the projections |7y (2) — mn({)||. This estimate is done

in the next lemma. Given two points z and ¢ in C2, notation ||z, {||~ stands for
the maximum of |z;|, |22, |{1] and |{2|. Moreover, ||z||~ = ||2, 0|~ as well.

LEMMA (3.2). Let Ev(IN) be the smallest even integer greater than or equal
to N. Given two points z and { in C? such that ||z — ¢1(0)|| o is greater than
or equal to ||z — ||~ for every automorphism ¢y, defined in (3.1), the following
inequality holds for & equal to both N and Ev(N)/2.

Iz =&l Nz el Nz =gl
12 ° (8/3)N-92 '

33)  |lmn(2) — 7n()| > min {

Proof. Setz = (a, b), so that wx(2) = (aV, bV, ab). Moreover, given { = (s, ¢),
we can suppose without loss of generality that |[a — s| > |b — ¢|, and so
|z —{]|oo = |a — s|. We shall prove inequality (3.3) by considering three cases.

Case I. Whenever |b| > |s| + ‘al_zs‘ , we have the inequality,

la —s|?

12
Finally, notice that |7n(2) — mn(0)|| > |ab — st|, so equation (3.3) holds in this
particular case.

Case IL If |b| < |s| + ‘al_zs‘, and there exists a natural j such that |a — p}s|

is less than or equal to |a;s‘ , we also have,

|ab —st| > |a —s[ - [b] — [b—¢]-[s] >

a—s| <o — plys] +2/s] < 2=

+ 2]s].

Consequently, |s| > |a;s|. On the other hand, we know that |z — ¢;({)]|~ is
equal to the maximum of |a — p}s| and |p}d — ¢|. Recalling the hypotheses

of Lemma (3.2) and this case (II), we have that |a — p{vs| < |a — s|, and that
|z — ¢;({)||~ is greater than or equal to ||z — {[|.c = |a — s|. Hence, both
lpyb — t| > |a — s| and

Y

|ab — st| N — |- [s| = la — pys] - |b]
la—sl-Is| _Ja—sf® _ |a—s
— > .

- 2 24 — 12

Notice that |a — pj;s| - |b| is less than or equal to W + % because of the
hypotheses of this case (II). We may conclude that equation (3.3) holds in this
particular case as well, after recalling that |7y (2) — wn({)|| is greater than or
equal to |ab — st|.
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Case IIL If |b] < |s| + “’1_23‘ ,and |a — pks| > @ for every natural &, we
automatically have the following inequality

N N al k |a—5|N
¥ = s =] la - plysl = 3.
k=1

Finally, we know that ||z— {||oo = |a —s|, and that |7n(2) — mn({)|| is greater
than or equal to |a” — s |. The previous inequalities show that equation (3.3)
holds for § = N. On the other hand, when § = Ev(NN)/2, it is easy to deduce
the existence of a subset J of {1,2, ..., N} composed of at least N — 6 elements
and which satisfies

@ — 5|
V2

The set J can be built as follows. We may suppose, without lost of generality,
that a is real and a > 0, for we only need to multiply both ¢ and s by an
appropriate complex number 0 with || = 1. Thus, the set J is composed of
all exponents 1 < j < N which satisfy §R(p{vs) < 0. It is easy to see that
la — p)ys|? is greater than or equal to |a|? + |s|?, for every j € J. Moreover,
J is composed of at least N/2 elements when N is even, and of at least Y-t

2
elements when N is odd. Equation (3.4) follows automatically because |al|?,

(3.4) la — p{\,s| > max{a|, Is], } foreach jed.

|s|? and # are all less than or equal to |a|? + |s|2. The hypotheses of this
case (III), and equation (3.4), directly imply that

ja — s|
V2

Moreover, since g > %\/ﬁ, and we are supposing from the beginning of this
proof that |a — s| > |b — ¢|, we may also deduce the following inequality,

2la — pys| > |s| +

> b, Vjed.

8la — plys| la — s :

= N7 = —t > )

3 > |s| + 12 +|6—t>t], Vjed

Finally, considering all the results presented in previous paragraphs, equa-
tion (3.4) and the hypotheses of this case (III), we can deduce the desired

result,

(8/3)N*3 928

where 6 = Ev(N)/2, the norm ||z — (||« = |a — s| and ||2, {||« is the maximum
of |a|, ||, |s| and |f|. We can conclude that equation (3.3) holds when 6 is equal
to N and Ev(N)/2. O

N N-=8|, _ |0
|aN_3N|:H|a_P§73|Z Hz’gHoo |a S‘
k=1

We are now in a position to complete the proof of Theorem (1.1). Notice that
Lemma (3.2) automatically implies the following inequalities, whenever z and
¢ lie inside the compact ball B, and 6 = N,

_ 7N 1
lmn(2) — an @) > szﬁ”m min{SRN_2,l}

V

Y

lz =2 1
(\/g)N mm{3RN_2 , 1}.
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Proof. (Theorem (1.1), case N > 3). We shall follow step by step the
proof of Theorem (1.1), case N = 2, presented in section two; so we shall only
indicate the main differences. Let g be a continuous solution to the equation
dg = 7*A on Bg which satisfies the Holder estimates given in equations (2.3)
and (2.4). Recalling the analysis done at the beginning of this section, we know
there exists a continuous function 4 defined on 7w(Bg) such that & o 7 is equal
to & >_ ¢;g. In particular, 6h = A on m(Bg), and ||| (s, is less than or equal
to ||g||,. Moreover, working as in equations (2.8) and (2.9), we may deduce
the existence of a finite positive constant C5(R) such that |7} Al g, is less than
or equal to Cs5(R)||A||7y(By)-

Given two points x, w € w(Bg), choose z, { € Bg suchthatx = my(z) andw =
7wn(£). Since wn({) = mwn(Pp(0)) for every automorphism ¢, defined in (3.1), we
can even choose { € Bg so that ||z— (||« is less than or equal to ||z — ¢1({)|| for
every ¢,. A direct application of Lemma (3.2), with § = N, yields the existence
of a finite positive constant C4(R) such that ||x — w|| is greater than or equal to
Ce(R)||z — £||'/P. Recall that 0 < 8 < 1/Ev(N) and N > 3. Thus, if z and ¢ are

both inside the ball B/, we may apply equation (2.4) in order to deduce that
| h(x)—h(w)]| C3(R,Ev(N)B)
Tx—wil? CER)
On the other hand, suppose, without lost of generality, that z is not inside
the ball Bg/;. a direct application of Lemma (3.2), with § = %, yields the
existence of a finite positive constant C7(R) such that ||x — w|| is greater than
or equal to C7(R)||z — ¢||°>. Whence, equation (2.3) automatically implies that

|h(x)7h(w)| : Cs(R) %
el 18 less than or equal to cw |7*Al B, as well.

The analysis done in the previous paragraphs automatically implies the
existence of a finite positive constant C;(R) such that equation (1.2) holds for
every N greater than or equal to three. O

is less than or equal to |7 Al B, -

Finally, as we have already said at the end of section two, the proof of
Theorem (1.1) works perfectly if we apply Theorem (2.2) of Henkin and Leiterer,
or any other integration kernel which produces estimates similar to those posed
in equations (2.3) and (2.4). For example, the hypotheses on A can be relaxed
in Theorem (1.1), to consider (0, 1)-differential forms A which are bounded
and continuous on 7(Bg) \ K, for some compact set K C Bg of zero-measure.
Besides, the results presented in Theorem (1.1) hold as well, if we consider
an arbitrary strictly pseudoconvex domain D, with smooth boundary and the
origin in its interior, instead of the open ball Bg. In this case, the ball Bg/;
used in equation (2.4) of Theorem (2.2) would be a sufficiently small ball B,
whose closure is contained in the interior of D.

On the other hand, the work presented in this paper is strongly based on
the existence of a branched finite covering 7 from C2 onto Xy, such that
the inverse image of the singular point 71-;,1(0) = {0} is a singleton. This
property allows us to get the estimates presented in Lemmas (2.7) and (3.2),
which are essential for this paper. It is obvious to consider a blow-up mapping
n : W — Xy instead of the finite covering 7. In any case, a blow-up is
a 1-covering everywhere, except at the singular point 0. However, since the
inverse image 7~ 1(0) is not a singleton, and it is not even finite in general, we
have strong problems for calculating a Hélder solution to the equation 9k = A,
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unless we introduce stronger hypotheses. We finish this section by analysing
the case of a blow-up.

Remark. Let X be a variety with an isolated singularity at oy € 3, and 7 :
W — 3 be a holomorphic blow-up of 2, at o, such that W is a smooth manifold.
Given a d-closed (0, 1)-form A defined on 2 minus oy, we automatically have
that n*\ is also d-closed on W minus 5~ 1(0y). Thus, suppose there exists a
continuous solution g : W — C to the equation dg = n*A. Since 7 is a blow-up,
we automatically have that ! is well defined on 2 \ {0y}, and so A is equal
to a(g o 1) there.

Define h := g o 1. Unless g is constant on the inverse fibre = 1(oy), the
function & does not have a continuous extension to ¢y, and does not satisfy
any Holder condition in a neighbourhood of 0. Suppose there exists a pair of
points a and b in ~1(0y) such that g(a) # g(b). Besides, take {a,,} and {b,,} a
pair of infinite sequences in W \ n~1(09) which respectively converge to a and
b. Notice that both n(a,,) and 1(b,,) converge to the same point . However,
g(a,) and g(b,,) converge to different points, for g(a) # g(b). Hence, given any
metric A on 2, which defines the topology, we have that

lim sup [ o n(am) — h o n(by)| =0
m Aln(am), n(by)1P ’
That is, in order to introduce Hélder conditions on 4 := gon™1, it is essential

that the solution to equation dg = n*A is constant on the inverse fibre of the
singular point n~ (o).

vB > 0.

4. Surfaces with simple singularities of type Dy o

We finish this paper by solving the d-equation on a neighbourhood of the
origin in the subvariety Yy C C?, defined by the polynomial y?y; + y2 = yY 1.
The surface Yy has an isolated simple (rational double point) singularity of
type Dy,o at the origin, for any natural number N > 2, [1], p. 60. We
extend the results presented in Theorem (1.1), by introducing a branched 2-
covering defined from Xop := [x12x9 = x%N ] onto the surface Y. Consider the
holomorphic mapping 12 : Xony — Y, and the pair of matrices P and @, given

by the respective equations,

X1+ X2 X1 — X2
4.1) n2(x1, %2, X3) = ( g X3 o x%) )
01 O 1 1 10
4.2) P=]10 0 |, = 5 - 1 0
0 0 -1 0 0 2

It is easy to see that me(x) = na(Px) for every x € Xon. Moreover, 79 is
a branched 2-covering, and the origin is the unique branch point, because
the inverse image 7, L(y) is a set of the form {x, Px}, for every y € Yy. For
example, the inverse image of (y1, 0, 0) is composed of two points: (2y1, 0, 0)
and (0, 2y1, 0). We have already defined a branched covering 7oy from C? onto
Xsn, so the composition 1, o 7oy is indeed a covering from C? onto Yy. The
branch covering 7, is a central part in the following result.
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THEOREM (4.3). Given an exponent 0 < Ba < 1/(4N) and an open ball
Bgr C C? of radius R > 0 and centre in the origin, define the open set Ep :=
no(mon(Br)) in Yn. There exists a finite positive constant C11(R, Bs) such
that: for every continuous (0, 1)-differential form X defined on the compact set
Egr C Yy, and 9-closed on Ep, the equation 3f = R has a continuous solution f
on Er which also satisfies the following Holder estimate

(4.4) 1l + sup LO=TEN 0 (R gINg,.

veeky |y — &l

The proof of this theorem follows exactly the same ideas and steps presented
in the proof of Theorem (1.1), case N = 2, so we do not include it. Given a
(0, 1)-differential form X continuous on Er C Yy, and d-closed on Ez. We have
that 73R is also continuous on mon(Br), and d-closed on mon(Bg). Therefore,
we can apply Theorem (1.1), in order to obtain a continuous solution A to the
differential equation 0k = n;X, which also satisfies the Holder conditions given
in equation (1.2). There exists a continuous function f on Er such that n;f is
equal to h*g’ “h ,and so df = N, as we wanted. Finally, inequality (4.4) follows
from equation (1.2), after noticing that there exists a pair of finite positive
constants Cg(R) and Cg(R) such that

1Fllze < Ihllzoy @y [1M2R ]y Br) < Co(R)[[R ],

is also less than or equal to Cy(R)||nsR|| -8, for every y and é

y— 2
in Er. We obviously need an estimate of ||x — w||?, with respect to the projec-
tions ||na(x) — na(w)||, in order to show that the inequality above holds. This
estimate is presented in the following Lemma (4.5). In conclusion, the proof of
Theorem (4.3) follows the same ideas and steps of the proof of Theorem (1.1),
case N = 2, we only need to apply Theorem (1.1) instead of Theorem (2.2), and
the following Lemma (4.5) instead of Lemma (2.7).

and

LEMMA (4.5). Let x and w be two points in Xon whose norms ||x|| and ||w||
are both less than or equal to a finite constant p > 0. If the distance ||Q(w — Px)||
is greater than or equal to ||Q(w — x)||, for the matrices P and @ defined in (4.2),
then the following inequality holds.

(4.6) [m2(x) = me@)|| > Cralp)||x — w|?,
1 . 5 1
where Cyo(p) = g0 TN {4, 3’ p2N2N} .

Proof. Introducing the new variables (a, b, ¢) := Qx and (s, ¢, u) := Qw, we
have that a? + b2 = ¢2V and QPx = (a, —b, —c) for every x € Xox. Moreover,
4.7 [m2(x) — ne@)||? = |a — s|* + |be — tu|?® + |c? — u?%.

A main step in this proof is to shown that the following inequality holds,
(4.8) [m2(x) — m2W)|| > 16C12(p)||m2(b, ¢) — ma(t, w||,

where (b, ¢) = (b, ¢2, be) was defined in the introduction of this paper, and
Ci2(p) is given in equation (4.6) above. We know that ||Q(w — Px)|| is greater
than or equal to ||@(w — x)||, according to the hypotheses of this lemma, so it is
easy to deduce that || + b, u + c|| is also greater than or equal to ||t — b, u — ¢,
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because @ Px is equal to (a, —b, —c). Therefore, if equation (4.8) holds, a direct
application of Lemma (2.7) yields
(4.9) Ima(x) — mew)|| > 8C12(p)(|b — t* + [c — ul?).

On the other hand, we can easily calculate the following upper bound for
|al,
(4.10) la| < Qx| < [x[| < p.
A similar upper bound |s| < p holds as well. Hence, recalling equation (4.7),
we have that ||n2(x) — m2(w)|| is greater than or equal to |a —s| > %. Adding

together the inequality presented in the previous statement and equation (4.9)
yields the desired result, noting that % > 8C12(p) and 2||£| > ||Q | for

£eC?

8C12(p)||Q(x — w)||?

2C13(p)lw — |2

We may then conclude that inequality (4.6) holds, as we wanted. We only

need to prove that equation (4.8) is always satisfied, in order to finish our
calculations; and we will prove this by considering two complementary cases.

2[|ma(x) — new)|| >
>

Case I Whenever 3|c? — u?| is greater than or equal to p'ff,:é;‘,, the following
inequality holds,
2 _ 212 2 _ 4202
‘02,u2|2216|c u”| 6% — ¢ .
25 (5p2N—2N)2

Thus, in this particular case, inequality (4.8) follows directly from equa-
tion (4.7), because W%QN and 4/5 are both greater than or equal to 16C12(p).

Case II Whenever Agi%t;‘, is greater than or equal to 3|c? — u?|, we proceed
as follows. The absolute values |a| and |c| are both bounded by ||Qx| < p,
according to equation (4.10); the same upper bound can be calculated for |s|
and |u|. Whence, the following series of inequalities hold:

2|b27t2‘/3 < ‘b27t2‘7p2N72N|c27u2|
‘b2 —tQ‘ _ |CZN _ 2N|

2|’

< u
<

la® — s?| < 2pla —s|.

Recall that a2 + 5% = ¢V and that (¢V — 1) is equal to the product of (¢ — 1)
times the sum Zg;ol &k, Inequality (4.8) follows then from equation (4.7), after
noticing that 16C12(p)|b? — 2| is less than or equal to |a — s|, and obviously,
16C15(p) is also less than one. O
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A NOTE ON ASYMPTOTIC INTEGRATION OF SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

OCTAVIAN G. MUSTAFA AND YURI V. ROGOVCHENKO

ABSTRACT. The paper is concerned with the asymptotic behavior of solutions
to a second order nonlinear differential equation u’”’ + f(¢, u) = 0. Using the
Banach contraction principle, we establish global existence of solutions which
satisfy u(¢) = At + o(t) as t — +oo, where A € R and v € (0, 1].

1. Introduction

Asymptotic behavior of solutions of nonlinear second order differential equa-
tions

(1.1) u' 4+ ft,u,u')=0, t>t>1
and
1.2) u' +ftuw =0, t>t>1

has always been the subject of intensive research. Many papers published
recently are concerned with existence of solutions to Egs. (1.1) and (1.2) which
behave at infinity like solutions of the simplest second order differential equa-
tion, u” = 0, see, for instance, [1]-[9], [11]-[22]. A thorough study of the prop-
erties of such solutions, called asymptotically linear [5] or linear-like [16], is
important, for instance, for the theory of oscillation of ordinary and functional
differential equations, see the references in [9], as well as for the study of exis-
tence of positive solutions of elliptic problems in exterior domains, cf. [2] and
[21]. We also note that this type of asymptotic behavior has been addressed
recently by the authors in connection with Weyl’s limit circle and limit point
classification of differential operators in the theory of singular Sturm-Liouville
problems [10].

Two particular types of behavior of asymptotically linear solutions of Egs.
(1.1) and (1.2) have been studied more extensively. Namely, Constantin [1],
Rogovchenko and Rogovchenko [16], Yin [21] and Zhao [22] explored conditions
which guarantee asymptotic representation

(1.3) u(t) = At + o(t) ast — +oo,

whereas Lipovan [5], Mustafa [8] and the authors [9] established conditions
for a more precise asymptotic development

(1.4) u(t) = At + B+ 0(1) ast — +oo,

for some real constants A and B.

2000 Mathematics Subject Classification: 34A34, 34E05, 47H10.
Keywords and phrases: nonlinear differential equation, asymptotic integration, asymptotic
expansion, fixed point theory.
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Using a fixed point argument and a Wronskian-type representation similar
to those exploited in [11], [12], the first author established recently in [8] ex-
istence of solutions of Eq. (1.2) which, for a given u € (0, 1), have asymptotic
representation

(1.5) u(t) = At + o(t*) ast — +oo.

As pointed out by Lipovan [5] and the authors [9], asymptotic formula (1.3)
embraces large classes of solutions to Eq. (1.2), including those satisfying (1.4)
or, in case this is not possible, solutions with the asymptotic representation
(1.5).

It is known that Eq. (1.2) may possess solutions with the asymptotic devel-
opment (1.4) in some situations where standard results on asymptotic integra-
tion guarantee only existence of solutions that behave at infinity as (1.3) or, at
most, as (1.5), see the details in our paper [9, pp. 364-365]. Furthermore, a
class of solutions with asymptotic representation (1.5) contains also solutions
which satisfy (1.4). Therefore, in order to complete the study of solutions with
asymptotic expansions (1.3)-(1.5) and understand completely relationship be-
tween all three classes, it is natural to explore existence of solutions of Eq.
(1.2) that can be expressed in the form (1.5), but do not satisfy (1.4). The first
attempt to answer this question has been made by the authors in [13]. To sim-
plify the formulation of the result we adapt from the cited paper, we introduce
two constants

+o0
0(n, ty) := / s"a(s)ds and v = tg—‘“a)“e(m 4+ (1 + &g, to).

to
Application of [13, Theorem 2.2] to the celebrated Emden-Fowler equation
(1.6) u +a®)|ul" sgnut) =0, t>1, m>1,
frequently encountered in applications, leads to the following proposition.

THEOREM (1.7). Let ¢ € (0,1), ¢ € (0,¢ 1 — 1), 8 € (¢, (1 + &)c) and let a(t)
be a continuous, nonnegative function that does not vanish eventually. Assume
also that

(i) 0(m + (1 + &)c, 1) < +o0;

(ii) 6(m, ty) < em~1;

(iii) 6(m + (1 + &)c, to) < ctd.

Then, for every A € (0,1 — y(cty)™'), there exists a solution u(t) of Eq. (1.6)
with the asymptotic representation

(1.8) u(t) = At + w(t) ast — +oo,
where w(t) = o(t'~%) and, for all t > t,,

¢ +
A™ [/ gmHItekg(s)ds +t/ - gmtI+ele—1g(6)dg

to t
Y (1+e)c—8,1—(1+&)e
< ) < ———¢ t .
<w() < TSR
It is clear that for the solution u(¢) whose existence is established in Theorem
(1.7), one has
liminf w(t) > B = A™yt{"¢7° > 0,

t—-+o00
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which, however, does not rule out the possibility that u(¢) has the asymptotic
development (1.4).

In this note, using a modification of the Hale-Onuchic technique [4] that
has been successfully applied by the first author [7] to investigate asymptotic
behavior of solutions with prescribed decay of the first derivative, we establish,
under rather general assumptions, existence of global solutions to Eq. (1.2) that
satisfy (1.5) and can be written in the form (1.8), where

(1.9) lim w(t) = 40,
t—+oo

which, obviously, excludes for these solutions possibility of asymptotic repre-
sentation (1.4).

2. Asymptotic behavior of solutions

THEOREM (2.1). Let A > 0,v €[0,1), ug € Rand a, B8 € C([¢y, +0); [0, +00))
be two functions such that o(t) < B(t) forallt > toand Bt) = o (™) ast — +oo.
Introduce the set Dy, by

Dy, = {u € CH(lto, +00)R) | a®) < u'() — A < B®)
forall t > to, ulty) =uo},

and assume that for all t > to and u € Dy,

+0oo

alt) < f(s, u(s)ds < B(@).

t

Suppose further that for all t > to and any u1, ug € Dgy,,

[F & u1 @) — &, ua(@®)| < @ lu1(®) — ua(?)),

where a function k € C([¢, +00); [0, +00)) satisfies
+oo
(2.2) / kt)dt <1—w.
to
Then there exists a unique solution of the initial value problem
u’ + f(t,u) =0, t>t>1,
u(to) = uo,
defined on [t, +00) such that
ut) = At + o(#1™") ast — 400,
at) <u'@t)— A < B@), t > to.

If, in particular,
+oo
/ a(t)dt = +oo,
to
one has
tligrn [u(t) — At] = +o0.
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Proof. Define the distance between the functions u; and ug in Dy, by

d(uy, ug) = sup [t" [uj(t) — uy(®)]] .
t>to

Then the metric space E = (Dy,,, d) is complete. For u € Dy, and ¢ > ¢,
introduce the operator T': Dy ,, — C L([t, +00); R) by the formula

t 400
(2.3) (Tu)t) = uo + At —tp) + / [ (7, u(r))drds.
t() s

Itis not hard to see that T' is well-defined, thatis, TD 4 ,,, C D4 ,,. Furthermore,
we shall prove that T is a contraction in D4 ,,. Let

+o0
A= 1/’k@@

1-vJ,

It follows from the estimate

—+o00
(TurY(8) — (Tus) ()] < / @mm)—uz(fndr

+o00
</ k? 4, (r) — y(r)| drds

+o00
( k(s)/ des) d(u1, us)
<

a <1 i v / k(s)ds> d(uy, ug) = t7"Ad(uy, ug)

that, for w1, ug € Dy y,,
d(Tuq, Tuz) < Ad(uq, u2).

By virtue of (2.2), A € (0, 1), and the existence of a solution follows now from
the Banach contraction principle. Furthermore, for all ¢ > ¢,

S

t +oo t
u(t) — At = ug — Aty + / / f(r, u(t))drds > ug — Aty + / a(s)ds,
to to

which yields
+oo
lim [w(t) — At] = / a(t)dt =
t—+o0 to

The proof is complete. O

Application of Theorem (2.1) to Emden-Fowler equation (1.6) leads to the
proposition which complements results established in [3, 7, 13, 20]. In what
follows, C := ¢, “+)9(m + v + &, to), where 6 is defined as above.

COROLLARY (2.4). Let v € [0, 1), ¢ € (0, 1 — v), and let a(t) be a continuous,
nonnegative function that does not vanish eventually. Assume that

(a)(m +v+¢e 1) < 4o0;

(b) 6(m, o) < m~1(1 —v);

(©)m+v+egty < t6+8.
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Then, for every A, 0 < A < 1 — C, there exists a solution u(t) of Eq. (1.6) with
the asymptotic representation (1.8), where w(t) = o(t'~") as t — +oo and, for

all t > tg,
t ptoo t ptoo
Am/ / " a(r)drds < w(t) < / / " a(r)drds.
to Js to

S

In particular, w(t) satisfies (1.9) provided that
(d)6(m +1,1) = +cc.

Proof. Let uy = Aty. For t > ty, introduce the functions a(¢) and B(¢) by
+o00 +oo
alt) = Am/ s™a(s)ds and B(t) = / s™a(s)ds.
¢ ¢

Taking into account (2.3) and the fact that

¢ v+e +00
(t) B(t) < ta(V+€)/ Sm+v+sa(s)d8 <C,
0 t

we deduce that for all ¢ > ¢, and all u € Dy 4y,

+oo S m +oo
a(t) < / a(s) (As + / a(T)dT) ds < / a(s)u(s)1"ds
¢ to ¢

+oo S m
=(Tw' @) — A< / a(s) (As + B(T)d7> ds
t to
400 S tO vte m
< / a(s) (As + / C () dT) ds
¢ to T
400
< / s"a(s)(A + C)"ds < B(@).
t
Furthermore, for any u, us € D4 4, and for all ¢ > £, one has
w@®\™" (2@ "
t t

. s m—1
< mt™a(t) sup [(i (As + B(ﬂdr)) ] |u1(8) — ua(t)|

¢ s>to to

Ift, u1(2)) — f(&, ua(®)| = t™al(t)

< B0 a0~ st

where k(¢) = mt™a(t). The conclusion follows now from Theorem (2.1). O

We conclude the paper by noticing that it is not difficult to see that, given
two positive constants ¢; < ¢g, any continuous function a(¢) such that

cit™™ 2t <alt) <ect™™E  t>1,

will satisfy conditions (a)-(d) of Corollary (2.4).
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POINCARE SERIES AND INSTABILITY OF EXPONENTIAL MAPS

P. MAKIENKO AND G. SIENRA

ABSTRACT. Werelate the properties of the postsingular set for the exponential
family regarding stability questions. We calculate the action of the Ruelle
operator for the exponential family, and we prove that if the asymptotic (or
singular) value is a summable point and its orbit satisfies certain topological
conditions, the map is unstable. Hence there are no Beltrami differentials in
the Julia set. We also show that if the Julia set is the whole sphere and the
postsingular set is a compact set, then the singular value is summable and
the map is unstable.

1. Introduction

If f is atranscendental entire map, we denote by ", n € N, the n-th iterate of
f and write the Fatou set as F(f) = {z € C; there is an open set U containing z
in which {f"} is a normal family}. The complement of F(f) is called the Julia
set J(f). We say that f belongs to class S, if the set of singularities of f~!
contains at most q points.

Two entire maps g and & are topologically equivalent if there exist homeo-
morphisms ¢, y: C — C such that ¢ o g = h o . Given a map f, let us denote
by My the set of all entire maps topologically equivalent to f.

It is proved in [6] that M, has the structure of a (g +2)-dimensional complex
manifold. The Affine group acts on the space M, and as it is shown in [5] the
space Ny = My /{Affine group} is a g-dimensional complex orbifold.

A measurable field of tangent ellipses of bounded eccentricity determines
a complex structure on the sphere. This ellipse field is recorded by a (-1, 1)-
form ,u(z)% with ||u|lec < 1, a Beltrami differential. If an entire map f is
holomorphic in a complex structure defined by the Beltrami differential w,
then w is the invariant Beltrami differential. Since the sphere admits a unique
complex structure, there is a homeomorphism ¢: C — C such that w is the
pullback of the standard structure and the map f;, = ¢ o f o ¢! is an entire
map.

The nonexistence of an invariant Beltrami differential (invariant line field)
on the Julia set is related to the Fatou conjecture, see [9].

Now, let us consider the main hero of this paper — The Exponential Family:
E = {f\(2) = exp(A2), A € C*}. Then Ny, = E, where f; = exp(z). The map f), is
structurally stable if for any A close enough to A there exists a quasiconformal
homeomorphism ¢,, such that fy = ¢, o f), o d);l.

2000 Mathematics Subject Classification: 37F10, 37TF45.
Keywords and phrases: complex dynamical systems, esponential family, structural instability,
posteritical set, Poincare series, Ruelle operator, line fields, Beltrami differentials.
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Due to Mané, P. Sad, D. Sullivan (see [10]) and A. Eremenko, M. Lyubich
(see [5]) the following three items are equivalent for E:

Fatou conjecture
There are no invariant Beltrami differentials supported by the Julia set
If J(f)) = C, then f) is structurally unstable.

In 1985 R. Devaney (see [2]) proved that exp(z) is structurally unstable.
Afterwards, A. Douady and L. R. Goldberg (see [4]) showed that the maps
Aexp(z), A > 1 are topologically unstable. Zhuan Ye (see [13]) proved that f) is
structurally unstable if lim,,_,, f7(0) = oo.

In this paper we follow the approach of papers [1], [6] and [7]-[8] (case
of rational maps) and [3] (case of transcendental entire maps with algebraic
singularities only) were we generalize the above mentioned results.

In holomorphic dynamics the stability of a map depends on the behavior of
the postsingular set, denoted in this paper by X, = {U,>1f7(0)}. In the case
of the Exponential family we have only one asymptotic singularity, being a
different situation than in [3]; however our tools can also be applied in this
case to obtain concrete results.

Let us start with f), € E whose Julia set is equal to the plane. Then we have
the following simple possibilities:

1). lim,_. |(f})(0)] =0,

2). there exists a subsequence {n;} such that lim; . |(f}")(0)] =

3). there exists a subsequence {n;} such that lim; ., |[(f")'(0)] = M < oo
and M # 0.

We believe that the first case contains a contradiction, since in this situation
the forward orbit of 0 should converge to an attractive cycle and hence 0 ¢
J(f)). We show this conjecture under very strong additional conditions as an
illustration that this conjecture is not completely false (see theorem 1).

As for the last two cases, the Fatou conjecture claims that f), is an unstable
map.

Definition (1.1). Let A € C*, then the Poincaré series for f) is the following
formal series

+
Z S (fy 2)/(1)
Let
+
Z = (fy 2)/(1)

be the partial sum of the Poincaré series PA. Thus we have the following theo-
rem and proposition.

THEOREM (1.2). 1). If there exists a sequence {n;} such that (f;")'(1) —
and lim;_, ., sup |S,,| > O, then f) is unstable.

2). If there exists a sequence {n;} such that lim;_, (f}")'(1) = ¢, where ¢ # 0
is a constant and lim;_. ., sup |Sy,| = oo, then f) is unstable.

3). Let lim,_..(f}Y (1) = 0, and suppose that one of the following conditions
holds:



POINCARE SERIES AND INSTABILITY OF EXPONENTIAL MAPS 215

. (' (1)
llmn*)(x; sup ‘l(}f)i/u”‘ < 00, Oor

. e Y )]
lim,,_, o inf ] > 0.

Then F(f)) # 0.
PROPOSITION (1.3). There is no map f) € E, with J(f,) = C satisfying that
lim, . |f' (1) =C > 0.

The next theorems discuss the best conditions on the Poincaré series and
on the postsingular set for the map to be unstable.

Definition (1.4). A point a € C is called “summable” if and only if the series

1
Z (fy(@)

=0

is absolutely convergent. Note that the point z = 0 is summable if and only if
the Poincaré series P, is absolutely convergent.

Definition (1.5). Let W C E be the subset of exponential maps f, with
summable singular point 0 € J(f)), satisfying one of the following conditions:
1). m(X,) = 0, where m is the Lebesgue measure.

2). The diameters of the components of C\ X, are uniformly bounded below
away from zero.

THEOREM (1.6). Let f) € W. Then f) is an unstable map, and hence there is
no invariant Beltrami differential on its Julia set.

THEOREM (1.7). Let f) € E, with J(f)) = C. Then

1. If 0 ¢ X, (i.e. 0is non-recurrent), there exists a subsequence ny, such that
(f™) (1) — oo;

2). If X, is bounded, the singular point z = 0 is summable for f), and
m(X,) = 0.

In section 2 we discuss and prove Theorem (1.7) and Proposition (1.3).
Finally, we have the following

COROLLARY. If X, is bounded and J(f) = C, then f is unstable.

In section 3 we consider the basic definitions and properties of the Ruelle
operator Rx, of f) and we study the potential of deformations and as a conse-
quence we prove Theorem (1.2).

The rest of the paper is devoted to prove Theorem (1.6) for which we have
the following strategy:

1). Assuming that f), is a stable map and that 0 is a summable point, we
prove in Lemma (5.1) that B} (¢(2)) = ¢(z). Here

e(2) =350 Wlf)\(l))yff(f).(l))(z) and y,(2) = ;%% 2, as in section 4.

2). In Propositon (5.7), we prove that if ¢ 2 0 on Y = C — X, then f),
is unstable

3). We prove in Proposition (5.9) that ¢ # 0 identicallyon Y if f), ¢ W.
The Corollary is proved at the end of this paper.
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We would like to remark that Lemma (5.3), Corollary (4.3), Propositions
(5.7) and (5.9) remain basically as in the paper [3]. We have included these
results for reader’s convenience.

2. Postsingular set and dynamics

Mané has a result establishing expansion properties of rational maps on
the compact subsets of their Julia sets, which are far away from the parabolic
points and the w-limit sets of recurrent critical points. Next we will consider
this result for our map f).

Remark (2.1). Note that if f7(0) — oo then f) is summable. To see this,

consider
1 1 1

and choose a = f,(1). Since the orbit of 0 tends to oo this fraction converges to
zero, so the series ) (f,t)%l) converges absolutely.
A

(2.2) Proof of Theorem (1.7). The proof of the theorem follows exactly the
proof in [12] by Shishikura and Tan Lei. For completeness we will state the
lemmas used in the above mentioned paper, restricted to the situation of our
case. Hence in order to prove our Theorem (1.7), we will follow their arguments.

Denote by d(z, E) the Euclidean distance between a point z € C and a closed
subset E C C. Let dy(z, X) be the Poincaré distance on a hyperbolic surface Y
between a point z and a closed subset X C Y and diamy (W’) the diameter of
W’ with respect to the Poincaré metric of W.

LEMMA (2.2.1). ([12], lemma 2.1). For any 0 < r < 1, there exists a constant
C(,r) > 0 such that for any holomorphic proper map g: V — D of degree 1,
with V simply connected, each component of g~1(D,(0)) has diameter < C(1,r)
with respect to the Poincaré metric on V. Moreover lim,_oC(1,r) = 0.

Definition (2.2.2). No: There exist 2y, ..., 2y,—1 € D such that {% < |z <
1} cUd! D, (2). Let Co = NoC(1, 3).

The Julia set is J(f)) = C. Hence we can choose a periodic point w so that
the domain ) = C\{forward orbit of the point w} satisfies do(0, X)) > 2C.

LEmMA (2.2.3). ([12], lemma 2.3). Let Uy = D,(x) be a disc centered at
x € X with radius r so that Uy C Q and diamg(Uy) < Cy. Then for every
n > 0 the following is true:

deg(n). For every Dy(2) C Uy with 0 < s < d(z, 0Uy)/2, and every connected
component V' of f, "(Dy(2)), V' is simply connected and deg(f}: V' — Dy(2))=1;

diam(n). For every D,(w) C Uy with 0 < r < d(w, dUy)/2 and every con-
nected component of V of f, "(D~(w)), diamq V < Cy.

Now, we begin to prove Theorem (1.7). If co is the unique point of accumu-
lation of {| J,, f1(0)}, then by Remark (2.1) above, the point z = 0 is a summable
point and hence lim,,_. . |(f}})'(0)| = cc.

Now let y € X, be another point of accumulation of the orbit of z = 0. Let
n; be any subsequence such that y = lim; ., f}“(1). Then we claim:
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Claim lim;_ . |(f\") (1] = .

To prove the claim we repeat the arguments of Shishikura and Tan Lei. Let
us assume that there exists a number M < oo and a sequence of natural num-
bers {n;} C {n;} such that |(,”)(1)| < M. Then by Lemma (2.2.3) there exists
an integer N and a number r such that components W; C f, "/(D,(y)) contain-
ing the point z = 1 are simply connected and the respective restriction maps

A"j : W; — D,(y) are univalent for all j > N. Now let B C Q) be the hyperbolic
ball of the radius Cy centered at the point z = 1, then B is a precompact sub-
set of Q2 and hence has a bounded Euclidian diameter in C. Besides, again by
Lemma (2.2.3), the set {U;W;} C B.

Let g;: D — W, be the inverse maps then they form a normal family. Hence,
after passing to a subsequence we can assume that g; converge. Let g be a
limit map, then g., # constant since the derivatives are > ﬁ by hypothesis.
Then there is a neighborhood Uy of z = 1 such that Uy C g;(D) for large ;.
Thus, f,’ is normal in Uy, but there are many periodic expansive points in
Uy C J(f)) and the derivative diverges, which is a contradiction. The claim
and the first part of the theorem are done.

Finally, for the proof of the second part, we once more repeat the arguments
of Shishikura and Tan Lei in [12]. First, assume that f) is not expansive on
X, i.e. there are n, — oo, x;, € X,, such that |(f*)(x;)] < 1. Now using
the compactness of X, and the arguments above, we obtain a contradiction.
Therefore, expansivity immediately implies summability of the point z = 1.

Second, if m(X,) # 0 we follow the concepts of [9], page 44. Let x be a density
point in X, and consider for each point in the orbit of x the disc Ds(f"(x)) = D,,.
It is clear that for all z € C and 6 < %d(O, X)), there exists a univalent branch
h: Ds(f(z)) — C, such that h(f(z)) = z. Consecuently, since X, is bounded
0 ¢ X,. It follows that there exist univalent branches g,: Ds(f"(x)) — C,,.
Observe that by Koebe’s principle, g, has bounded nonlinearity. By part one
above, |(f™)'(x)| — oo for some subsequence n;, and then diam(C,,) — 0.

Using that x is a density point, we have that

lim — 1,
T ()

then by the invariance of X,, we have that
lim PP NXD

n—oo m(an )

Boundness of X, implies that there exists a subsequence such that D, — B
in which the density of X, is equal to one. Then B C X, a.e. and that implies
that f"(B) = C, hence X, = C which is a contradiction with the hypothesis
that X, is bounded. O

(2.3) Proof of Proposition (1.3).

. 1 1 o .
Proof. We have lim,,_,, |W / W| = 1. Since
lim|f)‘(1)\:lim| ! l,

n—oo fAHN(1) n—oo 'AFRTL(D)
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then |f7(1)| is near ﬁ for all large values of n.

This implies that X, is bounded, hence compact and 0 is non-recurrent, by
Theorem (1.7), and f) is summable. This is a contradiction of the hypothesis.
O

3. Ruelle Operator: Definitions and Properties
For any A € C* we define the following operators (compare with [7], [8], [6]).

Definition (3.1).
Ruelle operator (or push-forward operator)

1
Ri(p)2) = Y ¢ = 155 ) olé,
&i &i
where the summation is taken over all branches &; of f,” L
Modulus of the Ruelle operator |R}|(¢)(2) = ﬁ > ()

Beltrami operator B)(¢) = go(fA)%.
A

Then we have the following simple lemma.

LEMMA (3.2). For all A ;
D. RY: L1(C) — Li(C©) and || B} ||,< 1,

2). |R;|: L1(C) — L1(C), || |R}| ||z, < 1, and the fixed points of |R}| define
finite, complex-valued, invariant, and absolutely continuous measures on C.

3). By: Loo(C) — Loo(C) is the dual operator to R}, and || By ||L= 1.
Proof. Immediately follows from the definitions. O

(3.3) Potential of Deformations. The open unit ball B of the space Fix(B,)
C L, (C) of fixed points of B, is called the space of invariant Beltrami differ-
entials for f, and describes all quasiconformal deformations of f).

Let u € Fix(B)), then tu € B for all £ such that [¢| < .

Let us denote by h; their corresponding quasiconformal maps, normalized

so that h,(0) = 0 and h,(1) = 1; then we have the following functional equation
as explained in [1], [7], [8]:

where h; o f) o ht_1 = fawy € My, and G,(2) = %(z)hzo = zexp(A2)A (8)|;=0.

The function
ok, ala—1) H2)
F,(a)= §|t:0 = p //C 2(z—1)z—a)

is called the potential of the qc-deformations generated by u and 9F, = u in
the sense of distributions, see [11]. F,(a) is a continuous function in C with
F,(0)=0and F,(1) = 0.

LEMMA (3.3.1). If F(f\) = 0, then G, = 0 if and only if u = 0.
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Proof. If G, = 0, then F,(f)\(2)) = f,(2)F,(2). Hence F, = 0 on the set of
repelling periodic points and hence F}, = 0 on the Julia set. Then u = 9F,, = 0.
The lemma is finished. O

Then by an inductive argument we have that

i—1
F(fi@) = f} (@) (F (aHZW)
A

from above G,(a) = of, A)Ea)c

(3.3.1) above ¢ # 0.

(3.4) F.(fi(a) = f/(L/(a) <Fu(a) + )\2 Z (f)l\ 2)/(a)>

Now we are ready to prove Theorem (1.2).

, where the constant ¢ = X (¢)|;—o and by Lemma

(3.5) Proof of Theorem (1.2). We show first (3). By the assumption, we have
either

. (A )
lim su <C<
=TT
or
Y
lim inf —2-——— > K > 0.
n—00 (@)~
Since ‘(l’(c;:,)(/é?‘) | = IAf71(0)] , either X, is a compact subset of the plane or

0 ¢ X, respectively. Let us assume that F(f,) = (), then an application of
Theorem (1.7) implies a contradiction with lim,_,, [(f7)(0)] = 0. Hence we
are done.

Now we show (1) and (2). Assume f) is stable.

From the equation (3.4) above, we have that

Fu.(fY(a)

. =F, —
(36 @ ~ O Z < (F 2)’(a)

From [11], Lemma 1 of chapter 4; we have the following inequality
[Fu(a)] < M|a|log |all,
where M is a constant depending only on u. Applying this estimate we obtain:

[Fu(fi@)] _ M|fi(a)||log |fi(a)]|
[6504¢) I(f3Y (@) ’

An easy calculation shows

log |f3(@)| = [Afy @)
and

(M (@) = A2 FH ) Ha) (2 (a).

|Fu(fy (@) M
So, @I = M2 (@
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Now let n; be the sequence from the assumptions of Theorem (1.2), items
(1)-(2). Let the point @ = 1. Since F,(1) = 0, then from equation (3.6) we
obtain the following equality:

nj+2

F (21 e
A ,VEZ

C
£.s,
2)'(1) A

2y A

Therefore, this equation produces a contradiction in both cases with the hy-
pothesis over S, , consequently f) is unstable.

i

4. Calculation of the Ruelle Operator

In this section we calculate the action of the Ruelle operator on the family

of rational functions vy,(z) = % such that a # 0,1. Let us recall that

any rational integrable differential is a linear combination of such y,(2).
Let S = C\{0, 1} be the thrice punctured sphere.

PROPOSITION (4.1).

Biva(2) = iy Yo — Gy Yho @

Proof. Let ho(2) = R;(va)(2) — @ ¥h@(@ + v YA (2) be a function.
Our aim is to show that &,(z) defines a holomorphic integrable function on the
surface S, hence h,(z) = 0 and we are done. By Lemma (3.2) the function h,(z)
is integrable over the plane.

Now let us show that A,(z) is holomorphic by calculating the complex con-
jugate derivative in the sense of distributions. Let ¢ € C°°(S) be any differen-
tiable function with compact support in S, and such that ¢ = 0in C — S.

By duality between the Ruelle operator and the Beltrami operator, we have

1 a
/ /C poha(2) = / / Blgal) - s / /(C 0@+ s / /(C ery7,1(2)

e 1 /
/ / Z(fu(m() 7@~ s [ Lot

+ m /(C ezyr(2) = ().
On the other hand,

e (pof)s
/ [c ey Ye@ = ale = 1 / /@ 2z~ Dz — a)fV)'(2)
o (pofiz _(pofi)s
=la-b // 2(f))(2) // (z— D) (2)
/ / (@0 fu)s
G_afV@"

Since we have ¢(0) = 0 and ¢(1) =

B (‘POf/\)E a—
@1 / /@ et fA(O)qo(fA(o»
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(pofr) _ 1
/\/(C (z— a)(f)\)/(z) - (f‘)\)/(a) QD(f)\(a))

! 1
m /A mf).(a)(z) = mqp(fA(a))

hence, by cancelation, we obtain

() = / / osha(2) = 0
C

By Weyl’s Lemma £,(2) is a holomorphic function on S. Hence we are done. [

COROLLARY (4.2). If F(f)) = 0 and u # 0 € B, then

af (@)
1D F,(fA(1)).

Proof. Let u # 0 € B be invariant Beltrami differential for f,, then by
Proposition (4.1), we have

_rFy(@) — / / Vel = / Ri(ya()

i (CmMEF(fi@) — = (—mF,(fi(1).

Further,

Gula) =

fA( a) fA(l)
Hence
F(a)= i@ )F (fala)) — f’(l)F W(H(D),
and ‘@
G.(a) = F,(f\(a) — fi(@)F.(a) = “]ﬂ(l‘i FL(fA(1)).
A

Define the following series:

1 ff 1<a)
B
(@= D £ Z < (F @)

We also have by direct calculation that

1S 1
B +IyY
(@)= fA<1>( 2; @

COROLLARY (4.3). Let w # 0 € B. Then for all n > 0 we have

1 @) )
(%) (R (ya(2) = 7(]0),}),(@7&@)(2) —(f” ¢ )f/((l)VfM)(z)
L B@ e @)= — = R ).
F2y@f ) @
and
(%) F,(a) = ———=F.(f{(a) — By(a)F,(fi(1)),

fA()

where B,(a) is the n — th partial sum of the series B(a) above.
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Proof. By induction on the formula of Proposition (4.1) we obtain the equa-
tion for (R})"(y.(2)). An application of formula (3.6) in the proof of Theorem
(1.2) together with the formula in Corollary (4.2) and second formula for B(a),
give us the required formula for F,(a). O

These two formulas are equivalent but we will use only the one for F),(a).

5. Proof of Theorem (1.6)

Assume that f) is a stable map. Then the summability of the singular value
implies F(f)) = (), otherwise the critical point must tend to a periodic attracting
point and so the Poincaré series is not convergent.

Let a be a summable point. Then the series B(a) is absolutely convergent
and by the arguments of Theorem (1.2), item (1), @ )F (fia)) — 0asn — oco.

Then passing to the limit in the formula (xx) in Corollary (4.3), we have
F.(a) = —B(a)F,(f)\(1)).
Now set a = f)(1), then
F,(fA(1) (1 + B(f,(1) =

and we have two possibilities:

1) F,(f»(1)) = 0. Then by Corollary (4.2), G, = 0 and by Lemma (3.3.1),
n = 0 which contradicts the assumption above.

2) B(fA(1)) = —
Now we will finish Theorem (1.6) in 3 steps. Let ¢ be the following series,

2= D

The summability of z=0 1mphes
1) The function ¢ is an absolutely integrable function in C.
2) Outside of X, ¢ is holomorphic.

Indeed, again by Lemma 1, chapter 4 in [11] we have that for any x € C,
| [fo7vx(2)| < M|x]| log(x)\ being M a constant not depending on x. Then

(2] Tog(F3(1))
lell < 2 v TR R 2 D)

and from the calculations in Theorem (1.2), we have

(1) . (RN )
M log((fF ()| =M
Z '(fA 2 (1) g %:2 | A2<f;l<1))(ff*1<1>)(ff*2)f<fA(1>)‘
M 1 | [Je @) | ] vagan@
lell = ,;2|(f “2y(fA(D)| H@ (W ED)

Summability of (1) proves the first part of the assertion. For the second
part, just observe that ¢ is uniformly approximated by the rational functions

k 1
2 n=0 T V(@)
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LEMMA (5.1). Under assumption (2) above we have
R (¢(2)) = ¢(2).

Proof. For any n > 0, by the formula of the Proposition (4.1), we have the
following expression,

* 1 B
& ((f)fl)’(f,\(l))'yff(ﬂ(h)(z)) -

1 1 FRAAD)
FE ) R e g @ ey @y

Then summation over all n > 0 gives
Ri(o) = R* Z Yerp)(2)
A A (fA Y(fr(1)

I o B S frfHa)
Z (f/(Hl)’(f (1))’}’}’"*1(}”)\(1))(2) f/(l)yfA(l)( )Z (f,\ )’(f,\(l))

n>0

= ¢(2) — v£,1)(2) — v£0)(2) [BUfA(D)] = ¢(2)
by hypothesis. O

LEMMA (5.2). Under the assumption of Lemma (5.1) above the function |¢|
is a fixed point for the modulus of the Ruelle operator,

B} [(|e]) = |o] -
Proof. We recall that by definition, for every function ¢

IR;1(eD) = > le@)] 1]
i

where the summation is over all branches ¢; of inverses of f\(z) = e*%.

By assumption
lel-IRi@ 1= [[
C

Now, define for each index i, a; = ({12, B; = i go(gj)(g})z =9 —a;
With this notation we have

VIOHE

e [I=Il Bi(e) [|= NP

§ dz/\dzz//|zaj|g
< [[1ei+ [[18:1= % [[1a =1lel

1> ajl = laal + 1Bi| = > |ay]
j j

Hence
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That implies that
ol =D ail =D leil =Y le@IZ1* = | R |-
i i i
O

By Lemma (3.2), the measure o(A) = [[, |¢(2)| is a non-negative invariant

absolutely continuous probability measure, where A C C is a measurable set.
We have therefore completed the first step.

LetY = C— X, be the complement to the postsingular set X,. In the second
step we show that ¢ = 0 identically on Y.
In the notation of the lemmas above we have

LEMMA (5.3). If aj # O identically on Y, then the function k; = % is a
J
non-negative constant on any component of Y.

Bj

Proof. We have |1 + i—j| =1+ a | thenif% = 'y’l +iyé we have

2 2
(1+0D) +odr=(1+ ol + o) <+ 0P+ P 2o+

Hence yé =0 and 5—’ = y{ is a real-valued function but % is a meromorphic
J J

function. So y{ = k; is constant on every connected component of Y and the
condition |1 + ;| = 1+ |k;| shows &; > 0.

Definition (5.4). A measurable set A € C is called back wandering if and
only if m(f ~*(A) N f~*(A)) = 0, for k # n.

Remark (5.5). If a set A is back wandering and u is an invariant probability
measure, then u(A) = 0.

COROLLARY (5.6). If ¢ # 0onY, then (i) m(X,) = 0, where m is the Lebesgue
measure and (it) ﬁ defines an invariant Beltrami differential.

Proof. (1) If m(X,) > 0, then m(f)fl(XA)) > 0 so m(f)\_l(XA) — X,) > 0 since
(X)) # X), X, # C. Denote by Z; = f;%(X,) — X,. Then Z; is back
wandering so ¢ = 0, on the orbit of Z;, which is dense in J(f)), hence ¢ = 0 in
Y. Therefore m(X,) = 0.

(ii) By the notation and the proofs of Lemmas (5.1) and (5.2) we have k;(x) =
B— £ 150 o(x) = (1 4 ki(x))a; = (1 + ki) (Li())N¢)(x). Hence,

3@ (1 + k)R NE) ()
lp()] (1 + k()] e(Li(20)][({D2(x)|
and so for any branch {; we have
) N
= Tol = letcig ~ M,

asaresult u = |%| is an invariant line field. Thus the corollary is proved. O
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Now we prove the main result of the second step.
PROPOSITION (5.7). If ¢ 2 0on Y, then f) is unstable.

Proof. Let us show first that X, = (Jfi(1). We will use a McMullen argu-
ment as in [9]. By Corollary (4.3), u = % is an invariant Beltrami differential.
That implies that ¢ is dual to u and ¢ is defined by u up to a constant. We
will construct a meromorphic function ¢ dual to w and such that ¢ has a finite
number of poles on each ring Ag = {z :: % < |z| € R} around the origin.

For that suppose that for z € C there exists a branch g of a suitable £}, such
that g(U,) C Y and U, is a neighborhood of z. Then define /() = o(g())(g")?({)
for all { € U,. Note that /({) is dual to u and has no poles in U,.

By considering R — oo we construct a meromorphic function ¢ which is
dual to w. The poles of ¢y form a discrete set accumulating z = co and 0. Since
¢ is a dual to u, then ¢ = C - ¢, where C is a constant. Hence X, = | Jfi(1)is a
discrete closed set accumulating z = co and 0, so Y is connected.

By Corollary (4.3) the functions %; are globally defined constants on Y. More-
over, by the argument of Lemma (5.3) ¢(x) = (1 + &;)(¢({i(x))({})*(x) for any
x € C, thus k; = k; for any i, j.

Therefore we have ), {”fr’g = > &)L »2(x) = ¢(x). Since the first term
of the equation is infinite, this can be only if ¢ = 0. O

To obtain a contradiction in step 3, we show that if f, € W is structurally
stable, then ¢ # 0 identically on Y.
The following proposition is proved in [8] and [3].

PROPOSITION (5.8). Let a; € C with a; # a;, for i # j be points such that
Z = w C C is a compact set. Let b; # 0 be complex numbers such that
the series ) b; is absolutely convergent. Then the function l(z) = ), % #0
identically on Y = C\Z in any of the following cases: l

(1) the set Z has zero Lebesgue measure;

(2) the diameters of the components of C\Z are uniformly bounded below
away from zero.

PROPOSITION (5.9). Let f) be the exponential map and 0 a summable point.
Then ¢(z) # 0 identically on Y in any of the following cases:

(D if m(X,) = 0, where m is the Lebesgue measure on C;

(2) if the diameters of the components of Y are uniformly bounded below
away from 0.

Proof. Denote d) = f,(1). We have two cases according to X, being bounded
or not.
First assume that the set X, is bounded. Then by Proposition (5.8) we

have that ¢(z) = & + 2 + 3 m = Il(2) # 0, which proves the

proposition. O

Now let X, be unbounded. We want to reduce this situation to a bounded
one, observe that under our assumptions X, # C.
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Lety € Cbe apoint such that the point 1y € Y. Then the map g(z) = ; f; —

maps X, onto a compact subset of C. Let us consider the function G(z) =
1 (fldy-1 1 fidy) 1 s
2 i (@ =124 vy T 2= FrdG—gqi@y 1hen by Proposition (5.8)

G(z) # 0 identically on g(Y).

Now, we Claim that G(g(2))g'(z) = ¢(2).

Proof of the claim. Let us define C; = 3, @D anq 0y = 3, @) then

E(fdy LY (d)
we have
&:CI(z—i_y_l)and Co  Glz+y-1
g(2) yz ga—-1 (y—-1z—-1)
and for any n
1 _GEHy-D(ffd)+y-1

g2 —g(fidy)  yly—Dz—fMdy)

1 (z+y—1)72 )
1_y_
(sz(dn thoy=z)

T yy-1
then
Cilz+y—-1) Colz+y-1) 1
G = — o 0 =
(g(2) vz b-DGe=D T X Gt 2@

1 1 1
- (a-y- — — 1) : .
Yo D (( y=a3, Foray TEty Y 2 YAz —fidy
+C1(z+y—1) Cz(z+y—1))

yz S -DE-1
and
fidy-1 JHEN) 1
. 1 b(2) + 2 (Frdy 2 (fiY(dy) 2 (Fiy(dy)
g2 z z—1 1-y—2z
L1 (Cl(y—l) B Coy >
g@ \z2z+y—-1) E-DE+y-1
_ ¢
g'(2)’

Hence ¢(z) = 0 identically on Y if and only if G(z) = 0 identically on g(Y).
So by Proposition (5.8) we complete the proof of this proposition.
Step 3 and Theorem (1.6) are finished.

Proof of the Corollary: Since X, is bounded, Theorem (1.7) part (2), implies
that z = 0 is a summable point and m(X,) = 0. Then f, € W and this implies
by Theorem (1.6) that f) is unstable. O
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A CHARACTERIZATION OF C;(X) FOR X NORMAL AND
REALCOMPACT

F. MONTALVO, A. A. PULGARIN AND B. REQUEJO

ABSTRACT. We present some internal conditions on a locally m-convex ®-
algebra A stated in terms of order and/or closed ideals of A. It turns out
that a locally m-convex ®-algebra satisfies these conditions if and only if it
is /-isomorphic and homeomorphic to the locally m-convex ®-algebra Cp(X)
for some realcompact normal space X. Here Cp(X) is the set of all real-
valued continuous functions on X endowed with the topology of compact
convergence. One of the above mentioned internal conditions can be replaced
by the requirement that A be a barreled space. We also prove that any Fréchet
uniformly closed ®-algebra satisfies the internal conditions in question.

Introduction

Throughout this paper, X will denote a completely regular and Hausdorff
topological space, and C(X) will be the ®-algebra of all real-valued continuous
functions on X with pointwise operations and order. Let C(X) denote C(X)
endowed with the compact convergence topology. Recently we obtained a
partial answer to the classical problem of characterizing C(X). More precisely,
we characterized C,(X) when X is a normal space (see [10]). Our aim in this
article is to solve the same problem when X is a normal and realcompact
space. But we should emphasize that the answer we obtain here is not derived
as a particular case of that in [10]. Instead, our approach to the problem
is based on the following result due to Feldman and Porter: A topological
space X is realcompact if and only if the compact convergence topology of C(X)
coincides with the order topology [4]. It thus appears appropriate to seek a
characterization in which the order plays a more important role in this case.

Let A be a uniformly closed ®-algebra A endowed with a Hausdorff locally
m-convex topology. The problem lies in looking for internal conditions on
A which imply that A is [-isomorphic and homeomorphic to C,(X) for some
normal and realcompact topological space X. Thus, if 7 is such a topology on
A then 7 must be the order topology on A.

First we solve the algebraic part of the problem; i.e., we characterize those ®-
algebras that are /-isomorphic to some C(X) with X normal and realcompact.
Then, for these ®-algebras, the problem turns into one of determining the
order topology among all the Hausdorff locally m-convex topologies on those
algebras.
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Before approaching the problem proper, we will make use of the solution
given to the algebraic problem to prove the following result: Alocally m-convex
d-algebra A is [-isomorphic and homeomorphic to C((X) for some hemicompact
k-space X if and only if A is uniformly closed and Fréchet.

The article is organized into two sections. Section 1 sets out the results
concerning topological algebras and ®-algebras that we will need in the sequel.
For easier reading, we shall give complete definitions of all the terms we will
use, but not give any proofs. In Section 2 we prove the main results.

1. Preliminaries

In the sequel, every ring will be assumed to be commutative and to possess
anidentity, and every morphism of rings will carry the identity into the identity.
We shall denote by R-algebra (henceforth simply algebra) every ring A endowed
with a morphism of rings R — A (the structural morphism of the algebra)
which must be injective and allow R to be identified with a subring of A; in
particular 1 will denote indistinctly the identity of R and the identity of A.
Given algebras A and B, a map A — B is a morphism of algebras if it is a
morphism of rings that leaves R invariant.

Definition (1.1). A topological algebra is an algebra A endowed with a (not
necessarily Hausdorff) topology for which A is a topological vector space, the
product of A is continuous, and the map a — a~! (defined over the invertible
elements) is continuous.

An important class of topological algebras consists of the locally m-convex
algebras, i.e., those in which the topology may be defined by a family of m-
seminorms (a seminorm ¢ on an algebra A is an m-seminorm if q(ab) < g(a)q(b)
for all a, b € A).

Example (1.2). Let us now consider the topological algebra that we are most
interested in. For each compact subset K of X, one has the m-seminorm gqx
on C(X) defined by the equality gx(f) = max{|f(x)| : x € K} (f € C(X)).
The topology that the family {qx : K compact subset of X} defines in C(X) is
known as the topology of uniform convergence on compact sets (in brief, compact
convergence topology); C(X) endowed with this topology will be denoted by
Cp(X).

Definitions (1.3). Let A be a topological algebra. We shall call the set of
morphisms of algebras of A in R that are continuous the fopological spectrum
of A, and shall denote it by Spec, A. Each element a € A defines on Spec, A
the function a: Spec, A — R, x — a(x) := x(a). The initial topology that
these functions define on Spec, A is known as the Gelfand topology. Except
when otherwise specified, we shall assume that Spec, A is endowed with this
topology. Thus, it is clear that Spec, A is a completely regular Hausdorff
topological space (it may be that Spec, A = 0)).

Let us assume that Spec, A # () and let C(Spec, A) be the algebra of all
real-valued continuous functions on Spec, A. There is a natural morphism of
algebras T': A — C(Spec, A) known as the spectral representation of A. A is
said to be semisimple when its spectral representation is injective.
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A maximal ideal M of A is real if the residue class field A/M is R. If
x: A — R is a morphism of algebras, then its kernel Ker x is a real maximal
ideal of A, and x is continuous if and only if Ker x is closed. Hence there is
a one-to-one correspondence between the points of Spec, A and the set of all
closed real maximal ideals of A. Clearly, A is semisimple if and only if the
intersection of all its closed real maximal ideals is zero.

Definitions (1.4). Let A be a topological algebra. For every ideal I of A we
have the closed set (1) := {x € Spec,; A : a(x) = 0 for every a € I} of Spec, A.
We shall say that (1), is the zero set of the ideal I. The zero set of an element
a € A is the closed subset (a)y := {x € Spec, A : a(x) = 0} of Spec, A. It is
clear that (I)g = (,c;(a)o for any ideal I of A. We shall say that A is regular if
its elements separate points and closed sets of Spec, A in the following sense:
if x € Spec, A and F is a non-empty closed subset of Spec, A such that x ¢ F,
then there exists a € A satisfying a(F) = 0 and a(x) = 1. It follows from the
definition that A is regular if and only if {(a)y : @ € A} is a basis of closed sets
in Spec, A.

Example (1.5). Each x € X defines the continuous morphism of algebras
6x: Ch(X) — R, 6,(f) := f(x), and so one has the natural map i: X —
Spec, Cr(X), i(x) := 84. On the one hand, i: X — i(X) is a homeomorphism
because X is completely regular. On the other, if for each closed set C in X
and each closed ideal J in Ci(X) one denotes Jc = {f € C(X) : f(C) = 0},
(J={xeX: flx) =0 Vf € J}, then the closed ideals in C1(X) are in one-
to-one correspondence with the closed subsets of X (via C — Jg and J +— (J)g,
see [11]), and consequently the closed maximal ideals in C(X) are in one-to-
one correspondence with the points of X. Therefore, X = Spec, C1,(X) and the
spectral representation of C,(X) is an isomorphism. In particular C,(X) is
regular and semisimple.

Definition (1.6). We shall say that a topological algebra A is normal if its
elements separate disjoint closed sets of Spec, A in the following sense: if F, G
are disjoint non-empty closed sets of Spec, A, then there exists a € A such that
a(F) = 0 and a(G) = 1. Clearly, if A is normal then A is regular.

According to Urysohn’s Lemma, X is normal if and only if C;(X) is normal.
Also, it is not difficult to show that C,(X) is normal if and only if in C,(X)
there do not exist two closed ideals whose sum is dense and proper. One has
the more general lemma:

LEMMA (1.7). ([10], Lemma 2.13 (i1)). Let A be a regular topological algebra
such that: (i) every non-dense ideal is contained in some closed real maximal
tdeal; (ii) there do not exist two closed ideals whose sum is dense and proper.
Then A is normal.

Next, let us describe the order structures that interest us.

Definitions (1.8). A vector lattice is a real vector space E endowed with an
order relationship “ <” with which it is a lattice (every non-empty finite subset
has a supremum and an infimum), and is compatible with the vector structure
(ifa,b € E suchthat a < b,thena+c¢ < b+ cforeveryc € E, and Aa < Ab for
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every A € R, A > 0). For C(X) we shall always consider its usual order with
which it is a vector lattice: the point-wise defined natural order.

Let E be a vector lattice. The set E;, = {a € E : a > 0} is called the
positive cone of E. As is usual, the supremum and infimum of a finite subset
{ai,...,a,} of E will be denoted by a; V-V a, and a; A - - - A a,, respectively.
Given an element a € E, its positive part, its negative part, and its absolute
value are elements of E which are denoted by a™, ¢~ and |a|, respectively, and
are defined by the equalitiesa™ =a Vv 0,a” =(-a) V0, |a| = a* Va~. Given
a,b € E, the closed interval of extremes a and b is the subset of E which is
denoted [a, b] and is defined by the equality [a,b] :=={c € E : a <c¢ < b}. A
subset C of E is said to be solid if a € C implies {b € E : |b] < |a|} C C.

AmapT: E — F,where E and F are vector lattices, is a morphism of vector
lattices if it is linear and is a morphism of lattices, i.e., if it is a linear map such
that T(a Vv b) = T(a) VT(b) and T(a A b) = T(a) NT(b) for all a, b € E.

Definition (1.9). Given a vector lattice E, the order topology in E, which we
shall denote by 7,, is defined as the finest locally convex topology for which all
closed intervals of E are t-bounded (bounded in the topological sense, i.e., the
closed intervals are absorbed by each 0-neighbourhood). The order topology
on R is its usual topology.

It is easy to prove the following property: “Let T': E — F be a linear map
between vector lattices. If T preserves the order, then T is continuous if E and
F are endowed with their respective order topologies.”

Definitions (1.10). An [-algebra is an algebra A endowed with an order
relationship “ <” with which it is a lattice and is compatible with the algebraic
structure (if @, b € A suchthata < b,thena+c<b-+cforallcc A, Aa < Ab
forallA € R,A > 0,and ac < bcforallc € A,). If A is an [-algebra, then in
particular it is a vector lattice, so that the notions given for vector lattices in
(1.8) above are valid in A.

Let A and B be [-algebras. A map A — B is said to be a morphism of -
algebras ifitis a morphism of algebras and a morphism of lattices. A morphism
of [-algebras is called an [-isomorphism if it is bijective. An ideal I of A is said
to be an [-ideal if I is a solid set. A maximal l-ideal is a proper l-ideal that is
not contained strictly in another proper l-ideal. C(X) with its usual order is
an [-algebra, and each closed ideal of C1(X) is an /-ideal, since for each closed
subset C of X the ideal J¢ is solid (Example (1.5)).

Remark (1.11). Let A be an [-algebra, I an ideal of A, and 7: A — A/I the
quotient morphism. Then 7(A, ) is the positive cone for an [-algebra structure
on A/I for which 7 is a morphism of /-algebras if and only if I is an /-ideal.

Whenever we speak of the [-algebra A/I, we shall be assuming on A/ the
above structure, and therefore that I is an /-ideal.

Definitions (1.12). Let A be an [-algebra. A is said to be Archimedean if for
a,be A, na <b for all n € Nimplies a < 0. An element e of A is said to be
a weak order unit if for a € A, a A e = 0 implies ¢ = 0. An element e of A is
said to be a strong order unit if a € A, implies a < ne for some non-negative
integer n. A is said to be an f-algebra if for a,b,c € A, aAb=0andc > 0
imply ca A b = 0. A ®-algebra is an Archimedean f-algebra; equivalently, a
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®-algebra is an Archimedean /-algebra in which 1 is a weak order unit (see [2],
§9, Corollary 3). It is clear that C(X) is a ®-algebra.

Definitions (1.13). Let A be an f-algebra. Then it is known that A induces
in R the usual order of R. According to the above, given a, B € R, one will have
a < BinRif and only if @ < Bin A, so that we will make no distinction.

We shall say that an element ¢ € A is o-bounded if there exists a non-
negative integer n such that |a|] < n. We shall denote the set of all the o-
bounded elements of A by A*. It is clear that A*, with the order induced by
the order of A, is an f-algebra. The f-algebra C(X)* is denoted by C*(X).

A sequence (a,), in A is said to be Cauchy uniform if for every real ¢ > 0
there exists a positive integer v such that |a, —a,,| < e forn, m > v. A sequence
(an), in A is said to be uniformly convergent to a € A if for each real ¢ > 0
there exists a positive integer v such that |a, — a| < e for n > v. It is easy
to see that if (a,), is uniformly convergent to both a and b in A and if A is
Archimedean then a = b. A subset S in A is said to be uniformly closed if each
Cauchy uniform sequence in S is uniformly convergent in S. A subset S in A
is said to be uniformly dense if for each element a € A there is a sequence in
S that converges uniformly to a. It is known that C(X) is uniformly closed.

We conclude this section with some results which we shall use later.

LEMMA (1.14). Let A be a uniformly closed ®-algebra. One has

(1) If a € A and a > 1 then a is invertible. As a consequence A is strictly
real, i.e., 1 + a? is invertible for all a € A.

(i1) A is a Gelfand algebra; i.e., each prime ideal of A is contained in a unique
maximal ideal.

(ii1) If 7 is a topology on A such that (A, 7) is a topological algebra, then (A, )
is regular.

(iv) If B is another uniformly closed ®-algebras, then every morphism of
algebras A — Bis a morphism of l-algebras. Consequently, every real maximal
ideal of A is 7,-closed.

(v) Let us consider A endowed with a Hausdorff locally m-convex topology.
Every non-dense ideal of A is contained in some closed real maximal ideal.
Consequently, every closed maximal ideal of A is real and Spec, A # (). More-
over, if A is complete, then an element a € A is invertible if and only if a(x) # 0
for all x € Spec, A.

Proof. See [9], Lemma 3.12, for (i), [10], Lemma 3.5, for (ii), [10], Lemma
3.7, for (iii), and [9], Lemma 3.15, for (iv). According to some results proved in
[12] for complex algebras (whose proofs in the real case may be found in [16],
Ejemplo I1.1.6, Teorema I1.3.10 and Teorema I1.3.11), the property (v) holds in
each locally m-convex, Hausdorff, and strictly real algebra, and by (i) this is
the case here. O

2. The Main results

Definitions (2.1). Let A be an algebra and Spec,, A = {maximal ideals of
A} the maximal spectrum of A. If for every ideal I of A one writes [[]y :=
{maximal ideals of A that contain I}, then the sets of the family {[I],

I ideal of A} are the closed sets of a topology on Spec,, A, known as the
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Zariski topology. Under this topology Spec,, A is a compact topological space
(not necessarily Hausdorff). One basis of closed sets for this topology is the
collection {[aly : a € A}, where [a]y := [(@)]p and (@) is the principal ideal of
A generated by a.

We shall call the set Specy A := {morphisms of algebras of A intoR} = {real
maximal ideals of A} the real spectrum of A. We shall say that A is closed under
inversion if its invertible elements are just its non-null elements which do not
belong to any real maximal ideal of A. We shall say that A is real-semisimple
if the intersection of all the real maximal ideals of A is null.

It is clear that C(X) is closed under inversion and real-semisimple.

Remarks (2.2). (i) When an algebra is real-semisimple, one implicitly as-
sumes that its real spectrum is non-empty.

(ii) If A is a closed under inversion ®-algebra, then it must be the case
that Specy A # ). Indeed, if the real spectrum of A were empty, then every
non-null element of A would be invertible and hence A would be a field. It is
straightforward to see that this field would be totally ordered (see [2], p. 57),
and as it is Archimedean, it would have to be a subfield of R (see [5], 0.21).
Therefore A = R and Specy A would be a point, which is absurd.

Recall that the topological space X it said to be realcompact if X satisfies one
of the following equivalent properties: (i) every real maximal ideal of C(X) is
of the form J, for some x € X (i.e., every real maximal ideal of C;(X) is closed,;
see Example (1.5)); (ii) X is homeomorphic to a closed subspace of a product
of real lines.

Let A be a uniformly closed ®-algebra with Specy A # (). Each element
a € A defines on Specy A the function a: Specy A — R, x — a(x) := x(a). It
is easy to see that the initial topology defined by these functions on Specy A
coincides with the Zariski topology induced by Spec,, A. We shall denote by
X, the set Specy A endowed with this topology. The natural map A — C(X,)
is a morphism of /-algebras (because it is a morphism of algebras); that A is
real-semisimple means that this morphism is injective, and that A is closed
under inversion means that, given a € A, a is invertible if (and only if) a(x) # 0
for all x € Specy A.

Considering Specy A C RA = {maps of A into R}, one easily sees that the
topology of X, coincides with that induced by the product topology of R4, with
X, being a closed subspace of R4; i.e., X, is realcompact.

Example (2.3). If A = C(X), then from Example (1.5) it follows that X is
realcompact if and only if X = X, (topological equality).

Let A be a uniformly closed ®-algebra. When A is closed under inversion,
in which case Specg A # 0, it follows from an important result due to Buskes
that the order topology on A is the initial topology induced by the morphism
of algebras A — C,(X,) (see [3]; [9], Lemma 3.18 and Corollary 3.19). In
particular, if X is realcompact then the order topology on C(X) coincides with
the compact convergence topology. One has:

PROPOSITION (2.4). If A is a ®-algebra that is uniformly closed and closed
under inversion, then (A, 7,) is a locally m-convex algebra such that
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(i) Spec, (4, 7,) = X, and hence Spec,(4A, 7,) is realcompact;
(i1) (A, 7,) is Hausdorff, regular and semisimple.

Proof. From Buskes’ result mentioned above it follows that (A, 7,)is alocally
m-convex algebra. The regularity of (4, 7,) and the equality Spec,(4, 7,) = X,
hold by (iii) and (iv) of Lemma (1.14), respectively. Since every uniformly closed
and closed under inversion ®-algebra is real-semisimple (see [9], Lemma 3.17,
where o-semisimple means real-semisimple), from the equality Spec,(4, 7,) =
X, it follows that (A, 7,) is semisimple and Hausdorff. O

For the proof of the next theorem we will use a result of Tietze [18], namely:
“Let E be a vector subspace of C*(X) that contains the constant functions. If E
Sl-separates disjoint closed sets of X (i.e., for each pair of non-empty disjoint
closed sets F and G of X, there exists h € E suchthat 0 < h <1, h(F) =0
and A(G) = 1), then E is uniformly dense in C*(X)”.

THEOREM (2.5). Let A be a uniformly closed ®-algebra. A is l-isomorphic
to C(X) for some normal and realcompact topological space X if and only if

(1) A is closed under inversion;

(i1) (A, 7,) is normal.

Proof. Assume that A satisfies (i) and (ii). From Proposition (2.4) it fol-
lows that the spectral representation of (A, 7,) is the injective morphism of
[-algebras A — C(X,), and that the condition “(A, 7,) normal” means that A
separates disjoint closed sets of X, (in particular, the realcompact space X, is
normal). Identifying A with its image in C(X,), one has that A is a uniformly
closed I-subalgebra of C(X,) that separates disjoint closed sets of X,. Then
A* Sl-separates them, since, if for @ € A one has a(F) = 0 and a(G) = 1 (F
and G closed sets of X,), the same is the case for |a| A 1 € A*. From Tietze’s
result it follows that A* is uniformly dense in C*(X,), and as A* is uniformly
closed (since A is so) one concludes that A* = C*(X,). Now, if f € C(X,), then
fi=1/(f* + Dand f; = 1/(f~ + 1) are functions of A* that do not vanish
at any point of X,, and such that f = 1/f; — 1/f>. But, by hypothesis (i),
1/f1,1/f2 € A, so that f € A, and one concludes that A = C(X,); i.e., the
spectral representation of (A, 7,) is an isomorphism of /-algebras.

Now, let A = C(X) with X normal and realcompact, in which case X = X,
and A — C(X,) = C(X) is an isomorphism. Hence (A, 7,) = C.(X) by Buskes’
result, and therefore A satisfies (i) and (ii). O

We shall apply the preceding theorem to obtain the next result. We will take
some notions from the theory of locally convex spaces: barreled, metrizable,
and complete. Recall that the topological space X it said to be: (i) hemicompact
if there exists a sequence {K,}, of compact subsets of X such that every
compact subset of X is contained in some K,; (ii) a k-space if a subset of X
is open if its intersection with each compact subset K of X is open in K. It is
well-known that C,(X) is a Fréchet space (i.e., metrizable and complete) if and
only if X is a hemicompact k-space (see [19]).

THEOREM (2.6). Let A be an uniformly closed ®-algebra. If 7 is a locally m-
convex topology on A, then (A, 1) is l-isomorphic and homeomorphic to Cp(X)
for some hemicompact k-space X if and only if (A, 7) is Fréchet.
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Proof. First, note that Spec,(A, 7) # 0 by Lemma (1.14) (v). From a well-
known result of Michael [8] it follows that if B is a semisimple Fréchet algebra,
then every morphism of algebras A — Bis continuous (see [16], Teorema I1.4.6,
for the real case). As a consequence one obtains that Spec,(A, 7) = Specy A =
Spec,(A, 7,), and hence from Lemma (1.14) (v) it follows that A is closed under
inversion. It is also known that any regular and strictly real Fréchet algebra
is normal (see [17]; [16], Teorema I1.4.13, for the real case), then one has that
(A, 7,) is normal. We can apply Theorem (2.5) to deduce that the spectral
representation (A, 7) — Cp(X,) is an [-isomorphism. Again, Michael’s result
shows that the composition (A, 7) — Ci(X,) — Ci(K) is continuous for each
compact subset K of X, (where C,(X,) — C,(K) is the restriction morphism),
and thus we obtain that the spectral representation of (A, 7) is continuous.
Finally, in order to prove the continuity of the inverse map C,(X,) — (A, 1),
note that C1(X,) is barreled because X, is realcompact (see [13]). Then, the
proof follows from a generalization of the open mapping theorem: “a linear
and continuous map from a Fréchet space onto a barreled space is open” (see
[15]; [6], 4.1 and Proposition 3). O

Remark (2.7). The previous theorem is not a consequence or a particular
case of Theorem (2.14) below.

LEMMA (2.8). Let A be a uniformly closed ®-algebra that is also a topological
vector space. If the closed intervals of A are t-bounded, then every closed subset
of A is uniformly closed.

Proof. Let F be a closed subset of A. If (a,), is a uniform Cauchy sequence
in F and a € A is the uniform limit of (a,),, one will have to show that a € F.
Let V be a neighbourhood of 0 in A. On the one hand, there exists A € R,
such that [-1,1] C AV, ie., [}, 1] C V; and on the other hand, there exists

a non-negative integer m such that a,, — a € [f%, %] for all n > m. Therefore
(an), converges to a, and one concludes that a € F. O

LEMMA (2.9). Let A be a uniformly closed ®-algebra. The following are
equivalent:

(1) every maximal ideal of A is real;

(ii) the unit element of A is a strong order unit.

Proof. (i) = (ii) If A satisfies (i) then it is clear that X, = Spec,, A (topolog-
ical equality) and so X, is compact. Since every maximal ideal of a uniformly
closed ®-algebra is an /-ideal (see [14], Theorem 3.7), and the intersection of
all the maximal /-ideals is zero (see [7], Chapter II, Theorem 2.11), it follows
that A is real-semisimple; i.e., A is [-isomorphic to a subalgebra of (bounded)
functions in C(X,). Hence A = A*, which is equivalent to saying that 1 is a
strong order unit for A.

(i1) = (i) Let M be a maximal ideal of A. Since M is an [-ideal, one has that
A/M is an f-field and thus a totally ordered field (see [2], p. 57). Moreover,
A/M must be Archimedean since otherwise it would contain infinitely large
elements, against that the unit of A/M is a strong order unit. It follows that
A/M =R. O
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Definitions (2.10). Let A be a topological algebra. We shall say that A is a
Q-algebra if the set of its invertible elements is open. We shall say that an ideal
I of A is a C-ideal, if I is closed and every maximal ideal of A that contains
is real and closed.

Let A be alocally m-convex algebra and I an ideal of A. We shall endow the
quotient A/I with the quotient topology, i.e., the final topology defined by the
quotient morphism A — A/I. Thus, A/I is also a locally m-convex algebra (see
for instance [16], Teorema 1.2.5), and there exists a one-to-one correspondence
between the closed ideals of A containing I and the closed ideals of A/I.

When A is also a uniformly closed ®-algebra, it is obvious that if I is a closed
ideal such that A/I is a Q-algebra then I is a C-ideal (because in a Q-algebra
every maximal ideal is closed). The converse is not true. Actually one has

LEMMA (2.11). Let A be a locally m-convex and uniformly closed ®-algebra.
The spectral representation A — C;(Spec, A) is continuous if and only if A/I
is a Q-algebra for every C-ideal I of A.

Proof. According to [10], Theorem 2.28, the lemma is true when A is a
Gelfand regular locally m-convex algebra. As A is so by (ii) and (iii) of Lemma
(1.14), the proof is complete. O

Remark (2.12). If A is a Gelfand regular topological algebra, then the C-
ideals of A are in correspondence with the compact subsets of Spec, A (see [10],
Section 2, for the details). Thus it is reasonable that the C-ideals should play an
essential role in a statement about the continuity of the spectral representation
(such as Lemma (2.11)), since the topology of C(Spec, A) is defined in terms
of the compact subsets of Spec, A.

THEOREM (2.13). Let A be a ®-algebra that is uniformly closed and closed
under inversion. If 7 is a topology on A such that (A, 1) is a locally m-convex
algebra, then T = 7, if and only if

1) each closed interval of A is T-bounded;

(i1) every real maximal ideal of A is t-closed;

(iii) if I is a 7-closed ideal of A such that the unit of A/I is a strong order
unit, then A/I is a Q-algebra.

Proof. We have that (A, 7,) is a locally m-convex algebra (and thus regular)
that satisfies condition (ii) (Proposition (2.4)) and condition (i). Let us see that
7, satisfies (iii). Let I be a closed ideal of A. From Lemma (2.8) it follows that
I is also uniformly closed, and so it is known that A/I is a uniformly closed
d-algebra (see [14], Theorem 3.7 and Theorem 2.5). Assume that the unit of
A/I is a strong order unit. According to the preceding lemma, this condition
is equivalent to “every maximal ideal containing I is real”, i.e., to I being a
C-ideal of A. That A/I is a Q-algebra follows from Lemma (2.11), because the
spectral representation (A, 7,) — C3(X,) is continuous (by Buskes’ result).

Conversely, assume that (A, 7) is a locally m-convex algebra satisfying con-
ditions (i), (ii), and (iii). Then it is clear that 7 < 7,. A similar argument to
the previous one allows one to prove that if I is a C-ideal of A then A/I is a
Q-algebra, and hence from Lemma (2.11) one derives that the spectral repre-
sentation (A, 7) — C1(Spec, A) is continuous. Since, according to condition (ii),
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the equality Spec, A = X, is satisfied, from Buskes’ result it follows that 7,
is the initial topology associated with this spectral representation, so that it
must be the case that 7, < 7. O

THEOREM (2.14). Let A be a uniformly closed ®-algebra endowed with a
Hausdorff locally m-convex topology. A is l-isomorphic and homeomorphic to
C1(X) for some normal and realcompact topological space X iff:

(i) there exist no principal ideals in A that are proper and dense;

(ii) each closed interval of A is t-bounded;

(iii) every real maximal ideal of A is closed;

(iv) if I is a closed ideal of A such that the unit of A/I is a strong order unit,
then A/l is a Q-algebra.

(v) there do not exist two closed ideals in A whose sum is dense and proper.

Proof. Let us see that these conditions are sufficient. We first prove that A
is closed under inversion: if a € A such that a(x) # 0 for all x € Specy A (# 0
by Lemma (1.14) (v)), then from Lemma (1.14) (v) it follows that the principal
ideal (@) is dense. Condition (i) yields that (a) is the whole algebra A; i.e., a
is an invertible element of A. Then we can apply Theorem (2.13) to deduce
that the topology of A is the order topology. Also A is normal by condition
(v) and Lemma (1.7). Finally, Theorem (2.5) shows that A — C.(X,) is an
l-isomorphism, and therefore a homeomorphism.

Conversely, if X is realcompact then C(X) is closed under inversion and the
topology of Cp(X) is the order topology. From Theorem (2.13) it follows that
C(X) satisfies conditions (ii), (iii), and (iv). Inverting the reasoning of the
preceding paragraph, one has that Cp(X) satisfies (i). Lastly, we have already
said that condition (v) on C,(X) is equivalent to X being normal. O

Remark (2.15). Condition (iv) in the preceding theorem can be replaced by
the requirement that A be a barreled space. Indeed, on the one hand, as
has already been pointed out, C;(X) is barreled when X is realcompact. On
the other hand, if A is barreled, then it is easy to show that the spectral
representation of A is continuous (see [1], (4.12-4)), and therefore, reasoning
as in the proof of (2.13), one has that condition (iv) holds.
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ON TRANSVERSELY HOLOMORPHIC PRINCIPAL BUNDLES

INDRANIL BISWAS AND N. RAGHAVENDRA

ABSTRACT. The notion of a transversely holomorphic structure on a foliated
manifold is generalized. We define principal bundles, and their associated
bundles, on these generalized transversely complex spaces. For any pair of
holomorphic structures on a transversely differentiable principal bundle over
such a space, we construct and study certain naturally associated elements of
the Dolbeault cohomology of the foliated space. The construction of these
cohomology classes are inspired by the construction of the Chern-Simons
secondary invariants of flat vector bundles.

1. Introduction

Transversely holomorphic structures were introduced by Gémez-Mont in
[GMS80]. He defined such a structure on a topological space M to be an open
covering of M by coordinate patches modeled after R™ x C", with the property
that the transition function between any two coordinate patches is of the form

R x C*" - R™ x C",
(x, y) — (g(x, y), (),

where g is a O function and 4 is a holomorphic function. Gémez-Mont then
showed that certain natural sheaves on such a foliated space M have finite-
dimensional cohomologies, provided M is compact. He also studied deforma-
tions of such spaces. Deformations of transversely holomorphic structures
were also studied by Girbau, Haefliger, and Sundararaman [GHS83], who
introduced the notion of a versal deformation of a transversely holomorphic
structure, and constructed it.

In this paper, we generalize the notion of transversely holomorphic struc-
tures as follows. We require that the space M in the above setting should
have a covering by coordinate patches modeled after X x C", where X is an
arbitrary fixed topological space, and that the transition function between any
two coordinate patches is of the form (x, y) — (g(x, y), h(y)), where g is a con-
tinuous function and 4 is a holomorphic function. We shall call such a space a
transversely complex manifold. We define principal bundles on such a space,
and prove some properties of their characteristic classes.

Fix a complex Lie group G. Let P be a C°° principal G-bundle on a
transversely complex manifold M. This means that, in terms of a coordinate
chart on M, the principal bundle P is continuous in the X direction, and C*°
in the C" direction (the transverse direction). We shall define on P an analog
of a Dolbeault operator; the Dolbeault operator on a smooth principal bundle

(1.1
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over a complex manifold gives a complex structure on the principal bundle.
The space Dol(P) of all Dolbeault operators on P is an affine space modeled
after the space of all ad(P)-valued transversely differential forms on M of
Hodge type (0, 1), where ad(P) is the adjoint vector bundle of P. For each
pair of Dolbeault operators dy and 9, we construct a sequence {D(do, 91)}7°,
of cohomology classes Dj(dg, 1) € H2**L(M, Op), where Oy is the sheaf of
transversely holomorphic functions on M. These cohomology classes are called
the secondary invariants of P.

It may be pointed out that the transversely complex manifolds we define
here are the ‘transversal’ analogue of the foliated spaces of Moore and Schochet
[MS88]. The local models considered in [MS88] are R™ x Y, where Y is an
arbitrary topological space, and the transition function between any two charts
is of the form R™ x Y — R™ x Y’ defined by (x, y) — (g(x, y), h(y)), where g
is a C'* function and % is a continuous function. Another difference is that
they study ‘tangential’ objects, i.e., objects along R™, whereas in this paper, we
study ‘transversal’ objects, i.e., objects along Y.

Transversely complex manifolds are also related to laminations. For in-
stance, a lamination by Riemann surfaces [Gh99] is a topological space lo-
cally homeomorphic to a model space of the type D x T', where D is the open
unit disc in C and T is a topological space; the transition function between
two such charts is assumed to be of the form D x T — D x T defined by
(z,t) — (f(z,t),y(t)), where f(z, t) is holomorphic in z and continuous in ¢, and
v(t) is a continuous function of ¢ (cf. [Gh99], Section 2, p. 50). The local models
of a transversely complex manifold are also of the type U x T, where U is open
in C" and T is a topological space. However, the transition function between
two such charts is assumed to be of the form U x T' — U x T" defined by
(z,t) — (f(2),v(zt)), where f(2) is holomorphic in z, and y(z, ) is continuous
in z and ¢ (Proposition (2.5)).

In Section (2), we establish the basic formalisms of transversely complex
manifolds and principal bundles over them. We discuss, in Section (3), holo-
morphic structures on principal bundles over a transversely complex mani-
folds. In section (4), we develop the notion of secondary invariants of such
principal bundles. In Section (5), we investigate the simplest case of these
invariants.

2. Transversely complex manifolds and bundles

Fix a topological space X.

Definition (2.1). A local model of dimension n is a pair (X, U), where X is
the above topological space, and U is an open subset of X x C". We shall often
suppress the space X from the notation, and refer to U itself as a local model.

If (X, U) is a local model, and if x, is a point in X, we define U,, ., = {y €
C" | (x0, y) € U}, and for any point yo of C" we define U, ,) = {x € X |(x, y0) €
U}. If f: U — T is a function from U to a set T, we define f,, y: Uy,,) — T
by ﬂxo,~)(y) = f(xo, ¥), and define f(',yo): U(',yo) — T by f(’,yo)(x) = f(x, Yo)-



TRANSVERSELY HOLOMORPHIC BUNDLES 243

We say that a continuous function f: U — C on a local model (X, U) is
transversely holomorphic if the functions f(,, ., and f. ) are holomorphic on
Ui, and U ), respectively, for all (xo, yo) € U x C".

If V is an open subset of U, then (X, V) clearly is also a local model, so
the above definition of transversely holomorphic functions applies to V also.
We thus obtain the sheaf Ox y) of transversely holomorphic functions on U.
The stalk of Ocx 7y at a point of U is the space of all transversely holomorphic
functions defined around the point.

We shall, most of the time, abbreviate the notation Ox ¢y to Oy. The stalk
of O¢n (the sheaf of holomorphic functions on C") at any point y € C" will be
denoted by Ocr .

Definition (2.2). If (X, U) and (X', U’) are local models, then a continuous
map f: U — U’ is said to be a transversely holomorphic map if f ou €
Oy(f~1(V)) whenever V is an open subset of U’, and u € Oy.(V). We say
that a continuous map f: U — U’ is a transversely biholomorphic map if f is a
homeomorphism and both the maps f and f~! are transversely holomorphic.

Remark (2.3). We can define differentiable analogues of transversely holo-
morphic objects as follows. A real local model of dimension 7 is a pair (X, U),
where X is a topological space, and U is an open subset of X x R”. As before,
we have the notion of a transversely differentiable map.

The following two Propositions (2.4) and (2.5) are easy consequences of the
description of the topological inverse image given above, hence we omit their
proofs.

PROPOSITION (2.4). If (X, U) is a holomorphic local model, then the sheaf of
transversely holomorphic functions Oy on U is canonically isomorphic to the
topological inverse image pry 'Ocn, where pry: U — C" is the restriction of the
second projection X x C* — C", and Ocn is the sheaf of holomorphic functions
on C".

ProprosITION (2.5). If(X, U)and (X', U’) are local models, then a continuous
map f: U — U’ is transversely holomorphic if and only if each point zy € U
has an open neighborhood Uy = Uy x Us C U, with Uy € X and Uy C C", such
that the restriction f|y, is of the form

(2.6) (x,y) — (g(x, y), h(y)),

where g: Uy — X' is continuous, h: Us — Cc is holomorphic, and n' is the
dimension of the local model (X', U").

Definition (2.7). Let M be a second-countable and metrizable topological
space. A transversely complex chart of dimension n, or briefly a chart, on M is
a homeomorphism ¢: V — U, where V is an open subset of M and (X, U) is
a local model. For notational convenience we shall sometimes denote such a
chart by ¢: V — (X, U). Two charts ¢: V — (X, U) and ¢': V' — (X', U’) are
said to be compatible if the transition function ¢’ o p=1: HVNV') — ¢'(VNV')
is a transversely biholomorphic map from the local model (X, ¢(V N V")) to
the local model (X', ¢'(V N V’)). An atlas of dimension n on M is a set of
pairwise compatible charts ¢;: V; — (X;, U;) (i € I), whose domains V; cover
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M. A transversely complex manifold of dimension n is a second-countable and
metrizable topological space, together with a maximal atlas of dimension n.

Remark (2.8). Every open subset of a transversely complex manifold is
again a transversely complex manifold of the same dimension. If M and N
are transversely complex manifolds, then their product M x N has a natural
structure of a transversely complex manifold, whose dimension is the sum of
the dimensions of M and N. Every complex manifold of dimension n is a
transversely complex manifold of dimension 7.

We will recall from [GM80] and [GHS83] a couple of examples of transversely
complex manifolds; see [GMS&0], p. 164, Examples 1,2 and [GHS83], p. 131.

Example (2.9). Let M be a complex manifold of dimension m + n equipped
with a nonsingular holomorphic foliation F of complex dimension m. Then M
has a natural structure of a transversely complex manifold of dimension n.
Indeed, this follows immediately from the fact that the locally defined leaf—
spaces for F have a natural complex structure. Nice applications of this fact
that the locally defined leaf—spaces of a holomorphic foliation has a natural
complex structure can be found in [LV97], [MV02].

Example (2.10). For the second example, let Z be a complex manifold of
dimension n and X a topological space. Let I' be a group acting freely and
properly on X x Z through homeomorphisms of X x Z. In other words, for
any vy € I, the bijection X x Z — X x Z given by the action of y is a
homeomorphism. Assume that I' acts on Z through biholomorphisms. So,
for any y € T, the bijective map Z — Z given by the action of y on Z is
a biholomorphism. The action of I' on Z need not be free. Assume that the
natural projection X x Z — Z commutes with the actions of I"on X x Z and Z.
Then the quotient space (X x Z)/I" has a natural structure of a transversely
complex manifold of dimension . For instance, X can be a Galois cover of
another topological space X’ and I' the Galois group. For any holomorphic
action of I' on a complex manifold Z, the diagonal action of I on X x Z satisfies
the above conditions. If we take I" to be a closed subgroup of a Lie group X with
I' acting holomorphically on Z, then this also satisfies the above conditions.

A continuous function f: M — C on a transversely complex manifold is
called a transversely holomorphic function if, for every chart ¢: V — (X, U),
the function f o ¢~1: U — C is a transversely holomorphic function on the
local model (X, U). With this definition, we obtain the sheaf Oy of trans-
versely holomorphic functions on M. A continuous map f: M — M’ between
transversely complex manifolds is said to be a ¢transversely holomorphic map
ifuof € Oyu(f~1(V)), whenever V is an open subset of M’ and u € Oy (V).

Remark (2.11). Let M be a transversely complex manifold, and let N be a
complex manifold. Therefore, the Cartesian product M x N is a transversely
complex manifold. An explicit description of the transversely complex manifold
structure on M x N is as follows. If ¢: V — U is a transversely complex chart,
where (X, U) is a local model of of M dimension n, and if ¢': V' — U’ is a
complex chart on N, where U’ is an open subset of C* and % = dim¢ N, then

(2.12) dxd:VxV -UxU
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is a transversely complex chart on M x N, where we identify C* x C* with
C™** in the obvious way, and consider (X, U x U’) as a local model of dimension
n + k. As ¢ and ¢’ vary over atlases on M and N, respectively, (2.12) defines
a transversely complex structure on M x N.

Consider the right action of G on M x G, defined by (x, g)h = (x, gh), where
xeMandghecG. Let

AM<xG — MxG

be a G-equivariant transversely holomorphic map, with respect to the trans-
versely complex structure on M x G as defined in Remark (2.11). Suppose that
pr; oA = pry, where pr; denotes the projection to the first factor (the projection
to the second factor will be denoted by pr,). Define two maps p: M x G — G
and o: M — G by p = pry o A and o(x) = p(x, e), where e denotes the identity
element of G.

PROPOSITION (2.13). With the above notation, the map o: M — G is trans-

versely holomorphic. Indeed, every point xo € M has an open neighborhood
Uy, and a chart ¢: Uy — (X, V), such that

1).Vy = V1 x Vo, where V1 is a connected open subset of X, and Vs is open in
C™ with n being the dimension of M;

2). (oo q’fl)(_’y): (Vo)) — G is a constant function for all y € C"; and
3). (o™ ): Vo)) — G is a holomorphic function for all x € X.

The proof is omitted, because it is a direct consequence of the definitions.

Definition (2.14). Let G be a complex Lie group. We say that a right action of
G on a transversely complex manifold P is a transversely holomorphic action if
the action map P x G — P is transversely holomorphic, where the transversely
complex structure on the product P x G is defined as in Remark (2.11). A trans-
versely holomorphic principal G-bundle over a transversely complex manifold
M is a transversely complex manifold P, together with a transversely holomor-
phic surjective map 77: P — M, and a transversely holomorphic right action of
G on P, satisfying the usual local triviality condition. Namely, for every point
x in M, there exist an open neighborhood U of x in M and a G-equivariant
transversely biholomorphic map A: 7= XU) — U x G, where the action of G
on U x G is defined by (x, g)h = (x, gh), for all x € U, and g, h € G, such that
pr;oA=monw L(U).

Let 7: P — M be a transversely holomorphic principal G-bundle over a
transversely complex manifold M, and 7v': P’ — M atransversely holomorphic
principal G'-bundles on M, where G’ C G is a complex Lie subgroup. A
transversely holomorphic morphism from P’ to P is a transversely holomorphic
G'-equivariant map f: P’ — P such that wo f = 7.

Let Oy (G) denote the sheaf of transversely holomorphic maps from a trans-
versely complex manifold M to a complex Lie group G, where the complex
manifold G is considered as a transversely complex manifold in the natural
manner (see Remark (2.8)). Define the Cech cohomology set HX(M, 0,(G)) in
the usual manner.
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Let w: P — M be a transversely holomorphic principal G-bundle over
M. Let {U;}ic; be an open cover of M, such that for each i € I, there
exists a G-equivariant transversely biholomorphic map A;: U; — U; x G as
in Definition (2.14). For each pair (i, j) € I x I, define 0;;: U; N U; — G by
0;j(x) = pryoi;o /\Jfl(x, e), where e € (G is the identity element. By Proposition
(2.13), these transition functions o;; are transversely holomorphic functions.
Moreover, they satisfy the standard cocycle conditions, namely, o;;0, = o3
on U; NU; N Uy. Therefore, the family {U;, 0i;}; jer defines an element 6(P) of
HY(M, O(G)). The cohomology class (P) depends only on the (transversely
holomorphic) isomorphism class of the G-bundle P, and not on the choice of
the family {U;, 0yj}; jer. The function which assigns to the isomorphism class
of a G-bundle P, the cohomology class 6(P) is a bijection from the set of all
isomorphism classes of transversely holomorphic principal G-bundles on M to
the set HY(M, Oy (®)).

Atransversely holomorphic vector bundle of rank r on a transversely complex
manifold M is a transversely complex manifold E, together with a transversely
holomorphic surjective map 7: E — M, satisfying the following conditions:

1). For each point x € M, the fiber E, = 7 !(x) is equipped with the
structure of a C-vector space of dimension r.

2). For every point x € M, there exist an open neighborhood U C M of x and
a transversely biholomorphic map A: 7~ 4(U) — U x C" such that pr; o A = 7
on 7~ 1(U), where pr; is the projection to the first factor, and such that for each
point y € U, the induced map ¢,: E, — {y} x C" = C" is an isomorphism of
complex vector spaces.

Definition (2.15). Let w: E — M and #w': E' — M be transversely holo-
morphic vector bundles on a transversely complex manifold M. A transversely
holomorphic homomorphism from E to E’ is a transversely holomorphic map
f: E — E’ such that 7/ o f = 7, and such that for each point x € M, the
induced map f,: E, — E is linear. A transversely holomorphic isomorphism
from E to E’ is a transversely holomorphic homomorphism f: E — E’ as above
such that for each point x € M, the induced map f,: E, — E’ is a linear iso-
morphism. A transversely holomorphic section of a transversely holomorphic
vector bundle E over M is a transversely holomorphic homomorphism to E
from the trivial transversely holomorphic line bundle M x C (the transversely
complex structure of the product is defined as in Remark (2.11)). Equivalently,
a transversely holomorphic section of E is a transversely holomorphic map
s: M — E such that 7 o s is the identity map of E.

Let M be a transversely complex manifold of dimension n. Let {(U;, ¢;)}icr
be an atlas on M. For each i € I, let 0; = pryo ¢;: U; — C*, and let
T; = o;TC" be the pull-back of TC", the holomorphic tangent bundle of
C", by o;. Then, the locally defined vector bundles T; over M glue to form
a transversely holomorphic vector bundle of rank n over M, which is called the
tangent bundle of M, and is denoted by TM.

For any point x € M, the fiber (TM ), of TM at x is canonically isomorphic to
the vector space of all C-derivations from Oy, to C. We can now, in the usual
manner, define transversely holomorphic vector fields, differential forms, etc.
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Set )}, to be sheaf of transversely holomorphic sections of (TM)*, and more
generally, for any p > 0, set )}, tobe sheaf of transversely holomorphic sections
of the exterior power AP(TM)*. Therefore, we have the sheaf of differential
graded algebra Q}, = @D, Qf; of all transversely holomorphic differential

forms, with the differential 9: Qf, — Q’;j 1 (transversely holomorphic sections
are defined in Definition (2.15)).

Remark (2.16). Using real local models (Remark (2.3)), we can define —
imitating the definitions of transversely complex manifolds and transversely
holomorphic bundles — transversely differentiable manifolds, transversely
differentiable principal bundles, etc. All the assertions above carry over to this
category, with “differentiable” replacing “holomorphic” and with “R” replacing
“C” etc.

Remark (2.17). It can be shown, as done in [MS88], Proposition 2.8, that ev-
ery transversely differentiable manifold M admits transversely differentiable
partitions of unity. Therefore, the sheaf A}, of transversely differentiable p-
forms on a transversely differentiable manifold M is a fine sheaf, for every
integer p.

Example (2.18). If P is a holomorphic principal G-bundle on a complex
manifold Z of dimension n, then the pull-back of P to X x Z is a transversely
holomorphic principal G-bundle on the transversely complex manifold X x Z
of dimension 7.

Example (2.19). Let M be a complex manifold of dimension m + n equipped
with a nonsingular holomorphic foliation F of complex dimension m, and let
7: P — M be a holomorphic principal G-bundle over M. Let F be a
nonsingular holomorphic foliation on the total space of P of complex dimension
n such that dm(F) = 7 F , Where

dm: TP — #*TM

is the differential of the projection 7. Further assume that the action of G on
the principal G-bundle P preserves the subbundle ¥ ¢ TV°P. Then P has a
natural structure of a transversely holomorphic principal G-bundle over the
transversely complex manifold M.

Example (2.20). Take (X, Z,I') as in Example (2.9). Let P be a holomorphic
principal G-bundle over Z. Assume that the G-bundle P is equipped with a
lift of the action of I' on Z. This means that I' acts on the total space of P
through biholomorphisms, that the actions of G and I' on P commute, and
that the bundle projection from P to Z is I'-equivariant. Let P := p;P be
the pullback of P to X x Z by the obvious projection pz: X x Z — Z. Then
the quotient P/I is a principal G-bundle over (X x Z)/I'. This principal G-
bundle has a structure of a transversely holomorphic principal G-bundle over
the transversely complex manifold (X x Z)/T".

3. Holomorphic structures on transversely differentiable bundles

We earlier defined the holomorphic tangent bundle of a transversely complex
manifold. Note that the sheaf of sections of the holomorphic tangent bundle of
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a transversely complex manifold M is identified with the sheaf of derivations of
transversely holomorphic functions on M. From now onwards, to distinguish
the holomorphic tangent bundle from the real tangent bundle, we will denote
the holomorphic tangent bundle of M by T*°M.

The (real) tangent bundle of a transversely differentiable manifold M is de-
fined to be the sheaf of derivations of transversely differentiable real valued
functions on M. The real tangent bundle of M will be denoted by 7M. The con-
jugate bundle of T-°M will be denoted by T1-9M. We have the decomposition
AMTcM) = D, , APUTM), where

APYTM) = AP(TY°M) @ AY(TLOM).

We will denote the spaces of transversely differentiable forms on a transversely
complex manifold M by A”2(M) and AP(M). So AP9(M) (respectively, AP(M))is
the space of all global sections of the transversely differentiable vector bundle
(APYTM))* (respectively, (APTM)*).

If E is a transversely differentiable vector bundle over M, we will denote
by A”9(E) the space of all globally defined transversely differentiable homo-
morphisms from AP9(TM) to E. Similarly, define A?(E) to be the space of all
globally defined transversely differentiable homomorphisms from A?TM to E.

Let G be a Lie group, and let g denote its Lie algebra. Let 7: P — M be
a transversely differentiable principal G-bundle over M. Then we have the
adjoint bundle

ad(P) = (P x g)/G,

which is the vector bundle associated to P for the adjoint representation
ad: G — GL(g); in the above quotient, the action of any g € G sends a point
(z,v) € Pxgto(zg ad(g~1(v)). Note that ad(P) is a transversely differentiable
vector bundle over M.

There is a natural short exact sequence of transversely differentiable vector
bundles

(3.1) 0 — ad(P) — w9TP — TM — 0,

where 7¢TP = TP/G is the vector bundle corresponding to the G-invariant
direct image of TP; it is easy to see that w¢TP is a transversely differentiable
vector bundle over M. The construction and properties of this short exact
sequence are analogous to its construction and properties in the usual case,
i.e., in the category of differentiable principal bundles. See [At57] and [Kos86],
Section 5.5 for the details. We shall refer to the above exact sequence as the
Atiyah sequence of P.

Definition (3.2). Let w: P — M be a transversely differentiable principal
G-bundle, where G is a Lie group. A connection on P is a transversely differ-
entiable splitting

y: #8TP — ad(P)
of the Atiyah exact sequence of P.

If y and y’ are connections, then using (3.1) it follows that

w=y-v
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is a well defined transversely differentiable homomorphism from #¢TP to
ad(P). Moreover, w(X) = 0 for all X € ad(P). Therefore, w induces a trans-
versely differentiable homomorphism from TM to ad(P), or in other words, w is
a transversely differentiable 1-form on M with values in ad(P). We will denote
this form also by y — y’. The space of all connections on P is, thus, an affine
space modeled after the vector space Al(ad(P)).

Let G be a complex Lie group, and let 7: P — M be a transversely differ-
entiable principal G-bundle on a transversely complex manifold M. The space
of ad(P)-valued forms AP%(ad(P)) was defined above.

Definition (3.3). Let G be a complex Lie group, and let 7: P — M be
a transversely differentiable principal G-bundle on a transversely complex
manifold M. Let us say that connections y and y’ on P are equivalent if

vy —v € AY%ad(P)).

This defines an equivalence relation on the space of all connections on P.
We will denote the equivalence class of y by v itself. An almost holomorphic
structure on P is an equivalence class, with respect to the above relation, of
connections on P.

The space of all almost holomorphic structures on P is an affine space mod-
eled after the vector space A% (ad(P)). Indeed, for any two almost holomorphic
structures on P y and 7/, the difference 7’ — v is an element of A%!(ad(P)), and

conversely, for any § € A%1(ad(P)) and any almost holomorphic structure y on
P

v i=y+6
is again an almost holomorphic structures on P.

Let 7: P — M be a transversely differentiable principal G-bundle, where G
is a complex Lie group. If v is a connection on P, we will define its curvature,
in analogy with the usual case, as follows. The transversely differentiable
homomorphism of vector bundles on M, y: #¢TP — ad(P), gives rise to a
transversely differentiable 1-form on P with values in g. We will denote this
g-valued 1-form also by . By definition, the curvature is the 2-form on P with
values in g, given by

K(y) = dy+ [y, vl.

The form K(y) descends to an ad(P)-valued 2-form K(y) € A%(ad(P)) on M.
When there is no risk of confusion, we will denote the 2-form K(y) also by
K(y).

Definition (3.4). Let G be a complex Lie group, and let w: P — M be
a transversely differentiable principal G-bundle on a transversely complex
manifold M. Let y be an almost holomorphic structure on P by a connection
v/ on P. Consider its curvature K(y/) € A%(ad(P)) of y. We say that the
almost holomorphic structure vy is integrable if the (0, 2)-component, K(y')%? ¢
A%2(ad(P)), of K(y') is zero. This condition on v is independent of the choice
of the representative vy’ of the equivalence class of connections defined by y.
An integrable almost holomorphic structure is also known as a holomorphic
structure.
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Let M be a transversely differentiable manifold, and let E be a transversely
differentiable real vector bundle on M of even rank. An almost complex struc-
ture on E is a transversely differentiable homomorphism of vector bundles,
J: E — E, such that

J? = —1p.

An almost complex structure on M is, by definition, an almost complex structure
on the real tangent bundle TM. A transversely differentiable almost complex
manifold is a transversely differentiable manifold together with a transversely
differentiable almost complex structure on it.

On every transversely differentiable almost complex manifold (M, J), we
have a decomposition TM @ C = TOM @ T%'M, where T*°M is the /—1-
eigenspace of J ® 1c, and T%'M = TLOM. This induces a decomposition
I'(TM ® C) = I'(TY°M) @ T(T%' M) of the vector space of transversely differen-
tiable complex vector fields on M.

We say that a transversely differentiable almost complex structure J : TM —
TM on a transversely differentiable manifold M is integrable if (AY%(TM)) is
a Lie subalgebra of I'(TM g C), where the Lie bracket of two transversely
differentiable (complex) vector fields on M is defined in the same way as in the
usual case. An integrable almost complex structure is also known as a complex
structure.

Every transversely complex manifold M carries a natural transversely dif-
ferentiable almost complex structure, which is integrable. Conversely, using
the Newlander-Nirenberg Theorem [NN57], we can prove the following result.

PROPOSITION (3.5). Let M be a transversely differentiable manifold, and let
J: TM — TM

be a transversely differentiable almost complex structure on M. Suppose that
J is integrable. Then, there exists a unique structure of a transversely complex
manifold on M, that induces the almost complex structure J.

Let w: P — M be a transversely differentiable principal G-bundle, where
G is a complex Lie group, and M is a transversely complex manifold. Let y be
a connection on P. Then y induces a G-equivariant splitting of the short exact
sequence of transversely differentiable G-vector bundles

(3.6) 0—-0p®Rrg— TP — 7"TM — 0.

We will denote this G-equivariant splitting also by y. Since G is a complex Lie
group, the vector bundle Op ®g g carries a transversely differentiable almost
complex structure. Since M is a transversely complex manifold, the pull-
back 7*TM also carries a transversely differentiable almost complex structure.
Therefore, using the splitting y of the Atiyah exact sequence (3.6), we can define
a transversely differentiable almost complex structure J,: TP — TP on P.

Let w: P — M be a transversely differentiable principal G-bundle, where
G is a complex Lie group, and M is a transversely complex manifold. Let y
be a connection on P. Then the transversely differentiable almost complex
structure

J,: TP — TP
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in the transversely differentiable real vector bundle TP is called the almost
complex structure induced by .

We now have, as in [Kos86], Section 6.4, Propositions 2 and 3, the following
result. The proof is an exact analogue of the proof in that reference.

PROPOSITION (3.7). Let 7: P — M be a transversely differentiable principal
G-bundle, where G is a complex Lie group, and M is a transversely complex
manifold. Let y be a connection on P. Then, the following are true.

1).If y' is a connection that is equivalent to vy in the sense of Definition (3.3),
then the induced almost complex structures J,: TP — TP and J, : TP — TP
are equal.

2). The almost complex structure J,, on P is a complex structure if and only
if the almost holomorphic structure vy is a holomorphic structure in the sense of
Definition (3.4).

We thus see that almost holomorphic (respectively, holomorphic) structures
on a transversely differentiable principal G-bundle P correspond bijectively to
almost complex (respectively, complex) structures on P.

Let E be a transversely differentiable complex vector bundle over a trans-
versely differentiable manifold M. A connection in E is a C-linear map

V:A%E) — ANE),
which satisfies the Leibniz identity:
(3.8) V(fs) =df®s+fVs
for all f € A%0Oy) and s € AE).
Definition (3.9). Let E be a transversely differentiable complex vector bun-

dle over a transversely complex manifold M. An almost holomorphic structure
in E is a C-linear map D: A%E) — A%1(E), which satisfies the Leibniz identity

(3.10) D(fs) = af @ s+ fDs

for all f € A°(Oy) and s € A%(E). Given an almost holomorphic structure in
E, we can extend it naturally to a C-linear map D'?»?: AP9(E) — API*Y(E),
satisfying the generalized Leibniz identity

(3.11) DPPat Yy AT)=Fw @ T+ oA Dr

for all w € AP9(M) and 7 € AP9(M). We will, as usual, drop the superscripts
from DP9, and denote it by just D. We will say that the almost holomorphic
structure D in E is integrable if D?> := D o D = 0. A holomorphic structure in
E is an integrable almost holomorphic structure.

4. Secondary invariants

Fix a nonnegative integer k. Let G be a complex Lie group with Lie algebra
g, and let B be an G-invariant symmetric form on g of degree k£ + 1. In other
words,

(4.1) B € (Sym"!g")¢,

with G acting on Sym’*! g* through the adjoint action of G on g.
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Let w: P — M be a transversely differentiable principal G-bundle over a
transversely complex manifold M. Let p: G — GL(V) be a representation
of G on a finite dimensional complex vector space V. Proceeding as in the
usual case, one defines the associated transversely differentiable vector bundle
E, = (P xV)/G. As usual, we identify sections of E, with transversely
differentiable functions from P to V satisfying an automorphy condition.

Note that the G-invariant (% + 1)-form B on g defines a smooth (% + 1)-form

Sym* ad(P)) — A

on the adjoint bundle ad(P) of any smooth transversely differentiable principal
P over M, where AY; is the sheaf of transversely differentiable complex valued
functions on M. For notational convenience, this form on ad(P) will also be
denoted by B.

We say that a transversely differentiable vector field X on P is projectable
if there exists a transversely differentiable vector field Y on M, such that
d7y(X,) = Y, for all x € P, where d 7 is the differential of the projection 7
from P to M.

PROPOSITION (4.2). Let notation be as above. If y is a connection on P, then
there exists a unique connection V in E, such that, for every projectable vector
field X on P, we have

(4.3) Vx(o) = Xo + (p(y(X))o) — o forall o € AE,).

Moreover, the (0, 1)-part, D, of the connection V depends only on vy. The operator
D is an almost holomorphic structure on E,. It is integrable if and only if y is
integrable.

The proof of this result is analogous to that of [Kos86], Section 5.6, Theorem
3.

Let vy and 1 be two holomorphic structures on P, and let w = y; —yo. Note
that

o € A®Yad(P)).
Define
Yt = Yo t+iw

for all ¢ € [0,1]. Note that y; is an almost complex structures on P (almost
complex structures form an affine space). The almost complex structure y;
need not be integrable if 0 < ¢ < 1, so let

O; = yioy: € AO’Z(ad(P))

be the obstruction to the integrability of the Dolbeault operator y; on P, where
te[0,1].

Let 9; denote the almost holomorphic structure in ad(P) that is induced by v,
following Proposition (4.2). Then, we note that the standard Bianchi identity
says that 9;(®;) = 0 for all . Define

1
(4.4) Dy(yo,v1) = / B(o A OMdt,
0

where B is the earlier defined (% + 1)-form on the adjoint vector bundle ad(P)
(obtained from the G-invariant form on g). To explain the integral, note that
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B(w/\@f) is a transversely differentiable (0, 2k+1)-form on M for each¢ € [0, 1].
So for each point x € M, we have

1
/ Blo AOM(x)dt € AT M)" .
0

The integral Dy (yo, y1) is a transversely differentiable (0, 2% + 1)-form on M,
and

1
(4.5) Dilyo, y)(x) — / Blo A O x)dt
0

for each point x € M.

LEMMA (4.6). The form Dy(yo, v1) is 0-closed.
Proof. For any ¢ € [0 1], consider the transversely differentiable (0, 2k+2)-form
B(O®*1) on M. So the integral

1
Dy (yo, v1) :=/ BO1)adt
0

is a transversely differentiable (0, 2k + 2)-form on M. Using the Bianchi
identity it is straight-forward to check that

_ 1 -~
D = ——D
dDy(y0, v1) Pl (y0, ¥1)
(see [Ch95], p. 114, Lemma 3.1, for a very similar computation). This com-
pletes the proof of the lemma. O

Let (A};, d) be the Dolbeault complex of transversely differentiable complex-
valued forms on M; so A5 is the space of all global sections of A§7. The
complex
4.7) 0— Oy — AL L A% 2L,
is an acyclic resolution (see Remark (2.17)) of Oy, the sheaf of transversely
holomorphic functions on M. Therefore, the d-closed (0, 2k + 1)-form Dy, (o, y1)
defines an element of HZ*1(M, O,;). We will denote this cohomology class by
Dy, (yo, y1)-

Example (4.8). Suppose that E is a transversely differentiable vector bundle
of rank r over a transversely complex manifold M. By considering frames as
usual, E gives rise to a transversely differentiable principal G-bundle on M,
where G = GL(r, C). There is a natural linear form B € (g*)¢ = (Sym' g*)¢,
namely the trace form B(g) = trace(g). Using this linear form B in the above
procedure, we get for every pair of holomorphic structures yy and v, on E, a
cohomology class Dy(yo, v1) € HY (M, Oy ). In particular, if L = A"(E) is the
determinant line bundle of E, we get a class Do(y%, yE) € H(M, Oy), where
yE is the holomorphic structure on L induced by the holomorphic structure vy;
on E. We use this notion in Lemma (5.1).

Let Dol(P) denote the set of almost holomorphic structures on the G-bundle
P. We have seen that it is an affine space modeled after A%(ad(P)). There
is a natural topology on A%!(ad(P)) that makes it a Fréchet space. Therefore,
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Dol(P) becomes a topological affine space in a natural way. Let Hol(P) denote
the space of all holomorphic structures on P. So Hol(P) is a subspace of Dol(P).

THEOREM (4.9). Asin Lemma (4.6), take two holomorphic structures yog and
y1on P. Let
f:10,1] — Dol(P)

be a smooth map such that f(0) = yo and f(1) = y1. Define

1
Di(yo, y1) = / Bl A (F(B) o f@)H At € AS2HH (M),
0

where w as before is y1 — yo, and f(t) o f(¢) is the obstruction to integrability of
the Dolbeault operator f(t) on P. Then the form D¢(yo, y1) is 0-closed, and the
cohomology class in H2*1(M, Oy) represented by D¢(yo, y1) coincides with the
cohomology class Dy(vyg, y1) constructed earlier.

Proof. Let
F:10,1] x[0,1] — Dol(P)
be the smooth map defined by

F(s,t) == (1 —s)yo +tw) + sf(t).

Therefore, F(s,0) = yo and F(s,1) = y; for all s € [0, 1]; similarly, we have
F0,t) =y, and F(1,¢) = f(¢).

Using this function F, there is a Dolbeault operator on the principal G-
bundle ¢*P over M x [0, 1] x [0, 1], where

qg: M x[0,1] x[0,1] — [0,1] x [0,1]

is the natural projection. The Dolbeault operator on ¢*P is uniquely deter-
mined by the following two conditions:

1. for any point x € M, the Dolbeault operator on (q*P)|{x}x[0,11x[0,1]
coincides with the one given by the natural trivialization of (¢g* P)| {1} x[0,11x[0,1]
(since (¢*P is pull-back from M, any trivialization of the fiber P, gives a
trivialization of the G-bundle (¢* P)|{} x(0,11x[0,11), and

2. for any point (s, £)€[0, 11x[0, 1], the Dolbeault operator on (¢* P)|psx (s} x {1}
coincides with Dolbeault operator F(s, ) on P.

Let D denote the Dolbeault operator on ¢* P constructed above. Let

(4.10) D? € A%2(g* ad(P))

be the obstruction to integrability of the Dolbeault operator D.
Consider the infinite dimensional vector space

(4.11) V = A2 1(ad(P)),

the space of all ad(P)-valued transversely differentiable forms of type (0, 2k+1)
on M. There is a natural V-valued (0, 1)-form on [0, 1] x [0, 1] which will be
constructed below.

Take any point (s, ¢) € [0, 1] x [0, 1], and also take any point x € M. Now
we have a smooth function on [0, 1] x [0, 1] with values in (T M)* ® ad(P),
that sends any point (s', ') € [0, 1] x [0, 1] to (F(s', ') — F(s, t))(x); recall that

F(s',¢)— F(s,t) € A®!(ad(P)),
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and hence (F(s/,¢') — F(s, ))(x) € (T>'M)* ® ad(P),. This (T>'M)* ® ad(P),-
valued smooth function on [0, 1] x [0, 1] will be denoted by ¢;;,. Now take
any tangent vector v € T(gjtl)([O, 11 x [0, 1]), and set

(4.12) #(s, t, x)V) == BW(dss)(D*(x, s, 1))F) € (TOHH1p)*,

where v(¢s, ) is the derivation of the function ¢, , in the direction v. Let ¢
denote the V-valued (0, 1)-form on [0, 1] x [0, 1] which is defined as follows: for
any point

(s,8) € [0,1] x [0, 1]
and any tangent vector v € T&;([O, 1] x [0, 1]), define

(4.13) Y)x) := (s, t, x)V),
where (s, t, x)(v) is constructed in (4.12).

Since F(s,0) = vyq, F(s,1) = y1, F(0,s) = ys and F(1,s) = f(s) for all
s €10, 1], we conclude that

(4.14) / ¥ = Ds(y0, 1) — Diyo, y0),
a([0,1]1x[0,1])

where Df(yo, y1) is defined in the statement of the theorem and D (v, y1)
is defined in (4.4), and ([0, 1] x [0, 1]) denotes the oriented boundary of
[0, 1] x [0, 1] (the boundary has the anti-clockwise orientation). Using Stokes’
theorem, from (4.14) we conclude that

(4.15) D;(y0,v1) — Dilyo, y1) = / dy.
[0,1]1x[0,1]

In view of (4.15), to prove the theorem it suffices to show that the (0, 2k + 1)-
form [ 11,0174 ¥ is 9-exact, or in other words, there is a form a € A%2k(D)

such that
da = / diy.
[0,1]x[0,1]
Set
(4.16) Vo= A% (ad(P)),

the space of all ad(P)-valued transversely differentiable forms of type (0, 2%) on
M. To prove that [; 1, (0.1 d¥ is 9-exact we will construct below a V'-valued
(0, 2)-form on [0, 1] x [0, 1].

Take any point (s, ¢) € [0, 1] x [0, 1], and also take any point x € M. We
earlier constructed the (T M)* ® ad(P),-valued function ¢, . on [0, 11x[0, 1].
Now take any two tangent vectors

vw € T} (0,11 x [0, 1)),
and set
B(s, t, )(v,w) = B )w(epss (D, 5, DY) € (TP2*M)",

where w(¢s; ), asin (4.12), is the derivation of the function ¢ , in the direction
w. Let B denote the V'-valued (0, 2)-form on [0, 1] x [0, 1] which is defined as
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follows: for any point (s,¢) € [0, 1] x [0, 1] and any ordered pair of tangent
vectors v,w € T>1([0, 1] x [0, 11), define

(s,t)
(4.17) B, w)(x) == (s, t, x)v, w),

where B(s, ¢, x)(v, w) is constructed above.

It is a straight-forward computation to see that the form ¢ in (4.13) co-
incides with the Kiinneth component of type (2 + 1, 1) of B(D?)**1), where
D? ¢ A%%(g* ad(P)) is the obstruction of integrability in (4.10); by Kiinneth
component of type (2k + 1,1) of a differential form of degree 2k + 2 on
M x [0, 1] x [0, 1] we mean the Kiinneth component which is a combination of
a form of degree 2% + 1 on M and a form of degree one on [0, 1] x [0, 1].

Consider V and V' defined in (4.11) and (4.16) respectively. Let

v:V — Vv

be the homomorphism defined by w ~— dw. Using v, if 6 is a V'-valued
differential form of degree c, then v(6) is a V-valued differential form of degree
¢ in a natural way.

Using the Bianchi identity for the Dolbeault operator D (see (4.10)) it is a
straight-forward computation that

(4.18) v(B) = %dlp,

where B is defined in (4.17).

Since the image of the homomorphism » is the space of d-exact forms,
from (4.18) it follows immediately that the integral f[o,ux[o,u d i is a 9-exact
form. Finally, from (4.15) we conclude that the form D¢(yy, y1) is d-closed (as
Dy(y0, y1) is d-closed), and the cohomology classes represented by D/(yo, y1)
and Dy (yo, y1) coincide. This completes the proof of the theorem. O

The above theorem has the following corollary:

COROLLARY (4.19). Assume that k > 1. Let y1 and vy be holomorphic
structures on P, which lie in the same path component of Hol(P). Then the
cohomology classes in H2¥t1(M, Op) represented by Dy(yo, 1) and Dy (yo, v2)
coincide.

By Theorem (4.9), to compute Dy, (yg, y2) we can use a path connecting ys with
vo which is a composition of two segments of the following type: one segment
connects y; with yy and the other segment lies in Hol(P) connecting yo, with
v1. Since the integral vanishes identically on the second path, the cohomology
classes represented by Dy (yo, v1) and D, (yo, y2) coincide.

5. Some examples

In this section, we specialize the structure group G in Section (4) to GL(r, C).
Thus, the Lie algebra g is the matrix algebra M,.(C). We take the the symmetric
form B in (4.1) to be the trace form, that sends any matrix A € M,(C) to
trace(A) € C.

Let E be a transversely differentiable vector bundle of rank r over a trans-
versely complex manifold M. Let L = det(E) := A" E be the determinant
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line bundle corresponding to E. Any holomorphic structure on E induces a
holomorphic structure on L.

The following lemma shows that for £ = 0, to compute the invariants in
Theorem (4.9) for vector bundles, it is enough to compute it for line bundles.

LEMMA (5.1). Take two holomorphic structures yo and y1 on E. Let y§
(respectively, y) be the holomorphic structure on the determinant line bundle
L := \" E induced by vy, (respectively, y1). Let

Do(yo,v1) € HY(M, Oy)

and
Do(y§,v¥) € HY(M, 0y)
be the cohomology classes defined in Example (4.8). Then

Do(yo,v1) = Do(y§,vE).
Proof. Take any § € A%(End(E)). Let
trace(d) € A%N(Oy)

be the form obtained by taking the trace of 6. The almost holomorphic struc-
tures vy := yo + 6 on E has the following property: the almost complex struc-
ture on the determinant line bundle L := det(E) induced by vy, coincides with
the almost complex structure ‘yé + trace(6). Using this observation the lemma
follows. O

In view of Lemma (5.1), we may restrict ourselves to line bundles to inves-
tigate the case of £ = 0. In Lemma (4.6), set G = GL(1,C) = C*, and also
set B to be the natural identification of the Lie algebra of C* with C.

PROPOSITION (5.2). Let & € HY(M, Oy;) be any Dolbeault cohomology class.
Let yg be the trivial holomorphic structure on the trivial differentiable line

bundle M x C over M. There is a holomorphic structure vy on the trivial
differentiable line bundle M x C on M such that

Dy(yo,v1) = 0,
where Dy(vyg, y1) is the Dolbeault cohomology class constructed in Lemma (4.6).

Proof. Let 6 € A%Y(Oy) be a d-closed (0, 1)-form representing the Dolbeault
cohomology class 6. Let

Y1 = Yo+ 6
be the holomorphic structure on the trivial differentiable line bundle M x C
over M, where v is the trivial holomorphic structure. Note that as the form
0 is closed, the almost complex structure on M x C given by vy; is integrable.
Consider the path of holomorphic structures on L defined by ¢ —— yo + ¢ - 0.

For this path, the form in (4.5) evidently coincides with 6. This completes the
proof of the proposition. O

Remark (5.3). If M is a compact Kihler manifold with H'(M, Q) # 0, then
we have HY(M, Op) # 0. Therefore, if we take the transversely complex
manifold X x M, where X is any topological space and M a compact Kéhler
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manifold with H'(M, Q) # 0, then for the transversely complex manifold
X x M we have

H' X x M, Oy) # 0,

and furthermore, H(M, Q) sits inside H'(X x M, Oy;). Therefore, Proposition
(5.2) provides examples where the invariant in Theorem (4.9) does not vanish.

We have a more precise formulation of the relationship between the holo-
morphic structures on line bundles and the invariant in Theorem (4.9).

LEMMA (5.4). Let L be a transversely differentiable line bundle over a trans-
versely complex manifold M. Take two holomorphic structures yy and vy, on L.
Let

Do(yo,7v1) € HY(M, Oy)

be the cohomology class defined ed in Example (4.8). Then the following two
are equivalent:

1. The two holomorphic line bundles (L, y¢) and (L, y1) are holomorphically
isomorphic.

2. The Dolbeault cohomology class Do(vyq, v1)is represented by the (0, 1)-part
of a closed one-form 6 € AY(M x C) such that the periods of 6 are integers.

Proof. Let 0 be a closed one-form as above with integral periods such that
the Dolbeault cohomology class Dy(vyg, v1) is represented by the (0, 1)-part of
0. We will show that the two holomorphic line bundles (L, yo) and (L, y;) are
holomorphically isomorphic.

Let f be the multi-valued function on M obtained by integrating 6 along
oriented paths starting from a base point in M. Since the periods of 0 are
integers,

g = exp(2mvV/—1f)
is a single-valued smooth function on M which is nowhere vanishing. Now from
the construction of Dy(yg, y1) it follows that the smooth automorphism of L
given by the pointwise multiplication with the function g gives an isomorphism
between the two holomorphic line bundles (L, yo) and (L, y1).

To prove the converse, assume that the two holomorphic line bundles (L, yq)
and (L, 1) are isomorphic. Let g denote a nowhere zero smooth function on M
such that the smooth automorphism of L given by the pointwise multiplication
with the function g gives an isomorphism between the two holomorphic line
bundles (L, yo) and (L, y1). Therefore, the (0, 1)-form

0 := alogg € A®Y(Oy)

is well-defined. Considering the path of holomorphic structures on L defined
by ¢t — 7yo+¢6 we conclude that the Dolbeault cohomology class Dy(yg, y1) is
represented by the (0, 1)-part of a closed one-form with integral periods. This
completes the proof of the lemma. O
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ALGEBRAIC TEST FOR THE HURWITZ STABILITY OF A GIVEN
SEGMENT OF POLYNOMIALS

BALTAZAR AGUIRRE AND RODOLFO SUAREZ

ABSTRACT. For the robust stability analysis of a linear system, due to the
nonconvexity of the set of Hurwitz stable polynomials, it is important to have
available computational methods to verify the stability of a convex combina-
tion of polynomials. In this paper, given two Hurwitz stable polynomials py
and pp, a simple algebraic test (a matrix inequality) for the stability of the
segment of polynomials determined by py and p; is proposed. Based on this
result the problem of estimating of the minimum left extreme is addressed.

1. Introduction

Motivated by the robustness analysis of systems with uncertain parame-
ters, different approaches to study the stability of segments of polynomials
have been proposed ([4], [5], [8], [9], [16]). The question is to find conditions on
the stable polynomials po(¢) and p1(¢) such that the segment of polynomials de-
scribed by p(t, A) = Apo(#)+(1—A)p1(¢) is stable for all A € [0, 1]. The first result
where necessary and sufficient conditions were obtained was Bialas’s Theorem
which establishes that if py is Hurwitz stable and deg(py) > deg(p;) then p(z, A)
is Hurwitz stable for all A € [0, 1] if and only if the matrix H~1(po)H(p;) has
no eigenvalues in (—oo, 0), where H(p) is the Hurwitz matrix of the polyno-
mial p (see [2], [4] and [11] ). A different approach in terms of the frequency
domain which is known as the Segment Lemma was established by Chapellat
and Bhattacharyya (see [3] and [9]). In this lemma the stability of p(¢, A) is
equivalent to certain conditions that must be satisfied by the odd and even de-
gree polynomials associated with the polynomials py(¢) and p;(¢). On the other
hand, a method to determine the stability of segments of complex polynomials
was obtained by N. Bose and is known as Bose’s Test [6].

Based on the above criteria, several algorithms have been developed to test
efficiently the stability of segments of polynomials. The Segment Lemma has
been used to develop an algorithm in [8]. In the same direction, more recently,
in [14] there was obtained a procedure to check the Hurwitz stability of convex
combinations of polynomials in a finite number of operations. Related to Bose’s
work [7], in [5] there is a test that can be used to determine the stability of
segments of complex polynomials. Furthermore, in [16] there were obtained
the well-known Rantzer conditions (see also [13]).

2000 Mathematics Subject Classification: Primary: 93D09. Secondary: 34D99.
Keywords and phrases: Hurwitz stable polynomials, segments of polynomials, minimum left
extreme, matrix inequalities.
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Following the ideas exposed in [1] this work address the problem of obtaining
simple algebraic conditions for checking the stability of a segment of polynomi-
als. It is important to note that the approach proposed in this paper provides
sufficient conditions used when deg pp = n and deg p; = n,n — 1, n — 2 in con-
trast to the Segment Lemma where it is supposed that deg po = deg p;. Ascan
be seen in [13], it is not necessary to study the cases when deg(p;(¢)) < n — 2.

Our approach for the case deg pyp = deg p; is as follows: Given a Hurwitz
stable polynomial py(¢) = t"+at" 1+ - -+a, which is the nominal polynomial,
let p1(t) = c1t" + cot" ' + - - + ¢,41 be an arbitrary polynomial of degree 7.
Define the matrix E, ) € M, 11)x(n+1) by

1 0 0 0 .. 0 0

-az a -1 0 ... O 0

(1.1) Epp=| % % %2 @1 . 0 0
0 0 0 0 cee Qp—1 —QAp_—9

0 0 0 0 .. O an

If the polynomials po(¢) and pi(¢) are Hurwitz stable and the vector ¢ =
(€1,€2, ..., Cns1)T = 0 satisfies the system of linear inequalities

(1.2) Epme 0,

then the convex combination Apy(¢) + (1 — AM)p1(¢) is Hurwitz stable for every
A € [0, 1]. Here the symbol > 0 (X 0) means that every component of a given
vector is nonnegative (nonpositive) and the symbol = 0 means that every
component of a given vector is nonnegative but there is at least one positive
component.

A similar result can be obtained for the case deg(p;(¢)) = n — 1. In this case
the matrix E, ,,_1) € M, «», is defined by

ap -1 0 0o ... 0 0
—as as —ai 1 . 0 0
as —Qay as —Qag ... 0 0
(1.3)  Egp-1 =
0 0 0 0 . anp—1 —QAp—29
0 0 0 0o ... 0 an

and the corresponding inequality is
(1.4) E(n,n_l)c ; 0.

We also we study the situation when only one Hurwitz polynomial, say po(¢),
isknown and the problem is to find all possible p;(¢) such that Apo(¢)+(1—A)p:1(¢)
is Hurwitz for every A € [0, 1].

Finally, we use the same approach to estimate the minimum left extreme
of a stable segment, that is, given the Hurwitz stable polynomials py(¢) and
p1(¢) such that the vector of coefficients of p; satisfies (1.2) or (1.4) then we find
a number &y < 0 such that p(¢) + kpi(¢) is Hurwitz stable for every & > k.
The problem of calculating the minimum left extreme was solved by Bialas [4].
Although £y is only an estimate of k., the novelty of our approach is that %
is obtained by a simple algebraic calculation. Contrary to stability of segments
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where a good deal of work has been reported about the minimum left extreme
we can only mention Bialas’ work, hence Section 5 might be interesting.

The paper is organized as follows: in Section 2 sufficient conditions assuring
that a segment of polynomials consists of Hurwitz stable polynomials are given
when it is known that the extremes po(¢) and p;(¢) are Hurwitz stable. In
Section 3 we compare our approach with other known sufficient conditions
and two computational methods. In Section 4 we suppose that py(¢) is Hurwitz
stable and we see that the matrix inequality (1.2) is a sufficient condition on
the vector of coefficients of p;(¢) = cit" + cot® 1 + - - - + cp41 to establish that
[po, p1] is a segment of Hurwitz polynomials and we characterize the solution
set of (1.2). Finally, in Section 5 the minimum left extreme of a stable segment
is estimated.

2. Hurwitz Stable segments

The aim of this section is to obtain conditions for the stability of segments
of polynomials. The main results are based on the following lemma where
sufficient conditions are given for a real polynomial to be Hurwitz stable.

LEMMA (2.1). Let F(t) and f(t) be real polynomials of degree n, such that
(@) has positive coefficients, f(0) # 0 and the roots of F(t) are contained in C*.
Consider the polynomial of degree 2n given by F(t)f(t). If F(iw)f(iw) # 0 and
F(iw)f(iw) does not intersect L for all o > 0, where L is a straight line in the
complex plane that passes through the origin, then all the roots of f(t) are in
C-.

Proof. Suppose n is even (the odd case is analogous). Let n = 2m and let
F@), f(¢) be given by

F@) = bot¥ + bit2™ 1 4 oo 4 bo,  F(&) = dot®™ +det¥ 1 + - + dom .

Without loss of generality we may suppose that by > 0, and then by,, > 0 also
since the roots of F(¢) are in C". Let [/ and r be the number of roots of F(¢)f ()
contained in C~ and C™, respectively. Let 6(w) be the argument of F(iw)f (iw).
Denote by Aj°6(w) = 6(c0)— 6(0) the net change in the argument. Since F(¢)f(¢)
does not have roots on the imaginary axis we get that A°0(w) = §(I —r) ([15],
p- 406; [12], p. 174). The fact that F(iw)f (iw) does not intersect L for v > 0
implies [AG°0(w)| < 7.

Now we will analyze 8(w)—6(0) when w is large. First, we have that for large
o, F(io)f (iw) ~ bydow*™ — i[bidy + bod1lw*™ 1. Therefore Re [F(iw)f (iw)] > 0

ImiFio)fGo) _, - ' — -
and RelF o) o) 0 when w oo. Since F(0)f(0) = b, doy, > 0 it follows

that A5°0(w) = 6(co) — 6(0) = 2sm, where s is an integer. Since F(iw)f(iw)
does not intersect L for w > 0 then [Aj°01(w)| < 7, and therefore we get that
AF6(w) = 0.

Consequently, the polynomial F(¢)f(¢) has as many roots in C~ as in C*.
Since such a polynomial has degree 2n, there are n roots in C*. In fact the
roots in C* correspond to the roots of F(¢). Hence, the n roots in C~ correspond
to the roots of f(¢), which means that f(¢) is Hurwitz stable. O
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Remark (2.2). Particular cases of Lemma (2.1) are the situations in which
L is the real or the imaginary axis. When L is one of the axis, the associated
matrices are easy to calculate. Our main results are based on these two cases.

In the following theorem we apply Lemma (2.1) when L is the imaginary
axis.

THEOREM (2.3). Consider the Hurwitz stable polynomials po(t) = t" +
at" - a,and pi(t) = c1t"+cot” 14+ - 4cppr. Ife = (c1, ¢, ..., cni1)T =0
is a solution to (1.2), then, for all A € [0, 1], the polynomial Apy(t) + (1 — N)p1(t)
is Hurwitz stable.

Proof. Suppose n is even (the odd case is analogous). Let n = 2m and
A €10, 1]. Let p, q, P, @ denote the polynomials

p(L) = comi1 —com—1L+ com_sL? + ...+ (=1D)"c L™,
2.4) qL) = com —ComoL+ ...+ (=1 legL™ Y,
: P(L) = aom— agmpL+...+(—1"LaggLm=1 4 (—1y"Lm,
QL) = agm-1—agmsL+...+ (1" g LML
Then it holds that
[Apo + (1 — Mp1liw) = [AP+ (1 — M)ple?) + iw[AQ + (1 — Ngl(w?),
poiv) = P(w?) + ioQ(w?).
Consider the polynomial po(—£) [Apo(¢) + (1 — M)p1(#)] . Thus we get
po(—iw)Apo + (1 — Mp1liow) = P(w?) [AP(w?)+ (1 — Mp(w®)] +
+02Q(0?) [AQ(w?) + (1 — Mg(w®)] +
+io(1 - M) [P(0*)g(0?) — Q(@?*)p(e?)]
That is,
po(—io)Apo + (1 — Vpiliw) = A[PX0?) + 0*Q*(0®)] +
+(1 - 1) [P(@*)p(0?) + 0*Q(w?)g(w?)] +
(2.5) +iw(1l — A) [P(w2)q(w2) — Q(wz)p(w2)}.

Since P(w?)p(w?) + 0?Q(w?)q(w?) = Z( ©)@” 170 and the vector ¢ = 0

is a solution to the system of the hnear inequalities (1.2), the polynomial
P(0®)p(0?) + 0®>Q(w?)q(w?) does not have positive roots. Consequently, for
all o > 0, po(—iw)Apg + (1 — A)p1]iw) does not intersect the imaginary axis.
Finally, since po(—t) and Apo(¢) + (1 — A)p1(¢) satisfy the hypothesis of Lemma
(2.1) we have that the polynomial Apy(¢) + (1 — AM)p1(¢) is Hurwitz stable for all
A€ [0,1]. O

Remark (2.6). Theorem (2.12) can be extended to the case when deg p;(¢) =
n — 1. To prove this result we need to redefine the polynomials p(L) and g(L)
by
p(L) = com —Com-nL+ ...+ (=1 egLm1,

qL) = com—1—ComsL+...+ (D" ey L™,
and the proof follows the same steps as the proof of Theorem (2.3).
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On the other hand, using the same method, Theorem (2.3) cannot be ex-
tended to the case when deg(p;(¢)) = n — 2 since the corresponding matrix
E(n,an) in My «(n—1) 18 given by

-1 0 0 o ... 0 0
as —a1 1 0 e 0 0
—-a4 a3 —Qg a1 ... 0 0
27  Eppg =
0 0 0 0 . anp—-1 —QAp—9
0 0 0 o ... 0 an

but the first inequality implies that —c¢; > 0 which is not satisfied since ¢; > 0.

Remark (2.8). In [1] we obtain a condition like (1.2) for the stability of rays
of polynomials. There is an obvious relation between stable rays and stable
segments of polynomials: if po(¢) + kg(¢) is a Hurwitz stable polynomial for
every k > 0 then (ﬁlk) po(t) + (ﬁ) g(t) is a Hurwitz stable polynomial for
every k > 0, which means that the stability of the ray po(¢)+ kg(¢) is equivalent
to the stability of the open segment [po(t), g(t)) . Observe that for g(t) Hurwitz
stable we get the stability of the closed segment [py (%), g(£)].

In the proof of Theorem (2.3), when we analyze the complex function po(—iw)
[Apg +(1—M)p1liw) defined in (2.5), the straight line £ was the imaginary axis.
A different possibility is to consider L as the real axis. Such an analysis was
done in [1] and the results were given in terms of a similar inequality Dc z 0
given by the following matrices:

a -1 0 o ... 0 0
—as ag —ax 1 e 0 0
as —a4 a3 —Qaz ... 0 0
(2.9) D¢, ) =
0 0 0 0 e —Qap—9 an—3
0 0 0 0 . an —Qn_1
for the case deg(pi(¢)) = n, while
1 0 0 0 0 0
—Qay ai -1 0 0 0
a4 —as ag —Qai 0 0
(2.10) Dyp1)=
0 0 0 0 oo Qp_9 —Qp_3
0 0 0 0 e. —Qn  Qp_1

for the case deg(p1(¢)) = n — 1, and for deg(p1(¢)) = n — 2, the matrix D, ,_q) €
Mi—1)xtn—1) 18

agz -1 0 0o ... 0 0

—as a2 —a1 1 ... 0 0

(2.11) Dpno)=| % ~% @ ~—0 .. 0 0
0 0 0 0 e Qp—92 —Qp_3

0 0 0 0O ... —a, ap-1
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Rewriting the results in [1] for segments of polynomials instead of rays, we
obtain the next result.

THEOREM (2.12). Consider the Hurwitz stable polynomial po(t) = t" +
at" ' + -+ a,. If p1(t) is a Hurwitz stable polynomial with deg(p,(t)) =
n,n — 1, or n — 2, and its vector of coefficients c satisfies the system of linear
inequalities

(2.13) Dz 0

where the matrix D depending on deg(pi1(¢)) is one of the matrices Dy, ), Dn,n—1)
or D, ,—g), then the polynomial Apo(t) + (1 — M)p1(¢) is Hurwitz stable for all
A€[0,1].

3. Comparison with other methods

In this section we present the qualities of our approach comparing it with
other known methods.

(3.1) Comparison with the Method in Aguirre ef al. There are segments
of stable polynomials such that the stability can be verified using the approach
introduced here, but it is not possible to check such stability with the test given
in [1].

Example (3.1.1). Consider the Hurwitz stable polynomial po(¢) = ¢3 + 2t +
t 4 1. The vector of coefficients c of the polynomial p;(¢) = 3 + 82 + 13¢ + 1 is
a solution to the system of linear inequalities (1.2):

1 0 0 0 1 1

Eeo_| -1 2 -1 0 8 | | 2
@C=1 o0 -1 1 -2 13 7| 3
0o 0 o0 1 1 1

Consequently the segment [p, p1] is stable. However, ¢ is not a solution to
(2.13) since

2 10 0 ; -6
Dssec=| -1 1 -2 1 s l=1 18
o 0 1 -1 . 12

(3.2) Comparison with the Rantzer-type conditions. Here we compare
our approach with the known Rantzer-type conditions. Such conditions are
explained in [13] and they are the following: Suppose that pg is a Hurwitz
polynomial and p; is a semistable! polynomial. Then the ray of polynomials
po(t) + kp1(t) consists of Hurwitz polynomials if one of the following four
conditions holds:

() The difference d = p; — po satisfies
darg(d(im))
— <

Jw

0, e {w>0/d(iw)+0}.

LA polynomial is semistable if the real parts of its roots are not positive.
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(i1) Each of the polynomials pg, p; has at least one root in the open left
half-plane and

sin (2 argld(iw)])

darg(d(im))
<
2w

Jw

. we {w>0/diw) % 0}.

(ii1) Each of the polynomials pg, p1 has at least one root in the open left
half-plane and

darg(d(im)) <

Jw -

0, w € {w > 0/d@iw) # 0}.

(iv) Each of the polynomials pg, p; has at least two roots in the open left
half-plane and

darg(d(im)) <
Jw -

sin (2 argld(iw)])
2w

, w € {w> 0/d(iw) # 0} .

Although the Rantzer-type conditions offer four options to check the stability
of segments of polynomials, they can not cover all the possibilities, as is
illustrated by the following example.

Example (3.2.1). Consider the Hurwitz stable polynomial py(¢) = 3 + 22 +
¢t + 1. The vector of coefficients c of the polynomial p;(t) = 3 + 72 + 12t + 2 is
a solution to the system of linear inequalities (1.2):

1 0 0 0 1 1
Eoo_| -1 2 -1 0 7 | |1
@C=1 o0 -1 1 -2 1271
0 0 0 1 2 2

Therefore the segment [po, p1] is stable. Furthermore, we will see that this
example does not satisfy the Rantzer-type conditions (see [13], [16]).
For this example po(¢) and p;(¢) are Hurwitz polynomials, and d(¢), d(iw) and
arg(d(iw)) are given by d(t) = (p1 — po)(t) = 5t2+ 11t +1, d(iw) = 1 -50?+illw,
llw
1-5w2)"
It is not difficult to verify that i) — iv) are not satisfied:
darg(d(iw)) 11 + 55w?

0w (1-502)” + 12102
0} = (0, o), 7) is not satisfied.

arg(d(iw)) = arctan

1) Since

> 0 for all w € {w > 0/d(iw) #

2w (11 - 55w2)

2) sin (2argld(in)]) = 5 , hence
(1-5w?)” + 12102

0 arg(d(iw)) _ sin (2 argld(iw)])
ow 2w

is satisfied if and only if

1145502 |11 5507
(1-502)” +1210? (1 -50?)” + 1210




268 BALTAZAR AGUIRRE AND RODOLFO SUAREZ

If o = 1 we have that % < %, which is a contradiction. Consequently i7)
is not satisfied.

3) From the above inequalities it is immediate that iii) and iv) are not
satisfied either.

Consequently, although the segment [po(t), p1(¢)] consists of Hurwitz poly-
nomials, it is not possible to verify that using the Rantzer-type conditions
obtained in [13].

Remark (3.2.2). With respect to the method in [1] and the Rantzer-type
conditions we believe that the main contribution of our new approach is that it
can be applied to cases where the others do not succeed. However this does not
mean that our approach subsumes the other methods and in a given segment
our method could fail and some of the other methods could work.

(3.3) Comparison with the Algorithm of Hwang-Yang. Now we compare
our approach with the computational method given in [14].

Example (3.3.1). Consider the polynomials po(¢) = 5 + 6t* 4 14 3 + 16¢% +
9t+2and p,(¢) = 2.16¢°+6.47t* +8.58t% +6.57t2 +3.38t +1.08. The polynomial
po(t) is Hurwitz stable and the vector of coefficients c of the polynomial p;(¢) is
a solution to the system of linear inequalities (1.2) since

1 0 00 0 0 2.16 2.16
~14 6 -10 0 0 6.47 0
_ 9 —1614 -6 1 0 858 | _ 0
Ei5c = 0 2 -916 —-14 6 657 | = 0 :
3.38
1.08

0 0 0 -2 9 —16 0
0 0 0 0 0 2 2.16

Then we can conclude that the segment with extremes py(#) and p;(¢) consists
of Hurwitz polynomials.
On the other hand, if we apply the approach given in [14] we begin with the
following calculations:
Po + Alp1 — pol = [1 + 1.16A1¢5 + [6 + 0.47A1t* + [14 — 5.42)]°
+[16 — 9.43A1¢% + [9 — 5.62A)¢ + 2 — 0.92A,

a0,0(A) = ap(A) =2 —0.92

a0,1(A) = az(A) = 16 — 9.43A
ao2(A) = ag(A) = 6+ 0.47A

a10(A) = a1(A) =9 — 5.62A

a1,1(A) = az(A) = 14 — 542X
a12(A) = a5(A) = 1+ 1.16A

az,0(A) = 116 — 151.07A + 48.01A2
az,1(A) = 52 — 30.89A — 1.5742\2

as () = 1156 — 2173.5\ + 1331.5A% — 269.06)°
as1(A) = 116 — 16.51A — 127.23A% + 55.692A3

as0(A) = 5184 — 11128.5) + 8745.6A% — 3048.7A3 + 400.391*
To finish the algorithm one must check that a4 o(A) > 0 for every A € [0, 1].
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Remark (3.3.2). In general, to apply the algorithm of Hwang-Yang one must
calculatetheall a;;’s. Next one must check whether a,_1(A) > Ofor A € [0, 1].
That is, this algorithm reduces the problem of determining the stability of
a segment of polynomials to checking the positivity of a polynomial, which
is usually verified by using Sturm sequences. But note that the number
of calculations increases with the degree of the extremes of the segment of
polynomials since the degree of a,_10(A) is n — 1.

(3.4) Comparison with the Algorithm of Bouguerra et al. Now we com-
pare the calculations of our approach with the algorithm given in [8].

Example (3.4.1). Consider the Hurwitz polynomial po(¢) = #8 + 75 + 204+
30¢3 4 25¢2 4 11t + 2 and let py(¢) = 15¢% 4+ 58¢5 4+ 100¢* + 100¢3 + 65¢2 + 29¢ + 7.5
be a polynomial. The vector of coefficients c of the polynomial p;(#) is a solution
to the system of linear inequalities (1.2) since

1.0 0 0 0 0 0
-20 7 -1 0 0 0 0 = s
25 =30 20 -7 1 0 0 100 0
Egec=] -2 11 —25 30 —20 7 -1 100 [ =] 35
’ 0 0 2 -11 25 —30 20 65 5.0
0 0 0 0 -2 11 -2 29 1.5
O 0 O O o0 0 2 7.5 15.0

Consequently the segment [po, p1] is stable.

On the other hand, if we apply the algorithm posed in [8] first we have to
determine the polynomials

a(x) = 2 — 25x + 20x? — x3

b(x) = 11 — 30x + Ta

¢(x) = 7.5 — 65x + 100x? — 1512

d(x) = 29 — 100x + 58x?

Next we must make the following calculations:

1) Find the positive real roots of a(x), g(x), ¢(x) and a(x).

__ 2) From these positive roots, one looks for intervals where both a(x)e(x) and
b(x)d(x) are negative.

3) If such intervals exist, one needs to check for the existence of positive real
roots of a(x)d(x) — b(x)c(x) = 0 inside these intervals. If a(x)d(x) — b(x)c(x) = 0
admits roots inside these intervals, then the segment is unstable, and stable
otherwise.

Remark (3.4.2). In this algorithm one uses Sturm sequences as well. Ob-
serve that if the degrees of py and p; are increased, the degrees of a(x), Z(x),
&), d(x), a(x)e(x), bx)d(x) and a(x)d(x) — b(x)&(x) are also increased.

Hence if the degrees of py and p; are large, the application of 1), 2) and 3)
requires costly effort.

Remark (3.4.3). It is natural that the algorithms of Hwang-Yang and Bou-
guerra require more work that our condition since they are based on necessary
and sufficient conditions and consequently can check both situations: stable
or unstable segments.
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4. Stability of a segment when only a extreme is given

Now we study a different problem: a Hurwitz polynomial py(¢) is given
and we ask whether there exist polynomials p;(¢) such that [po(¢), p1(#)] is a
segment of Hurwitz polynomials.

Remark (4.1). Let H,, denote the set of Hurwitz stable polynomials of degree
n. If the vector of coefficients of the polynomial p;(t) = ¢t 1 +cot” 1 4---+¢,
is a solution to the system of linear inequalities E, ,_1)c = 0, then it can be
proved that the segment of polynomials [po(¢), p1(¢)) is Hurwitz stable. Observe
that p; ¢ H, since deg(p;) = n — 1. However it is clear that p;(¢) is on the
boundary of H,,.

Remark (4.2). Consider the Hurwitz polynomial po(¢) = " +a1t" 1+ - -+a,.
Let E, ,) be the corresponding matrix defined by (1.1). If p;(¢) is given by
pi(t) = Z?jll c;t""17% and the vector ¢ = (c1, o, ..., ¢n1)! = 0 is a solution to
the system of linear inequalities (1.2), then following a idea similar to that
of Theorem (2.3) it can showed that [po(2), p1(¢)] is a segment of Hurwitz
polynomials. Contrary to Remark (4.1) we have in this case that p; € 3,
since deg(p;) = n. But the question is whether there exists any polynomial
p1(¢) that fulfills this property. In the following subsection we work on this
problem. First we describe an example.

In the following example we present a segment of Hurwitz stable polynomi-
als [po(2), p1(#)] such that the vector of coefficients of p; () does not satisfy the
linear inequalities (1.2) and (2.13). This example proves that conditions (1.2)
and (2.13) are only sufficient.

Example (4.3). Consider the Hurwitz stable polynomials po(t) = 3 + 2¢2 +
t+1and pi(t) = 3 + 5t> + 2t + 2. First, observe that the linear matrix
inequality (1.2) is not satisfied:

1 0 0 O 1 1

-1 2 -1 o0 2] 2
Egsc= 0 -1 1 -2 2 B -10

0 0 0 1 o 1

On the other hand, the segment [po(¢), p1(#)] is a segment of Hurwitz stable
polynomials since the Routh-Hurwitz conditions (% — %)\), 2-2), % — %)\ >0
and (3 —IM@2-Nt— L2+ 151 = 1A%+ 1x+1 > 0associated with the polynomial
Apo@®) + (1 — Mpy(&) = £ + (3 — M2 + (2 — Mt + 22 — L5 are satisfied for all
A €[0,1].

Furthermore, this example does not satisfy the condition (2.13) either, since

2 -1 0 0
D(313)C = -1 1 -2 1
0 0 1 -1

|
IO o

11

N} [\SINTS

This example and the Remark (4.2) illustrate the relevance of studying the
problem of characterizing the solution set of (1.2), which will be addressed in
the next subsection.
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(4.1) Characterization of the set of solutions of (1.2). In this subsection,
given the Hurwitz stable polynomial py(¢), we will find the polynomials p;(¢)
whose vector of coefficients satisfies the linear inequalities (1.2).

As was proved in [1] for the matrix Dy, ,_1), it can be seen that the matrix
E, n) is of monotone kind (i.e., E, ,)z = 0 implies z = 0), which implies that
it is invertible and E(; )1n) = 0, where E(; )1n) > 0 means that all its entries

are nonnegative (see [10]). Denote by V = {z € R""1/{0} | z; > 0,Vi =
1,2,...,n+ 1}. The following result characterizes the solution set of (1.2).

THEOREM (4.1.1). The set H of solutions of the system of linear inequalities
(1.2) can be writtenas H = E-1 V.

(n,n) " *

Proof. First we prove that H C E(;’ln)V. Letu € H, thenu = 0 and E(, ,ju =
0. Consequently, u = E 1 Eq, nyu with E, ,yu € V. That is, u € E 'V

(n,n) (n,n) " *
Now, we prove H O E(; }n)V. Let u € E(;ln)V, then u = E(;ln)v with v > 0 and
v # 0. Hence, E(, ,,u =v = 0 and E(‘n,n)u > 0 for some row E(ln,n) withl <i<n,
thatis, u € H. O

COROLLARY (4.1.2). Let po(t) = t" + a1t" ' + --- + a, be a Hurwitz stable
polynomial. Let E, ) be the corresponding matrix defined by (1.1). If the vector
c=(c,co...,cn+ 1T € EZLV, then [po(®), p1(®)] is a segment of Hurwitz

(n,n)
n+l | o pi41—i
i—1 Git .

Remark (4.1.3). Observe that the set of vectors that satisfies (1.2) is given
by the polyhedral cone C generated by w; = E(;’ln)el, we = E(;)ln)e,z, cey Wyl =

polynomials, where the polynomial p:(¢) is given by p1(¢) = >

E(;,ln)enﬂ, where ey, e, ..., e,.1 are the canonical vectors in R**!. Given the
vector of coefficients wy = (1, ay, ..., a,) of the Hurwitz stable polynomial py(¢),
the vectors w € C are vectors of coefficients of polynomials p;(¢) such that
[po(®), p1(t)] is a segment of Hurwitz polynomials.

Example (4.1.4). Consider the Hurwitz stable polynomial py(¢) = #3 + 22 +
¢t + 1. The matrices E(3 3y and E’é}é) are given by

1998 (1
Y - -1 _ (111
Egs) = ( 0-1 1 2): Egs = (1 12

0 0 0 1 000
From Theorem (4.1.1), the set of vectors that satisfy E3 s)c Z 0 can be seen as

the polyhedral cone C generated by
{(1,1,1,07,(0,1,1,07,(0,1,2,07,(0,2,4, DT} .

5. The minimum left extreme

In this section, given the Hurwitz stable polynomials py(¢) and p;(¢), we are
concerned with the problem of estimating the minimum £, < 0 such that
po®) + kp1(t) is a Hurwitz stable polynomial V& > ky;,(see [4]). Using the
results presented in the above sections, we will find a number %y < 0 such that
po(t) + kp1(t) is Hurwitz stable for every k& > kg, if the vector of coefficients of
p1 satisfies (1.2) or (1.4). Here % is an estimate of &, (kg > knin) because
we do not know if kg is the smallest number with this property. The problem
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of calculating the minimum left extreme %,;, was solved by Bialas [4]. In our
approach kg is obtained by an algebraic calculation.
Consider the polynomial

(5.1) P, k) = pot) + kp1(2)

where py(t) = t* + a1t* ! + - - - + a, is the nominal polynomial. Assume py(t)
is a Hurwitz stable polynomial, and let E, ,) be the corresponding matrix
defined as in (1.1). If the vector of coefficients ¢ = (c1,c¢o,...,cni1)T = O
of the polynomial p;(#) = Y27 ¢;t"*1~7 is a solution to the system of linear
inequalities (1.2), then po(¢) + kp1(¢) is a Hurwitz stable polynomial V& > 0. In

[4] it was proved that

1
(5.2) kmin o H po)H(py)]
where H(py), H(p;) are the Hurwitz matrices of py and p; respectively and
Ainl—H “Ypo)H(py)] is the minimum negative eigenvalue of the matrix
—H Y(po)H(p1). Observe that numerically (5.2) is not easy to calculate be-
cause the calculation implies solving an nth-order eigenvalue problem. In
what follows we give an algebraic procedure to obtain an estimate of Zpy;,.

Define the matrix

1 0 0 0 .. 0 0

0 a -2 0 ... 0 0
(5.3) Zinn) = 0 a —2a1 ... O 0

0 0 0 0 N ¢ A | _2an—2

0 0 0 0 .. O© an

and denote by Z(in n) the i-th row of the matrix Z, ) and leta = (1, ay, . . ., an)’.

THEOREM (5.4). Let po(t) = t* + a1t ! + --- + a, be a Hurwitz stable
polynomial. Let E,,) be the corresponding matrix defined by (1.1). If the
vector ¢ = (c1,C, ..., cni1)L = 0is a solution to the system of linear inequalities
(1.2) and each component of E, »c is positive and the polynomial pi(t) is given
by pi(t) = S et then, po(t) + kpy(t) is a Hurwitz stable polynomial for

all k > ko, where
7\ a
ko= max [——mC )
i=1,..,n+1 E(njn)c

Proof. In a similar way to the proof of Theorem (2.3) we get
po(—iw)po + kpiliw) = [Pe?) + 0?Q*(w?)] +

+k [P(0?)p(0?) + 0?Q(w?)g(w?)] +
+iwk [P(0*)g(0?) — Q(?)p(w?)] .
Note that the expression P%(w?) + 0?Q%*(»?) + k [P(0?*)p(0?) + 0?Q(0?)g(w?)]

ntl . .
can be rewritten as w®™V + Y (Z{ a + kE| )01 If k > ko then
2, \

1
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Zl a .
k> —E(in’in) Vi=1,...,n+ 1 Since E, ,,c > 0Vi=1,...,n+ 1it follows
(nm)© A - A
that kE(‘n’n)c > —Z(’n’n)a and then Z(‘n et kE(ln,n)c >0Vi=1...,n+ 1

Consequently, for all @ > 0, po(—iw’)[po + kp1l(iw) does not intersect the
imaginary axis, from which we have that po(—¢) and po(¢) + kp1(¢) satisfy the
hypotheses of Lemma (2.1). This implies that the polynomial py(¢) + kpi(¢) is
Hurwitz stable for all £ > kg, and the theorem is proved. O

Remark (5.5). The extension of Theorem (5.4) to the case where deg p;(¢) =
n — 1 turns out to be as follows: po(¢) + kp1(¢) is Hurwitz stable for all & > kg,

. Z(Ln nfl)a
ifkp = max |——>"—] and
i=1,..,n,n E(Ln,nfl)c
a -2 0 0 0 0
0 ag —2(11 2 0 0
(5.6) Z(n,nfl) _ 0 0 as —2(12 0 0
0 0 0 0 P ¢ | —Zan_2
0 0 0 0 0 a,

Remark (5.7). For the segment of polynomials p(¢, q) = po(¢)+qlp1(¢)— po(t)]
for q € [0, 1], it follows from Theorem (5.4) that p(¢, q) is Hurwitz stable for all

—]ie-Ok . If kg < —1, it results that p(¢, g) is Hurwitz stable
0

q > qo, where qo = T
for all £ € (—oo, 1].
Next we present an example where ky = ki,

Example (5.8). Let po(t) = 3+ Tt2 + 14t + 8, p1(t) = t> + 4t + 6. To calculate
ko, we first have that

7 -2 0 7 21
Zepa = | 0 14 —14 14 | =| 84 |,
0 0 8 8 64
7 -1 0 1 3
Egac = | -8 14 -7 4 =6 |.
0 0 8 6 48

21 84 64 4
Then ko = max (-3, —%, %) = —3.

To calculate &y, we find that

78 0 1 6 0
Hpp=|1 14 0 |, Hpy=|[ 0 4 0
0O 7 8 0 1 6
and
IoE o
H Y(po)H(p1)= ( —% 1—2 2 ) ,o (-H Y(po)H(py)) ={-32, -1 + Li}.
720 45 4

= ko.

[SHIE

Therefore Ay, = —%, and thus ky;, = —



274 BALTAZAR AGUIRRE AND RODOLFO SUAREZ

Example (5.9). For the polynomials po(t) = ¢ + 7¢2 + 14t + 8, pi(t) =
26t% + 137t + 90 we obtain kg > kmin. Defining the matrices Z39), Egg9 as
in (5.6) and (1.3) respectively, we have

21 45
Zzoga= | 84 |, Eggc= | 1080
64 720
From which ky = max (-2, -84, —84) — _ T — _0.07778. On the other

hand, given the Hurwitz matrices H(py) and H(py), o (—H *(po)H(p1)) =
{-11.25, -4.1399, —9.5601}, and A, = —11.25. Finally, kpi, = —0.088889 <
ko = —0.07778.
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